Converting from Spherical to Parabolic Coordinates
 Aner Ben-Artzi

We start with θ and φ, as defined in computer graphics so that θ is the angle from the pole, or latitude, and φ is the polar angle, or longitude. This is the opposite of mathematical convention.

Parabolic coordinates are defined for a hemisphere as normalized Cartesian vector, $<\mathrm{x}, \mathrm{y}, \mathrm{z}>$, as:

$$
\begin{aligned}
& u=\frac{x}{z+1}(1.1) \\
& v=\frac{y}{z+1}(1.2)
\end{aligned}
$$

Given a direction described as $\langle\theta, \varphi\rangle$, the normalized Cartesian vector is given as:

$$
\begin{gathered}
x=\cos \phi \sin \theta(2.1) \\
y=\sin \phi \sin \theta(2.2) \\
z=\cos \theta(2.3)
\end{gathered}
$$

Combining equations (1.x) with (2.x) we get:

$$
\begin{aligned}
& u=\frac{\cos \phi \sin \theta}{\cos \theta+1} \\
& v=\frac{\sin \phi \sin \theta}{\cos \theta+1}(3.2)
\end{aligned}
$$

For the reduction to a simpler form, we use the following trigonometric identities:

$$
\begin{gathered}
\frac{\sin t}{\cos t}=\tan t \\
\frac{1+\cos (2 t)}{2}=\cos ^{2} t(4.2) \\
\sin (2 t)=2 \sin t \cos t(4.3)
\end{gathered}
$$

We define $\theta^{\prime}=(\theta / 2)$, and rewrite equations (3.x) as:

$$
\begin{align*}
& u=\frac{\cos \phi \sin \left(2 \theta^{\prime}\right)}{\cos \left(2 \theta^{\prime}\right)+1} \tag{5.1}\\
& v=\frac{\sin \phi \sin \left(2 \theta^{\prime}\right)}{\cos \left(2 \theta^{\prime}\right)+1} \tag{5.2}
\end{align*}
$$

Using equation (4.2), in equations (5.x), we get:

$$
\begin{aligned}
& u=\frac{\frac{1}{2} \cos \phi \sin \left(2 \theta^{\prime}\right)}{\cos ^{2} \theta^{\prime}}(6.1) \\
& v=\frac{\frac{1}{2} \sin \phi \sin \left(2 \theta^{\prime}\right)}{\cos ^{2} \theta^{\prime}}
\end{aligned}
$$

Substituting (4.3) into (6.x), we further get:

$$
\begin{aligned}
& u=\frac{\frac{1}{2} \cos \phi 2 \sin \theta^{\prime} \cos \theta^{\prime}}{\cos ^{2} \theta^{\prime}}(7.1) \\
& v=\frac{\frac{1}{2} \sin \phi 2 \sin \theta^{\prime} \cos \theta^{\prime}}{\cos ^{2} \theta^{\prime}}
\end{aligned}
$$

Some algebraic simplification yields:

$$
\begin{aligned}
& u=\frac{\cos \phi \sin \theta^{\prime}}{\cos \theta^{\prime}} \\
& v=\frac{\sin \phi \sin \theta^{\prime}}{\cos \theta^{\prime}}
\end{aligned}
$$

A final substitution of (4.1) into (8.x), and remembering the definition of θ^{\prime}, gives us:

$$
\begin{aligned}
u & =\cos \phi \tan (\theta / 2) \\
v & =\sin \phi \tan (\theta / 2)
\end{aligned}
$$

As a final verification, we know that u and v range from [$1,1]$. Looking at 9.x, we see that $\tan (\theta / 2)$ will be in the range [0,1] for θ in $[0, \pi]$.

Thank you to:
Jason Lawrence for introducing me to parabolic coordinates as described in Heidrich and Seidel's Viewindependent Environment Maps, and http://www.sosmath.com/trig/Trig5/trig5/trig5.html for a table of trigonometric identities, and http://mathworld.wolfram.com/SphericalCoordinates.html for a definition of spherical coordinates.

