Dynamic Adaptation of Temporal Event Correlation Rules

Rean Griffith*, Gail Kaiser*, Joseph L. Hellerstein** and YixDiao**

*Columbia University Department of Computer Science
New York, New York
{kaiser, rg2023@cs.columbia.edu

**IBM Thomas J. Watson Research Center
Hawthorne, New York
{hellers, dia$@us.ibm.com

Abstract

Temporal event correlation is essential to realizing sefnaging distributed systems. Autonomic controllersxaftguire
that events be correlated across multiple components usilegoatterns with timer-based transitions, e.g., to detimnial
of service attacks and to warn of staging problems with egsrcritical applications. This short paper discusses anattic
adjustment of timer values for event correlation rules, antigular compensating for the variability of event progaign
delays due to factors such as contention for network andeseegources. We describe a correspondifignagement Station
architecture and present experimental studies on a testhsigm that suggest that this approach can produce resubast
as good as an optimal fixed setting of timer values.

1. Introduction

Temporal event correlation across event streams from phell§ources will be a key component of self-managing dis-
tributed systems. For example, a denial of service attagkfie detected by correlating failed logins on multiple hiaes
in the same enclave within a very short period of time, andlgras with multi-server applications can sometimes be de-
tected by analyzing anomalous variations in interval tilesveen processing stages that occur on different servers.
such applications, it may be necessarndymamically adjusthe time-interval values used in the correlation pattetasu
to minimize both false alarms and missing (undetectedjraarOne reason is that preset timer values are, in many cases,
inherently ‘fuzzy’ heuristic thresholds — in which caseauatic dynamic adjustment could potentially be organizsmbed-
ing to a reinforcement learning approach, another levetefiback control loop. Another reason for dynamic adjustrisen
the variability in event propagation delays due to contentor network and server resources and other performagiaged
factors, which is the main focus of this short paper. We haxeslbped an architecture and an adaptive control algorithm
that dynamically compensate for variations in propagadieiays, without reliance on a synchronized global clocihaigh
essentially the same approach could also useful for comagiagdor ‘fuzziness’ in rule timer specifications even wiesents
carry authoritative timestamps). Our empirical studiggg®st that our prototype implementation produces restileaat as
good as theoretically optimal but fixed settings of timeuesl.

We assume here that the events to be correlated are spesifiatt @f if-then rules interpreted by an engine Manage-
ment Station. The if-part of these rules consists of a temporal evenepatind the then-part prescribes an action to be taken,
such as invoking an automated effector [5] or a concertedflaoy of such effectors [4], updating a management console
display, or paging an administrator. Our focus here is oniftpart. The events considered in the if-part of a given rule

may come from a combination of different (sub)systems ormaments within the managed target system, and are generally
bound to variables in the if-part that are then used to patenize the then-part. Consider the simplified examplesvbato
which the question marks indicate variables. (In our imgatation, rules are written in a more cryptic XML-based tiota

[6, 2]; other correlation specification models would workngl, such as SMART's ‘codebook’ approach [8].)

e Rule 1: If there is no Heart beat event from system ?S1 at location ?L1 within 1 minute of another
Hear t beat event from system ?S2 # ?S1 at location ?L1 and there is no Hear t beat event from sys-
tem S3 at location ?L2 #£?L1, then alert the Network Manager for location ?L1.

e Rule 2:If there is a Conpl et edPhasel event from application ?A1 and there is no Conpl et edPhase?2
event from application ?A1 within 5 seconds of the first event, then alert the Application Manager for appli-
cation ?A1.

Rule 1 distinguishes network problems from applicatiorbfgms using a pattern consisting of two events from differen
machines at the same location. Rule 2 checks on the healtttitiGal business application whose processing steps are
executed on different servers. In both rules, there iBn@r value that constrains the maximum elapsed time between
receiving the first and second events in the pattern (althougre complex temporal patterns involving more than two
events, from a combination of the same and different soumsesld often be used). For Rule 1, the timer value might
be determined from the experience of system administratithsthe timing of related events. For Rule 2, the timer value
similarly indicates the anticipated time between processteps. Note the timer value is specifeegriori as part of the rule,
and is generally a heuristic rather than a precise ‘har@'sthold. Note also that the then-part is defined to occur wihen t
second event does notcur within the time-bound (more generally, there couldiifferent actions for satisfaction within a
timer value vs. when the timer expires).

Performing temporal event correlation as in Rules R1 and dgiires that events be consistently timestamped. It is
thus desirable that all prospective event sources paatiei;m a global synchronization scheme. But that may notyswa
be feasible: The clock at the event source may be unreliabde, when that source is a customer-managed server. Even
when the event source is running the right synchronizatidtwsre, the system may have a partial failure that affelctske
synchronization, or a clock used in a security protocol mighcompromised early in an attack. Recall that the purpbse o
temporal event correlation is to help detect failures ataths, so we cannot assume they will not occur.

Thus the Management Station should timestamp events wthdtrival times at that station (we assume that the station
itself is operating properly and has not been compromisBulse timestamps will include the delays to propagate eaatt e
from its source. Propagation delays may happen to be iddidicall events in a pattern, but it is more likely that thevid
be somepropagation skewa term referring to the differences between propagatidayden the events participating in a
temporal event pattern. Our experiments reveal propagakiews as large as 50% of the timer values used in sample rules

It is possible to compensate for propagation skew by autealyt adjusting timer values based on measurements taken
from appropriate sensors. However, since the propagakiew saries from one instance of a pattern to another, we can
only estimate the skew for any particular pattern at anyrgiwme. This creates a conundrum. If we over-compensate for
propagation skew by using too large a timer value, true groklmay go undetected. On the other hand, if we use too small
a timer value, there may be many alarms generated for sitsathat do not merit action, such as a change in workload or
re-allocation of resources to the application. False adaane undesirable since they divert the operations statffi froe
problems. However, since the timer values are generallygaipe anyway, some number of what turn out to be false and
undetected alarms must be expected. One could also use lag@mapproach to periodically tweak the timer values in
concert with reinforcement learning, aimed towards miaing a weighted function of false and undetected alarms. dVe d
not discuss the reinforcement learning model further here.

This paper makes the following contributions:

1. Description of the propagation skew problem for tempevaint correlation in distributed systems, including measu
ments of actual propagation skew for a testbed system; and

2. An architecture that includes Calibration Probes, PMbritors and a Controller that collaborate to adjust timeues
to compensate for propagation skew.

A variety of adaptive control algorithms could be used taatljhe timer values. Due to length limits for this short pape
point the reader to [7], which presents our particular athor in full detail and also assesses our algorithm in terfitb®
probability of a ‘correct’ result in the case where the ppedfied timer values should be treated as ‘hard’ deadlines.

Management Station

@
i+ [Frobe omia]
T

£% propagation,
Slack Skew T(K)

Times
Controller

Timer Value

Al(k)*@
Ee

Event
Source

Event
Source 1

Management
Station

Event

Calibration Source 2

Synchronized H
Clocks

Tprp,f\rsl

Alarms o TAL__ _fst) ____ Tgen
—

Yast
Tprp,Iast

Calibration
Probe

*
Source

hed Tep = Tgen *+ 1T))

£ “Eﬂje'gle T = Tprplast ~ Tprpfirst IS the propagation skew

Figure 1. Figure 2.

2. Architecture

Figure 1 depicts how we extend a conventional ManagemetibBtarchitecture to compensate for propagation skew.
There are four main components: Reasonably simple (andiibptaus failure-proof and tamper-proof) instrumentatti—
Calibration Probes — that create events so that there amerk@onsistently synchronized) pattern generation tinpesisi
Calibration Patterns; a Probe Monitor that measures theagation skew of the events generated by this instrumentati
and compares with the corresponding known arrival timeheatManagement Station; an autonomic control algorithm, (see
e.g., [7] for computingslack timeghat compensate for propagation skews; and a mechanisra Mahagement Station for
extending partially instantiated patterns in the eventadation engine with these slack times, i.e., one way tosidjmer
values is to simply sum the timer value and the slack time.

Figure 2 illustrates the procedure for matching a temparial consisting of two eventdy; and F,. E; is generated by
Event Source 1 at timey;,..¢, and E is generated by Event Source 2 at titg,. Thus, thepattern generation times
Tgen = tiast — trirst. Administrators generally write rules for temporal coat@n based on expected pattern generation
times. Consider a timer valug,,,, chosen so that an alarm is generate@jf, > T;,,. Since the Management Station
may not knowT,.,, authoritatively, it usedy;, instead. From Figure 2, = ¢}, — = Tyen + 7, Wherer is the
propagation skew.

The goal of our control algorithm is to automatically selactlack time to add t@3,,,. such that it considers thereby
reducing the number of false alarms. The control algoritip@rates as follows:

Sel ect an initial guess/estimate for the slack tine

Use initial slack time estimate until we have collected N observations of 7
Sort |ast N observations of r

Pi ck medi an

if median > 0 then update slack tine

*
first

3. Experimental Results

Our testbed follows the architecture depicted in Figure he Management Station employs Columbia University’s
previously developed temporal event correlation engiaked the Event Distiller [6, 2]. The event transport is Uarisity of
Colorado’s Siena publish/subscribe bus [1]. Three compizrere deployed in our test-bed:Galibration Event Generator
produces pairs afalibration eventE; and &, separated by a known pattern-generation time e.g. $he §enerated 2000
msecs after E These pairs of events are also knowrcabbration frames Events E and & contain four important fields:
FPResolution — the time (in msecs) that should elapse battheegeneration of Eand E. FPSegNum — a sequence number
for a calibration frame. Both Eand E in a calibration frame will share the same sequence numigStdftSeq — a flag, set
to one in g indicating the beginning of a calibration frame. Ip Eis set to zero. FPGenGap — only applicable for the end
event, k&, of a calibration frame, it records the actual time (in m¥&tapsed since the generation of the start event,ItE
is expected that this value would be close to the FPResaltitite depending on the current load of the machine where the
Calibration Event Generator runs. Figure 3 shows a pairldfredion events, Eand E, each calibration event is represented

E.
=5

{ FPGenGap = 70" FPResolution = 72000" FPSeqNum = 71" FPStartSeq = 71" FPTest =" FPTest” }
{ FPGenGap = 72041” F PResolution = "2000” FPSeqNum = "1" FPStartSeq = "0" FPTest =” FPTest” }

Figure 3. Calibration Frame

as a Siena Notification [1] of size80 bytes.

The Event Distiller (Management Station) receives calibration frames andrdecan arrival time stamp on each event
comprising the calibration frame. The difference in thévatitimes of & and F is compared to the FPResolution, adjusted
based on FPGenGap if necessary, and used to estimate ttagatiop skew/delays in receiving pairs of calibration ¢sen
As an example, a calibration frame with FPResolution = 208@¢a and FPGenGap = 2005 msecs indicates that the end
event, i, of a calibration frame was delayed by 5 msecs. On the recei we adjust the difference in arrival times by
5 msecs to compensate for the delay in event generation. \afhéres possible for events generatégl,, + ¢ to have a
difference in arrival times df,.,,, due to delays/congestion in the network or packet proegsilays on the receiver end,
we take the conservative approach of adjusting arrival giatethe receiver end primarily to mitigate any scheduloayll
issues at the sender that may have delayed event generation.

Finally, aSiena Event Routeris responsible for managing client subscriptions, reogipublished events and routing
them (based on their contents) to interested subscribehge Event Distiller, is an example an interested subscrilber o
calibration events.

We study four configurations of these three components ngnon a mix of Windows XP and Linux platforms. A total
of four machines in our CS network are used; Kathmandu ldstyon.clic, Amman.clic and Liberty.psl. Kathmandu, Lasb
and Amman each have a single 3.2 GHz Intel Pentium 4 processeB RAM running a 2.6.9-22.0.2.EL Linux kernel.
Liberty is a 3 GHz Pentium 4 with 1 GB RAM running Windows XP SP2

Configuration A is a mixed-platform 3-machine configuration. The CalilmatiEvent Generator runs on the Linux host,
Kathmandu.clic, the Siena Event Router runs on the Linux,Hdsbon.clic, while the Event Distiller runs on the Win-
dows XP host, Liberty.psiConfiguration B is a homogeneous-platform 3-machine configuration. Thézgion Event
Generator, Siena Event Router and Event Distiller run omikinmosts Kathmandu.clic, Lisbon.clic and Amman.clic respe
tively. Configurations C and D are 2-machine configuratiohen the Siena Router and Event Distiller are collocated on
the same host. Collocation of the Event Distiller and then&iEvent Router is intended to mimic situations where there
is contention for machine resources such as CPU, memorypmandtwork resources at the management statdonfig-
uration C is a mixed-platform 2-machine configuration where the Qatibn Event Generator runs on the Linux host,
Kathmandu.clic, and the Siena Event Router and Event [Rishbth run on the Windows XP host, Liberty.p§lonfigura-
tion D is a homogeneous-platform 2-machine configuration where&tdibration Event Generation runs on the Linux host,
Kathmandu.clic, and the Siena Event Router and Event [@iskibth run on the Linux host, Lisbon.clic. For each configur
tion all machines were located on the same campus LAN andbigatiiping times on the order ef1lms for 32 bytes of data
between machines.

In our experiments we observed large variations in the mapan skews measured in configuration C as compared to
those measured in configurations A, B and D, Figure 4. It semuater-intuitive that propagation skews would be larger
for a 2-machine configuration than for a 3-machine configamat Our initial conjecture was that using the difference in
arrival times of calibration events at the Event Distillaptures more than network delays. This time difference n&y a
be influenced by contention for shared resources such asRblea@d network 1/O stack, which the collocated Siena Event
Router and Event Distiller compete for.

We considered it improbable that the relatively large pgai@n skew values observed in configuration C could be at-
tributed to an extremely inefficient mechanism within Siéadelivering events to a local subscriber, especially wS&na
is intended to be a scalable, wide-area event notificatioricge[1]. Based on a side-by-side comparison of the 2-nmechi
configurations, C and D, where the Siena Event Router andtiBistiller are collocated on a Windows XP machine and a
Linux machine respectively we conclude that variationsrimppgation skew are more pronounced under Windows XP than
under Linux and our measure of propagation skew is also imfle@ by resource contention/the current workload on the
machine running the Event Distiller.

Figure 4 reports data from configurations A through D. In aunfiations A, B and D, the propagation skews are tightly
clustered around 0, although there are a few large spikessd&tond plot in the top row is the cumulative distributiomcfion
(CDF), which reinforces the view that values are tightlystéred. Also plotted are the autocorrelations betweenggation
skews. Note that all autocorrelations lie within the dadivesk, indicating that they are not statistically signifitaccording
to the Bartlett Test [3]. In 2-machine configuration C, proggéon skews are much more variable and considerably larger

Run 3 Configuration A Run 3 Configuration B

08f o 08

Skew (sex

Q 06 e 06

4 o
=04 Ly 04

ec)

0.2 S 02

05

CDF
:
05
CDF
un3 D 1
05
o
i

Skew (s

0 01 02 03 04 0 01 02 03 04

Run 3 Configuration C Run 3 Configuration D
1 =

osf ", 0.8

Skew (sec)

006 ° 06
e o

ec)

|
Lorn torn ftorn horenwn

< o
S04 . 0.4
02 = 02

Skew (st

R
] 250 05 1
Observation Propagation Skew (sec)

| | | |
L owr Lowr dLow L oo o n
° 7 = =

0 01 02 03 04 0 01 02 03 04
Fixed Slack Time (sec) Fixed Slack Time (sec)

Figure 4. Figure 5.

We also see substantial autocorrelations, possibly duertodic activities and/or resource contention.

Figure 5 assesses the effectiveness of using fixed slack.tifine horizontal axis is the slack tideand the vertical axis
is Minimum Average Probability of a Correct result/(APC). Large M APC values are achieved with a fixed slack time
near 0 in configurations A, B and D. However, for the 2-maclimafiguration CM APC is maximized at larger fixed slack
times. This can be explained by looking at the distributibpropagation delays. The solid line in Figure 5 plots el PC'
values achieved by our adaptive control algorithm ([7])alircases, the algorithm selects slack times very closegodlue
of fixed slack time that maximize& APC. This is impressive in two respects: First, we did not havpammeterize or
train the controller, i.e., slack times are selected in &rea@naging manner. Second, we achieve near-optimal seisulthe
2-machine configurations, even though the data may havéisagit autocorrelations.

4. Conclusions

Mechanisms towards self-management of distributed systét@n require that events be correlated from multiple \sgiems
using temporal patterns. This paper briefly sketches oucagh to autonomically adjusting the timer values for inStaed
temporal rules in accordance with observed propagatiow.skéis short paper only presents a small portion of our work
on this subject. See [7] for further details concerned dipadly with the case where event source clocks cannot béestlus
Forthcoming papers will address the probably more commsa eglobally synchronized clocks, but where the timer&alu
manually specified in rules remain heuristic and thus théraseincertain — and in need of dynamic adjustment.

Acknowledgements

Kaiser's Programming Systems Lab is funded in part by Nati@tience Foundation grants CNS-0426623, CCR-0203876
and EIA-0202063.

References

[1] Antonio Carzaniga, David S. Rosenblum and Alexander L. Wolf. ifresind evaluation of a wide-area event notification service.
ACM Transactions on Computing Syste(3):332-383, 2001.

[2] Gall E. Kaiser, Janak Parekh, Philip Gross and Giuseppe Valettoeskintics eXtreme: An External Infrastructure for Monitoring
Distributed Legacy Systems. ctive Middleware Servicepages 22—-31, 2003.

[3] George E.P. Box and Gwilym M. Jenkingime Series Analysis Forecasting and Conti@tentice Hall, 1976.

[4] Giuseppe Valetto and Gail Kaiser. Using Process Technology to @artd Coordinate Software Adaptation. 2B6th International
Conference on Software Engineerjday 2003.

[5] Giuseppe Valetto, Gail Kaiser and Dan Phung. A Uniform Progrargndibstraction for Effecting Autonomic Adaptations onto
Software Systems. June 2005.

[6] Janak Parekh, Gail Kaiser, Philip Gross and Giuseppe Valetto. féigp Autonomic Capabilities onto Legacy Systendsurnal of
Cluster Computing2006. In press.

[7] Rean Griffith, Joseph L. Hellerstein, Yixin Diao and Gail Kaiser. DymmaAdaptation of Rules for Temporal Event Correlation in
Distributed Systems. Technical Report CUCS-003-05, Columbia sityeDepartment of Computer Science, January 2005.

[8] S.A.Yemini, S. Kliger, E. Mozes, Y. Yemini and D. Ohsie. High sp@&ad robust event correlatioiEEE Communications Magazine
34(5):82—-90, 1996.

