
Grouped Distributed Queues:

Distributed Queue, Proportional Share Multiprocessor Scheduling

Bogdan Caprita, Jason Nieh, and Clifford Stein∗

Department of Computer Science
Columbia University

Technical Report CUCS-004-06
February 2006

Abstract:

We present Grouped Distributed Queues (GDQ), the first proportional share scheduler for multiprocessor

systems that, by using a distributed queue architecture, scales well with a large number of processors and

processes. GDQ achieves accurate proportional fairness scheduling with only O(1) scheduling overhead.

GDQ takes a novel approach to distributed queuing: instead of creating per-processor queues that need to

be constantly balanced to achieve any measure of proportional sharing fairness, GDQ uses a simple group-

ing strategy to organize processes into groups based on similar processor time allocation rights, and then

assigns processors to groups based on aggregate group shares. Group membership of processes is static,

and fairness is achieved by dynamically migrating processors among groups. The set of processors work-

ing on a group use simple, low-overhead round-robin queues, while processor reallocation among groups is

achieved using a new multiprocessor adaptation of the well-known Weighted Fair Queuing (WFQ) algorithm.

By commoditizing processors and decoupling their allocation from process scheduling, GDQ provides, with

only constant scheduling cost, fairness within a constant of the ideal generalized processor sharing model for

process weights with a fixed upper bound.

We have implemented GDQ in Linux and measured its performance. Our experimental results show that

GDQ has low overhead and scales well with the number of processors.

Keywords: Stochastic Processes/Queuing Theory, Quality of Service, Scheduling, Fair Queuing, Multi-

processor Scheduling

∗Also in Department of IEOR

1

1 Introduction

Scheduling the processing resources in a time-sharing system is one of the most critical tasks for any operating

system. A process scheduler apportions CPU time to the runnable processes in small periods, or time quanta,

according to some scheduling policy. Since the scheduling code is run every time quantum, the scheduler

needs be efficient (i.e. run in constant time) regardless of the number of processes in the system. More

importantly, on multiprocessor architectures, the scheduler cannot ignore the overhead of synchronization

mechanisms and the cache effects of switching tasks between processors, and should be designed to minimize

the need for or occurrence of such events ([14]).

An attractive scheduling policy is proportional sharing, or fair-share scheduling, which allocates a fixed

share of CPU time to each process ([9]). Each process is assigned a weight that defines the service rights of

that process: the CPU time received should be in proportion to the weight. That is, a process A of weight φA

receives a share of φA

∑all processes C φC
. In such a model, a process is guaranteed its share of CPU time regardless

of the behavior of other tasks. Proportional share schedulers also provide system administrators with precise

control over the allocation of processing time. Because of its benefits, proportional sharing has received much

attention, and numerous schemes to implement single resource proportional sharing have been proposed ([1],

[3], [6], [7], [8]). However, accurate proportional share schedulers have not been adopted in operating system

kernels, mainly because they are difficult to implement accurately ([10]). Instead, simpler heuristic algorithms

which allocate CPU time in coarse time intervals are used, but these are not suited for supporting interactivity

or for satisfy tight processing requirements. More recently, single processor schedulers have been designed

that combine accurate proportional sharing with simple, efficient algorithms ([3]).

Multiprocessor scheduling is considerably less well understood, and, in practice, relies mostly on heuris-

tics ([15]). A multiprocessor scheduler has the same goals as a single processor scheduler, except that the

resource is no longer a single CPU, but instead a set of 2 or more processors. Along with the need to dis-

tribute the scheduling algorithm on several nodes, a multiprocessor system raises additional difficulties for

proportional sharing: the process weights are not guaranteed to form a feasible mix, balancing work across

processors requires expensive task migrations, and, in general, book-keeping needs to grow even as the shar-

ing of information becomes more expensive due to synchronization and caching.

Because of this added complexity, proportional share multiprocessor schedulers are scarce, and usually

operate with a single, centralized queue ([3], [4]). Due to lock contention, centralized queue schedulers

clearly do not scale beyond just a few processors. From an implementation standpoint, there is a qualitative

difference between using a single queue and using per-processor queues: the former needs a global lock,

which involves accessing main memory each time the lock is grabbed or released, even on a dual processor

machine. Furthermore, as the number of processors increases, there will be tremendous contention for the

single lock, which hence becomes the performance bottleneck. In addition, if processes are scheduled from a

2

single queue, a single process will be unlikely to run consecutive times on the same processor and therefore

will not take advantage of the previous cache state.

In this paper, we present the Grouped Distributed Queues (GDQ) proportional-share task scheduling

algorithm, which achieves fine-grained control over resource isolation in multiprocessor systems. Because

of the aforementioned drawbacks to using a centralized queue, we designed GDQ to distribute the queuing

data structure and localize task queues at each processor. Furthermore, GDQ is designed to scale well not

only with the number of processors, but also with the number of tasks. Constant overhead and simple data

structure updates are key to scheduler efficiency.

Traditionally, distributed queue scheduling implies assigning a queue of tasks to each processor, such that

the queue identifies one-to-one with the processor, and the processor works solely on tasks within its queue.

To balance load, the queues grow and shrink as processes migrate between queues. This simple model imposes

an expensive trade-off between CPU allocation fairness and efficiency. As queues become unbalanced, some

processes fall behind and the queues need to be rebalanced. However, moving processes among queues too

often nullifies the main benefits of having distributed queues: light lock contention and good cache affinity.

The starting point of GDQ was to separate the balancing of processor queues and process scheduling

such that the former can be optimized for fairness and the latter for efficiency without globally sacrificing

either. GDQ proposes an inverted paradigm for pairing up processors and processes: ‘queues’ are static,

and processors migrate from ‘queue’ to ‘queue’. That is, processes are aggregated into groups based on

their weight, and remain in their groups for their entire runnable lifetime, whereas processors are assigned to

perform work on the groups such that proportional sharing is maintained. At regular intervals, processors are

reassigned from one group to another, thus ensuring that groups progress at proportional sharing rates. We

present a new algorithm, called Multiprocessors Fair Queuing (MFQ), that manages the processor allocation

among groups. Simple round-robin queues will then be used inside groups to schedule the processes.

The grouping and processor allocation strategies allow GDQ to maintain tight fairness among the sched-

uled processes, while avoiding expensive computation and processor reallocations. Our formal analysis of

GDQ captures the design goals of GDQ :

• constant time overhead, regardless of the number of processes

• fairness within constant bounds of an ideal scheduler

In addition to these theoretical results, we have conducted experiments to demonstrate the power of GDQ.

Simulation studies show very good fairness bounds that scale well with the number of processes and proces-

sors. Furthermore, GDQ can be easily and efficiently implemented. A prototype GDQ scheduler for Linux

compares favorably against standard Linux schedulers ([10]) as well as against a single queue proportional

share multiprocessor scheduler ([3]).

Sections 2–4 describe the GDQ algorithm, its analysis, and experiments. We defer a detailed comparison

to related work until Section 5.

3

2 GDQ Scheduling

At a high-level, the GDQ scheduling algorithm consists of three parts, a process grouping strategy, an intra-

group allocation algorithm and an inter-group allocation algorithm. In the presentation, we abstract the notion

of a time quantum, which is the maximum time interval a process is allowed to run before another scheduling

decision is made, and refer to the units of time quanta as adimensional time units (tu) rather than an absolute

time measure such as seconds.

The next section contains definitions and the basic grouping strategy, while subsequent sections describe

the various algorithms.

2.1 Definitions

P and N denote the number of processors, and processes, respectively. The P processors are labeled℘1,℘2, . . . ,℘P.

The order σC of a process C having weight φC, is defined as blog φCc (all logs are base 2). The order is easily

computed as the first bit set in the binary representation of the process weight. For any C, we keep track of its

work, wC, which measures the amount of CPU time that the process has received so far. Work is measured in

adimensional time units (tu) which counts how many time quanta a process has consumed. The normalized

virtual time (NVT) of the process is defined as nvC = wC
2σC

φC
. Because 2σC ≤ φC < 2σC+1, the NVT scales the

work of C down (up to a factor of 2) such that all processes within a group will have similar NVTs.

GDQ groups processes together exponentially by weight, such that group Gk contains all the processes

with weights between 2k (inclusive) and 2k+1 (exclusive) 1. We call Gk = {C : 2k ≤ φC < 2k+1} the group of

order k, where k is the order of all the processes in Gk. The number of groups is denoted by g, and can be at

most blogφmaxc+1, where φmax is the maximum possible weight. For example, with 32 bit weights, g ≤ 32.

We associate the following variables with a group G: the weight of the group, ΦG, is the sum of the weights of

all processes in G; the work of G, WG is the sum of the work of all processes in G. Finally, N k is the number

of processes in group Gk. Clearly, ∑Gk Nk = N. For the sake of brevity, we will use Xk to mean XGk for any

variable X .

G20 1 313 4 5

31 32

groups . . .

weights 1234..7 8 ... 15 16 ... 31 32 ... 63 64 2 2 −1

GGG G G G

Figure 1: GDQ grouping strategy

GDQ also keeps track of the following: ΦT , the total weight, is the sum of all process weights (or group

weights); WT , the total work, is the sum of the work of all processes (or groups). When there are at least P

1henceforth, except for writing powers of 2, superscript does not denote exponentiation.

4

runnable processes in the system at all times, WT = Pt where t is the elapsed time.

According to its weight, any group Gk is “entitled” to be serviced by Φk
ΦT

P processors. GDQ attempts to

allocate processors to groups fairly. However, a group’s processor allocation at any time, denoted by Pk, must

be an integer. Define Pk =
⌊

Φk
ΦT

P
⌋

(floor) and P
k
=

⌈

Φk
ΦT

P
⌉

(ceiling). Unless Φk
ΦT

P ∈ N, P
k
= Pk + 1. GDQ

will then allocate either Pk or P
k processors to a group depending on the work accumulated by the group so

far and the state of the scheduler. The Pk processors allocated to group Gk are labeled ℘k
1,℘

k
2, . . . ,℘

k
Pk .

Groups are organized into a list of size g. Inside groups, processes are organized into queues, which are

linked lists. next(C) denotes the process that follows C in the list. A group has P
k queues, and each queue

is in general associated with a single processor. ℘(Q) denotes the processor that works on the queue Q, and

Q(℘) denotes the queue that processor ℘works on. Each queue Q keeps track of a current process, denoted

by C(Q), which is receiving service from ℘(Q). A per-queue NVT, denoted nvQ, is used as a round counter to

advance the NVT of the queue’s processes. All queues of a group are organized into a per-group linked list.

The notation introduced is summarized by table 1 in the Appendix.

2.2 Basic Algorithm

Instead of binding individual queues to processors and keeping these queues balanced, we keep the groups

fixed and distribute the processors among groups. The set of processors allocated to a group will be kept

somewhat stable, thus taking advantage of locality and helping service isolation. In general, depending on its

weight, a group can have between 0 and P processors allocated. Work balance is achieved by dynamically

changing the processor allocation to groups.

We first present the GDQ operation under the assumption that the set of processes and their weights

remains unchanged. We call steady-state such intervals of time during which the process mix doesn’t change.

The GDQ algorithm can be briefly described as a two-level hierarchical scheduler:

Inter-group allocation. At any time, each group Gk is allocated either Pk or P
k processors. At certain times,

a processor is removed from a group that is over-allocated, and moved to a group that is under-allocated, thus

balancing work across groups, according to the inter-group scheduler (Section 2.2.1).

Intra-group allocation. Let Gk have a processor allocation of Pk. At any time, ∑g
i=1 Pk = P if we are assuming

a work-conserving system which has at least P processes.

The Pk processors that are allocated to group Gk will each be responsible for one of the P
k queues of

the group. When Pk = P
k, all the queues are non-empty, and have a processor associated with them. When

Pk = Pk, all but one of the queues have a processor; one queue will be stalled. This queue may be empty. All

other queues are called active. Since all processes within a queue belong to the same group and thus have

similar weights, the processor can proceed in a round-robin manner through the queue to select a process to

run. To balance the queues of a group, processes may be moved away from the queue that is most behind in

5

terms of its NVT. The intra-group scheduler is described in more detail in Section 2.2.2.

2.2.1 Inter-Group Allocation

Since the inter-group scheduler is oblivious with respect to the intra-group scheduler, we will abstract groups

as clients, and assign processing time in accordance with their weight (the group weight). In effect, we are

presenting a stand-alone multiprocessor scheduler where clients may run in parallel with themselves (i.e.,

since clients are really groups here, they may be serviced by several processors simultaneously), which we

employ as part of GDQ to manage processor allocation among groups. The algorithm has the following

smoothness property: given a client of weight φi, it will at any time run on either
⌊

φi
ΦT

P
⌋

or
⌈

φi
ΦT

P
⌉

processors,

which is in some sense the best we can do in terms of matching the client’s ideal allocation. The MFQ
scheduler is described below in its most general form, where the entities being scheduled are called ‘clients’.

Multiprocessor Fair Queuing (MFQ). For a client C of weight φC, the virtual finishing time (VFT) is

defined as FC = ∑τ
wC(τ)+1

φC
, where the sum is over periods τ during which φC remains constant. When the

client’s weight is always constant, FC is simply wC+1
ΦC

. [7] and [11] offer a more detailed discussion of the

notion of a VFT.

We now present MFQ below, noting that it clearly preserves the smoothness property:

For each client i such that φi ≥
ΦT
P , we devote

⌊

φi
ΦT

P
⌋

processors to this client and, if φi
ΦT

P 6∈ N, we create a

fictitious client of weight φ̂i = φi−
⌊

φi
ΦT

P
⌋

ΦT
P which replaces client i in the scheduler.

Because of the aforementioned step, we can assume that each client has weight φ̂i <
ΦT
P where φ̂i, P, and ΦT

are adjusted for any dedicated processors as described above. This means that no client receives more

than one processor at any time from the scheduler; dedicated processors are not counted here. We denote

the length of the inter-group time quantum by T (typically, much larger than the time quantum that the

intra-group scheduler assigns to processes). Every interval of length T is split into P subintervals of

time during which the processor assignment to clients stays fixed. For each subinterval, in round-robin

order, a processor is removed from the client it is currently assigned to, and is given to the client that

has the least virtual finishing time which is not currently assigned a processor. The VFT of the client is

then incremented by 1
φ̂i

. All clients start out with a VFT of 1
φ̂i

.

The MFQ scheduler can then be summarized by the following routine, executed by each processor ℘j with

frequency 1/T , such that processor ℘1 executes the routine at times T, 2T, 3T . . . , processor ℘2 at times

T + 1
PT, 2T + 1

PT, 3T + 1
PT . . . , and, in general, processor ℘j at times T + j−1

P T, 2T + j−1
P T, 3T + j−1

P T

Since the inter-group clients are really groups, inter-group time quanta T are actually made up of many intra-

group time quanta. Therefore, the times when inter-group scheduling decisions are made will be rounded

up to the nearest time quantum boundary, affecting neither the fairness (virtual times are computed based on

6

the actual work received by the client), nor data structure contention (the scheduling interval T is taken to be

larger than P time quanta).

As mentioned, we have developed this scheduling algorithm to allocate the processors among groups. The

pseudo-code below is tailored to our usage of the presented MFQ scheduler as an inter-group allocator, where

the clients are in fact groups:

MFQ(℘k
j)

1 if IS-DEDICATED(℘k
j)

2 then return � dedicated processors don’t get reassigned
3 else FGk ← FGk + 1

Φ̂k

4 G← NIL

5 for each group Gi

6 do if (Pk = P
k
−1) AND (G = NIL OR Fi < FG)

7 then G← Gi

8 if G 6= Gk

9 then REASSIGN(℘k
j,G

k,G)

Phrased in terms of groups, REASSIGN(℘,Gk,G) will move processor ℘ from group Gk to group G, by

first setting Q(℘) to be the stalled queue of Gk, and then assigning G’s stalled queue to ℘. If this queue is

empty, a process from the queue of G with at least 2 processes having the smallest NVT is transferred over

(such a queue always exists in steady-state operation).

2.2.2 Intra-Group Allocation

Each group Gk has Nk processes with weights between 2k and 2k+1− 1, and, according to the inter-group

allocation, there are Pk processors assigned to service Gk. If Pk would never change, if Nk was a multiple

of Pk, and if all processes had the same weight, then intra-group allocation would be trivial, as we would

simply partition the processes equally into Pk round-robin queues and optimal proportional sharing would

be maintained (assuming all processors progress at the same rate). However, as we saw in the inter-group

algorithm, Pk varies between Pk and P
k, Nk may be any number (greater than Pk, as we will see), and the

weights of processes in Gk may vary by up to a factor of 2. Still, intuitively, partitioning and round-robin

traversal should be well-suited to take advantage of the tight weight distribution of processes within the group.

The intra-group algorithm follows this approach, but does not explicitly attempt to partition the processes. An

optimal partition is beyond efficient computation 2, and while arbitrarily accurate approximation schemes

exist, finding a good partition is not worth the high computational cost, since, unless there exists a perfect

partition, maintaining fairness demands that we repartition at regular intervals.
2Even with job processing times limited to the interval [2k..2k+1), the Minimum Makespan Scheduling Problem remains NP-hard.

7

Instead, the algorithm creates P
k queues for Gk (one of which might be stalled), and strives to keep the

NVTs of all queues approximately equal. This is accomplished by moving a process from a queue with

smallest NVT to a queue with larger NVT, which will eventually balance the queues implicitly. Each queue

has one processor that schedules in round-robin order, where each process runs either one or two consecutive

time quanta, depending on its weight and previous allocation history. The queue NVT is incremented at the

end of each round, while the process NVTs increase by 2k

φC
∈ (1/2,1]. Processes run once or twice to keep

their NVT ahead of the queue NVT. The processes that already ran during a round have an NVT larger or

equal to the queue NVT, and the processes yet to run in the round have an NVT smaller than the queue NVT.

Thus, when the next process’ NVT is greater than the queue NVT, we know the round is over. At the end of

each round, the processor checks the queue in the group with the smallest NVT. If this is less than the NVT
of the processor’s queue by more than some δ, a process is ‘stolen’ (transferred over). The processor than

works exclusively on that process until its NVT is larger than the queue’s NVT.

The stalled queue does not have a processor assigned to it. In time, its NVT stays constant and will

become the lowest in the group, so that its processes will be transferred over to the active queues.

The following pseudo-code defines the intra-group algorithm more precisely. The routine is executed by

any processor ℘k
j of group Gk after every time quantum or whenever it needs to select a new process to run.

INTRAGROUP(℘k
j)

1 Q← Q(℘k
j)

2 if nvC(Q) ≥ nvQ � Move on to the next process
3 then C(Q)← next(C(Q))

4 if nvC(Q) ≥ nvQ � End of the round
5 then MinQ← GET-MIN-QUEUE(Gk)

6 if nvQ > nvMinQ +δ

7 then MinC← next(C(MinQ))

8 MOVE-PROCESS(MinC,Q)

9 else nvQ++
10 nvC(Q)← nvC(Q) +2k/φC(Q)

11 return C(Q)

The number δ, like the interval length T for the inter-group scheduler, is a parameter of the algorithm.

GET-MIN-QUEUE(G) finds the queue in the group G who has the smallest NVT. This queue may be either

the stalled queue, or may be an active queue. In the latter case, the queue must contain at least 2 processes to

be eligible for selection. No such restriction exists for the stalled queue, which is allowed to become empty.

MOVE-PROCESS(MinC,Q) moves process MinC to the queue Q and places it right before the current

process, C(Q). MinC becomes the new current process of Q. Since MinQ has at least 2 processes, MinC 6=
C(MinQ) and thus it is safe to steal MinC from MinQ.

8

2.3 Feasibility

While the weight values assigned to processes in a single-processor environment are essentially unconstrained,

this is not the case in a multiprocessor system. Because a process may only receive service from one processor

at a time, it is impossible to satisfy a weight assignment that would give a process more than 1/P of all

processor resources. Such a weight assignment is said to be infeasible, and is disallowed. Thus, a feasible

weight assignment for the processes in the system is one in which

φC ≤
ΦT

P
for any process C (1)

If a weight assignment is found to be infeasible, it is adjusted to the closest feasible assignment. As a benefit

of grouping processes exponentially by weight, we can readily employ the novel weight adjustment algorithm

that was introduced in [3]. This algorithm does not need to maintain additional data structures such as sorted

lists of weight, and performs fast weight readjustment, with optimal time complexity of only O(P).

We have assumed several times in the description of the GDQ algorithm that we have at least one process

in each per-processor queue. We now support this assumption by noting that each non-stalled queue will have

at least one process provided that N k ≥ P
k. Since

P
k
<

Φk

ΦT
P+1 =

Nkφk
ave

ΦT
P+1≤ Nk +1

(where φk
ave is the average weight of processes in Gk), and Nk and P

k are both integers, it must be that P
k
≤Nk

(assuming φk
ave

ΦT
≤ 1

P , which follows from the feasibility constraint 1).

2.4 Dynamic Considerations

We assumed so far that all the processes are permanent. We now handle the cases when processes are en-

queued or dequeued at the scheduler. As a first step, GDQ always runs the weight readjustment algorithm to

ensure the new weight mix is feasible (Section 2.3). As a result, the two highest order groups may merge (for

a departure), or the highest order group may split off a new group of order incremented by one (for an arrival).

The group losing or gaining a process also changes its weight. In any case, at most 3 groups are affected.

As a second step, the group’s processor allocation, P
k and Pk, are recomputed for all groups Gk, k =

0 . . .g− 1. Since the inter-group algorithm, MFQ, is virtual time based, no other readjustment is necessary:

the rate of increase in virtual time will automatically change with the new group weight. After this step,

some groups may find themselves having too few (less than Pk) or too many (more than P
k) processors. The

inter-group allocation will re-balance this situation as it proceeds. We avoid re-assigning processors at this

step, since in the worst-case, Ω(P) processors would need to change groups.

Finally, in the case of an arrival, the process is added to the smallest (in terms of weight) queue of the

9

group it belongs to. In the case of a departure, the queue the process was on is checked to have at least

a process remaining. If this is not the case, a process will be pulled from the queue of the group with the

least NVT, in accordance to the intra-group scheduler (Section 2.2.2). If there are no queues with at least 2

processes in the group, the processor is reassigned to another group, in accordance to the inter-group scheduler

(Section 2.2.1), or is left idle, if N, the number of processes, has fallen below P, the number of processors.

3 GDQ Fairness and Complexity

We analyze the fairness and complexity of GDQ. We strive to formalize the O(1) error bounds and running

time, while allowing dependencies in P or g, constants in practice.

Due to space constraints, most proofs are presented in the appendix.

3.1 Fairness

Proportional share schedulers should guarantee that processes do not deviate too much from their proportional

allocation. The metric of choice to analyze the fairness of proportional sharing is the service error ([1, 3, 11]).

For any process C, the service error eC is defined as eC = wC−
φC
ΦT

WT . The error for a process C captures the

difference between the CPU time received by the process and the share of the total CPU time that that process

was entitled to according to its weight. A good proportional share algorithm must make sure that the error

does not become too negative or too positive, and should ideally keep it around 0.

GDQ is designed to bound the service error by constants that depend only on P, the number of processors,

and g, the number of groups. Since there is no dependence on N, the number of processes, the algorithm is

fair even in the presence of very large loads.

We will analyze the inter- and intra-group fairness, and then combine them to get the overall fairness of the

GDQ scheduler. To start, we will present the argument leading to the service error bounds of the inter-group

scheduling algorithm MFQ (Theorem 3.5) which will be central to the analysis of the fairness of GDQ.

3.1.1 Inter-Group (MFQ) Fairness

We will use the following model for the operation of the scheduler, justified by the fact that no two processors

schedule simultaneously: time is discretized into a sequence of points, whose spacing is irrelevant. Processors

schedule successively at a point each, and so a processor will schedule every P points. We call the time

between two consecutive scheduling points of the same processor an interval. As mentioned, an interval

consists of P successive points.

Recall, for the purpose of the inter-group scheduler, we abstract groups as being clients of MFQ. In this

language, a client ‘runs’ on a processor if the processor is allocated to the group. We will first assume that all

10

clients have weight less than ΦT
P (no client has any dedicated processors).

The proof of fairness will build on the following lemma, which formalizes the intuition that a client will

run consecutively on its processor until it has caught up to its rightful allocation.

Lemma 3.1. Consider any scheduling point t, and let the client selected be j. If at point t, some client i is

such that wi(t)+δi
φi

<
w j(t)+1

φ j
for some integer δi ≥ 1, then client i is running at point t, and will be scheduled

for another δi intervals continuously.

As shown in [7], for a uniprocessor VFT algorithm, wi+1
φi
≥

w j

φ j
for any clients i, j. Using the previous

lemma, we show that our algorithm preserves this property most of the time:

Lemma 3.2. wi+1
φi
≥

w j

φ j
for any client i that is not running and for any client j.

Lemma 3.2 suggests that a client never falls behind its ideal allocation by more than 1 tu. This imposes a

bound on the negative error for not running clients, and in fact can be extended to all clients.

Lemma 3.3. For any client i not currently running, ei ≥−1.

Lemma 3.4. For any client i, ei ≥−1.

We conclude with the complete error bounds for MFQ :

Theorem 3.5. For any client i, −1≤ ei ≤ N.

Proof. The negative error bound is given by Lemma 3.4. For the positive error, we note that at any time,

∑N
i=1 Ei = 0, and hence Ei >−1 ∀i implies Ei < N ∀i.

We started with the assumption that all clients have weight less than ΦT
P . This was for the simplicity of

the analysis, and can now be removed. The result of the first step in the algorithm is to separate the total

weight ΦT into a part that receives P1 dedicated processors, call this weight Φ1
T , and a part that is subject to

the VFT -based allocation and runs on the remaining P2 processors, call it Φ2
T . It holds that P1

P =
Φ1

T
ΦT

, and,

since P1 +P2 = P and Φ1
T +Φ2

T = ΦT , we have

P1

Φ1
T

=
P2

Φ2
T

=
P

ΦT
.

For any client i whose weight was initially less than ΦT
P , its error at time t, wi−

φi
ΦT

Pt, is the same as

wi−
φi

Φ2
T

P2t, which is bounded as described in the analysis of the VFT -based algorithm.

For a client i whose weight was initially at least ΦT
P , its weight φi was split into a part φ1

i that had P1
i

processors dedicated to it, such that φ1
i

ΦT
=

P1
i

P , and a part φ2
i that participated in the VFT -based algorithm.

11

Denote the work received by the client from its dedicated processors as w1
i , and the work received from

participating in the VFT -based algorithm as w2
i . The client’s error at time t, wi−

φi
ΦT

Pt is

ei = w1
i +w2

i −
φ1

i +φ2
i

ΦT
Pt = P1

i t−
φ1

i

ΦT
Pt +w2

i −
P

ΦT
φ2

i t =

= P1
i t−

P1
i

P
Pt +w2

i −
P2

Φ2
T

φ2
i t = w2

i −
φ2

i

Φ2
T

P2t

which is again the error for the VFT -based algorithm.

3.1.2 GDQ Fairness

We now proceed to analyze the intra-group algorithm, and see how to use Theorem 3.5 to bound the error of

GDQ. For the lower error bound, we must consider a process that is not running, since clearly a process that

is running receives at least as much CPU time as its due share.

Inter-group. From Theorem 3.5, the inter-group error of any group is bounded below by −T , where T is the

length (in number of time quanta) of the inter-group scheduling interval.

Intra-group. Since the process is not running, it cannot be the sole process of an active queue, or a process

just transferred to an active queue from either the stalled queue or another active queue.

An active queue can be either NVT -balanced, when it is performing round-robin traversal, or can be

NVT -imbalanced, if the queue’s processor is working to bring the NVT of a recently transferred process to

the level of the queue NVT. In the former case, the NVT of all processes in the queue are within 1 of the

queue’s NVT, and the queue’s NVT is within δ of any other queue NVT. Hence, the process’ NVT is no less

than −(δ+2) from that of any other process.

If the process is part of a NVT -imbalanced queue, then its NVT is still within 1 of the queue NVT,

because the queue had been NVT -balanced before the new process was transferred in. This follows from the

fact that no process is transferred into an NVT -imbalanced queue. The bound −(δ+2) holds the same.

A process in a stalled queue can be at most δ behind the queue NVT, which is in turn at most δ behind

any other queue NVT, so the bound is −(2δ+1).

The NVT bound of −(2δ+1) translates into an intra-group error of no less than −2(2δ+1).

For the upper error bound, consider a running process.

Inter-group. From Theorem 3.5, the inter-group error of any group is bounded above by gT , where T is the

length (in number of time quanta) of the inter-group scheduling interval and g is the number of groups.

Intra-group. If the process is part of an NVT -balanced active queue, in which case it is ahead of the queue

NVT by no more than 1, then, since the queue NVT is within δ of any other queue, the upper bound on the

NVT difference is 2δ+2.

If the process is part of an NVT -imbalanced active queue, then it must be the process that is being serviced

12

to bring its NVT to the level of the queue NVT. The process can thus not be more ahead than the NVT of

the queue, which is within δ of the NVT of any other queue. The NVT bound of 2δ + 2 translates into an

intra-group error of no more than 2(2δ+2), and the inter- and intra-group bounds can be combined to get the

overall scheduling error for GDQ :

Theorem 3.6. −2(2δ+2)−T ≤ eC ≤ 2(2δ+2)+gT

Proof. eC = wC−
φC
ΦT

WT = wC−
φC
ΦG

WG + φC
ΦG

WG−
φC
ΦT

WT = wC−
φC
ΦG

WG + φC
ΦG

(WG−
φG
ΦT

WT).

To simplify the analysis, we have implicitly assumed that a process which runs continuously on a pro-

cessor does not decrease its group-relative error. Such an assumption is not justified when φi
Φk

> 1
P

k for some

Ci ∈ Gk. We refer to process i as being almost infeasible. This does not contradict the feasibility constraint

described in Section 2.3, since φi
Φk
≤ 1

Pk will still hold true. However, in the case of almost infeasible processes,

we can use a different approach to bound their error, by noting that before they were running continuously,

their error was bounded as in Theorem 3.6, and by running, even though their group-relative error may de-

crease, their overall error must be non-decreasing. As for processes that are in the same group as almost

infeasible processes, their positive error does not grow more than the bound of Theorem 3.6, since, in effect,

the almost infeasible processes get their own processors for the duration they are running continuously, and

the work of the remaining processors is distributed in the group under the constraints of Theorem 3.6.

3.2 Time Complexity

It is crucial that the kernel scheduler have low overhead, regardless of the number of processes that it needs

to schedule. It this section we show that

Theorem 3.7. GDQ scheduling incurs constant complexity per decision.

Proof. Inter-group (MFQ) allocation At each inter-group subinterval, the processor that is scheduled will

need to identify the group of least VFT that is not running. This takes O(g) time , or O(logg) time with more

complicated data structures (but in practice, we use O(g)-time solution, since g is here the number of groups,

and we need no locking to traverse an array of groups). The number of subintervals is P, so a time interval T

is split into more subintervals as P increases. Since we space the subintervals equally, and only one processor

schedules at the border of subintervals, there should be no lock contention issues. Note that no matter how

large P is, an individual processor will schedule only every T time units. Per processor, this amounts to a

O(g/T) amortized scheduling cost.

Intra-group allocation At the intra-group level, the priority queue for NVT is accessed by all processors in

a given group, and locking may prove to be too expensive if using a O(logP) complexity heap. Therefore,

we use a linked list, with O(P) scheduling complexity. This overhead is incurred by a processor only when

13

it reaches the end of its runqueue. A quick calculation reveals that, in the case when N >> P, the queues

are balanced (with less than N/P tasks per queue), and thus the amortized complexity of traversing the list of

runqueues is no more than P/(N/P) = P ·P/N.

Clearly, δ and T provide a trade-off between accuracy and locking overhead. With small δ, intra-group

allocation is kept tight, but processes move across queues more frequently. With small T , processor reallo-

cation is more responsive to discrepancies in service allocated to clients of different groups. This keeps the

error bounds down (Theorem 3.6), but is expensive: we want to reallocate processors as rarely as possible,

since, besides the locking and time complexity overhead of the operation, moving a processor from one group

to another migrates many processes among queues within those two respective groups. We expect that this

will also hurt cache affinity.

Given the form of the error bounds in Theorem 3.6, it seems beneficial to choose δ and T on the same

order. However, in practice, δ has a more pronounced effect on the error of a processes, whereas the error

introduced by T is spread over many processes in the group. δ should be taken to be a small number. We

found that δ = 4 works well in practice.

We conclude with a few comments:

• The above bounds hold for static process mixes, where no arrivals or departures are expected. This is

mostly to keep the analysis clean and compact, and because the measure of fairness used, the service

error, is defined assuming that the process is eligible at all times to receive its due allocation. In terms

of running time, as mentioned in Section 2.4, we incur a O(P) cost to readjust weights, and a O(g) cost

to recompute the processor allocation of groups. Both g and P can be assumed to be constants.

• The inter-group MFQ allocator is a generalization of the simple WFQ VFT algorithm ([6]), and is thus

a virtual finishing time scheduler. Interestingly, unlike in the uniprocessor case, using virtual start time

instead would result in dramatically worse fairness properties (see Note in A.1). We have not attempted

to adapt a more complicated, and accurate algorithm such as WF2Q, since the number of groups, g, is

a constant, and we are more concerned with the synchronization cost of more complex data structures

than with the positive error bound.

4 Measurements and Results

To demonstrate the effectiveness of GDQ, we have implemented a prototype GDQ CPU scheduler in the

Linux operating system and measured its performance. We present some experimental data quantitatively

comparing GDQ performance against the standard Linux 2.4 and 2.6 kernel schedulers, and against the O(1)

GR3 multiprocessor scheduler ([3]). We have also conducted extensive simulation studies to capture the

service error bounds of GDQ.

14

4.1 Simulation Studies

We used a simulator for these studies for two reasons. First, our simulator enabled us to isolate the impact of

the scheduling algorithm itself from other activities present in an actual kernel implementation. Second, our

simulator enabled us to examine the scheduling behavior across hundreds of thousands of different combina-

tions of processes with different weight values. It would have been much more difficult to obtain this volume

of data in a repeatable fashion from just measurements of a kernel scheduler implementation.

The scheduling simulator measures the service time error, described in Section 3, of a scheduler on a

synthetic set of processes. The simulator takes as input the scheduling algorithm, the number P of processors,

and a process mix, consisting of a list of process weights.

The process mix is provided by a random mix generator, which, given the number of processes N, the

total number of weights ΦT , and an upper limit on the process weights (necessary for feasibility purposes),

will generate a random list of process weights. The simulator then schedules the processes using the specified

algorithm as a real scheduler would, and tracks the resulting service time error. The simulator runs the

schedule, then computes the maximum (most positive) and minimum (most negative) service time error for

the given set of processes and weight assignments. This process of random weight allocation and scheduler

simulation is repeated for the specified number of process-weight combinations. We then compute the worst-

case maximum service time error and worst-case minimum service time error for all processes during all

specified number of process-weight combinations to obtain a “worst-case” error range.

To measure proportional fairness accuracy, we ran simulations for each scheduling algorithm on 24 dif-

ferent combinations of N and ΦT : the number of number of processes ranges exponentially from 512 to

16384 and the total weight ranges exponentially from 32768 to 262144. For each pair (N,ΦT), we ran 500

process-weight combinations and determined the resulting worst-case errors overall from the 500 runs.

We measured the service error for P = 1,2,4,8,16,32,64,128. We used δ = 4. To understand the effect

of the inter-group time quantum T on the service error, we used T = 20,40,80,160,320, and 640.

We found that the error of GDQ does not get worse as the number of processes increases with ΦT kept

constant, and, in fact, for most values of P the error actually improves as N grows, mainly because with more

processes and a fixed total weight, the weight skew among processes becomes less accentuated.

Figure 2 shows that for fixed values of T , the negative error improves slightly as the number of processors

increases, while the positive error gets slightly worse, but keeps well below the theoretical bound of Theorem

3.6. On one hand, the error ought to get better as P grows, since more queues are serviced simultaneously. On

the other hand, increasing P means that the process weight upper bound decreases according to the feasibility

constraint, and hence there will be more processes in the largest order group. This accentuates the weight skew

among groups, causing the inter-group error (which depends on T) to increase. To put results in perspective,

we include the error bounds obtained for the same simulations for the uniprocessor schedulers SFQ ([8]) and

15

 1

 10

 100

 1000

 128 64 32 16 8 4 2 1

S
er

vi
ce

 E
rr

or

Number of Processors

GDQ (T=20)
GDQ (T=80)
GDQ (T=320)
SFQ
WFQ

 1

 10

 100

 1000

 128 64 32 16 8 4 2 1

Number of Processors

GDQ (T=20)
GDQ (T=80)
GDQ (T=320)
SFQ
WFQ

Figure 2: Service error for GDQ with T = 40,160,640 when P ranges from 1 to 128, and for SFQ and WFQ
when P = 1. Both axes are logarithmic. Left: Positive error. Right: Absolute value of negative error.

WFQ ([11]). The overall error bounds for these common uniprocessor schedulers are substantially worse than

GDQ for any number of processes.

4.2 Linux Kernel Measurements

We also conducted detailed measurements of real kernel scheduler performance by comparing our prototype

GDQ Linux implementation against the the O(1) GR3 multiprocessor scheduler ([3]), as well as the standard

single queue Linux 2.4 scheduler, and the distributed queue Linux 2.6 scheduler. In particular, comparing

against the standard Linux scheduler and measuring its performance is important because of its growing

popularity as a platform for server as well as desktop systems. The experiments we have done quantify the

scheduling overhead of these schedulers in a real operating system environment.

We conducted a series of experiments on an 8-processor system to quantify how the scheduling over-

head for each scheduler varies as the number of processes increases. Each process executed a simple micro-

benchmark which performed a few operations in a while loop. A control program was used to fork a specified

number of processes, all having the same weight. Once all processes were runnable, we measured the execu-

tion time of each scheduling operation that occurred during a fixed time duration of 3 minutes. This was done

by inserting a counter and timestamped event identifiers in the Linux scheduling framework. The measure-

ments required two timestamps for each scheduling decision, so measurement errors of 70 cycles are possible

due to measurement overhead. We performed these experiments on the standard Linux 2.4 and 2.6 schedulers,

and on the the GR3 and the GDQ prototypes, for up to 1000 running processes. The system was provisioned

with either 2 or 8 CPUs. GDQ used T = 20.

As shown in Figure 3, the scheduling overheads of Linux 2.6 and GDQ are roughly constant as the number

16

of processes grows. Both schedulers use O(1) algorithms to pick the next process. The highly optimized Linux

2.6 scheduler (which, however, is not a proportional share scheduler) is about 10% faster than GDQ. GR3,

also a O(1) scheduler, is worse than GDQ because it uses a single queue. Even for as few as 8 procesors,

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 900 800 700 600 500 400 300 200 100

S
ch

ed
ul

in
g

O
ve

rh
ea

d
(C

yc
le

s)

Number of Clients

GDQ (P=8)
Linux 2.6 (P=8)
GR3 (P=8)
GDQ (P=2)
Linux 2.6 (P=2)
GR3 (P=2)

Figure 3: Experimental average scheduling overhead in

CPU cycles for GDQ, GR3, and Linux 2.6 on 2 and 8 pro-

cessors.

where there is little lock contention, the sched-

uler pays the memory latency cost for grab-

bing global locks. The Linux 2.4 scheduler

has overhead linear in the number of processes,

orders of magnitude larger than the schedulers

plotted in Figure 3.

To get a rough idea as to how the sched-

ulers scale with the number of processors,

we compare the scheduling overhead of GDQ
Linux 2.6, and GR3, using 2 and 8 processors.

The centralized queue GR3 scheduler incurs

much more overhead especially with 8 proces-

sors given its increased synchronization costs.

Our GDQ prototype incurs slightly more over-

head than the optimized Linux 2.6 scheduler,

but provides the benefit of proportional shar-

ing. Both schedulers demonstrate good scalability between 2 and 8 processors.

5 Related Work

Most commercial operating systems today sport multiprocessor schedulers of varying degrees of complexity.

Most of these are built around heuristics that tackle the trade-offs between response time, throughput, and ef-

ficiency ([15]). These algorithms do not implement fair-share scheduling even on single processor machines,

and rarely do they achieve at least long-term proportional sharing. On multiprocessor systems, Solaris 2.x

uses a global dispatch queue from which it schedules processes. Recognizing the potential bottleneck inher-

ent in such approaches, Digital UNIX keeps per-processor queues, and re-balances the queues regularly. The

Linux 2.6 kernel is similar ([10]), except Linux uses the SVR4 priority arrays to help each processor schedule

in constant time (under the assumption that there is a fixed, narrow range of allowable task weights). An in-

teresting approach to processor allocation, somewhat related to GDQ, is taken by the Mach operating system.

Mach allows applications to create processor sets, which contain a certain number or processors and threads.

A processor in a set only works on threads within that set, but processors may move from set to set. The Mach

motivation for grouping processors is flexibility in resource management and service guarantee, which GDQ

17

achieves indirectly in the context of proportional sharing.

Because of the control it offers to resource allocation and its intuitive fairness model, proportional sharing

has been widely studied and applied to both processor and network traffic scheduling. To relate GDQ to

the very extensive literature on single resource proportional scheduling, we point the reader to [3]. The

problem of proportional multiprocessor scheduling has received significantly less attention, mainly due the

extra complications introduced by weight infeasibility, task parallelization, and inter-processor coordination.

The solutions proposed so far rely on a single global queue for scheduling, and thus scale poorly. [4] presents

SFS, a multiprocessor extension of the SFQ algorithm ([8]), which performs well in practice but has no

theoretical fairness bounds. GR3, introduced in [3], was the first scheduler providing strong fairness bounds

with lower scheduling overhead. SFS introduced the notion of feasible tasks along with a O(P)-time weight

readjustment algorithm, which requires however that the tasks be sorted by their original weight. By using

its grouping strategy, GR3 performs the same weight readjustment in O(P) time without the need to order

processes, thus avoiding the O(log N) overhead per maintenance operation. Since GDQ uses the same task

grouping strategy as GR3, it benefits from the same efficient weight readjustment algorithm.

In the context of link scheduling, [2] considers aggregated links, the analogue of multiprocessors for the

network server problem, and presents a global queue algorithm that approximates the idealized fluid GPS

model for multi-server systems. Their adaptation of WFQ ([11]), called MSFQ, and of WF2Q ([1]), called

MSF2Q, preserve the error bounds of WFQ (-1 to N) and of WF2Q (-1 to +1) respectively whenever the

flows are backlogged at all times. Otherwise, with an unlucky interplay of busy periods, the service error can

be as small as −P, as big as +P for MSF2Q. MSFQ ’s positive error bound is presumably N + P is such a

case. We note that the O(P) error is unavoidable in any system where flows are not backlogged at all times

(correspondingly, tasks are not runnable at all times). Since the model of aggregated network links allows for

packets of the same flow to be serviced at the same time, the single resource algorithms cannot be adapted in

the same way to multiprocessor scheduling. Even for the case of the GDQ inter-group scheduler, where tasks

of the same group may run in parallel, we could not use the algorithm of [2], as that would not guarantee a

share of bΦG
ΦT

Pc or dΦG
ΦT

Pe to group G at all times (the smoothness property).

Multi-resource scheduling has been receiving some attention outside of the proportional sharing paradigm

as well. In the periodic task model, [13] looks at providing fairness on multiprocessor systems and, while

noting the benefits of distributed queues, contends that a global queue is simpler to design and implement. The

authors review some approaches to periodic task scheduling on multiprocessor systems, in particular flavors of

the p-fair scheduler, and extend the work on p-fair multiprocessor scheduling in [12]. [5] shows how to adapt a

p-fair scheduler in a work-conserving operating system scheduler. [16] targets programmable network routers,

and tries to efficiently use the very small instruction cache by keeping packets that use same code on the same

processor, and processing them back-to-back. They note the conflicting requirement in scheduling packets to

optimize delay or cache affinity. [14] considers cache affinity in relation to multiprocessor scheduling. Cache

18

performance is an important factor of system performance, and a distributed queue approach has the implicit

benefit of reusing much more cache state than a global queue design. Given that resources may be poorly

used if allocated independently, [17] attempts to combine processor and link scheduling in programmable

multiprocessor network routers. An operating system presents similar challenges. While GDQ considers

cache performance as one of its design motivations, explicitly taking into account memory, disk, or network

activity is beyond the scope of this process scheduling algorithm.

6 Conclusions and Future Work

We have designed, implemented, and evaluated Grouped Distributed Queues scheduling in the Linux oper-

ating system. We prove that GDQ is the first and only O(1) distributed queue multiprocessor scheduling

algorithm that guarantees a constant service error bound compared to an idealized processor sharing model,

irrespective of the number of runnable processes. Previous approaches to multiprocessor scheduling used

single, centralized queues, or relied on heuristics that did not even provide long-term fairness.

To achieve good proportional share fairness with low overhead, GDQ employs an exponential grouping

strategy and uses a two-level hierarchical scheduler. GDQ introduces a new way to consider the pairing of

processors and queues and presents a virtual-time-based inter-group scheduling algorithm with good fairness

and smoothness properties. For each processor, GDQ uses a fair and efficient intra-queue round robin scheme.

We have measured the performance of GDQ using both simulations and kernel measurements of a pro-

totype Linux implementation. Our simulation results show that GDQ can provide good proportional fairness

behavior even as the number of processes exceeds 250,000. Our experimental results using our GDQ Linux

implementation further demonstrate that GDQ provides accurate proportional fairness behavior on real appli-

cations with comparable scheduling overhead to the O(1) Linux scheduler.

While GDQ is a distributed queue scheduler, there is a fair amount of communication and process ex-

change among processors and their queues. Re-balancing less often and using less information would have

beneficial effects on the synchronization overhead.
A major advantage of distributed queue scheduling lies in benefiting from cache state by keeping processes

on the same processor for a long time. Making caching explicit in the scheduler would be worthwhile.

References

[1] Jon C. R. Bennett and Hui Zhang. WF2Q: Worst-Case Fair Weighted Fair Queueing. In Proceedings of IEEE

INFOCOM ’96, pages 120–128, San Francisco, CA, Mar. 1996.

[2] Josep M. Blanquer and Banu Ozden. Fair Queuing for Aggregated Multiple Links. In Proceedings of ACM

SIGCOMM ’01, pages 189–198, San Diego, CA, Aug. 2001.

19

[3] Bogdan Caprita, Wong Chun Chan, Jason Nieh, Clifford Stein, and Haoqiang Zheng. Group Ratio Round-Robin:
O(1) Proportional Share Scheduling for Uniprocessor and Multiprocessor Systems. In Proceedings of the 2005

USENIX Annual Technical Conference, pages 337–352, Anaheim, CA, April 2005. USENIX.

[4] Abhishek Chandra, Micah Adler, Pawan Goyal, and Prashant J. Shenoy. Surplus Fair Scheduling: A Proportional-
Share CPU Scheduling Algorithm for Symmetric Multiprocessors. In Proceedings of the 4th Symposium on Op-

erating System Design & Implementation, pages 45–58, San Diego, CA, Oct. 2000.

[5] Abhishek Chandra, Micah Adler, and Prashant Shenoy. Deadline fair scheduling: Bridging the theory and practice
of proportionate fair scheduling in multiprocessor systems. In RTAS ’01: Proceedings of the Seventh Real-Time

Technology and Applications Symposium (RTAS ’01), page 3, Washington, DC, USA, 2001. IEEE Computer So-
ciety.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algorithm. In Proceedings of

ACM SIGCOMM ’89, pages 1–12, Austin, TX, Sept. 1989.

[7] S. J. Golestani. A Self-Clocked Fair Queueing Scheme for Broadband Applications. In Proceedings of IEEE

INFOCOM ’94, pages 636–646, april 1994.

[8] P. Goyal, H. Vin, and H. Cheng. Start-Time Fair Queueing: A Scheduling Algorithm for Integrated Services Packet
Switching Networks. IEEE/ACM Transactions on Networking, pages 690–704, Oct. 1997.

[9] L. Kleinrock. Computer Applications, volume II of Queueing Systems. John Wiley & Sons, New York, NY, 1976.

[10] Robert Love. Linux Kernel Development. SAMS, Developmer Library Series, first edition, 2004.

[11] A. Parekh and R. Gallager. A Generalized Processor Sharing Approach to Flow Control in Integrated Services
Networks: The Single-Node Case. IEEE/ACM Transactions on Networking, 1(3):344–357, June 1993.

[12] A. Srinivasan and J. Anderson. Fair scheduling of dynamic task systems on multiprocessors, 2003.

[13] A. Srinivasan, P. Holman, J. Anderson, S. Baruah, and J. Kaur. Network Processor Design: Issues and Practices

Volume II, chapter Multiprocessor Scheduling in Processor-based Router Platforms: Issues and Ideas. Morgan
Kaufamann Publishers, 2004.

[14] Josep Torrellas, Andrew Tucker, and Anoop Gupta. Evaluating the performance of cache-affinity scheduling in
shared-memory multiprocessors. J. Parallel Distrib. Comput., 24(2):139–151, 1995.

[15] Uresh Vahalia. UNIX Internals: The New Frontiers. Prentice Hall, Upper Saddle River, NJ, 1996.

[16] T. Wolf and M. Franklin. Locality-aware predictive scheduling for network processors. In Proc. of IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software (ISPASS), pages 152–159, Tucson, AZ, Nov.
2001.

[17] Yunkai Zhou and Harish Sethu. On Achieving Fairness in the Joint Allocation of Processing and Bandwidth
Resources: Principles and Algorithms. Technical Report DU-CS-03-02, Drexel University, Jul. 2003.

20

A Appendix

A.1 Terminology

Term Description Term Description

C j Process j. φC The weight assigned to process C.
φi Shorthand notation for φCi . σC The order of process C: blog φCc.
N The number of runnable processes. φmax Maximum possible weight.

Gk Group of order k, {C : 2k ≤ φC < 2k+1}. g The number of groups.
ΦG The group weight of G: ∑C∈G φC. Φk Shorthand notation for ΦGk .
Nk Number of processes in group Gk. P Number of processors.

Pk
⌊

Φk
ΦT

P
⌋

. P
k

⌈

Φk
ΦT

P
⌉

.

Pk Number of processors assigned to group Gk. ℘j jth processor.
℘k

j jth processor of group Gk. wC The work of process C.
nvC The NVT of process C: wC

2σC

φC
. WG The group work of group G.

Wk Shorthand notation for WGk . FG The VFT of group G.
Fk Shorthand notation for FGk . ℘(Q) Processor assigned to queue Q

Q(℘) Queue that processor ℘ is servicing. C(Q) Current process in queue Q.
nvQ NVT of queue Q. ΦT Total weight, ∑N

j=1 φ j = ∑g
i=1 Φi.

WT Total work, ∑N
j=1 w j = ∑g

i=1Wi. eC Service error of process C: wC−WT
φC
ΦT

.
T Inter-group time quantum. δ Maximum intra-group queue NVT difference.

Table 1: Summary of GDQ Terminology

A.2 Examples

We introduce a concrete example that we will use throughout to illustrate the operation of the GDQ scheduler:

grouping, inter- and intra-group scheduling.

A.2.1 Grouping Strategy

Consider a mix of 10 processes, C1,C2, . . .C10 having the following weights:

φ1 = 2,φ2 = 2,φ3 = 3,φ4 = 4,φ5 = 4,φ6 = 4,φ7 = 4,φ8 = 6,φ9 = 6,φ10 = 9.

Processes 1, 2 and 3, having weights 2 and 3, belong to the group of order 1, G1. Processes 4 through 9, with

weights between 22 and 23− 1 belong to the group of order 2, G2, and process 10, with weight between 23

and 24−1, belongs to G3, the group of order 3.

21

GDQ makes sure to place the processes in their respective groups:

G1 = {C1,C2,C3}, G2 = {C4,C5,C6,C7,C8,C9}, G3 = {C10}.

The group weights, computed as the sum of the weights of the processes in the group, are:

Φ1 = 2+2+3 = 7, Φ2 = 4+4+4+4+6+6 = 28, Φ3 = 9.

A.2.2 Inter-Group Allocation

Consider the process mix in the example of Section A.2.1, and assume we have a system with P = 4 pro-

cessors. It is the goal of the inter-group scheduler to allocate processors to the three groups, G1 of weight 7,

G2 of weight 28, and G3 of weight 9 in proportion to their weight. The total weight is 7 + 28 + 9 = 44. The

first step of the inter-group algorithm is to identify the groups who should be allocated dedicated processors.

In our case, P1 =
⌊ 7

44 4
⌋

= 0, P2 =
⌊ 28

44 4
⌋

= 2, and P3 =
⌊ 9

44 4
⌋

= 0. Hence, two processors, ℘1 and ℘2, get

dedicated to G2, and its weight is readjusted to 28− 2 44
4 = 6. For the purpose of the inter-group algorithm,

we thus have a client of weight Φ̂1 = 7, one of weight Φ̂2 = 6, and one of weight Φ̂3 = 9 which compete for

the remaining 2 processors (℘3 and ℘4) that are not dedicated.

Assume that we use an inter-group time quantum equal to 20 time units (T = 20 tu), and assume that

every T/4 = 5 time units, one of the 4 processors reschedules (runs the inter-group routine).

Consider some time t when ℘1 reschedules, and assume at that time, the VFTs of the clients are FG1 = 2
7 ,

FG2 = 1
6 , and FG3 = 2

9 . This corresponds to the case where G1 and G3 already completed a full inter-group

time quantum each. Assume that at time t, G2 has ℘3 and G3 has ℘4.

Since ℘1 is dedicated, it will do nothing at time t. Suppose 5 tu later, it is ℘3’s turn to reschedule. The

VFT of G2 becomes FG2 = 2
6 . The client with the least VFT is now G3, whose VFT is 2

9 . However, since G3

already has a processor assigned (℘4), we should allocate the processor to the client with the next smallest

VFT, which is G1. Note that, if the VFT of G2 were smaller than that of G1, then ℘3 would continue to

service G2. In the present case though, G1 receives ℘3.

Suppose the next processor to reschedule is ℘2, at time t +10. ℘2 is dedicated, so nothing happens. 5 tu

later, ℘4 reschedules. The VFT of G3 is incremented to FG3 = 3
9 . The client with the least VFT is now G2,

whose VFT is 2
6 (the tie is broken in favor of the lower order group). 5 tu later, at t + 20 (thus, at t + T), it

is again ℘1’s turn, which, being dedicated, does not do anything. Next, at t +25, ℘3 reschedules again. The

VFT of G1 is incremented to FG1 = 3
7 . The under-allocated client with the minimum VFT is now G3, whose

VFT is FG3 = 3
9 , and hence gets ℘3.

Figure 4 illustrates the above scenario up to time t +75.

22

G1

G2

G3

2/6

2/7

3/9

2/6

3/9

3/73/7

3/6

4/9

3/6

4/7

5/9

4/7

3/6 4/6

4/7

t t+5 t+10 t+15 t+20 t+25 t+30 t+35 t+40 t+45 t+50 t+55 t+60 t+65 t+70 t+75

Figure 4: Inter-group scheduling example. The service intervals for each of the 4 processors are represented
as solid bars, where ℘1 and ℘2 (the processors dedicated to G2) are the darkest, ℘3 is lighter, and ℘4 is
the lightest. Note that each interval has length equal to T , 20 in this example. Whenever a non-dedicated
processor reschedules, we list the VFT for the eligible groups. The processor always gets assigned to the
group of least VFT.

A.2.3 Intra-Group Allocation

Let us revisit the example developed in Sections A.2.1 and A.2.2. As far as the intra-group scheduler is

concerned, the processor allocation of G1 is either 0 or 1, that of G2 is either 2 or 3, and that of G3 is either

0 or 1. Whenever G3 is assigned a processor, it serves the only process of G3, which is C10. The other time,

C10 is stalled. Intra-group scheduling for G1 is almost as simple, except there is a queue containing the 3

processes of G1. While G1 has a processor, this works round-robin (taking into account NVTs) on the queue.

When G1’s processor allocation is 0, the queue becomes the stalled queue.

To illustrate the intra-group scheduler, we will focus on G2, and use δ = 1. Recall, G2 has 2 dedicated

processors (℘1 and ℘2) and, following the scenario in the inter-group example (Section A.2.2), up to t + 5

it will also have ℘3. Between t + 5 and t + 15, it goes down to 2 processors, and at t + 15, it receives ℘4,

bringing its allocation to 3 again.

Denote the P
2

= 3 queues of G2 as Q1, Q2, and Q3. ℘1 owns Q1, ℘2 owns Q2, and Q3 goes from

℘3 to stalled to ℘4 during the timespan under consideration. Arbitrarily, suppose that at time t the queues

contain processes as follows: Q1 = {C4,C5}, Q2 = {C7}, Q3 = {C8,C9,C6}. Recall the process weights:

φ4 = 4,φ5 = 4,φ6 = 4,φ7 = 4,φ8 = 6,φ9 = 6.

Assume the NVTs of the processes of G2 are all 0 at time t. All the queue NVTs are set to 1 at the

beginning of the round, nvQ1 = nvQ2 = nvQ3 = 1.

At time t, ℘3 runs C8 from Q3, and increments its NVT to 4/6 = 2/3. At the same time, ℘1 runs C4 from

Q1, and increments its NVT to 4/4 = 1, while ℘2 runs C7 from Q2, and increments its NVT to 4/4 = 1.

At time t +1, ℘3 runs C8 again, and increments its NVT to 4/3. At the same time, ℘1 moves on to C5 in

Q1, and increments its NVT to 1. Q2 is at the end of a round, so ℘2 increments nvQ2 to 2 and continues to run

C7, incrementing its NVT to 2.

At time t +2, ℘3 runs C9, and increments its NVT to 2/3. Q1 is at the end of a round, so ℘1 increments

23

nvQ1 to 2 and runs C4, incrementing its NVT to 2. Q2 is once more at the end of a round, so it increments nvQ2

to 3 and runs C7 again, incrementing its NVT to 3.

At time t +3, ℘3 runs C9 again, and increments its NVT to 4/3. ℘1 runs C5 and increments its NVT to 2.

Q2 is at the end of a round, and this time, nvQ2 > nvQ3 +δ. Therefore, ℘2 steals process C6 from Q3 and runs

it, incrementing its NVT to 1.

At time t +4, ℘3 is at the end of its round, increments nvQ3 to 2, and runs C8, whose NVT becomes 6/3.

℘1 is also at the end of a round, increments nvQ1 to 3, runs C4 and increments its NVT to 3. ℘2 still runs

process C6, incrementing its NVT to 2, since its NVT is smaller than the queue NVT, which is 3.

6 9 18/36

8 8 7

p2

p1

5

4

6

20/3

7

p2

p1

5

4

6

p

77

7

9

88

4

16/35 55

6 6

6

16/3

6

t+15

7 6p2

p

1 8

9 7 6p2

p1 8

p

7 6p2

p1 8

9

4

57

1 8

9

4

5p

16/35

6 6 18/3

66

7

5

12/3

14/3

5 5 5

5

14/3

5 5 16/35 5 5

55 4

5

12/3

t+8 t+9 t+10 t+11

5 5

4 4 4

4 12/3

12/3

5 5 5

512/3

8

7 7

22/3

t+14t+13t+12

t+16 t+17 t+18 t+19

t+2t+1t

4 4 4 8

12/3

4 p

16/3

18/3

66

7 7

8 8

6

p

77

9 18/3

8

10/3

0 1

1 1

2 2

1

4/3 00 1

12 2

3 3

4/30

1

1

2/3

0

2/3

4 8/3

6/3 8/3

4

4 4

4 4

4

4

4 4 4

4410/3

4

0

t+3

t+4

4/36/32

t+7

S

4 4 4

444

4

4

4

4

p

9

6

p3

p2

p1

3 3

2

4/36/32

2

8

6

1

2

3 3

2 2

4/3 4/3

1

4 5

7

3

2

t+6

S

4

4 4

4 3

3

4

7

9

p2

6/3

3 4 5

7

8 9

6p2

p1

4/3

8 9 6p3

p2

p1

p3

p2

p1 4 5

7

8 9 6

4 5

7

1 6 p3

p2

p1 4 5

7

8 9

1

1

p3

p2

p14 5

7

8 9

p

p1 8

9

4 5

7 6p2

p

2p2

p1 8

9

4 5

7 6p

1

9

4

9

5

7

54

6p2

8

9

4 5

7 6p2

p1 8

6

4 5

8 9

6p2

p1

7

4

1 5

6

8

3 3

4/36/32

33

t+5

S

3

3

6p2

p1 8

9

4 5

77

5

7 6p2

p1 8

9

4 5

Figure 5: Intra-group scheduling example. The group considered is G2, having processes C4, C5, C6, and C7
of weight 4, and C8 and C9 of weight 6. For each time unit, the three queues Q1, Q2, and Q3 are displayed
(unless Q3 is empty). For each queue, we list the processor working on that queue (‘S’ means stalled), the
current NVT of the queue, followed by the list of processes. Each process is represented as a box containing
the process number (in bold face) and the process NVT.

At time t +5, processor ℘3 is reassigned to G1, so Q3 becomes stalled. From time t +5 to t +7, ℘1 and

℘2 round-robin between C5, C4, and C6, C7 respectively.

24

At time t + 8, both queues will be at the end of the round, with their queue NVTs being 4. This is more

than nvQ3 +δ = 2+1, hence Q1 steals C8 and Q2 next steals C9 from the stalled queue, which becomes empty.

Up to time t +14, ℘1 round-robins between C4,C5,C8 and ℘2 round-robins between C6,C7,C9.

At time t +15, ℘4 gets assigned to G2, and will grab the next process of Q1, which is C5, and run it.

Later, at time t + 18, Q3’s NVT will be 8 at the end of a round, while Q2’s NVT will be 6. ℘4 will

therefore grab the next process of Q2, C7 in this case. After this, the composition of the queues will be

Q1 = {C4,C8};Q2 = {C6,C9}, Q3 = {C5,C7}. We notice that the queues have managed to arrive at an optimal

weight balance for the given mix as the algorithm ran. Figure 5 illustrates this example.

A.3 Proofs

In the appendix we include all of the omitted proofs. We repeat the claims also.

Lemma 3.1. Consider any scheduling point t, and let the client selected be j. If at point t, some client i is

such that wi(t)+δi
φi

<
w j(t)+1

φ j
for some integer δi ≥ 1, then client i is running at point t, and will be scheduled

for another δi intervals continuously.

Proof. We use an inductive argument, noting that for the point t = 0, the client j of least VFT is selected, so

no other client i will satisfy wi+δi
φi

<
w j+1

φ j
with δi ≥ 0.

For the purpose of contradiction, let t be the smallest scheduling point such that the lemma does not hold,

and let j be the client scheduled at point t. Also, consider the set I of clients i for which wi(t)+δi
φi

<
w j(t)+1

φ j
, but

which do not get scheduled for δi additional intervals. Let a be the client in I whose continuous run following

point t is shortest. It makes sense to talk about such a shortest continuous run, because all clients in I are

running at point t; otherwise, by the operation of the algorithm, they would be selected instead of client j.

Let δ′a be the number of additional consecutive intervals run by client a following point t (wa(t ′) = wa(t)+

δ′a). We have 0≤ δ′a < δa (since a ∈ I).

Let t ′ > t +δ′aP be the scheduling point when client a stops running. Let b be the client selected at point

t ′ (client b must have not been running at time t ′). The following must then hold at time t ′:

wb(t ′)+1
φb

≤
wa(t ′)+1

φa
.

Let δ′b be the number of intervals run by client b since point t (wb(t ′) = wb(t)+δ′b). Then we have

wb(t)+δ′b +1
φb

≤
wa(t)+δ′a +1

φa
≤

wa(t)+δa

φa
<

w j(t)+1
φ j

where the last inequality follows from a ∈ I. Hence, for client b, wb+δb
φb

<
w j+1

φ j
for δb = δ′b + 1. Since client

25

b runs at most δ′b < δb intervals continuously after time t, it follows that client b satisfies the conditions for

membership in set I. But client b stops running before client a does, contradicting the choice of a.

Lemma 3.2. wi+1
φi
≥

w j

φ j
for any client i that is not running and for any client j.

Proof. Assume otherwise, and let i and j be two clients and t̄ some time moment such that wi(t̄)+1
φi

<
w j(t̄)

φ j
.

Let t ≤ t̄ be the last scheduling point when client j was scheduled, and let t ′ ≤ t̄ be the scheduling point

when client i stopped running. Then

wi(t̄) = wi(t
′) and w j(t̄) = w j(t)+1.

If t ′ < t, wi(t) = wi(t ′) = wi(t̄) and then wi(t)+1
φi

<
w j(t)+1

φ j
, implying that client i would be selected instead of

j at time t. Hence, t ≤ t ′.

Let δ′i be the number of intervals that client i ran since time t (wi(t ′) = wi(t)+δ′i). Denote δi = δ′i +1. At

time t,
wi(t)+δi

φi
=

wi(t)+δ′i +1
φi

=
wi(t ′)+1

φi
=

wi(t̄)+1
φi

<
w j(t̄)

φ j
=

w j(t)+1
φ j

.

Hence, by Lemma 3.1, client i would run at least δ consecutive intervals, contradicting that it stops after

δ′i < δi.

Lemma 3.3. For any client i not currently running, ei ≥−1.

Proof.

wi +1
φi

≥
w j

φ j
∀ j = 1 . . .N ⇐⇒

(wi +1)φ j ≥ w jφi ∀ j = 1 . . .N =⇒

(wi +1)
N

∑
j=1

φ j ≥ φi

N

∑
j=1

w j ⇐⇒

(wi +1)ΦT ≥ φiWT ⇐⇒

wi ≥ −1+WT
φi

ΦT
⇐⇒

ei ≥ −1

Lemma 3.4. For any client i, ei ≥−1.

Proof. For clients that are not running, the lemma above establishes the result.

If client i is running, it will continuously run for only a bounded amount of time, since eventually its VFT
will exceed the VFT of some other client (under the assumption that it has weight less than 1/P of the total

weight). If the client has weight exactly 1/P, then the client will stay on the processor indefinitely.

26

At the time the client stops running, the above lemma is again applicable. Thus, if we let t1 and t2

denote the endpoints of the interval when client i runs continuously (t2 ∈ N∪{∞}), we have ei(t1)≥−1 and

ei(t2)≥−1. For any t ∈ (t1, t2), we can express ei(t) as e1(t1)+wi(t)−wi(t1)−
φi

ΦT
P(t− t1).

Since client i receives a processor for the entire interval [t1, t], we have wi(t)−wi(t1) = t− t1 and since
φi

ΦT
≤ 1

P , we have

ei(t)≥−1+ t− t1−
1
P

P(t− t1)≥−1.

We conclude with a remark on the choice of virtual finishing time versus virtual start time in the MFQ
scheduler:

Note A.1. The MFQ consciously uses virtual finishing times (VFT) instead of virtual start times (VST).

While VFT preserves the -1 negative error bound from the uniprocessor case, VST would not preserve its +1

positive error bound if used similarly. Thus, the analogue of Lemma 3.2 for virtual start time is not true. If

virtual start times had been used, then we would not have been able to obtain a +1 positive error bound, as

the following example illustrates:

Consider N clients, with φ1 = N− 2,φ2 = (N− 2)/2,φi = 1 ∀i > 2. Then for the first (N− 2)/2 time

steps, the two processors run clients 3 . . .N for a time unit each. Then, for another (N−2)/2 time steps, one

processor runs client 1, and the other runs client 2. The work of client 2 at time N− 2 is then (N− 2)/2,

whereas it should have received only (N−2)/2
N−2+(N−2)/2+N−2 2(N − 2) = 2

5(N − 2). The positive error is (N −

2)/10 = Ω(N).

27

