
W3Bcrypt: Encryption as a Stylesheet

[Academic Track, Student Paper]

Angelos Stavrou, Michael E. Locasto, and Angelos D. Keromytis

Abstract. While web communications are increasingly protected by
transport layer cryptographic operations (SSL/TLS), there are many sit-
uations where even the communications infrastructure provider cannot
be trusted. The end-to-end (E2E) encryption of data becomes increas-
ingly important in these trust models to protect the confidentiality and
integrity of the data against snooping and modification by the commu-
nications provider.

We introduce W3Bcrypt, an extension to the Mozilla Firefox web plat-
form that enables application-level cryptographic protection for web con-
tent. In effect, we view cryptographic operations as a type of style to
be applied to web content along with layout and coloring operations.
Among the main benefits of using encryption as a stylesheet are (a) re-
duced workload on a web server, (b) targeted content publication, and
(c) greatly increased privacy. This paper discusses our implementation
for Firefox, but the core ideas are applicable to most current browsers.

Keywords: E2E cryptography, web security, cryptographic applications

1 Introduction

The growth in popularity of hosted web services (including online merchants,
blogging, and webmail) offers new possibilities for commerce and communication.
Unfortunately, most of these services are hosted by third parties that should not
be trusted with the content of the messages that are passed between content
publisher and the reader. As a simple example, users of popular webmail services
like MSN Hotmail or Google’s Gmail must trust that MSN or Google will respect
the confidentiality of their mail messages. Of course, the user could employ PGP
or S/MIME for email messages, but this presupposes that the webmail service
can be accessed by a trusted mail client. The webmail interfaces of these services
do not provide such a trustworthy client. Even if these interfaces supported
client-side PGP operations (via ActiveX, Flash, or a Java applet), users cannot
trust these components with their private key or passphrase.

Our goal is to build a trustworthy client-side environment into web browsers
that is independent of the service provider. This environment need not be limited
to webmail services, but it should support treating any service provider as a
transit conduit for an opaque block of encrypted and integrity–protected data.



1.1 E2E Security For Web Content

Traditional methods for confidentiality and integrity involve the use of cryptog-
raphy in the middle of a communications pathway. Communications involving
web content can be protected at several layers in the network stack. Connections
between client and server could be secured at the network level using IPsec. Gen-
eral purpose web servers typically employ transport layer encryption.

To the casual observer, these techniques may seem identical. Each can pro-
tect the confidentiality and integrity of the content being exchanged while it
is in transit. In reality, these approaches are orthogonal to each other and have
fundamental differences. They operate at different levels in the network and pro-
tect different notions of “content.” Most importantly, neither can protect from
a compromised or malicious application server because their confidentiality and
integrity1 protections do not reach up through the application layer.

For situations where we cannot trust the service provider, we advocate the
use of end-to-end (E2E) encryption. Not only is E2E encryption good for the
privacy and security of the end user, but it is unexpectedly beneficial for service
providers as well. A recent example of this phenomena is AOL’s decision to allow
users of its AIM instant messaging service to encrypt their conversations E2E.
The alternative would have been for AOL to set up SSL connections for each
conversation taking place on their network. Not only does this latter choice insert
AOL’s servers as de facto men-in-the-middle (and thus violate user’s expectation
of privacy for an encrypted conversation), it places an unreasonable performance
demand on AOL’s servers. Presumably, AOL’s business model doesn’t require
examining AIM traffic, and by using E2E cryptography, they avoid a perfor-
mance penalty and the associated cost of hardware, systems, and management.

The privacy and security of web content has usually been addressed by
TLS/SSL. Encryption at this layer presumes that the application provider is
trustworthy, just as encryption at the network level (i.e., IPsec) assumes that
the endpoints (and beyond) are trustworthy. In a growing number of scenar-
ios, it is undesirable, if not unreasonable, for users to trust the communications
provider with the confidentiality and integrity of their data. For example, a
blogger (Bob) may not trust his hosting provider, or a customer (Alice) may
not trust a commercial website with her banking information. Currently, the
blogger is forced to trust the blog hosting service and has no expectation of
confidentiality between himself and his readers. Likewise, a customer purchasing
items from an online store has to divulge her sensitive personal information to
the merchant2. Revealing such information to an online store is an unacceptable
risk, especially since such entities cannot guarantee the security of their systems
against electronic (or physical) theft leading to identity theft.

1 We specifically choose not to address availability in this paper, as it would be trivial
for the service provider to impose a DoS on the user. Such an occurrence is anathema
to the concept of being a useful provider of services.

2 This information often includes full name, address, phone number, and credit card
or checking account information.



1.2 Contributions

A better system would allow both the blogger and customer to treat the ser-
vice providers as a mere communications pipe that they can tunnel confidential
information through to their target audience (in Bob’s case, his readers or sub-
scribers; in Alice’s, her financial institution).

We present W3Bcrypt, a system for transparent E2E encryption of web con-
tent that uses public-key cryptography (e.g., PGP). W3Bcrypt can be thought
of as another layer of HTML rendering; in effect, we treat encryption as another
style applied to content. W3Bcrypt makes three major contributions:

– an E2E privacy-enhancing browser extension. W3Bcrypt provides con-
fidentiality and integrity to content producers who wish to publish to a set of
readers. The system also supports the ability for web merchant customers to
communicate with their financial institution, and a way for users of webmail
systems to employ PGP even if the interface doesn’t support it.

– the offload of cryptographic processing from the server to clients. SSL
has typically been used to protect web communications. However, SSL places
a burden on servers that only increases with the number of clients. With
W3Bcrypt, the burden of cryptographic operations is placed mostly on the
client – content only has to be encrypted once in the server data store. While
W3Bcrypt is not meant to replace SSL, it can complement SSL to provide
a net gain in security (defense in depth) against multiple threats.

– the concept of cryptographic processing as another phase of styling

web content. Just as content is rendered by the browser for placement, size,
and coloring, so too can the content be decoded into something the user is
authorized to view.

The remainder of this paper discusses the design and implementation of
W3Bcrypt as well as background work on SSL, web spoofing attacks, and browser
security. We also provide a security analysis of the system and present a perfor-
mance evaluation.

2 Approach

The W3Bcrypt package is an extension to Firefox that permits a publisher to
securely convey content to a consumer at the application level in an end-to-
end fashion. The core functionality is the ability to perform PGP cryptographic
operations on blocks of web content. To support these features, the extension
includes changes affecting layout operations, small additions to the UI and the
ability to invoke PGP. Since one major goal is to refrain from modifying the
source code of the browser, the new features are packaged as an extension for easy
installation, upgrade, and removal. Adding encryption as a style takes advantage
of the power of CSS because no new HTML tags need to be added to the HTML
grammar, although doing so may be a useful alternative approach. Work is being
done in this vein on XML encryption [9].



This section discusses our primary use cases, presents a security analysis
of the system (including the threat model, attacks, and potential countermea-
sures), and talks about some of our limitations. Section 3 discusses the actual
implementation of the Firefox extension.

2.1 Use Cases

We are motivated to build and analyze W3Bcrypt to enhance the amount of
privacy provided by the current web infrastructure. Privacy, in this case, refers
to the confidentiality and integrity of web content – the system is not used to
obfuscate referrer headers or similar information, although it could be leveraged
for this purpose. Below, we offer three situations we have personally encountered
as motivating examples and use cases, but there are others, and W3Bcrypt can
probably enable some that are as yet unforeseen.

1. A web content publisher may wish to forgo or supplement traditional au-
thentication and authorization services by publishing content under a specific
“audience” key (or series of such keys). Publishers can include bloggers and
other content producers like news organizations or media companies.

2. A customer of an online merchant may wish to use the merchant as a transit
network or information conduit by passing an opaque block of data (encom-
passing the customer’s account number and billing address) to the customer’s
financial institution via the merchant. The bank or credit card company
then authorizes payment to the merchant without the merchant knowing
the customer’s account number(s). In addition, the customer could encode
her shipping address such that the merchant does not know where items are
shipped, but the transportation agent (e.g., the USPS, UPS, or FedEx) can
decode the address and deliver goods as appropriate. We discuss a possible
attack on this protection scheme in Section 2.3.

3. Web peers may wish to exchange information through a public email service
such as Google’s Gmail or Microsoft’s Hotmail. Currently, these services are
at liberty to scan, data mine, and store the content of the peers’ messages.
While PGP has traditionally been used to protect email communications, the
use of a webmail client makes it difficult to use PGP because the browser
has no built-in application-level key handling, and any code (ActiveX, Java,
Javascript) from the webmail provider cannot be trusted to not divulge the
private key or user passphrase. W3Bcrypt solves this problem by providing
such a trustworthy client-side environment.

2.2 Security Analysis

We present a security analysis for our major use cases, including the threat model
for each, attacks on the system, and countermeasures that the system provides
or could provide with additional implementation or support from the browser.
An analysis of the system’s performance is provided in Section 4.



Threat Model In all of our proposed use cases, our threat model is based on the
concept of an untrustworthy service provider as the attacker. In the publisher use
case, the attacker is the blog hosting provider or media content hosting network.
In the customer use case, the attacker is the online merchant. In the peer use
case, the attacker is the webmail provider. The service provider could be merely
curious, simply nosy, compromised, or actively malicious. We are not primarily
interested in defending against passive or active attackers who attempt to sniff or
otherwise control the communications links between the service provider and the
client. These traditional attacks can be addressed by using SSL, but SSL cannot
protect against a service provider because the provider controls the application
level and has access to the data after it has been processed by SSL.

Except for a special case (the Hitchhiker attack), we do not consider any de-
fense against client-side attacks such as trojan horses, viruses, spyware, or other
malware on the user’s host. In all cases, the attacker is interested in violating
the confidentiality and/or integrity of the user’s content. We believe that for
most situations the availability of content is not an issue; a service provider that
denies service isn’t a very effective service provider, and it is trivial to cause DoS
by changing the server to interrupt connections containing PGP content.

Yet, it is a very real possibility that the service provider has defined being
able to examine user content as a core competency or central business need.
This type of service provider will therefore be satisfied with imposing a denial of
service on users that violate an agreement stating that users are not allowed to
obfuscate, encrypt, or otherwise hide their content from the service provider. We
consider the existence of W3Bcrypt problematic for such service providers and
demonstrate an attack that they could carry out to get around the protections
afforded by W3Bcrypt (the aforementioned special case).

We also exclude attacks on the content after it has left W3Bcrypt’s purview.
For example, a news provider may wish to employ W3Bcrypt as part of a type
of DRM scheme where content is targeted to a specific consumer or group of
consumers. After the consumer’s W3Bcrypt system has decrypted the content,
the consumer is free to copy the content and pass it on. Since the content is out
of W3Bcrypt’s control at this point, we do not consider this part of our threat
model. We note that this type of attack exists for all DRM or content distribution
schemes. Furthermore, the threat model in these situations is different from ours
– we assume that the receiver is free to do whatever they want with content
directed at them.

Attacks There are two major types of attacks against W3Bcrypt: the brute force
attack and the Hitchhiker attack. We discuss the possibility of replay attacks in
section 2.3. The brute force attack is carried out by a service provider that
attempts to discover the private key being used to sign or decrypt content.
We assume that W3Bcrypt is no stronger against this attack than PGP itself.
The attacker could also attempt to gain the key through coercion or economic
incentives, but this type of attack is effective against any cryptographic scheme.



The Hitchhiker attack is very interesting in that the attacker does not try
to directly subvert or control the cryptosystem. Instead, the service provider
attempts to piggyback code that bypasses the cryptographic controls on the
content and accesses the content either before or after it has passed through the
cryptosystem. Additionally, the attacker can attempt to insert web content that
is meant to masquerade or blend in with the encoded or decoded web content.
This attack is a type of spoofing attack. If the attacker has not discovered the
private key, he or she cannot forge a signature for such content.

For example, a webmail provider may include, as part of their webmail client,
Javascript that captures a user’s keystrokes. If the user later uses W3Bcrypt to
encode the mail message, the webmail provider still has a log of the plaintext by
virtue of the keystroke monitoring. Such monitoring is already done to support
automatic spellcheck and automatic saving functionality. On the receiving side,
the attacker could include Javascript that attempts to read the contents of a
message once it has been decrypted by W3Bcrypt.

Countermeasures In order to overcome the Hitchhiker attack, the browser
would ideally support a policy-driven mandatory access control on a fine-grained
namespace framework for the browser objects, like SELinux does for the Linux
operating system. Lacking such controls, we can attempt to perform input oper-
ations in a transparent overlay frame, encrypt the content in this overlay frame,
and then transfer it to the target element in encrypted form. Likewise, encrypted
content can be transferred to a new overlay frame and decrypted in that context
with “external” Javascript disabled or unable to read or write to that frame.

This solution still leaves open the question of a user that unknowingly in-
cludes malicious Javascript in the content they have encrypted. The solution
to this problem is an open area of research. One potential (but unappealing)
solution is to employ some form of model or proof-carrying code [15] combined
with a policy mechanism like the Java Policy and Permissions framework.

2.3 Limitations & Discussion

W3Bcrypt currently depends on the presence of the GnuPG software package
and invokes an xterm to call the gpg tool. We plan to improve W3Bcrypt so
that it can detect and use other PGP packages. We are also investigating the
use of the appropriate command shell tool so that W3Bcrypt can be used on the
Windows version of Firefox.

We note that W3Bcrypt alone does not support the customer use case. Mer-
chants and financial institutions would need to modify their systems to expect
PGP encoded data and process it properly. In particular, the online merchant
would need to alter input validation routines for the protected data.

Key Management As with all systems that employ a form of public key
cryptography, the issue of key management is important. We refrain from dealing
with key management or revocation. W3Bcrypt’s design avoids the use of a
large scale PKI and employs the peer-to-peer “web of trust” approach implicit



with user-managed PGP keys. Key creation, sharing, signing, and revocation are
explicitly not handled by the current tool. Instead, these operations are deferred
to the underlying PGP package We plan to include GUI entry points (e.g., a
“buddy” list) to this functionality in later releases.

Privacy Preferences While our goal is to enhance privacy, W3Bcrypt
does not take advantage of or interface with the Platform for Privacy Prefer-
ences (P3P) initiative [6], nor is it meant to directly support other browser-
based privacy-enhancing mechanisms like referrer header rewriting or blanking,
although it could be used to do so. Determining if the use of W3Bcrypt can
benefit these areas is an open problem.

Integration Complexity In the customer use case, the customer needs to
communicate with at least three entities: the merchant, to select goods and create
the order; her financial institution, to arrange payment of the final sum; and a
shipping agent, to arrange a particular type of shipping. The merchant, in order
to make online shopping attractive to the customer, must integrate the latter
two communications into its online shopping process. Since merchants currently
expect to at least parse the customer information for sanity, a customer using
W3Bcrypt would require the merchant to partially rewrite their web application
and modify their database.

While the system provides the basis for a number of use cases, Schneier re-
minds us that security is a process, not a product3. In many use cases, W3Bcrypt
handily fills an immediate need. In other situations, such as those involving com-
plex, multi-party protocols, W3Bcrypt alone does not provide adequate privacy
against higher-level attacks. As a simple example, the merchant use case assumes
that the customer wants to hide both her financial credentials and shipping ad-
dress from the merchant. However, the shipping agent usually prices service
according to location and delivery method. If the shipping agent returns this in-
formation in a plaintext format to the merchant, the merchant could potentially
guess the location of the customer (especially if the information is correlated
with information gleaned from IP address geo-location services).

In theory, these problems are not difficult to solve. The customer should
merely set up a keypair with the chosen shipping agent, financial institution,
etc. In practice, this key management may prove difficult, and leaves open the
large question of how this sort of information integration actually occurs in the
merchant’s web application.

Furthermore, any of the use cases could suffer from replay attacks, although
such an attack would be more noticeable and presumably not as harmful in the
peer and publisher use cases. Duplicate blog postings or emails will probably
be recognized as such and ignored (even if their content were relatively dire –
for example, an inflammatory news bulletin or letter of dismissal). More care
must be taken in the customer use case. The customer should include some
randomness in the data to be communicated to their financial institution. A
timestamp, sequence number, or randomly generated ticket prepended to the
account number would serve to identify duplicate transactions submitted by the

3 We playfully refer to this observation as Schneier’s Adage.



merchant. W3Bcrypt does not currently support transparently concatenating a
timestamp to all encrypted fields, but this capability is straightforward to add.

Even with these limitations, we believe our system is immediately useful,
and we employ it almost daily. We look forward to incorporating some of the
countermeasures and solutions to the limitations in our ongoing development of
the Firefox extension, which we describe next.

3 Implementation

W3Bcrypt has been implemented as an extension to version 1.5.x of the Mozilla
Firefox web browser. Although W3Bcrypt is implemented as a Firefox extension,
the core ideas are browser-agnostic. W3Bcrypt could easily be implemented in
other popular browsers like Opera, Safari, and Microsoft Internet Explorer, or
even a text-based browser like wget or lynx. Our extension is available at our
website4. The major features of the W3Bcrypt system include the ability to
transform chunks of HTML content from and to PGP-encrypted, ASCII-armored
blocks of data. In addition, the system supports the ability for the browser
to automatically decrypt div’s marked with a special CSS class id. The most
immediately useful feature is the ability to select free text in form objects like
textareas and textboxes, access the context menu, and utilize one of the basic
PGP functions from a menu of six: encrypt, sign, encrypt and sign, decrypt,
verify, and decrypt and verify.

3.1 Package Layout

Our prototype adheres to the packaging conventions for Firefox 1.5.x extensions.
The system is comprised of four files: install.rdf, chrome.manifest, overlay.js,
and overlay.xul. The first two files are used during installation of the extension
and contain the metadata that describes the package and its capabilities. In
particular, the chrome.manifest file contains directives that overlay our new
widgets on the standard browser GUI components.

The latter two files contain the bulk of our implementation, and they are
located in the chrome/content/ subdirectory of the extension XPI file. They
reflect a clean split between the new GUI components and the raw functionality
for invoking GPG. The XUL file defines a new submenu for the context menu
The JS file contains Javascript functions that invoke the GPG functionality via
an xterm, and it supplies a function to automatically decrypt marked div’s.

3.2 Integration with GPG

One of the design goals of W3Bcrypt was to provide a quick manual method
for invoking the extension functionality. To simplify implementation, we made a
design decision to leverage any PGP software already installed on the host. We

4 http://anonymized/w3bcypt/



currently use GPG, which is available for both Windows and Linux (and a num-
ber of other platforms). We decided to implement the six major cryptographic
operations as choices in the context menu. These choices are gathered into a
submenu to avoid crowding the regular context menu. The various functions in
overlay.js via this context menu. These functions do some setup work (gathering
content, setting up temporary files, creating an xterm) and then delegate to gpg.
The result is gathered and written into the HTML element (via the innerHTML

attribute) it originated from.

Fig. 1. Encrypted Data. After the text is selected and W3Bcrypt is invoked via the
context menu, the selected text is replaced with ASCII-armored data. This data can
be decrypted by the receiver either manually or automatically.

3.3 Auto-rendering of encrypted DIVs

One of our primary goals is to treat cryptographic content as another type of
style. To this end, the prototype recognizes specially marked div elements (those
with the class attribute set to “w3bcrypt” as follows) and automatically decrypts
them.

<div class="w3bcrypt">

...encrypted content here...

</div>

When Firefox finishes loading the DOM for a page, the extension requests a list of
all div elements marked with the w3bcrypt class and proceeds to decrypt them,



prompting the user for his passphrase. Only the decrypt and verify operations
are automated for marked div’s, as this arrangement alleviates the burden of
manually selecting some text and decrypting it via the context menu.

4 System Evaluation

In order to make sure that the cost of employing W3Bcrypt is justifiable, we
need to quantify the impact of the system on the resources (i.e, space and time)
used by both the client and server. Two metrics are employed to evaluate the
performance of the system. For the client, we focus on the overhead due to
encryption and decryption operations. On the server, we are most concerned with
the difference in storage requirements for the encrypted and plain content. We
classify objects as text or binary to differentiate between two cases: the content
stored in a database, which is mostly text, and the content served by a web
server (likely a mixture of both text and binary objects). We ignore the initial
cost of the encryption of the server’s web or database content since it happens
only once and it is not repeated for any of the subsequent client requests.

For these experiments, we used a machine with an Intel Pentium 4 2.7GHz
processor and 1GB of RAM running a Debian Linux distribution. Cryptographic
operations were provided by GPG version 1.4.2 with the ASCII armored output
option enabled. All of the results presented are the computed averages of multiple
experimental runs with tight confidence intervals.

We used two different types of datasets in our experiment: a text repository
containing the American Constitution5 and three commercial web sites6. For the
web sites, we stored and used all the data returned when accessing their first
page, including the index page and any other pop-up, overlay, or roll-over objects
that appeared as a result of scripting. This type of capture results in slightly
larger web content sizes that what we usually expect.

4.1 Encrypted versus Plaintext Content Size

The pure text experiments use parts of the plaintext version of the American
Constitution. Figure 3 shows that for small text sizes there is a significant in-
crease in the space required for the generated ciphertext. For text sizes above
a threshold (about 2KB), we observe the opposite effect: a significant drop in
the space requirements. These results can be understood if we recall some infor-
mation theory fundamentals. Larger text chunks are most often low in entropy.
If we use any form of compression, the resulting file will be smaller. Here, the
cryptographic transformation uses encoding of large sequences of text, effectively
acting partly as a compression algorithm generating files of higher entropy and
thus of smaller size. As the text file size increases, the entropy drops and results

5 http://www.house.gov/Constitution/Constitution.html
6 http://www.cnn.com, www.nytimes.com and www.chase.com.



Fig. 2. Comparison of Size for Encrypted vs Plaintext. Small plaintext size have a
significant increase in the generated encrypted text size. This size drops sharply to
values below 1 for plaintext sizes of more than 2KB.

in even smaller encrypted files. For smaller text sizes, the cryptographic oper-
ations have to avoid collisions and guessing, and we can observe the opposite
effect – the produced file increases in size.

We conducted experiments involving real web content. Figure 4 depicts our
results. In general, binary objects like images (high entropy) have a size inflation
whereas pure textual objects (e.g., HTML and Javascript) undergo a decrease.
However, the images are usually of bigger cumulative size and the overall result
is a rise in storage requirements for the encrypted files. This rise is proportional
to the initial content size, and it is no more than twice the size of the original
unencrypted web content.

4.2 Overhead of Encryption & Decryption Operations

W3Bcrypt employs two types of actions: manual operations requiring user in-
tervention (encryption), and the decryption operation, which happens automat-
ically when the browser detects an encrypted object. We measure the latency
overhead from the automatic execution of an encryption or decryption of an ob-
ject or set of objects. This penalty is what really matters to the end user. When
downloading an encrypted page, the user wants to see how much longer it will
take for the page to complete. This type of measurement avoids any comparison
between a manual and an automated operation and thus avoids the need to take
user-browser interaction into account.



Fig. 3. Web Content Size Comparison. There is an increase in size for the produced
encrypted text which is proportional to the initial size of the site. This increase comes
solely from the encryption of the binary images (lower portion of the bars). HTML and
Javascript files decrease in size (upper portion of the bars).

Figure 4 displays the results of both operations on different web sites. De-
cryption takes less time than encryption both for HTML and for images. For
sites that offer content of smaller size such as the chase.com website, the de-
cryption process requires just over half second to complete. We note that the
latency overhead depends both on the size of the site and the number of objects
that it contains. This dependency is an artifact of our implementation. We use
a different call to GPG for cryptographic operations on each object. This or-
ganization generates extra overhead for the system since a page might contain
multiple objects. The impact is clear if we compare the encryption and decryp-
tion time for the first two sites of Figure 5. Although both sites have similar
content size, the first (cnn.com) has far more objects than the second (nyt.com)
(see Table 4.2) resulting in almost double the amount of time required.

Table 1. Web sites: size and number of objects

Site name Total Size(Bytes) # objects

cnn.com 305,586 137

nyt.com 357,378 88

chase.com 99,504 22



Fig. 4. Encryption and Decryption Overhead. The bars display the cumulative time for
different operations and for different site content. The lower portion of the bar indicates
the time required for the binary and the upper portion for the textual content. The
latency overhead depends on the size of the site and the number of object that it
contains.

On the other hand, all pure text operations are almost instantaneous, only
taking a few milliseconds even for large chunks of text, as shown by Figure 5.
Our tool excels when it is used for textual objects. Performance drops when the
tool is used on binary objects, but the observed times can be improved by an
implementation that first loads the page and then operates on the encrypted
objects in parallel with just one call to the necessary library function.

5 Related Work

Our work on E2E confidentiality and integrity protection for web content draws
naturally on a number of related efforts in cryptography and Web engineering.
In particular, work on XML encryption faces many of the same technical chal-
lenges, recent work on encrypting RSS feeds provides extra motivation, and per-
formance and security analysis of SSL provides some insight into how W3Bcrypt
can enhance security while decreasing (or at least not significantly adding to)
the performance burden for servers. Finally, work on trusted paths for browsers
and more secure browser architectures is of interest. The former is of interest
because W3Bcrypt can provide some level of visual disambiguation. Since non-
decodable PGP blocks are rendered poorly (or not at all) by the extension, they
provide visual cues that the content was not meant for the viewer (or represents
untrustable content most probably injected by a phisher). The work on more se-



Fig. 5. Latency overhead for text. For text objects the latency overhead is just few
milliseconds. Such a delay is unnoticeable to the end user.

cure browser architectures is of use for cases where the service provider attempts
the Hitchhiker attack by including Javascript code that snoops to discover the
encrypted content. During our research, we were alerted to a parallel suggestion
by Gregorio [7] to use GreaseMonkey for encrypting RSS feeds. We take this
as an encouraging sign that the problem we are working on is a current and
meaningful one.

XML Encryption Some work has been done on content encryption using
XSLT and XML. Work suggesting the element-level encryption of XML content
has appeared as early as April of 2000 [13]. This work, and efforts related to it [9]
[10], are complementary to W3Bcrypt. W3Bcrypt currently treats the contents
of a div element as a single level block of content. The results are undefined
if the content includes HTML markup, although our tests show that Firefox
does successfully render the HTML markup in the auto-decrypted content. In
addition, the goals of the XML encryption projects are quite similar to some of
our use cases, especially the customer use case.

SSL Encryption SSL is widely used to secure transport layer communi-
cation. It is commonly used to provide confidentiality and integrity for sessions
between a web server and a web client. However, SSL is not immune to attacks
[5] [2], and since it operates at the transport layer its use assumes at least a
trusted server application. We don’t argue for replacing SSL, but rather argue
for augmenting security at another layer.

The use of SSL imposes a hefty performance penalty on servers, and much
work has been done to decrease this performance hit. Coarfa et al. [4] provide an



analysis of the bottlenecks for SSL processing and propose some adjustments to
alleviate them. Various other mechanisms for speeding up SSL by both distribut-
ing the work [12], [14] and speeding up the underlying cryptographic operations
[8] has been done.

Other Work Phishing is an attack that has grown in popularity. Both the
Spoofguard [3] system and Ye and Smith [16] discuss various methods of creating
a trusted path from the server to the user. Both of these systems extend the
browser to accomplish client-side protection. While W3Bcrypt is not explicitly
built to counter phishing or spoofing attacks, it could be leveraged to display
trusted content by decrypting the entire page. Injected content would not decrypt
properly (assuming that the attacker doesn’t know the encryption key).

One of the more interesting attacks against W3Bcrypt is the Hitchhiker at-
tack. This attack is a type of cross-site scripting attack and it is enabled by the
ability of the attacker to piggyback Javascript code into the page. If the browser
does not provide namespace separation and access controls (as suggested by
[1]), then this Javascript can read content that is meant to be protected by our
system. Researchers have done some work on providing a secure browsing en-
vironment [11] using sub-process sandboxing and privilege separation. Finally,
trusted path techniques (such as randomizing elements of the extension’s dialog
components) can help in the case of Hitchhiker code that attempts to steal the
user’s passphrase by displaying a fake dialog. In addition, we can store the user’s
passphrase so they only have to enter it once per session (identical approaches
are taken by ssh-agent and desktop mail clients).

6 Conclusions

The growth of hosted web services introduces new methods of communication,
collaboration, and commerce. In many of these situations, the client cannot
trust the service provider with the confidentiality and integrity of the client’s
data. W3Bcrypt is a practical and effective mechanism that supports the E2E
confidentiality and integrity of web content. Our implementation is an extension
to the Firefox web platform and supplies a trustworthy client-side environment
for performing crypto operations on web content.

Measurements show that HTML content size does not increase significantly;
rather, there is a reduction in size for text greater than 2KB. Cryptographic op-
erations take only a few milliseconds to complete, and web content that contains
both text and binary objects incurs a processing overhead that is less than 1
second for small sites and only a few seconds for larger sites.

We are motivated to work on this problem because we want to use webmail
services without forfeiting the privacy of our messages, communicate with our
financial institutions without having an intermediary learn our account informa-
tion, and publish blogs with only a selected audience knowing what the content
is. The protection offered by E2E cryptography at the application level is the
correct model for these situations. W3Bcrypt is a step in the right direction for
the privacy of end users.



References

1. V. Anupam and A. Mayer. Security of Web Browser Scripting Languages: Vul-
nerabilities, Attacks, and Remedies. In Proceedings of the 7th USENIX Security
Symposium, January 1998.

2. D. Brumley and D. Boneh. Remote Timing Attacks Are Practical. In Proceedings
of the 12th USENIX Security Symposium, August 2003.

3. N. Chou, R. Ledesma, Y. Teraguchi, and J. C. Mitchell. Client–side Defense
Against Web–based Identity Theft. In 11th Annual Network and Distributed Sys-
tem Security Symposium (NDSS 2004), February 2004.

4. C. Coarfa, P. Druschel, and D. S. Wallach. Performance Analysis of TLS Web
Servers. In 9th Annual Network and Distributed System Security Symposium
(NDSS 2002), February 2002.

5. D. Dean and A. Stubblefield. Using Client Puzzles to Protect TLS. In Proceedings
of the 10th USENIX Security Symposium, August 2001.

6. R. W. et al. Platform for Privacy Preferences (P3P) Project. http://www.w3.org/
P3P/, September 2005.

7. J. Gregorio. Secure RSS Syndication. http://www.xml.com/pub/a/2005/07/13/

secure-rss.html, July 2005.
8. V. Gupta, D. Stebila, S. Fung, S. C. Shantz, N. Gura, and H. Eberle. Speeding

Up Secure Web Transactions Using Elliptic Curve Cryptography. In 11th Annual
Network and Distributed System Security Symposium (NDSS 2004), August 2004.

9. T. Imamura, B. Dillaway, and E. Simon. XML Encryption Syntax and Processing.
http://www.w3.org/TR/xmlenc-core/, 2002.

10. T. Imamura and H. Maruyama. Specification of Element-wise XML En-
cryption. http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/

att-0005/xmlenc-spec.html, 2000.
11. S. Ioannidis and S. M. Bellovin. Building a Secure Web Browser. In Freenix Annual

Technical Conference (USENIX 2001), June 2001.
12. C. Lesniewski-Laas and M. F. Kaashoek. SSL Splitting: Securely Serving Data

From Untrusted Caches. In Proceedings of the 12th USENIX Security Symposium,
August 2003.

13. H. Maruyama and T. Imamura. Element-Wise XML Encryption. http://lists.

w3.org/Archives/Public/xml-encryption/2000Apr/att-0005/01-xmlenc, 2000.
14. E. Rescorla, A. Cain, and B. Korver. SSLACC: A Clustered SSL Accelerator. In

Proceedings of the 11th USENIX Security Symposium, August 2002.
15. R. Sekar, C. Ramakrishnan, I. Ramakrishnan, and S. Smolka. Model-Carrying

Code (MCC): A New Paradigm for Mobile-Code Security. In Proceedings of the
New Security Paradigms Workshop (NSPW), September 2001.

16. Z. Ye and S. Smith. Trusted Paths for Browsers. In Proceedings of the 11th USENIX
Security Symposium, August 2002.


