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We start with 0 and ¢, as defined in computer graphics
so that 0 is the angle from the pole, or latitude, and @

Using equation (4.2), in equations (5.x), we get:
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Given a direction described as <0, ¢>, the normalized

Cartesian vector is given as:
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Combining equations (1.x) with (2.x) we get:
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For the reduction to a simpler form, we use the
following trigonometric identities:
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We define 6'=(6/2), and rewrite equations (3.x) as:
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Substituting (4.3) into (6.x), we further get:
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Some algebraic simplification yields:
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A final substitution of (4.1) into (8.x), and remembering
the definition of 6, gives us:

u =cos@tan(6/2)(9.1)
v=singtan(6/2)(9.2)

As a final verification, we know that # and v range from [-
1,1]. Looking at 9.x, we see that tan(6/2) will be in the
range [0,1] for 6 in [0,x].
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