
Dynamic Adaptation of Temporal Event Correlation Rules

Rean Griffith*, Gail Kaiser*, Joseph L. Hellerstein** and Yixin Diao**

*Columbia University Department of Computer Science
New York, New York

{kaiser, rg2023}@cs.columbia.edu

**IBM Thomas J. Watson Research Center
Hawthorne, New York

{hellers, dias}@us.ibm.com

Abstract

Temporal event correlation is essential to realizing self-managing distributed systems. Autonomic controllers often require
that events be correlated across multiple components usingrule patterns with timer-based transitions, e.g., to detect denial
of service attacks and to warn of staging problems with business critical applications. This short paper discusses automatic
adjustment of timer values for event correlation rules, in particular compensating for the variability of event propagation
delays due to factors such as contention for network and server resources. We describe a correspondingManagement Station
architecture and present experimental studies on a testbedsystem that suggest that this approach can produce results at least
as good as an optimal fixed setting of timer values.

1. Introduction

Temporal event correlation across event streams from multiple sources will be a key component of self-managing dis-
tributed systems. For example, a denial of service attack might be detected by correlating failed logins on multiple machines
in the same enclave within a very short period of time, and problems with multi-server applications can sometimes be de-
tected by analyzing anomalous variations in interval timesbetween processing stages that occur on different servers.In
such applications, it may be necessary todynamically adjustthe time-interval values used in the correlation pattern rules,
to minimize both false alarms and missing (undetected) alarms. One reason is that preset timer values are, in many cases,
inherently ‘fuzzy’ heuristic thresholds – in which case automatic dynamic adjustment could potentially be organized accord-
ing to a reinforcement learning approach, another level of feedback control loop. Another reason for dynamic adjustment is
the variability in event propagation delays due to contention for network and server resources and other performance-related
factors, which is the main focus of this short paper. We have developed an architecture and an adaptive control algorithm
that dynamically compensate for variations in propagationdelays, without reliance on a synchronized global clock (although
essentially the same approach could also useful for compensating for ‘fuzziness’ in rule timer specifications even whenevents
carry authoritative timestamps). Our empirical studies suggest that our prototype implementation produces results at least as
good as theoretically optimal but fixed settings of timer values.

We assume here that the events to be correlated are specified as part of if-then rules interpreted by an engine in aManage-
ment Station. The if-part of these rules consists of a temporal event pattern and the then-part prescribes an action to be taken,
such as invoking an automated effector [5] or a concerted workflow of such effectors [4], updating a management console
display, or paging an administrator. Our focus here is on theif-part. The events considered in the if-part of a given rule

1

may come from a combination of different (sub)systems or components within the managed target system, and are generally
bound to variables in the if-part that are then used to parameterize the then-part. Consider the simplified examples below in
which the question marks indicate variables. (In our implementation, rules are written in a more cryptic XML-based notation
[6, 2]; other correlation specification models would work aswell, such as SMART’s ‘codebook’ approach [8].)

• Rule 1: If there is no Heartbeat event from system ?S1 at location ?L1 within 1 minute of another
Heartbeat event from system ?S2 6= ?S1 at location ?L1 and there is no Heartbeat event from sys-
tem S3 at location ?L2 6=?L1, then alert the Network Manager for location ?L1.

• Rule 2: If there is a CompletedPhase1 event from application ?A1 and there is no CompletedPhase2
event from application ?A1 within 5 seconds of the first event, then alert the Application Manager for appli-
cation ?A1.

Rule 1 distinguishes network problems from application problems using a pattern consisting of two events from different
machines at the same location. Rule 2 checks on the health of acritical business application whose processing steps are
executed on different servers. In both rules, there is atimer value that constrains the maximum elapsed time between
receiving the first and second events in the pattern (although more complex temporal patterns involving more than two
events, from a combination of the same and different sources, would often be used). For Rule 1, the timer value might
be determined from the experience of system administratorswith the timing of related events. For Rule 2, the timer value
similarly indicates the anticipated time between processing steps. Note the timer value is specifieda priori as part of the rule,
and is generally a heuristic rather than a precise ‘hard’ threshold. Note also that the then-part is defined to occur when the
second event does notoccur within the time-bound (more generally, there could bedifferent actions for satisfaction within a
timer value vs. when the timer expires).

Performing temporal event correlation as in Rules R1 and R2 requires that events be consistently timestamped. It is
thus desirable that all prospective event sources participate in a global synchronization scheme. But that may not always
be feasible: The clock at the event source may be unreliable,e.g., when that source is a customer-managed server. Even
when the event source is running the right synchronization software, the system may have a partial failure that affects clock
synchronization, or a clock used in a security protocol might be compromised early in an attack. Recall that the purpose of
temporal event correlation is to help detect failures and attacks, so we cannot assume they will not occur.

Thus the Management Station should timestamp events with their arrival times at that station (we assume that the station
itself is operating properly and has not been compromised).These timestamps will include the delays to propagate each event
from its source. Propagation delays may happen to be identical for all events in a pattern, but it is more likely that therewill
be somepropagation skew, a term referring to the differences between propagation delays in the events participating in a
temporal event pattern. Our experiments reveal propagation skews as large as 50% of the timer values used in sample rules.

It is possible to compensate for propagation skew by automatically adjusting timer values based on measurements taken
from appropriate sensors. However, since the propagation skew varies from one instance of a pattern to another, we can
only estimate the skew for any particular pattern at any given time. This creates a conundrum. If we over-compensate for
propagation skew by using too large a timer value, true problems may go undetected. On the other hand, if we use too small
a timer value, there may be many alarms generated for situations that do not merit action, such as a change in workload or
re-allocation of resources to the application. False alarms are undesirable since they divert the operations staff from true
problems. However, since the timer values are generally imprecise anyway, some number of what turn out to be false and
undetected alarms must be expected. One could also use an analogous approach to periodically tweak the timer values in
concert with reinforcement learning, aimed towards minimizing a weighted function of false and undetected alarms. We do
not discuss the reinforcement learning model further here.

This paper makes the following contributions:

1. Description of the propagation skew problem for temporalevent correlation in distributed systems, including measure-
ments of actual propagation skew for a testbed system; and

2. An architecture that includes Calibration Probes, ProbeMonitors and a Controller that collaborate to adjust timer values
to compensate for propagation skew.

A variety of adaptive control algorithms could be used to adjust the timer values. Due to length limits for this short paper, we
point the reader to [7], which presents our particular algorithm in full detail and also assesses our algorithm in terms of the
probability of a ‘correct’ result in the case where the pre-specified timer values should be treated as ‘hard’ deadlines.

2

C1

C2

Controller

Alarms

Management Station

Rule
E1

E2

∆1(k)+

Rule
E3

E3

E1

Probe MonitorC1

C2

∆2(k)+

Propagation

Skew τ(k)Slack

Times

Event

Source

Event

Source

Network

E2

E3
E1

Calibration

Probe

Calibration

Probe

Synchronized

Clocks

LAN

LAN

Timer Value

Matched

Event

Figure 1.

Event

Source 1

Management

Station

E1

Event

Source 2

E2

tfirst

tlast

t*last

t*first

{Telp

{

{
Tprp,first

Tprp,last

} Tgen

Telp = Tgen + τ

Ttmr

τ = Tprp,last − Tprp,first is the propagation skew

Figure 2.

2. Architecture

Figure 1 depicts how we extend a conventional Management Station architecture to compensate for propagation skew.
There are four main components: Reasonably simple (and hopefully thus failure-proof and tamper-proof) instrumentation –
Calibration Probes – that create events so that there are known (consistently synchronized) pattern generation times special
Calibration Patterns; a Probe Monitor that measures the propagation skew of the events generated by this instrumentation,
and compares with the corresponding known arrival times at the Management Station; an autonomic control algorithm (see,
e.g., [7] for computingslack timesthat compensate for propagation skews; and a mechanism in the Management Station for
extending partially instantiated patterns in the event correlation engine with these slack times, i.e., one way to adjust timer
values is to simply sum the timer value and the slack time.

Figure 2 illustrates the procedure for matching a temporal rule consisting of two events,E1 andE2. E1 is generated by
Event Source 1 at timetfirst, andE2 is generated by Event Source 2 at timetlast. Thus, thepattern generation timeis
Tgen = tlast − tfirst. Administrators generally write rules for temporal correlation based on expected pattern generation
times. Consider a timer valueTtmr chosen so that an alarm is generated ifTgen > Ttmr. Since the Management Station
may not knowTgen authoritatively, it usesTelp instead. From Figure 2,Telp = t∗last − t∗first = Tgen + τ , whereτ is the
propagation skew.

The goal of our control algorithm is to automatically selecta slack time to add toTtmr such that it considersτ thereby
reducing the number of false alarms. The control algorithm operates as follows:
Select an initial guess/estimate for the slack time

Use initial slack time estimate until we have collected N observations of τ

Sort last N observations of τ

Pick median

if median > 0 then update slack time

3. Experimental Results

Our testbed follows the architecture depicted in Figure 1. The Management Station employs Columbia University’s
previously developed temporal event correlation engine, called the Event Distiller [6, 2]. The event transport is University of
Colorado’s Siena publish/subscribe bus [1]. Three components are deployed in our test-bed: ACalibration Event Generator
produces pairs ofcalibration eventsE1 and E2, separated by a known pattern-generation time e.g. the E2 is generated 2000
msecs after E1. These pairs of events are also known ascalibration frames. Events E1 and E2 contain four important fields:
FPResolution – the time (in msecs) that should elapse between the generation of E1 and E2. FPSeqNum – a sequence number
for a calibration frame. Both E1 and E2 in a calibration frame will share the same sequence number. FPStartSeq – a flag, set
to one in E1 indicating the beginning of a calibration frame. In E2 it is set to zero. FPGenGap – only applicable for the end
event, E2, of a calibration frame, it records the actual time (in msecs) elapsed since the generation of the start event, E1. It
is expected that this value would be close to the FPResolution time depending on the current load of the machine where the
Calibration Event Generator runs. Figure 3 shows a pair of calibration events, E1 and E2, each calibration event is represented

3

E1 = { FPGenGap = ”0”FPResolution = ”2000”FPSeqNum = ”1”FPStartSeq = ”1”FPTest = ”FPTest” }

E2 = { FPGenGap = ”2041”FPResolution = ”2000”FPSeqNum = ”1”FPStartSeq = ”0”FPTest = ”FPTest” }

Figure 3. Calibration Frame

as a Siena Notification [1] of size∼80 bytes.
The Event Distiller (Management Station) receives calibration frames and records an arrival time stamp on each event

comprising the calibration frame. The difference in the arrival times of E2 and E1 is compared to the FPResolution, adjusted
based on FPGenGap if necessary, and used to estimate the propagation skew/delays in receiving pairs of calibration events.
As an example, a calibration frame with FPResolution = 2000 msecs and FPGenGap = 2005 msecs indicates that the end
event, E2, of a calibration frame was delayed by 5 msecs. On the receiver end, we adjust the difference in arrival times by
5 msecs to compensate for the delay in event generation. Whereas it is possible for events generatedTgen + ǫ to have a
difference in arrival times ofTgen, due to delays/congestion in the network or packet processing delays on the receiver end,
we take the conservative approach of adjusting arrival times at the receiver end primarily to mitigate any scheduling/load
issues at the sender that may have delayed event generation.

Finally, aSiena Event Routeris responsible for managing client subscriptions, receiving published events and routing
them (based on their contents) to interested subscribers. The Event Distiller, is an example an interested subscriber of
calibration events.

We study four configurations of these three components running on a mix of Windows XP and Linux platforms. A total
of four machines in our CS network are used; Kathmandu.clic,Lisbon.clic, Amman.clic and Liberty.psl. Kathmandu, Lisbon
and Amman each have a single 3.2 GHz Intel Pentium 4 processor, 1 GB RAM running a 2.6.9-22.0.2.EL Linux kernel.
Liberty is a 3 GHz Pentium 4 with 1 GB RAM running Windows XP SP2.

Configuration A is a mixed-platform 3-machine configuration. The Calibration Event Generator runs on the Linux host,
Kathmandu.clic, the Siena Event Router runs on the Linux host, Lisbon.clic, while the Event Distiller runs on the Win-
dows XP host, Liberty.psl.Configuration B is a homogeneous-platform 3-machine configuration. The Calibration Event
Generator, Siena Event Router and Event Distiller run on Linux hosts Kathmandu.clic, Lisbon.clic and Amman.clic respec-
tively. Configurations C and D are 2-machine configurations where the Siena Router and Event Distiller are collocated on
the same host. Collocation of the Event Distiller and the Siena Event Router is intended to mimic situations where there
is contention for machine resources such as CPU, memory and/or network resources at the management station.Config-
uration C is a mixed-platform 2-machine configuration where the Calibration Event Generator runs on the Linux host,
Kathmandu.clic, and the Siena Event Router and Event Distiller both run on the Windows XP host, Liberty.psl.Configura-
tion D is a homogeneous-platform 2-machine configuration where the Calibration Event Generation runs on the Linux host,
Kathmandu.clic, and the Siena Event Router and Event Distiller both run on the Linux host, Lisbon.clic. For each configura-
tion all machines were located on the same campus LAN and exhibited ping times on the order of<1ms for 32 bytes of data
between machines.

In our experiments we observed large variations in the propagation skews measured in configuration C as compared to
those measured in configurations A, B and D, Figure 4. It seemscounter-intuitive that propagation skews would be larger
for a 2-machine configuration than for a 3-machine configuration. Our initial conjecture was that using the difference in
arrival times of calibration events at the Event Distiller captures more than network delays. This time difference may also
be influenced by contention for shared resources such as the CPU and network I/O stack, which the collocated Siena Event
Router and Event Distiller compete for.

We considered it improbable that the relatively large propagation skew values observed in configuration C could be at-
tributed to an extremely inefficient mechanism within Sienafor delivering events to a local subscriber, especially when Siena
is intended to be a scalable, wide-area event notification service [1]. Based on a side-by-side comparison of the 2-machine
configurations, C and D, where the Siena Event Router and Event Distiller are collocated on a Windows XP machine and a
Linux machine respectively we conclude that variations in propagation skew are more pronounced under Windows XP than
under Linux and our measure of propagation skew is also influenced by resource contention/the current workload on the
machine running the Event Distiller.

Figure 4 reports data from configurations A through D. In configurations A, B and D, the propagation skews are tightly
clustered around 0, although there are a few large spikes. The second plot in the top row is the cumulative distribution function
(CDF), which reinforces the view that values are tightly clustered. Also plotted are the autocorrelations between propagation
skews. Note that all autocorrelations lie within the dashedlines, indicating that they are not statistically significant according
to the Bartlett Test [3]. In 2-machine configuration C, propagation skews are much more variable and considerably larger.

4

−1

0

1

2
Run 3 A

S
ke

w
 (

se
c)

0

0.5

1

CDF

−1

0

1
AutoCorr

−1
0
1
2

Run 3 B
S

ke
w

 (
se

c)

0

0.5

1

CDF

−1

0

1
AutoCorr

−1
0
1
2

Run 3 C

S
ke

w
 (

se
c)

0

0.5

1

CDF

−1

0

1
AutoCorr

0 250
−1

0
1
2

Run 3 D

Observation

S
ke

w
 (

se
c)

0 0.5 1
0

0.5

1

CDF

Propagation Skew (sec)
0 50

−1

0

1

Lags

AutoCorr

Figure 4.

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1
Run 3 Configuration A

M
A

P
C

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1
Run 3 Configuration B

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1
Run 3 Configuration C

M
A

P
C

Fixed Slack Time (sec)
0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1
Run 3 Configuration D

Fixed Slack Time (sec)

Figure 5.

We also see substantial autocorrelations, possibly due to periodic activities and/or resource contention.
Figure 5 assesses the effectiveness of using fixed slack times. The horizontal axis is the slack time∆ and the vertical axis

is Minimum Average Probability of a Correct result (MAPC). LargeMAPC values are achieved with a fixed slack time
near 0 in configurations A, B and D. However, for the 2-machineconfiguration C,MAPC is maximized at larger fixed slack
times. This can be explained by looking at the distribution of propagation delays. The solid line in Figure 5 plots theMAPC

values achieved by our adaptive control algorithm ([7]). Inall cases, the algorithm selects slack times very close to the value
of fixed slack time that maximizesMAPC. This is impressive in two respects: First, we did not have toparameterize or
train the controller, i.e., slack times are selected in a self-managing manner. Second, we achieve near-optimal results in the
2-machine configurations, even though the data may have significant autocorrelations.

4. Conclusions

Mechanisms towards self-management of distributed systems often require that events be correlated from multiple (sub)systems
using temporal patterns. This paper briefly sketches our approach to autonomically adjusting the timer values for instantiated
temporal rules in accordance with observed propagation skew. This short paper only presents a small portion of our work
on this subject. See [7] for further details concerned specifically with the case where event source clocks cannot be trusted.
Forthcoming papers will address the probably more common case of globally synchronized clocks, but where the timer values
manually specified in rules remain heuristic and thus themselves uncertain – and in need of dynamic adjustment.

Acknowledgements

Kaiser’s Programming Systems Lab is funded in part by National Science Foundation grants CNS-0426623, CCR-0203876
and EIA-0202063.

References

[1] Antonio Carzaniga, David S. Rosenblum and Alexander L. Wolf. Design and evaluation of a wide-area event notification service.
ACM Transactions on Computing Systems, 19(3):332–383, 2001.

[2] Gail E. Kaiser, Janak Parekh, Philip Gross and Giuseppe Valetto. Kinesthetics eXtreme: An External Infrastructure for Monitoring
Distributed Legacy Systems. InActive Middleware Services, pages 22–31, 2003.

[3] George E.P. Box and Gwilym M. Jenkins.Time Series Analysis Forecasting and Control. Prentice Hall, 1976.
[4] Giuseppe Valetto and Gail Kaiser. Using Process Technology to Control and Coordinate Software Adaptation. In25th International

Conference on Software Engineering, May 2003.
[5] Giuseppe Valetto, Gail Kaiser and Dan Phung. A Uniform Programming Abstraction for Effecting Autonomic Adaptations onto

Software Systems. June 2005.
[6] Janak Parekh, Gail Kaiser, Philip Gross and Giuseppe Valetto. Retrofitting Autonomic Capabilities onto Legacy Systems.Journal of

Cluster Computing, 2006. In press.
[7] Rean Griffith, Joseph L. Hellerstein, Yixin Diao and Gail Kaiser. Dynamic Adaptation of Rules for Temporal Event Correlation in

Distributed Systems. Technical Report CUCS-003-05, Columbia University Department of Computer Science, January 2005.
[8] S.A. Yemini, S. Kliger, E. Mozes, Y. Yemini and D. Ohsie. High speed and robust event correlation.IEEE Communications Magazine,

34(5):82–90, 1996.

5

