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ABSTRACT 

The content of a webpage is usually contained within a small 
body of text and images, or perhaps several articles on the same 
page; however, the content may be lost in the clutter (defined as 
cosmetic features such as animations, menus, sidebars, obtrusive 
banners). Automatic content extraction has many applications, 
including browsing on small cell phone and PDA screens, speech 
rendering for the visually impaired, and reducing noise for 
information retrieval systems. We have developed a framework, 
Crunch, which employs various heuristics for content extraction 
in the form of filters applied to the webpage’s DOM tree; the 
filters aim to prune or transform the clutter, leaving only the 
content. Crunch allows users to tune what we call “settings”, 
consisting of thresholds for applying a particular filter and/or for 
toggling a filter on/off, because the HTML components that 
characterize clutter can vary significantly from website to 
website. However, we have found that the same settings tend to 
work well across different websites of the same genre, e.g., news 
or shopping, since the designers often employ similar page 
layouts. In particular, Crunch could obtain the settings for a 
previously unknown website by automatically classifying it as 
sufficiently similar to a cluster of known websites with previously 
adjusted settings. We present our approach to clustering a large 
corpus of websites into genres, using their pre-extraction textual 
material augmented by the snippets generated by searching for the 
website’s domain name in web search engines. Including these 
snippets increases the frequency of function words needed for 
clustering. We use existing Manhattan distance measure and 
hierarchical clustering techniques, with some modifications, to 
pre-classify the corpus into genres offline. Our method does not 
require prior knowledge of the set of genres that websites fit into, 
but to be useful a priori settings must be available for some 
member of each cluster or a nearby cluster (otherwise defaults are 
used). Crunch classifies newly encountered websites online in 
linear-time, and then applies the corresponding filter settings, 
with no noticeable delay added by our content-extracting web 
proxy. 

Categories and Subject Descriptors 

I.7.4 [Document and Text Processing]: Electronic Publishing; 
H.3.5 [Information Storage and Retrieval]: Online Information 
Services – Web-based Services 

General Terms 

Human Factors, Algorithms, Standardization. 

Keywords 

Website classification, clustering, content extraction, 
reformatting, HTML, context, accessibility, speech rendering. 

1. INTRODUCTION 

Webpages are often cluttered with extraneous materials, perhaps 
attempting to attract the user’s attention or improve the user’s 
efficiency, but they may end up distracting the user from the 
actual content. These “features” may include script and flash-
driven animations, other kinds of images not directly associated 
with a main text body, menus and guides, links scattered around 
the screen, etc. The automatic extraction of heuristically-defined 
“content” from webpages has many applications, including 
enabling end-users to access the web more easily over constrained 
devices, providing better access to the web for the blind or 
otherwise disabled, producing less noisy data for information 
retrieval and content summarization algorithms, and so on. 

We have developed a framework, Crunch [4] [5] [6], as a web 
proxy that employs various heuristics in the form of filters and 
filter “settings” to achieve content extraction via clutter reduction. 
Crunch passes each webpage through an HTML parser, which 
corrects the markup and creates a Document Object Model 
(DOM) tree. DOM (www.w3.org/DOM) is a standard for creating 
and manipulating in-memory representations of HTML (and 
XML) content. Crunch applies the filters to the DOM tree, 
according to their settings, and the resulting HTML page provided 
to the user client is a (relatively) clean, clutter-free page. 

Crunch allows end-users or administrators to tune the settings, 
essentially the thresholds for applying each filter, via 
aggressiveness sliders and on/off checkboxes. While Crunch 
works extremely well on a large variety of webpages using the 
default settings, these settings sometimes should be manually 
configured to best extract content for a given site. We found that, 
in practice, the settings need to be adjusted only when a user 
moves from one major class of website to another, e.g., from 
news to shopping or vice versa. For instance, it may be 
appropriate to remove what (heuristically) appears to be 
advertising from a news webpage, but if the same is done on a 
shopping webpage, there may be little or nothing left! 
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Specifically, the link density and table/cell structure layout 
remained consistent among sites within news vs. shopping genre 
(and other genres discussed below). 

 In order to reduce human involvement in selecting the heuristic 
filter settings, we consider utilizing a website’s genre 
classification. Crunch can then obtain some previously (manually) 
adjusted settings for a newly visited website by automatically 
classifying it as sufficiently similar to a genre-cluster of known 
websites, at least one of which has “known good settings” – 
which, we found empirically, produces better content extraction 
results than any possible one-size-fits-all default settings.  

With a good webpage-oriented document clustering method, 
Crunch or other web applications can automatically organize a 
corpus into a meaningful genre hierarchy. For example, another 
application might be to enable efficient navigation of the corpus 
by genre [17]. However, performing genre analysis in real-time 
(online) is too computationally expensive for most web 
applications. Additionally, most current clustering algorithms 
require a priori knowledge of the number or specific set of 
clusters to properly classify a set of webpages - but given the vast 
quantity and enormous variety of documents posted on the web, 
this does not seem the best model for open-ended applications. 

Our goal was to find a simple acceptable-cost offline algorithm 
for pre-clustering a large corpus of websites, which also enabled 
efficient online classification of new websites as they were 
encountered by Crunch users. Our approach utilizes the text 
results (called “snippets”) generated by sending the website’s 
domain name to several popular search engines and using those 
snippets together with the website’s own actual text towards 
determining the genre (cluster) of the website. We found that 
exploiting snippets not only increased the frequency of function 
words, but those function words were, in general, highly 
descriptive of the “meaning” of the websites being accessed and 
thus especially useful in the analysis of the appropriate genre.  

While we could have, in principle, summarized each webpage 
directly using, e.g., NLP techniques, that would have enormously 
increased the complexity of our own algorithms. Further, utilizing 
snippets means that we are re-using structured data that has 
already been conveniently compiled by search engines in 
advance. Crunch then uses standard techniques like Manhattan 
distance measure and hierarchical clustering, with some 
modifications, to pre-classify websites into genres. Our clustering 
method does not require any prior knowledge of the set of genres 
that websites might fit into, but instead discovers these 
relationships among websites. Subsequently, Crunch is able to 
classify newly encountered websites in linear-time, and then 
apply the corresponding filter settings (adopted from the closet 
member of the genre cluster), with no noticeable delay 
introduced.  

In this paper, we present our method for pre-clustering a corpus of 
websites, and describe the ensuing classification of individual 
new websites and its application to selecting heuristic filter 
settings by apparent genre. We also show experimental results 
that demonstrate the substantial improvement of our content 
extraction system, as it is bolstered by our efficient approach to 

genre-based clustering of websites and re-use of previously 
adjusted settings. 

The following sections describe a selection of the vast related 
work in the fields of information retrieval and document 
clustering, followed by details of our approach and the associated 
implementation. We conclude with empirical results from our 
experiments and a summary of our contributions. 

2. RELATED WORK 

Document clustering has been investigated for many domains [3] 
[16].The use of clustering in IR appears mostly to be driven by 
the cluster hypothesis, which states that “closely associated 
documents tend to be related to the same requests” [1]. Xu et al. 
[17] explain that document clustering methods can be categorized 
into two main types: document partitioning (flat) and 
agglomerative (bottom-up hierarchical) clustering. Although both 
types of methods have been extensively investigated for decades, 
accurately clustering documents without domain-dependent 
background information is still a challenging task. They provide a 
novel document partitioning method using non-negative 
factorization of the term-document matrix. However, we have 
found that web document clustering can be done with little or no 
background information about the domains, as long as there are 
enough function words available to help classify the documents. 

There is a large body of related work in genre classification. Lee 
et al. [7] describe their method for text genre classification by 
using two different class sets, genre classes and subject classes, in 
the training data. However, their method would not work well for 
web documents since the number of genres needs to be identified 
and fixed before the categorization. This, as pointed out before, is 
an impediment for the vast number and incredible variety of the 
corpus of web documents. For the same reason, traditional 
partitioning methods like K-Means clustering [9] will not work. 
Similarly, clustering using sequential information maximization, 
presented by Slonim et al. [14], requires prior knowledge of the 
number of clusters for the data to be classified. 

Spectral clustering, an approach demonstrated by Ng. et al. [10], 
clusters points using eigenvectors of matrices derived from the 
data contained in the documents. However, as with K-Mean 
clustering, the number of clusters is expected to be a known 
quantity before the process. Additionally, spectral clustering 
works hard at performing tight fitting of all data points within a 
cluster, but later experiments show that this is not a hard 
requirement when classifying web documents by genre. Further, 
we have observed that a relatively small number of documents (as 
few as two, as demonstrated later in this paper) are enough to 
define a cluster and its associated genre. 

Cutting et al. [3] describe a cluster-based approach to browsing 
large document collections, called Scatter/Gather. They provide a 
mechanism for user-driven organization of data in a fixed number 
of clusters, but the users need to be in the loop and the computed 
clusters do not guarantee accuracy. Moreover, the technique is 
designed to work well for finding similarity between articles 
based on subject. We are interested in identifying broader topic 
genres, like news, shopping and sports, for top-level domains. 



Zhang et al. [21] present BIRCH, a clustering method for 
extremely large databases. The main optimizations in their 
technique are made to reduce the number of I/O operations and to 
increase space efficiency. In order to truly gain the benefits from 
this model, multiple passes on the data are required. However, 
this increases the runtime complexity of the system.  

Siersdorfer et al. [13] show an interesting approach, called 
restrictive clustering, to clustering by working on only a subset of 
the available data. The key element to their approach is to 
construct restrictive meta-methods at the moderate cost loss of 
uncertain samples. Their approach clusters with high accuracy, 
but is prone to miss recognizing failed clustering attempts. 

Zamir et al. [20] describe Grouper, a clustering system that 
employs term-based clustering, an approach similar to ours. They 
use Suffix Tree Clustering, which is shown to be fast and domain 
independent. However, they have applied their methods only to 
grouping the results returned by a search engine by analyzing the 
produced snippets. We instead aim to automatically classify 
whole websites, leveraging the snippets for additional function 
words. 

Lastly, Crammer et al. [2] describe a technique for performing 
classification that focuses on online additive algorithms for 
classification tasks. Their approach was designed to save a user 
from needing vast computational resources. We tend not to suffer 
from this problem either since we define a fixed range of words 
(described in Sections 3 and 4) to classify the various websites. 
Additionally, the system described needs a training period to 
produce the level of classification achieved, while even with a 
static set of pre-clustered data we can achieve similar results. 

Finally, most of the work described here tends to be used towards 
analysis of documents or search engine results, but not targeted to 
webpages. One general problem with applying these strategies to 
webpages is that most pages contain extremely noisy data that 
may lead to incorrect clustering results.  In Crunch, newly seen 
websites are necessarily clustered prior to content extraction, so 
the clustering approach must be reasonably resilient to such noise. 

3. APPROACH 

Clustering involves the grouping of similar objects, and has been 
practiced, consciously or unconsciously, for many thousands of 
years [16]. Distance coefficients, such as Euclidean distance, have 
been used very extensively in cluster analysis, owing to their 
simple geometric interpretation. We employ multiple techniques 
that incorporate the advantages of the previous work on clustering 
and information retrieval. However, in order to motivate our 
clustering into genres, we briefly describe our application. 

3.1 Crunch 

Extraction of “useful and relevant” content from webpages has 
many applications, including constrained screen browsing, speech 
rendering for the visually impaired, and reducing noise for NLP 
and IR systems. Our initial insight was to work with DOM trees, 
rather than raw HTML markup [4] [5] [6]. Crunch provides an 
extensible set of tunable heuristic filters for clutter reduction, and 
consequent content extraction, via a web-proxy architecture. The 

filter settings should be tuned, automatically or by the user (e.g., 
using the console shown in Figure 1), to the site being browsed 
and the content desired to see. Figure 2 shows an example of a 
typical CNN page without and with tuned filters applied. 

 
Figure 1 - Crunch Control Panel 

One of our goals is to automate the selection of filter settings for 
arbitrary websites by classifying each newly visited website 
according to genre, and then re-using previously configured 
settings known to work well for that genre (or a nearby genre if 
there are no known good settings for that genre, falling back to 
proxy instance-specific defaults in the worst case of no 
sufficiently close genre with known good settings). We have 
found that certain settings work very well for websites in a given 
genre, but sometimes poorly for other genres. This is an observed 
phenomenon, subject to change as website design techniques 
advance, but at present it appears that web designers working 
within the same genre tend to prescribe similar screen layouts 
using the same HTML elements to present those layouts. For 
instance, the news sites in our sample corpus share the same 
manually configured “best” filter settings, but those settings did 
not work very well for shopping and sports. Therefore, we 
hypothesized that detecting the webpage’s genre would enable 
better content extraction than any “one size fits all” defaults. 

Since this is an online web application, content genre 
identification must be done in near real-time.  Assuming the 
content extraction proxy already has data on the existence of 
various genre clusters (and the corresponding filter settings that 
work well for those genres), then matching individual webpages 
to those clusters and applying the appropriate settings can be an 



efficient process. Therefore, we focused on the offline 
identification of genre clusters from a large corpus of websites. 

 

 
Figure 2 - Content Extraction results on a typical cnn.com 

article (original page vs. extracted page)  

3.2 Clustering 

We found relatively few existing classification algorithms apply 
directly to the clustering of web documents (see Section 2). These 
few algorithms, however, generally suffer from one or both of two 
basic problems: (i) they had high run-time complexity (cubic or 
higher running time), and/or (ii) they classified webpages into a 
fixed number of pre-determined genres rather than finding the 

affinity among websites and thus discover where the clusters lay. 
Our goal was to avoid these two limitations of previous work. 

We use an external module as a preprocessor to pre-classify some 
wide corpus of websites, in our experiments covering genres like 
news (international and regional), shopping, astronomy and 
technical weblogs. Our key insight was to leverage the results 
returned by search engines when searching for each website’s 
domain name, specifically the text “snippets” attached by the 
search engine to each result. We used only those snippets on the 
first page of the results, as likely to be most relevant, but 
employed several distinct search engines so as not to be overly 
biased by any particular engine’s ranking algorithm. We found 
that these snippets contain words that are highly descriptive of the 
function of the corresponding websites. Furthermore, leveraging 
snippet data does not increase the complexity of our clustering 
algorithm, but instead simply adds the aggregate access/wait time 
for the search engines to the overall running time. 

For each website slated for clustering, we create a word frequency 
map based on the textual data of the (front) webpage as well as 
the snippets produced by six popular search engines (Google, 
Yahoo, Dogpile, MSN, Altavista and Excite). For instance, 
searching for cnn or nypost increased the frequency of words such 
as "news" and "business", while searching for Amazon resulted in 
a frequency increase in the words “shop” and “books”. From the 
frequency map of each document, we prune all words deemed 
insignificant, using a stop word list consisting of prepositions, 
articles, pronouns, etc., and also remove other words that may 
appear frequently in a document but that do not add information 
to the genre of the site, e.g., non-dictionary words. Our dictionary 
contains 23,000 words and their variations, including some 
common prefixes, suffixes and tenses. From the frequency maps, 
frequent (greater than 10 occurrences) and unique words are 
added to a Word Key vector, if they were not already added while 
processing a previous website. We found that each site added, on 
an average, six new words to the Word Key. 

The frequency maps are then re-graphed across this Word Key to 
produce a content genre identifier for each of the websites 
(example graphs are shown in Figures 3 and 4). The next step is to 
find the distance of each identifier from all the other identifiers in 
the corpus. It has been pointed out that a major limitation of the 
Euclidean distance in the information retrieval context is that it 
can lead to two documents being regarded as highly similar to 
each other, despite the fact that they share no terms at all in 
common [16]. However, we found that the addition of snippet 
data, and the consequent increase in the frequency of genre-
specific function words, effectively avoided this problem. 

With all the pair-wise distances in place, the pairs are sorted from 
closest association to furthest. Here we employ the hierarchical 
clustering algorithm [16], with a slight variation (as described in 
the next section), to perform clustering. The clusters are then 
optionally (manually) tagged by the appropriate genre name.  The 
“best” heuristic filter settings can now be associated manually 
with each genre, or previously saved settings configured by some 
administrator or user can be used for each genre, potentially 
individually for up to every website in a genre cluster, using some 



algorithm for deconflicting competing (different) settings; further 
discussion of such mechanisms is outside the scope of this paper. 

 
Figure 3 - Graph of CNN.com across the Word Key 

 
Figure 4 - Graph of Amazon.com across the Word Key 

At run-time, when a webpage from a previously unclassified site 
is encountered, Crunch employs a similar process: the text from 
the webpage and its website’s snippet data is aggregated, cleaned 
and graphed across the Word Key. Then using the same distance 
measurement model, Crunch finds a closest match in some pre-
classified cluster. The associated filter settings are loaded and 
Crunch extracts the content for that webpage. (In some cases, as 
explained in Section 5.1, there may not be any sufficiently close 
cluster according to a parameterizable threshold; in that hopefully 
rare situation, the proxy’s default settings are used.) 

4. IMPLEMENTATION 

We use the Manhattan histogram distance measure algorithm to 
measure the distance between the Word Key graphs for each pair 
of websites during pre-classification, and for the newly visited 
webpage vs. those pre-classified websites at run-time. The 
formula is defined as 
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The histogram ( , ) is represented as a vector, where is the 
number of bins in the histogram (i.e., the number of words in our 

Key Word Set). and must first be normalized in order to 
satisfy the distance function requirements. Crunch uses the 
settings associated with the pre-classified site whose distance is 
closest to the webpage being accessed (breaking ties arbitrarily).  
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During the preprocessing stage, calculation of the Manhattan 
distance for every site from every other site is an O(n2) operation. 
After the distances between every pair of sites has been 
determined, the distances are sorted in time O(n log n). We can 
think of this computation as producing a complete graph on n 
vertices, where each vertex corresponds to a website and the value 
of the edge between any two vertices corresponds to the distance 
between the websites. Clusters are formed on this graph based on 
the assumption that websites with similar layouts contain similar 
words and, a key assumption for content extraction purposes, that 
similar HTML elements are used to present the clutter desirable to 
be pruned. We do not force a specific number of clusters, but 
rather let clusters form naturally using a hierarchical clustering 
algorithm that runs in time O(n2). 

Hierarchical clustering has been shown to be an effective method 
for clustering webpages. We briefly describe this clustering 
method here: At each iteration, the algorithm examines the next 
closest pair of vertices. One of several situations may occur:  
- If neither vertex belongs to any existing cluster, they form a new 
cluster. 
- If both vertices are assigned to different clusters, examine their 
distance and merge the clusters if within a predefined threshold. 
- If both vertices are already assigned to the same cluster, 
continue. 
- If vertex ‘a’ is assigned to cluster ‘i’ and vertex ‘b’ is not 
assigned to any cluster, check the level of vertex ‘a’ in the 
hierarchy with respect to cluster ‘i’. If it is either on the first or 
second level, insert vertex b into cluster ‘i’, otherwise continue. 

Thus, root nodes of a cluster may pull additional sites into that 
cluster, and any site that was pulled in directly by the root may 
also pull in additional sites. However, any site that was not 
clustered directly by the root of that cluster may not pull in any 
other sites, even if the algorithm encounters a site not yet 
clustered. This restriction is imposed to prevent chaining, 
ultimately preventing all the clusters from merging into one 
gigantic one. We found that sites further than one link from the 
root of a given cluster are often far enough away to be potentially 
closer to a different cluster. In many cases, sites that were initially 
rejected are still pulled into the cluster, as the algorithm proceeds, 
by a site that is directly connected to the root. 

The threshold for the hierarchy level within clusters as well as the 
threshold for merging clusters was determined empirically. This 
was necessary since these thresholds are a consequence of the 
range of distances and the correlation among the different sites as 
it is reflected in our distance measurement. The algorithm halts 
when the distance between the next pair of sites exceeds the 
preset threshold or when all possible pairs of sites have been 
examined. The thresholds are used in order to prevent extremely 
unrelated sites from contaminating existing clusters. 

The overall complexity of the offline clustering module is O(n2). 
However, when the genre of a previously unvisited website needs 



to be determined at run-time, the complexity drops to O(n): the 
time to create the frequency graph is a constant, and then it needs 
to be distance-matched to the n different pre-clustered sites to find 
the closest cluster to which to add this website. 

5. EXPERIMENTS & RESULTS 
5.1 Clustering 

We chose 171 unique websites as the corpus on which to test our 
implementation. The sites chosen were those visited by our group 
on a regular basis (admittedly a limited sample). Table 1 shows 
results consistent with our primary hypothesis – that using search 
engine snippets towards clustering produces better and tighter 
results. Table 2 summarizes the top six clusters produced by our 
clustering system. The search engines used to extract snippets 
were Google, Yahoo, Dogpile, MSN, Altavista and Excite.   

 
 Using Snippets Without Snippets 

No. of Sites 171 171 

No. Search Engines 6 0 

No. Clusters Found 14 5 

Max. Cluster Size 71 159 

Min. Cluster Size 2 2 

Avg. Cluster Size 12.21 34.2 

Time to cluster (min) 25 11 

Table 1 - Cluster Results 
In Table 1, we see that the number of clusters found when using 
snippets far exceeds those from the system without using snippets. 
While the run-time more than doubled, the increase was due only 
to the access time and data gathering from the six more sites per 
website being clustered (i.e., accessing the search engines). Upon 
manual inspection, we found that the sites clustered by the first 
experiment, i.e., the one using snippets, categorized sites more 
accurately: When we manually clustered the same websites into 
genres, we came up with 16 distinct clusters; using snippets 
identified 87.5% of those clusters while only 31% of those 
clusters were identified when snippets were not used. 
 

  
Cluster Type 

# of Sites 
(w/snippets) 

# of Sites 
(no snippets)

# of Sites
(manual)

Cluster #1 International 
News 

71 159 65 

Cluster #2 Shopping 27 - 25 

Cluster #3 Regional News 10 - 13 

Cluster #4 Tech News 7 - 10 

Cluster #5 Tech Blogs 7 - 8 

Cluster #6 Astronomy 7 6 7 

Table 2 – Typical Cluster Examples 

Table 2 summarizes some of the clusters that were created by our 
preferred approach, as well as the comparable approach without 
using snippets and our (subjective) manual clustering. 

International news sites were the most common websites in the 
corpus used in our experiments, and those made their way into 
one cluster. Other notable genres included shopping, regional 
news (from India), and astronomy sites. An interesting 
observation regards the separation of technical news sites vs. 
technical blogs. They apparently clustered into separate genres 
because blogs tend to be updated more often than general tech 
news sites, so the topics were different (and more timely in the 
blog case). Overall, using essentially the same algorithms but 
without snippets produces results that are far worse than the 
approach with snippets.  

Figures 5-6 show some graphs demonstrating the general 
similarity (wrt our Word Key classifications) of various websites 
that were determined to be part of a cluster. Figure 5 depicts some 
international news websites (the news genre), including cnn.com, 
drudgereport.com, washingtontimes.com and chicagotribune.com. 
For such sites, Crunch’s heuristic settings should be far more text 
oriented and thus should aggressively remove links and 
advertisements. Figure 6 shows popular shopping sites (the 
shopping genre): amazon.com, ebay.com, pricewatch.com and 
streetprices.com. In these cases, the settings should be more 
accepting of link-heavy elements and HTML forms. 

 
Figure 5 - Cluster containing CNN and other news sites 

 
Figure 6 - Cluster containing Amazon and other shopping 

sites 



 

 
Figure 7 – Before and after extraction of content for 

Spacer.com, with CNN-like news settings 
 

Figure 7 shows another example news site, spacer.com. We see 
the original webpage and the content-extracted webpage when 
news settings tuned for cnn.com are loaded, since spacer was 
identified as a site in the same cluster as cnn. We observed similar 
results for other genres such as shopping, for example, 
Amazon.com’s settings were successfully used on eBay.com. 

While our approach to website genre classification is able to 
cluster similar sites, it is also able to clearly distinguish singular 
sites that do not fit into any cluster, both in the pre-classification 
stage as well as in the subsequent genre matching phase. 

Skinheadz.com is one such a site, and its frequency graph along 
the Word Key is shown in Figure 8. Similarly, sec.gov, whose 
frequency graph is shown in Figure 9, is a site that remained 
unmatched to the identified genres in our corpus. While both of 
these may be exemplars of certain genres, those particular genres 
did not occur in our sample corpus. A broader range of website 
pre-classification awaits future work  

Our algorithm was also successfully able to cluster websites 
whose frequency graphs look visually different but whose genre is 
similar. Examples are shown in Figures 9 and 10 in the Appendix. 

 
Figure 8 - Graph of skinheadz.com across the Word Key 

 
Figure 9 - Graph of sec.gov across the Word Key 

We have also found that using snippets aids resiliency to changes 
in the structure of clusters over time. Even though the content on 
the various websites may change, the snippets tend to remain 
nearly the same. Therefore, the frequency of the most frequent 
words remains similar over time causing little fluctuation. 

5.2 Speech rendering experiment 
To evaluate the effectiveness of our clustering approach and the 
subsequent automatic application of genre-based filter settings, 
we conducted experiments to test Crunch’s benefits in two areas 
where it could be particularly useful – content extraction that 
facilitates speech rendering for the visually impaired, and 
webpage rendering on devices with constrained resources. 
The goal of our first experiment was to consider the “readability”, 
by conventional screen reader software, of the extractions 
produced by Crunch compared to the raw webpages. We 



measured the length of time, in seconds, that it took the screen 
reader to render (speak) each variant of a given page, considering 
a variety of webpages. We ran trials with both the “free demo” 
version of JAWS (www.freedomscientific.com) and a licensed 
copy of Home Page Reader (www.ibm.com), which vary slightly 
in how they preprocess the raw HTML – although the measured 
time differences were under 3 seconds in all cases, so we average 
the results in our reporting below. The idea was to determine the 
amount of time a visually disabled user might save by using our 
content extraction technology. The notion of “content” is 
inherently subjective and our determination of what is the content 
vs. non-content was performed by visual and auditory inspection. 
For this experiment, we chose 11 websites that represent a variety 
of layout formats. We included websites from all the major genres 
that appeared in our corpus (e.g., news, shopping, tech news, 
astronomy), but were also careful to cover different structures 
(columns, single-body articles, portal-based and blog-style sites), 
as well as W3C-compliant “accessible” sites vs. non-compliant 
sites. We passed the original webpages vs. the Crunch outputs 
through the screen readers. We then measured the time it took, in 
minutes, to read (speech render) the entire webpages.  

Table 3 – Speech rendering results 

Site 
(accessed on May 18th, 2005) 

Read original 
webpage 
(minutes) 

Read page 
produced by 

Crunch genre-
based settings 

(minutes) 
CNN.com front page 10 :09 1 :08 

CNN.com subsidiary page 7:35 2:44 
Slashdot.org front page  25:20 17:53 

Slashdot.org article page  14 :13 6 :15 
MSNBC front page 10 :47 2 :40 

MSNBC article page 11:12 3:43 
Yahoo News front page 25:15 16:39 

Yahoo News article page 14:08 5:13 
NASA Ames front page 2 :18 1 :48 

NASA Ames Research page 1:57 1:17 
Amazon.com front page  13:28 7:42 

 
From these tests and from the anecdotal accounts of visually 
impaired users (e.g., attendees at the 2005 W4A meeting), it is 
clear that blind web users typically spend tens of minutes 
listening to nearly any single webpage using a commercial screen 
reader alone - and this is absolutely unacceptable! We found that 
using Crunch together with such a screen reader reduces by 10-
80% the time spent in reading the page while the content on the 
webpage remains qualitatively accurate. The least significant 
improvement (< 10% speedup in reading) using Crunch was on 
the main page of a given site, where the settings preserved a 
larger percentage of navigation links (Crunch’s heuristics 
distinguish between front and auxiliary pages since front pages 
are often intended to operate as portals). The greatest 
improvement noticed was on subsidiary pages of websites, 
usually containing contentful articles.  
On a side note: one of the Crunch heuristic plug-ins detects the 
front page vs. a subsidiary page of a website based on URL 
analysis and (sometimes) web browser error messages, and 
differentiates the website settings accordingly. We added this 

capability to Crunch because the kinds of HTML elements that 
should be treated as “useful and relevant” content vs. clutter tends 
to change depending on whether we are looking at the front page 
of a site or some subsidiary page. For example, the article is 
typically the main focus of the content on a subsidiary page of a 
news site; however, the main page of that same news site often 
has tiny bits of detail about several news stories as well as 
numerous links that lead the user to other webpages on the site. 
A final point is that our trials on a website fully compliant with 
the W3C’s Web Accessibility Initiative accessibility guidelines, 
NASA Ames Research, still show an improvement in reading 
time - albeit small. Thus we believe that Crunch, and its genre 
analysis presented in this paper, are valuable tools for content 
extraction even on websites that are compatible with the WAI 
accessibility guidelines. However, further research is needed in 
this area. 

5.3 Constrained screen testing 

We also evaluated how well Crunch compared to other content 
extraction and webpage reformatting technologies designed for 
devices with limited screen real-estate. We used the same samples 
as for the speech rendering tests above, and displayed both the 
original webpages and the pages output by Crunch on various 
combinations of handheld devices and browsers. We tested the 
system on the Toshiba e805 and HP iPaq 2215 PDAs running 
Microsoft’s PocketPC OS, with Pocket Internet Explorer and 
BitStream’s Thunderbird browsers, respectively. We measured 
the amount of content on the first screenful at both 320x240 and 
640x480 resolutions. We also used a Blackberry 7100t running a 
proprietary Blackberry browser and a Microsoft Smartphone i600 
running Internet Explorer and Opera Mobile Browser.  

The purpose of these tests was to demonstrate the increase in 
“relevant and useful” content displayed on a small screen when 
using Crunch vs. not using Crunch. We would like to reiterate 
that, in the general-purpose case absent any model of the author’s 
or reader’s intents, content is subjective. For this experiment, we 
define content as the number of relevant words (whether 
displayed in text or images) shown on the screen, measured by 
visual inspection.  

 
Table 4 - Constrained device testing results 

Number of 
words 
(PDA 
320x240) 

Number of 
words (PDA 
640x480) 

Number of 
words 
(Blackberry) 

Number of 
words 
(Opera on 
Smartphone) 

I II I II I II I II 

29 38 102 217 17 30 10 32 
29 185 158 338 17 68 13 59 
49 154 134 270 48 68 43 63 
45 80 215 215 48 68 43 63 
56 56 111 111 27 27 27 27 

123 123 370 370 14 53 13 48 
20 34 20 75 27 33 25 29 
20 93 20 93 27 51 25 45 
7 34 185 185 3 19 3 19 

http://www.freedomscientific.com/
http://www.ibm.com/


15 112 112 112 12 30 12 28 
28 35 247 247 12 34 43 43 

I – without Crunch, i.e., original webpage. 
II – with Crunch, i.e., the page is passed through Crunch, with 
automatic genre-based settings. 

From the data presented in Table 4, we see that Crunch with 
genre-based automatic selection of filter settings is very useful 
towards maximizing the amount of content displayed on 
constrained devices. The most significant difference was on a 
320x240 resolution PDA screen, where there was on average a 
215% increase in the amount of content displayed on the screen. 
This increase jumped dramatically up to a 750% when 
considering only news articles. With 640x480 resolution, we 
found an average increase of 133% of content on the first 
screenful. Several of the pages tested were able to fully render 
within that screenful. When testing with the cell phone browsers, 
we found the results to be almost identical, almost 185% 
improvement in both cases, presumably because of the very 
similar screen sizes. The main difference was due to the Opera 
browser’s default behavior of jumping to the “middle” of the page 
where it found the largest concentration of text attempting to skip 
over anticipated non-content, which was lacking on the 
Blackberry. In none of our trials did a webpage rendered using 
Crunch display less content on the first screenful than the original 
page rendered on the same constrained device. However, the 
Opera comparison is somewhat problematic, not always counting 
the same words, due to Opera’s skip-to-the-middle heuristic. 

We also tested the sample websites using ZoomText, a leading 
low-vision screen magnifier. We found that with their standard 
magnification, the number of words displayed in a conventional 
web browser on a desktop running at 800x600 resolution was 
comparable - within 95-105% in both the with and without 
Crunch cases - to the number of words displayed on a 320x240 
resolution PDA.  Thus Crunch’s improvements are applicable to 
those mildly to moderately visually impaired users who prefer 
screen magnifiers to speech rendering (although the two 
technologies can be used in combination with the same result). 

6. SUMMARY OF CONTRIBUTIONS 

In this paper, we consider the problem of clustering websites 
according to their genre, as applied to selecting the most 
appropriate amongst previously adjusted settings for an online 
content-extraction web application. Webpage classification is 
much more difficult than pure-text classification due to the noisy 
information embedded in webpages [12] - which reminds of our 
original motivation for content extraction. Utilizing snippets 
produced by search engine searches for the domain name of each 
website being classified, we are able to improve the frequency of 
the function words used to classify that site. With these snippets 
as well as the textual content on the site itself, we use existing 
simple and proven techniques - Manhattan distance and 
hierarchical clustering - to successfully pre-cluster a large number 
of websites in an efficient manner. This pre-clustering allows the 
system to classify individual new webpages not already classified 
in linear time, by comparing them to the existing clusters. Our 
content extraction web proxy, Crunch, uses this information to 
produce better results. In addition, our approach to identifying 

webpage genres may be beneficial to other applications unrelated 
to content extraction, e.g., to support browsing of search engine 
results by genre [7]. 
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9. APPENDIX 

 
Figure 10 - Cluster containing tech blog sites including 

DigitalMediaThoughts, PocketPCThoughts, 
SmartphoneThoughts and MSDN Blog 

 
Figure 11 - Cluster containing several astronomy-related sites 

including spacetoday.com, spaceflightnews.com, 
spacedaily.com and spaceflightnow.com
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