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Abstract

Most current approaches to self-healing software (SHS)
suffer from semantic incorrectness of the response mech-
anism. To support SHS, we propose Smart Error Virtual-
ization (SEV), which treats functions as transactions but
provides a way to guide the program state and remedia-
tion to be a more correct value than previous work.

We perform runtime binary-level profiling on unmodi-
fied applications to learn both good return values and er-
ror return values (produced when the program encoun-
ters “bad” input). The goal is to “learn from mistakes”
by converting malicious input to the program’s notion of
“bad” input.

We introduce two implementations of this system that
support three major uses: function profiling for regres-
sion testing, function profiling for host-based anomaly
detection (envinroment-specialized fault detection), and
function profiling for automatic attack remediation via
SEV. Our systems do not require access to the source
code of the application to enact a fix. Finally, this paper
is, in part, a critical examination of error virtualization in
order to shed light on how to approach semantic correct-
ness.

1 Introduction

A key problem in computer security is the inability of
systems to automatically protect themselves from attack.
It is unlikely that system security problems will ever
completely disappear. New and creative exploits will
emerge to take advantage of mistakes in system design,
construction, configuration, and deployment. Since it
is difficult, if not impossible, to perceive or predict all
threats a priori, no system can be completely secure.
Furthermore, most exploits are launched with little or
no warning, and the window to protect systems against
known vulnerabilities is shrinking. Symantec reported

[14] that the period of time from the announcement of a
vulnerability to the appearance of an exploit was about
5.8 days in the first half of 2004. Current estimates are
much shorter, and the recent Zotob worm was released 3
days after the vulnerability was announced. In the case
of worms, malware spreads so quickly as to defy mean-
ingful human intervention. In order to have a reasonable
chance at surviving or deflecting an attack, a system must
incorporate automatic reaction mechanisms. Such reac-
tion mechanisms must be driven by intrusion detection
sensors that perform unsupervised learning.

Recent advances in secure systems have led to an emerg-
ing interest in self-healing software as a solution to this
problem. In many environments, continued execution is
valued more highly than absolute correctness of the com-
putation. For these types of environments, researchers
have proposed two software self-healing mechanisms:
error virtualization [11] and failure-oblivious computing
[10]. While both of these approaches showed promis-
ing results as far as supporting system survivability and
preventing the exploitation of vulnerabilities, they both
suffer from the potential for semantically incorrect exe-
cution following the invocation of the self-healing mech-
anism. Such a shortcoming is devastating for applica-
tions that perform detailed and precise calcuations (e.g.,
scientific or financial software) or provide authentication
or authorization services. In addition, the heuristics for
error virtualization fail about 12% of the time for the ap-
plications that were tested. On applications that require
continued availability, this failure rate is quite discourag-
ing.

1.1 Error Virtualization

The key assumption underlying error virtualization is
that a mapping can be created between the set of errors
that could occur during a program’s execution and the
limited set of errors that are explicitly handled by the pro-
gram code. By virtualizing the errors, an application can
continue execution through a fault or exploited vulnera-



bility by nullifying the effects of such a fault or exploit
and using a manufactured return value for the function
where the fault occurred.

The programs tested in [11] were network server-type ap-
plications – applications that typically have a primary re-
quest processing loop and can presumably tolerate minor
errors in one particular trace of the loop. Furthermore,
the system (STEM) proposed in [11] requires access to
the source code of the application. These shortcomings
motivate the development of a tool that can operate on
an unmodified binary version of the application and learn
appropriate “error virtualization” values during runtime
(as opposed to statically determined heuristic values). In
this paper, we describe the design, implementation, and
evaluation of such a system. We also consider its ap-
plication to regression testing and host-based anomaly
detection.

1.2 Contributions

This paper makes the following four contributions:

• a model for binary-level function behavior profiling,
including a spectrum for evaluating the correctness
of a self-healing mechanism

• an implementation of this model as both a Valgrind
[6] tool (Lugrind) and as a PIN [5] tool

• the notion of Smart Error Virtualization (SEV), a
technique for self-healing that involves learning ap-
propriate function return values at runtime to assist
the basic error virtualization technique

• a study and critique of the efficacy of S/EV for a
wide variety of applications

We stress that our system does not require access to
source code or even a recompilation or restart of the sys-
tem. Our primary goal is to support self-healing software
and automatic error recovery with minimal or no down-
time for the system as it recovers.

2 Approach

The design of a binary-level function profiler for SEV is
driven by the hypothesis that “bad” or malformed input
data and environment perturbations will drive function
arguments and return values towards a profile of “fail-
ure dynamics”, or operation under stress that manifests
safe failure execution. Therefore, positive confirmation

of this hypothesis improves on error virtualization be-
cause the application is trained on malformed or mali-
cious input and the replacement values are selected from
the previously observed training behavior. The design of
our tools is aimed at profiling the execution of the appli-
cation under this type of input and observing the values
involved in successfully handling such input. If other
input (such as that exploiting a vulnerbility) is supplied
to the system, our tool can, upon detection of the ex-
ploit (via any number of techniques like taint-tracking,
ISR, Dyboc, stack instrumentation, Valgrind’s memory-
checking, or OS-level exceptions), replace the state of
the current function with previously learned state from
the training model. While this reactive approach to self-
healing is in keeping with previous work, we can also
employ a pre-emptive approach, such as triggering the
system with an anomally-based intrusion detection sen-
sor, or even have a hybrid system.

2.1 Use Cases

We examine this hypothesis in a range of application and
consider several ways to utilize the learned profile.

1. profiling of function call stack, return values, and
parameter values for regression testing

2. detection of deviations from a learned profile for
host-based anomaly detection

3. software self-healing through Smart Error Virtual-
ization (S/EV) by picking an appropriate runtime-
learned error code for virtualizing errors and slicing
off a corrupted function.

One thing we can do is show how badly error virtual-
ization behaves for certain classes of applications: like
returning the same amount of memory for malloc (rather
return NULL, how do we actually decide or learn this
from runtime behavior). In particular, it would be nice
(but time consuming) if the programmer could tell us
what the possible set of error values for each function
were through annotation. Barring that, we have to train
on the regular “bad” execution of the binary. Our tool
provides for the programmer specifying such a file, with
no need to touch the source code or recompile. It is sim-
ply the model that is loaded in. Thus, this can be done by
the system administrator or the programmer.

2.2 Recovery: Smart Error Virtualization

Previous work on error virtualization determined the re-
turn value of a sliced-off function by employing sim-
ple heuristics based on the return type of the offending



function as determined by source code analysis. SEV
attempts to discover more appropriate return values by
keeping a record of the return values that have been seen
in the program so far for various invocations of each
function. These return values can also be selected us-
ing a conditional probability based on a matching of the
call stack configuration at the time of use with similar
configurations encountered during the training phase.

2.3 Range of Correctness

In order to have a reasonable basis for evaluating the
basic error virtualization and SEV approaches to self-
healing software, we need to develop a metric of system
correctness. There are two types of correctness: the first
with respect to continued execution and the second with
respect to proper execution.

We propose the following scale, which starts at a level
most would consider very coarsely correct and trends to-
ward a very fine-grained notion of correct program exe-
cution.

1. not crashing the application

2. not raising any signals or externally noticeable
events that were not visible before

3. externally visible behavior remains the same as pre-
vious

4. all behavior remains strictly the same as previous

5. correct with respect to the programmer’s implemen-
tation (above)

6. correct with respect to the programmer’s intent
(may be poorly implementd)

7. correct with respect to the programmer’s under-
standing (may be bad)

8. absolute correctness (where a programmer’s mis-
take may be fixed)

Our evaluation will assess the performance of error vir-
tualization and SEV against this scale.

2.4 Caveats and Limitations

Automating a response strategy is difficult, as it is often
unclear what a program should do in response to an er-
ror or attack. A response system is forced to anticipate
the intent of the programmer, even if that intent was not

well expressed or even well-formed. Ideal computing
systems would recover from attacks and errors without
human intervention. However, the state of the art is far
from mature, and most existing response mechanisms are
external to the system they protect. Some simply crash
the process that was attacked (and do nothing to fix the
fault, thereby ensuring that the system is still vulnerable
when it is rebooted). Other systems may restrict network
connectivity or resource consumption.

The exploration of ways to bound the types of errors that
arise in response to changing the semantics of program
execution is an open area of research. This paper ex-
plores one method of shaping the behavior of the system
towards an acceptable profile of failure dynamics.

Since our tools operate at the application level, they do
not provide supervision or control for any operating sys-
tem kernel code. We could potentially combine our tools
with system call interposition or virtual-machine moni-
tors to protect the kernel. The failure semantics of sys-
tem calls are much more widely and better understood,
and the return values for errors are more standard.

3 Implementation

Binary-level function behavior profiling is implemented
in two systems: the open-source Valgrind (v 3.1.0) bi-
nary instrumentation framework, and the PIN dynamic
binary translation software from Intel. Both frameworks
allow tools or plug-ins to be written that inject code into
a running application. The Valgrind tool is called Lu-
grind and is based on Weidendorfer’s Callgrind1 tool. We
will describe the design and implementation of Lugrind;
the PIN tool contains essentially the same functionality.
Most of the implementation decisions were made to sup-
port SEV, but the core functionality can also be used for
regression testing and host-based intrusion detection.

3.1 Basic Design

Binary-level function profiling is more difficult than may
intially be expected. Lugrind makes minor changes to the
Callgrind tool to take advantage of that tool’s ability to
track function entry and exit. We also incorporate a small
change to Valgrind itself to expose the information that
the tool requires, since the original instruction stream is
not available to plug-ins – only the intermediate instruc-
tion representation is available (with good reason; tools
should usually be portable. In the case of Lugrind, we

1http://kcachegrind.sourceforge.net/cgi-bin/
show.cgi



require access to architectural-level information beyond
the IR.).

The basic tasks that the profiler needs to accomplish are:

1. Record function entrances and exit events.

2. Record function return values.

3. Record call tree and function sequences.

4. Record argument values.

5. Calculate conditional probability between function
sequences and return values

6. Schedule appropriate return values upon a fault or
exploit

The system operates mainly in a mode that combines the
training phase with the detection or self-healing phase.
The system also provides the option to record and save
a list of return values for each function learned from a
previous run of the application under Lugrind. This latter
feature can be used to bootstrap or preload the model in
case the application had to be restarted.

The primary job of the tool is to maintain a collection of
return values for each function. We discuss the use of the
other information (argument values, call tree sequences,
etc.) below. Assuming that the system is trained under an
appropriate failure dynamics input set, the collection of
return values for the function will reflect successful han-
dling of strange, malformed, weird, outlandish, unlikely,
and malicious input. If a fault manifests in a particular
function, Lugrind then returns from that function with
an return value selected from the collection. Future calls
to that function can be “skipped” if Lugrind replaces the
call to the function with an immediate return with a value
selected from the return value collection for that func-
tion. Selection of return values can happen in several
ways.

3.2 Return Value Selection

Selection strategies for an appropriate return value is
referred to as “return value scheduling.” Return value
scheduling is an interesting problem and can be done in
a few ways. First, we can simply select the first observed
return value. Second, we can round-robin (FCFS) all
observed return values (which has the potential for “eu-
thanasia” of earlier, already-used return values). A vari-
ation of this scheme is delayed round-robin, where the
current set is iterated through before newcomers to the
set are considered. Third, we can rank-order return val-
ues by some priority. One priority metric is to match the

input set with the closest input features seen so far. This
ranking method (or really a lookup method) requires that
the tool also maintain function argument values, or a suit-
able transformation thereof (hash, reversible, etc.). An-
other priority metric is to select a return value based on
the current state of the call stack: if function c() always
returns the value “5” when functions a() and b() proceed
it on the call stack, and this configuration matches the
call stack at the moment of healing, then 5 is a good can-
didate for SEV. Lugrind calculates the conditional prob-
ability of return values for an adjustable width window
on the call stack.

An exploration of return value scheduling provides the
motivation for continuous evaluation of the selected re-
turn value. That is, maintaining conditional probabili-
ties matching certain call stack configurations with return
values helps with prediction, but we should also provide
a feedback mechanism to see how well subsequent con-
figurations of the call stack match what we expect the
call stack to look like given a particular return value. Per-
forming this continuous evaluation helps the application
by improving the quality of the prediction as well as pro-
viding a last line of defense for detecting a system that
is still compromised despite the self-healing actions. Lu-
grind incorporates both pre-evaluation of call stack con-
figurations (predict which return value is best based on
sequence of calls) and post-evaluation (feedback on the
decision).

After a return value has been scheduled and selected, an
additional post-evaluation task is invoked. All return val-
ues for all functions are then placed in the tainted list and
can be observed for differneces between them and the
“untainted” mode. Depth of taint can be measured and
is an indication of how many times the application has
been self-healed.

3.3 Additional Control

In order to evaluate our system, we needed to incorpo-
rate additional control functionality into the tool. The
main purpose of this functionality is to simulate the in-
jection of errors into the application and the application’s
environment. This control plane can inject errors proba-
balistically or on demand. The effect of an error injection
is to cause a particular function to fail and a return value
to be selected to replace the function.

Besides probabalistic failure of a particular function, the
control functionality can be given a message containing
the name of a particular function to simulate failure for.
This signal can specify failing the current function or a
specific named function. In either case, the tool prints
out which function it fails, some diagnostic information



(e.g., how it selected a value), and the return value.

Since every function entry point is instrumented already,
a small portion of that instrumentation is activated. This
part of the instrumentation selects a return value, moves
it to the return value register, and returns from the func-
tion.

This additional control functionality can be leveraged for
more than system testing. The profiler can recieve a sig-
nal from some other host-based detector or monitor that
the execution has been corrupted. It can then invoke the
instrumentation for the appropriate function. Another
option is to have only the control instrumentation run-
ning and dynamically start the heavier instrumentation
upon notification from an external monitor. This can be
done with Valgrind by invalidating the instruction cache.
PIN is more elegant; it can attach to a running process.
...

.> _setjmp(0x2E202020, ...)
.> _setjmp(...) = 0
.> main(0x2E202020, ...)
. > aaa(0x2E202020, ...)
. > aaa(...) = 42
.> main(...) = 0
.> exit(0x2E202020, ...)
. > 0x009BDC71(0x2E202020, ...)
. > 0x009BDC71(...) = 0

...

Figure 1: Sample Lugrind Run Output Record. Lu-
grind maintains a record of all function calls and the
call stack, including arguments and return values. As it
records this information in its data structures, it outputs
a log of the action. In this section of the log of a sample
program run, the function aaa() returns the value 42.

4 Related Work

Software self-healing is an active area of research and
many systems draw on principles from intrusion detec-
tion, languages and compilers, and artificial immune sys-
tems. A major advantage of the SEV model and im-
plementations is that we don’t have to involve the pro-
grammer or the compiler. There is no application-level,
library-level, or compiler-level functionality that needs
to be built in or linked against. No OS support is needed.
The programmer and compiler cannot anticipate all er-
rors. Thus, source code or compiler transformations
alone are unlikely to completely solve the problem, if
at all, and cannot support legacy code or code which
there is no source available. This restricts people from

providing their own security especially for products like
MS Windows, IExplorer, etc., in which the user must
download a tool that monitors their computer without ac-
cess to the application’s source. We do not need to use
more agressive source-code level techniques, which have
severe limitations that render them less than useful for
widespread adoption.

There are a number of approaches to providing self-
healing software. Rinard et al. [9] have developed a
compiler that inserts code to deal with access to unallo-
cated memory by expanding the target buffer (in the case
of writes) or manufacturing a value (in the case of reads).
This technique is called failure-oblivious computing [9]
[10].

The pH system [13] is an automatic reaction system
based on the prinicplaes of an artificial immune system.
The system is aimed at frustrating an attacker by using
system call interposition to slow down an attacker’s code.

The key idea of the Rx system [8] is to checkpoint the ex-
ecution of a process and when an error occurs, rollback
and replay the execution, but with the process’s environ-
ment changed in a way that does not violate the API’s
its code expects. For example, the result of malloc()
must be a buffer of at least the requested size, but that
buffer may be located at a different offset than the orig-
inal, be padded at both or either end, or be cleared to
zero. This procedure is iterated over, with ’fixes’ becom-
ing more expensive, until execution proceeds past the de-
tected error point. The error and the transparent environ-
ment fix are then recorded for the programmer to debug.
This is a clever way to avoid the semantically incorrect
fixes of failure oblivious computing and error virtualiza-
tion.

Vigilante [1] is a system motivated by the need to con-
tain rapid malcode (worms). To that end, Vigilante sup-
plies a mechanism to detect an exploited vulnerability. It
also defines a data structure for exchanging information
about the discovered vulnerability. A major advantage
of this vulnerability-specific approach is that Vigilante is
exploit-agnostic and can be used to defend against poly-
morphic worms. While Vigilante doesn’t address the
self-healing of a piece of exploited software, it defines
an architecture for production and verification of Self-
Certifying Alerts (SCA’s), a data structure for exchang-
ing information about the discoverd vulnerability. Vigi-
lante works by analyzing the control flow path taken by
executing injected code.

DIRA [12] is a compiler extension that adds instrumenta-
tion to keep track of memory reads and writes and check
the integrity of control flow transfer data structures. If
the integrity fails, then the changed data is extracted and



a network filter is created from it. Execution is recovered
to a safe state.

Program shepherding [3] is a technique that validates
control flow transfers at the machine level. As an op-
timization, it store the decision in a cache.

Song and Newsome [7] propose dynamic taint analysis
for automatic detection of overwrite attacks. Tainted data
is monitored throughout the program execution and mod-
ified buffers with tainted information will result in pro-
tection faults. Once an attack has been identified, signa-
tures are generated using automatic semantic analysis.
The technique is implemented as an extension to Val-
grind and does not require any modifications to the pro-
gram’s source code but suffers from severe performance
degradation.

FLIPS [4] is a system that attempts to self-heal by
providing feedback to an anomaly detector to block
confirmed code injection attacks as well as employing
STEM’s [11] error virtualization.

One of the most critical concerns with recovering from
software faults and vulnerability exploits is ensuring the
consistency and correctness of program data and state.
An important contribution in this area is presented by
Dempsky [2], which discusses mechanisms for detecting
corrupted data structures and fixing them to match some
pre-specified constraints. While the precision of the fixes
with respect to the semantics of the program is not guar-
anteed, their test cases continued to operate when faults
were randomly injected.
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6 Conclusions

Self-healing software is one autonomic defense tech-
nique for computing systems, but effective remediation
strategies remain a challenge. Most approaches suffer
from a lack of semantic correctness of the reaction mech-
anism. Error virtualization in particular needs to be im-

proved.

We propose the Smart Error Virtualization (SEV) model
and provide two systems that implement this model by
profiling unmodified program binaries for function char-
acteristics. A model of “failure dynamics” is learned
for a variety of applications. A failure dynamics model
captures the application’s response to abnormal or mal-
formed inputs and environment changes. It is this class
of behavior that error virtualization should target and at-
tempt to guide the application’s state towards when an
attack or fault has been detected.

Our tools can also be leveraged for host-based anomaly
detection (similar to intrusion detection based on se-
quences of system calls) and regression testing.
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