
A Genre-based Clustering Approach to Content Extraction

Suhit Gupta
Columbia University
500 W. 120th Street
New York, NY 10027
001-212-939-7184

suhit@cs.columbia.
edu

Hila Becker
Columbia University
500 W. 120th Street
New York, NY 10027
001-212-939-7100

hb2143@cs.colum
bia.edu

Gail Kaiser
Columbia University
500 W. 120th Street
New York, NY 10027
001-212-939-7081

kaiser@cs.columbia.
edu

Salvatore Stolfo
Columbia University
500 W. 120th Street
New York, NY 10027
001-212-939-7080

sal@cs.columbia.
edu

ABSTRACT

The content of a webpage is usually contained within a small
body of text and images, or perhaps several articles on the same
page; however, the content may be lost in the clutter (defined as
cosmetic features such as animations, menus, sidebars, obtrusive
banners). Automatic content extraction has many applications,
including browsing on small cell phone and PDA screens, speech
rendering for the visually impaired, and reducing noise for
information retrieval systems. We have developed a framework,
Crunch, which employs various heuristics for content extraction
in the form of filters applied to the webpage’s DOM tree; the
filters aim to prune or transform the clutter, leaving only the
content. Crunch allows users to tune what we call “settings”,
consisting of thresholds for applying a particular filter and/or for
toggling a filter on/off, because the HTML components that
characterize clutter can vary significantly from website to
website. However, we have found that the same settings tend to
work well across different websites of the same genre, e.g., news
or shopping, since the designers often employ similar page
layouts. In particular, Crunch could obtain the settings for a
previously unknown website by automatically classifying it as
sufficiently similar to a cluster of known websites with previously
adjusted settings. We present our approach to clustering a large
corpus of websites into genres, using their pre-extraction textual
material augmented by the snippets generated by searching for the
website’s domain name in web search engines. Including these
snippets increases the frequency of function words needed for
clustering. We use existing Manhattan distance measure and
hierarchical clustering techniques, with some modifications, to
pre-classify the corpus into genres offline. Our method does not
require prior knowledge of the set of genres that websites fit into,
but to be useful a priori settings must be available for some
member of each cluster or a nearby cluster (otherwise defaults are
used). Crunch classifies newly encountered websites online in
linear-time, and then applies the corresponding filter settings,
with no noticeable delay added by our content-extracting web
proxy.

Categories and Subject Descriptors

I.7.4 [Document and Text Processing]: Electronic Publishing;
H.3.5 [Information Storage and Retrieval]: Online Information
Services – Web-based Services

General Terms

Human Factors, Algorithms, Standardization.

Keywords

Website classification, clustering, content extraction,
reformatting, HTML, context, accessibility, speech rendering.

1. INTRODUCTION

Webpages are often cluttered with extraneous materials, perhaps
attempting to attract the user’s attention or improve the user’s
efficiency, but they may end up distracting the user from the
actual content. These “features” may include script and flash-
driven animations, other kinds of images not directly associated
with a main text body, menus and guides, links scattered around
the screen, etc. The automatic extraction of heuristically-defined
“content” from webpages has many applications, including
enabling end-users to access the web more easily over constrained
devices, providing better access to the web for the blind or
otherwise disabled, producing less noisy data for information
retrieval and content summarization algorithms, and so on.

We have developed a framework, Crunch [4] [5] [6], as a web
proxy that employs various heuristics in the form of filters and
filter “settings” to achieve content extraction via clutter reduction.
Crunch passes each webpage through an HTML parser, which
corrects the markup and creates a Document Object Model
(DOM) tree. DOM (www.w3.org/DOM) is a standard for creating
and manipulating in-memory representations of HTML (and
XML) content. Crunch applies the filters to the DOM tree,
according to their settings, and the resulting HTML page provided
to the user client is a (relatively) clean, clutter-free page.

Crunch allows end-users or administrators to tune the settings,
essentially the thresholds for applying each filter, via
aggressiveness sliders and on/off checkboxes. While Crunch
works extremely well on a large variety of webpages using the
default settings, these settings sometimes should be manually
configured to best extract content for a given site. We found that,
in practice, the settings need to be adjusted only when a user
moves from one major class of website to another, e.g., from
news to shopping or vice versa. For instance, it may be
appropriate to remove what (heuristically) appears to be
advertising from a news webpage, but if the same is done on a
shopping webpage, there may be little or nothing left!

__

Copyright is held by Suhit Gupta, Hila Becker, Gail Kaiser and
Salvatore Stolfo
WWW 2006, May 22-26, 2006, Edinburgh, UK.

mailto:suhit@cs.columbia.edu
mailto:suhit@cs.columbia.edu
mailto:hb2143@cs.columbia.edu
mailto:hb2143@cs.columbia.edu
mailto:kaiser@cs.columbia.edu
mailto:kaiser@cs.columbia.edu
mailto:sal@cs.columbia.edu
mailto:sal@cs.columbia.edu
http://www.w3.org/DOM

Specifically, the link density and table/cell structure layout
remained consistent among sites within news vs. shopping genre
(and other genres discussed below).

 In order to reduce human involvement in selecting the heuristic
filter settings, we consider utilizing a website’s genre
classification. Crunch can then obtain some previously (manually)
adjusted settings for a newly visited website by automatically
classifying it as sufficiently similar to a genre-cluster of known
websites, at least one of which has “known good settings” –
which, we found empirically, produces better content extraction
results than any possible one-size-fits-all default settings.

With a good webpage-oriented document clustering method,
Crunch or other web applications can automatically organize a
corpus into a meaningful genre hierarchy. For example, another
application might be to enable efficient navigation of the corpus
by genre [17]. However, performing genre analysis in real-time
(online) is too computationally expensive for most web
applications. Additionally, most current clustering algorithms
require a priori knowledge of the number or specific set of
clusters to properly classify a set of webpages - but given the vast
quantity and enormous variety of documents posted on the web,
this does not seem the best model for open-ended applications.

Our goal was to find a simple acceptable-cost offline algorithm
for pre-clustering a large corpus of websites, which also enabled
efficient online classification of new websites as they were
encountered by Crunch users. Our approach utilizes the text
results (called “snippets”) generated by sending the website’s
domain name to several popular search engines and using those
snippets together with the website’s own actual text towards
determining the genre (cluster) of the website. We found that
exploiting snippets not only increased the frequency of function
words, but those function words were, in general, highly
descriptive of the “meaning” of the websites being accessed and
thus especially useful in the analysis of the appropriate genre.

While we could have, in principle, summarized each webpage
directly using, e.g., NLP techniques, that would have enormously
increased the complexity of our own algorithms. Further, utilizing
snippets means that we are re-using structured data that has
already been conveniently compiled by search engines in
advance. Crunch then uses standard techniques like Manhattan
distance measure and hierarchical clustering, with some
modifications, to pre-classify websites into genres. Our clustering
method does not require any prior knowledge of the set of genres
that websites might fit into, but instead discovers these
relationships among websites. Subsequently, Crunch is able to
classify newly encountered websites in linear-time, and then
apply the corresponding filter settings (adopted from the closet
member of the genre cluster), with no noticeable delay
introduced.

In this paper, we present our method for pre-clustering a corpus of
websites, and describe the ensuing classification of individual
new websites and its application to selecting heuristic filter
settings by apparent genre. We also show experimental results
that demonstrate the substantial improvement of our content
extraction system, as it is bolstered by our efficient approach to

genre-based clustering of websites and re-use of previously
adjusted settings.

The following sections describe a selection of the vast related
work in the fields of information retrieval and document
clustering, followed by details of our approach and the associated
implementation. We conclude with empirical results from our
experiments and a summary of our contributions.

2. RELATED WORK

Document clustering has been investigated for many domains [3]
[16].The use of clustering in IR appears mostly to be driven by
the cluster hypothesis, which states that “closely associated
documents tend to be related to the same requests” [1]. Xu et al.
[17] explain that document clustering methods can be categorized
into two main types: document partitioning (flat) and
agglomerative (bottom-up hierarchical) clustering. Although both
types of methods have been extensively investigated for decades,
accurately clustering documents without domain-dependent
background information is still a challenging task. They provide a
novel document partitioning method using non-negative
factorization of the term-document matrix. However, we have
found that web document clustering can be done with little or no
background information about the domains, as long as there are
enough function words available to help classify the documents.

There is a large body of related work in genre classification. Lee
et al. [7] describe their method for text genre classification by
using two different class sets, genre classes and subject classes, in
the training data. However, their method would not work well for
web documents since the number of genres needs to be identified
and fixed before the categorization. This, as pointed out before, is
an impediment for the vast number and incredible variety of the
corpus of web documents. For the same reason, traditional
partitioning methods like K-Means clustering [9] will not work.
Similarly, clustering using sequential information maximization,
presented by Slonim et al. [14], requires prior knowledge of the
number of clusters for the data to be classified.

Spectral clustering, an approach demonstrated by Ng. et al. [10],
clusters points using eigenvectors of matrices derived from the
data contained in the documents. However, as with K-Mean
clustering, the number of clusters is expected to be a known
quantity before the process. Additionally, spectral clustering
works hard at performing tight fitting of all data points within a
cluster, but later experiments show that this is not a hard
requirement when classifying web documents by genre. Further,
we have observed that a relatively small number of documents (as
few as two, as demonstrated later in this paper) are enough to
define a cluster and its associated genre.

Cutting et al. [3] describe a cluster-based approach to browsing
large document collections, called Scatter/Gather. They provide a
mechanism for user-driven organization of data in a fixed number
of clusters, but the users need to be in the loop and the computed
clusters do not guarantee accuracy. Moreover, the technique is
designed to work well for finding similarity between articles
based on subject. We are interested in identifying broader topic
genres, like news, shopping and sports, for top-level domains.

Zhang et al. [21] present BIRCH, a clustering method for
extremely large databases. The main optimizations in their
technique are made to reduce the number of I/O operations and to
increase space efficiency. In order to truly gain the benefits from
this model, multiple passes on the data are required. However,
this increases the runtime complexity of the system.

Siersdorfer et al. [13] show an interesting approach, called
restrictive clustering, to clustering by working on only a subset of
the available data. The key element to their approach is to
construct restrictive meta-methods at the moderate cost loss of
uncertain samples. Their approach clusters with high accuracy,
but is prone to miss recognizing failed clustering attempts.

Zamir et al. [20] describe Grouper, a clustering system that
employs term-based clustering, an approach similar to ours. They
use Suffix Tree Clustering, which is shown to be fast and domain
independent. However, they have applied their methods only to
grouping the results returned by a search engine by analyzing the
produced snippets. We instead aim to automatically classify
whole websites, leveraging the snippets for additional function
words.

Lastly, Crammer et al. [2] describe a technique for performing
classification that focuses on online additive algorithms for
classification tasks. Their approach was designed to save a user
from needing vast computational resources. We tend not to suffer
from this problem either since we define a fixed range of words
(described in Sections 3 and 4) to classify the various websites.
Additionally, the system described needs a training period to
produce the level of classification achieved, while even with a
static set of pre-clustered data we can achieve similar results.

Finally, most of the work described here tends to be used towards
analysis of documents or search engine results, but not targeted to
webpages. One general problem with applying these strategies to
webpages is that most pages contain extremely noisy data that
may lead to incorrect clustering results. In Crunch, newly seen
websites are necessarily clustered prior to content extraction, so
the clustering approach must be reasonably resilient to such noise.

3. APPROACH

Clustering involves the grouping of similar objects, and has been
practiced, consciously or unconsciously, for many thousands of
years [16]. Distance coefficients, such as Euclidean distance, have
been used very extensively in cluster analysis, owing to their
simple geometric interpretation. We employ multiple techniques
that incorporate the advantages of the previous work on clustering
and information retrieval. However, in order to motivate our
clustering into genres, we briefly describe our application.

3.1 Crunch

Extraction of “useful and relevant” content from webpages has
many applications, including constrained screen browsing, speech
rendering for the visually impaired, and reducing noise for NLP
and IR systems. Our initial insight was to work with DOM trees,
rather than raw HTML markup [4] [5] [6]. Crunch provides an
extensible set of tunable heuristic filters for clutter reduction, and
consequent content extraction, via a web-proxy architecture. The

filter settings should be tuned, automatically or by the user (e.g.,
using the console shown in Figure 1), to the site being browsed
and the content desired to see. Figure 2 shows an example of a
typical CNN page without and with tuned filters applied.

Figure 1 - Crunch Control Panel

One of our goals is to automate the selection of filter settings for
arbitrary websites by classifying each newly visited website
according to genre, and then re-using previously configured
settings known to work well for that genre (or a nearby genre if
there are no known good settings for that genre, falling back to
proxy instance-specific defaults in the worst case of no
sufficiently close genre with known good settings). We have
found that certain settings work very well for websites in a given
genre, but sometimes poorly for other genres. This is an observed
phenomenon, subject to change as website design techniques
advance, but at present it appears that web designers working
within the same genre tend to prescribe similar screen layouts
using the same HTML elements to present those layouts. For
instance, the news sites in our sample corpus share the same
manually configured “best” filter settings, but those settings did
not work very well for shopping and sports. Therefore, we
hypothesized that detecting the webpage’s genre would enable
better content extraction than any “one size fits all” defaults.

Since this is an online web application, content genre
identification must be done in near real-time. Assuming the
content extraction proxy already has data on the existence of
various genre clusters (and the corresponding filter settings that
work well for those genres), then matching individual webpages
to those clusters and applying the appropriate settings can be an

efficient process. Therefore, we focused on the offline
identification of genre clusters from a large corpus of websites.

Figure 2 - Content Extraction results on a typical cnn.com

article (original page vs. extracted page)

3.2 Clustering

We found relatively few existing classification algorithms apply
directly to the clustering of web documents (see Section 2). These
few algorithms, however, generally suffer from one or both of two
basic problems: (i) they had high run-time complexity (cubic or
higher running time), and/or (ii) they classified webpages into a
fixed number of pre-determined genres rather than finding the

affinity among websites and thus discover where the clusters lay.
Our goal was to avoid these two limitations of previous work.

We use an external module as a preprocessor to pre-classify some
wide corpus of websites, in our experiments covering genres like
news (international and regional), shopping, astronomy and
technical weblogs. Our key insight was to leverage the results
returned by search engines when searching for each website’s
domain name, specifically the text “snippets” attached by the
search engine to each result. We used only those snippets on the
first page of the results, as likely to be most relevant, but
employed several distinct search engines so as not to be overly
biased by any particular engine’s ranking algorithm. We found
that these snippets contain words that are highly descriptive of the
function of the corresponding websites. Furthermore, leveraging
snippet data does not increase the complexity of our clustering
algorithm, but instead simply adds the aggregate access/wait time
for the search engines to the overall running time.

For each website slated for clustering, we create a word frequency
map based on the textual data of the (front) webpage as well as
the snippets produced by six popular search engines (Google,
Yahoo, Dogpile, MSN, Altavista and Excite). For instance,
searching for cnn or nypost increased the frequency of words such
as "news" and "business", while searching for Amazon resulted in
a frequency increase in the words “shop” and “books”. From the
frequency map of each document, we prune all words deemed
insignificant, using a stop word list consisting of prepositions,
articles, pronouns, etc., and also remove other words that may
appear frequently in a document but that do not add information
to the genre of the site, e.g., non-dictionary words. Our dictionary
contains 23,000 words and their variations, including some
common prefixes, suffixes and tenses. From the frequency maps,
frequent (greater than 10 occurrences) and unique words are
added to a Word Key vector, if they were not already added while
processing a previous website. We found that each site added, on
an average, six new words to the Word Key.

The frequency maps are then re-graphed across this Word Key to
produce a content genre identifier for each of the websites
(example graphs are shown in Figures 3 and 4). The next step is to
find the distance of each identifier from all the other identifiers in
the corpus. It has been pointed out that a major limitation of the
Euclidean distance in the information retrieval context is that it
can lead to two documents being regarded as highly similar to
each other, despite the fact that they share no terms at all in
common [16]. However, we found that the addition of snippet
data, and the consequent increase in the frequency of genre-
specific function words, effectively avoided this problem.

With all the pair-wise distances in place, the pairs are sorted from
closest association to furthest. Here we employ the hierarchical
clustering algorithm [16], with a slight variation (as described in
the next section), to perform clustering. The clusters are then
optionally (manually) tagged by the appropriate genre name. The
“best” heuristic filter settings can now be associated manually
with each genre, or previously saved settings configured by some
administrator or user can be used for each genre, potentially
individually for up to every website in a genre cluster, using some

algorithm for deconflicting competing (different) settings; further
discussion of such mechanisms is outside the scope of this paper.

Figure 3 - Graph of CNN.com across the Word Key

Figure 4 - Graph of Amazon.com across the Word Key

At run-time, when a webpage from a previously unclassified site
is encountered, Crunch employs a similar process: the text from
the webpage and its website’s snippet data is aggregated, cleaned
and graphed across the Word Key. Then using the same distance
measurement model, Crunch finds a closest match in some pre-
classified cluster. The associated filter settings are loaded and
Crunch extracts the content for that webpage. (In some cases, as
explained in Section 5.1, there may not be any sufficiently close
cluster according to a parameterizable threshold; in that hopefully
rare situation, the proxy’s default settings are used.)

4. IMPLEMENTATION

We use the Manhattan histogram distance measure algorithm to
measure the distance between the Word Key graphs for each pair
of websites during pre-classification, and for the newly visited
webpage vs. those pre-classified websites at run-time. The
formula is defined as

∑ −

=
−=

1

0 21211 |][][|),(
n

i
ihihhhD

The histogram (,) is represented as a vector, where is the
number of bins in the histogram (i.e., the number of words in our

Key Word Set). and must first be normalized in order to
satisfy the distance function requirements. Crunch uses the
settings associated with the pre-classified site whose distance is
closest to the webpage being accessed (breaking ties arbitrarily).

1h 2h n

1h h2

During the preprocessing stage, calculation of the Manhattan
distance for every site from every other site is an O(n2) operation.
After the distances between every pair of sites has been
determined, the distances are sorted in time O(n log n). We can
think of this computation as producing a complete graph on n
vertices, where each vertex corresponds to a website and the value
of the edge between any two vertices corresponds to the distance
between the websites. Clusters are formed on this graph based on
the assumption that websites with similar layouts contain similar
words and, a key assumption for content extraction purposes, that
similar HTML elements are used to present the clutter desirable to
be pruned. We do not force a specific number of clusters, but
rather let clusters form naturally using a hierarchical clustering
algorithm that runs in time O(n2).

Hierarchical clustering has been shown to be an effective method
for clustering webpages. We briefly describe this clustering
method here: At each iteration, the algorithm examines the next
closest pair of vertices. One of several situations may occur:
- If neither vertex belongs to any existing cluster, they form a new
cluster.
- If both vertices are assigned to different clusters, examine their
distance and merge the clusters if within a predefined threshold.
- If both vertices are already assigned to the same cluster,
continue.
- If vertex ‘a’ is assigned to cluster ‘i’ and vertex ‘b’ is not
assigned to any cluster, check the level of vertex ‘a’ in the
hierarchy with respect to cluster ‘i’. If it is either on the first or
second level, insert vertex b into cluster ‘i’, otherwise continue.

Thus, root nodes of a cluster may pull additional sites into that
cluster, and any site that was pulled in directly by the root may
also pull in additional sites. However, any site that was not
clustered directly by the root of that cluster may not pull in any
other sites, even if the algorithm encounters a site not yet
clustered. This restriction is imposed to prevent chaining,
ultimately preventing all the clusters from merging into one
gigantic one. We found that sites further than one link from the
root of a given cluster are often far enough away to be potentially
closer to a different cluster. In many cases, sites that were initially
rejected are still pulled into the cluster, as the algorithm proceeds,
by a site that is directly connected to the root.

The threshold for the hierarchy level within clusters as well as the
threshold for merging clusters was determined empirically. This
was necessary since these thresholds are a consequence of the
range of distances and the correlation among the different sites as
it is reflected in our distance measurement. The algorithm halts
when the distance between the next pair of sites exceeds the
preset threshold or when all possible pairs of sites have been
examined. The thresholds are used in order to prevent extremely
unrelated sites from contaminating existing clusters.

The overall complexity of the offline clustering module is O(n2).
However, when the genre of a previously unvisited website needs

to be determined at run-time, the complexity drops to O(n): the
time to create the frequency graph is a constant, and then it needs
to be distance-matched to the n different pre-clustered sites to find
the closest cluster to which to add this website.

5. EXPERIMENTS & RESULTS
5.1 Clustering

We chose 171 unique websites as the corpus on which to test our
implementation. The sites chosen were those visited by our group
on a regular basis (admittedly a limited sample). Table 1 shows
results consistent with our primary hypothesis – that using search
engine snippets towards clustering produces better and tighter
results. Table 2 summarizes the top six clusters produced by our
clustering system. The search engines used to extract snippets
were Google, Yahoo, Dogpile, MSN, Altavista and Excite.

 Using Snippets Without Snippets

No. of Sites 171 171

No. Search Engines 6 0

No. Clusters Found 14 5

Max. Cluster Size 71 159

Min. Cluster Size 2 2

Avg. Cluster Size 12.21 34.2

Time to cluster (min) 25 11

Table 1 - Cluster Results
In Table 1, we see that the number of clusters found when using
snippets far exceeds those from the system without using snippets.
While the run-time more than doubled, the increase was due only
to the access time and data gathering from the six more sites per
website being clustered (i.e., accessing the search engines). Upon
manual inspection, we found that the sites clustered by the first
experiment, i.e., the one using snippets, categorized sites more
accurately: When we manually clustered the same websites into
genres, we came up with 16 distinct clusters; using snippets
identified 87.5% of those clusters while only 31% of those
clusters were identified when snippets were not used.

Cluster Type

of Sites
(w/snippets)

of Sites
(no snippets)

of Sites
(manual)

Cluster #1 International
News

71 159 65

Cluster #2 Shopping 27 - 25

Cluster #3 Regional News 10 - 13

Cluster #4 Tech News 7 - 10

Cluster #5 Tech Blogs 7 - 8

Cluster #6 Astronomy 7 6 7

Table 2 – Typical Cluster Examples

Table 2 summarizes some of the clusters that were created by our
preferred approach, as well as the comparable approach without
using snippets and our (subjective) manual clustering.

International news sites were the most common websites in the
corpus used in our experiments, and those made their way into
one cluster. Other notable genres included shopping, regional
news (from India), and astronomy sites. An interesting
observation regards the separation of technical news sites vs.
technical blogs. They apparently clustered into separate genres
because blogs tend to be updated more often than general tech
news sites, so the topics were different (and more timely in the
blog case). Overall, using essentially the same algorithms but
without snippets produces results that are far worse than the
approach with snippets.

Figures 5-6 show some graphs demonstrating the general
similarity (wrt our Word Key classifications) of various websites
that were determined to be part of a cluster. Figure 5 depicts some
international news websites (the news genre), including cnn.com,
drudgereport.com, washingtontimes.com and chicagotribune.com.
For such sites, Crunch’s heuristic settings should be far more text
oriented and thus should aggressively remove links and
advertisements. Figure 6 shows popular shopping sites (the
shopping genre): amazon.com, ebay.com, pricewatch.com and
streetprices.com. In these cases, the settings should be more
accepting of link-heavy elements and HTML forms.

Figure 5 - Cluster containing CNN and other news sites

Figure 6 - Cluster containing Amazon and other shopping

sites

Figure 7 – Before and after extraction of content for

Spacer.com, with CNN-like news settings

Figure 7 shows another example news site, spacer.com. We see
the original webpage and the content-extracted webpage when
news settings tuned for cnn.com are loaded, since spacer was
identified as a site in the same cluster as cnn. We observed similar
results for other genres such as shopping, for example,
Amazon.com’s settings were successfully used on eBay.com.

While our approach to website genre classification is able to
cluster similar sites, it is also able to clearly distinguish singular
sites that do not fit into any cluster, both in the pre-classification
stage as well as in the subsequent genre matching phase.

Skinheadz.com is one such a site, and its frequency graph along
the Word Key is shown in Figure 8. Similarly, sec.gov, whose
frequency graph is shown in Figure 9, is a site that remained
unmatched to the identified genres in our corpus. While both of
these may be exemplars of certain genres, those particular genres
did not occur in our sample corpus. A broader range of website
pre-classification awaits future work

Our algorithm was also successfully able to cluster websites
whose frequency graphs look visually different but whose genre is
similar. Examples are shown in Figures 9 and 10 in the Appendix.

Figure 8 - Graph of skinheadz.com across the Word Key

Figure 9 - Graph of sec.gov across the Word Key

We have also found that using snippets aids resiliency to changes
in the structure of clusters over time. Even though the content on
the various websites may change, the snippets tend to remain
nearly the same. Therefore, the frequency of the most frequent
words remains similar over time causing little fluctuation.

5.2 Speech rendering experiment
To evaluate the effectiveness of our clustering approach and the
subsequent automatic application of genre-based filter settings,
we conducted experiments to test Crunch’s benefits in two areas
where it could be particularly useful – content extraction that
facilitates speech rendering for the visually impaired, and
webpage rendering on devices with constrained resources.
The goal of our first experiment was to consider the “readability”,
by conventional screen reader software, of the extractions
produced by Crunch compared to the raw webpages. We

measured the length of time, in seconds, that it took the screen
reader to render (speak) each variant of a given page, considering
a variety of webpages. We ran trials with both the “free demo”
version of JAWS (www.freedomscientific.com) and a licensed
copy of Home Page Reader (www.ibm.com), which vary slightly
in how they preprocess the raw HTML – although the measured
time differences were under 3 seconds in all cases, so we average
the results in our reporting below. The idea was to determine the
amount of time a visually disabled user might save by using our
content extraction technology. The notion of “content” is
inherently subjective and our determination of what is the content
vs. non-content was performed by visual and auditory inspection.
For this experiment, we chose 11 websites that represent a variety
of layout formats. We included websites from all the major genres
that appeared in our corpus (e.g., news, shopping, tech news,
astronomy), but were also careful to cover different structures
(columns, single-body articles, portal-based and blog-style sites),
as well as W3C-compliant “accessible” sites vs. non-compliant
sites. We passed the original webpages vs. the Crunch outputs
through the screen readers. We then measured the time it took, in
minutes, to read (speech render) the entire webpages.

Table 3 – Speech rendering results

Site
(accessed on May 18th, 2005)

Read original
webpage
(minutes)

Read page
produced by

Crunch genre-
based settings

(minutes)
CNN.com front page 10 :09 1 :08

CNN.com subsidiary page 7:35 2:44
Slashdot.org front page 25:20 17:53

Slashdot.org article page 14 :13 6 :15
MSNBC front page 10 :47 2 :40

MSNBC article page 11:12 3:43
Yahoo News front page 25:15 16:39

Yahoo News article page 14:08 5:13
NASA Ames front page 2 :18 1 :48

NASA Ames Research page 1:57 1:17
Amazon.com front page 13:28 7:42

From these tests and from the anecdotal accounts of visually
impaired users (e.g., attendees at the 2005 W4A meeting), it is
clear that blind web users typically spend tens of minutes
listening to nearly any single webpage using a commercial screen
reader alone - and this is absolutely unacceptable! We found that
using Crunch together with such a screen reader reduces by 10-
80% the time spent in reading the page while the content on the
webpage remains qualitatively accurate. The least significant
improvement (< 10% speedup in reading) using Crunch was on
the main page of a given site, where the settings preserved a
larger percentage of navigation links (Crunch’s heuristics
distinguish between front and auxiliary pages since front pages
are often intended to operate as portals). The greatest
improvement noticed was on subsidiary pages of websites,
usually containing contentful articles.
On a side note: one of the Crunch heuristic plug-ins detects the
front page vs. a subsidiary page of a website based on URL
analysis and (sometimes) web browser error messages, and
differentiates the website settings accordingly. We added this

capability to Crunch because the kinds of HTML elements that
should be treated as “useful and relevant” content vs. clutter tends
to change depending on whether we are looking at the front page
of a site or some subsidiary page. For example, the article is
typically the main focus of the content on a subsidiary page of a
news site; however, the main page of that same news site often
has tiny bits of detail about several news stories as well as
numerous links that lead the user to other webpages on the site.
A final point is that our trials on a website fully compliant with
the W3C’s Web Accessibility Initiative accessibility guidelines,
NASA Ames Research, still show an improvement in reading
time - albeit small. Thus we believe that Crunch, and its genre
analysis presented in this paper, are valuable tools for content
extraction even on websites that are compatible with the WAI
accessibility guidelines. However, further research is needed in
this area.

5.3 Constrained screen testing

We also evaluated how well Crunch compared to other content
extraction and webpage reformatting technologies designed for
devices with limited screen real-estate. We used the same samples
as for the speech rendering tests above, and displayed both the
original webpages and the pages output by Crunch on various
combinations of handheld devices and browsers. We tested the
system on the Toshiba e805 and HP iPaq 2215 PDAs running
Microsoft’s PocketPC OS, with Pocket Internet Explorer and
BitStream’s Thunderbird browsers, respectively. We measured
the amount of content on the first screenful at both 320x240 and
640x480 resolutions. We also used a Blackberry 7100t running a
proprietary Blackberry browser and a Microsoft Smartphone i600
running Internet Explorer and Opera Mobile Browser.

The purpose of these tests was to demonstrate the increase in
“relevant and useful” content displayed on a small screen when
using Crunch vs. not using Crunch. We would like to reiterate
that, in the general-purpose case absent any model of the author’s
or reader’s intents, content is subjective. For this experiment, we
define content as the number of relevant words (whether
displayed in text or images) shown on the screen, measured by
visual inspection.

Table 4 - Constrained device testing results

Number of
words
(PDA
320x240)

Number of
words (PDA
640x480)

Number of
words
(Blackberry)

Number of
words
(Opera on
Smartphone)

I II I II I II I II

29 38 102 217 17 30 10 32
29 185 158 338 17 68 13 59
49 154 134 270 48 68 43 63
45 80 215 215 48 68 43 63
56 56 111 111 27 27 27 27

123 123 370 370 14 53 13 48
20 34 20 75 27 33 25 29
20 93 20 93 27 51 25 45
7 34 185 185 3 19 3 19

http://www.freedomscientific.com/
http://www.ibm.com/

15 112 112 112 12 30 12 28
28 35 247 247 12 34 43 43

I – without Crunch, i.e., original webpage.
II – with Crunch, i.e., the page is passed through Crunch, with
automatic genre-based settings.

From the data presented in Table 4, we see that Crunch with
genre-based automatic selection of filter settings is very useful
towards maximizing the amount of content displayed on
constrained devices. The most significant difference was on a
320x240 resolution PDA screen, where there was on average a
215% increase in the amount of content displayed on the screen.
This increase jumped dramatically up to a 750% when
considering only news articles. With 640x480 resolution, we
found an average increase of 133% of content on the first
screenful. Several of the pages tested were able to fully render
within that screenful. When testing with the cell phone browsers,
we found the results to be almost identical, almost 185%
improvement in both cases, presumably because of the very
similar screen sizes. The main difference was due to the Opera
browser’s default behavior of jumping to the “middle” of the page
where it found the largest concentration of text attempting to skip
over anticipated non-content, which was lacking on the
Blackberry. In none of our trials did a webpage rendered using
Crunch display less content on the first screenful than the original
page rendered on the same constrained device. However, the
Opera comparison is somewhat problematic, not always counting
the same words, due to Opera’s skip-to-the-middle heuristic.

We also tested the sample websites using ZoomText, a leading
low-vision screen magnifier. We found that with their standard
magnification, the number of words displayed in a conventional
web browser on a desktop running at 800x600 resolution was
comparable - within 95-105% in both the with and without
Crunch cases - to the number of words displayed on a 320x240
resolution PDA. Thus Crunch’s improvements are applicable to
those mildly to moderately visually impaired users who prefer
screen magnifiers to speech rendering (although the two
technologies can be used in combination with the same result).

6. SUMMARY OF CONTRIBUTIONS

In this paper, we consider the problem of clustering websites
according to their genre, as applied to selecting the most
appropriate amongst previously adjusted settings for an online
content-extraction web application. Webpage classification is
much more difficult than pure-text classification due to the noisy
information embedded in webpages [12] - which reminds of our
original motivation for content extraction. Utilizing snippets
produced by search engine searches for the domain name of each
website being classified, we are able to improve the frequency of
the function words used to classify that site. With these snippets
as well as the textual content on the site itself, we use existing
simple and proven techniques - Manhattan distance and
hierarchical clustering - to successfully pre-cluster a large number
of websites in an efficient manner. This pre-clustering allows the
system to classify individual new webpages not already classified
in linear time, by comparing them to the existing clusters. Our
content extraction web proxy, Crunch, uses this information to
produce better results. In addition, our approach to identifying

webpage genres may be beneficial to other applications unrelated
to content extraction, e.g., to support browsing of search engine
results by genre [7].

7. ACKNOWLEDGEMENTS

The Programming Systems Laboratory is funded in part by
National Science Foundation grants CNS-0426623, CCR-
0203876 and EIA-0202063, and in part by Microsoft Research.
Part of the work reported in this paper was conducted in
collaboration with the Columbia Intrusion Detection Systems lab,
which has been supported by grants form NSF and HS ARPA.

8. REFERENCES

[1] Javed Aslam, Ekaterina Pelehov, Daniela Rus, “A Star

Clustering Algorithm for Static and Dynamic Information
Organization", Journal of Graph Algorithms and
Applications, vol. 8, no. 1, 2004

[2] Koby Crammer, Jaz Kandola, Yoram Singer, “Online
Classification on a Budget”, Seventeenth Annual Conference
on Neural Information Processing Systems, 2003

[3] Douglass Cutting, David Karger, Jan Pedersen, John Tukey,
“Scatter/Gather: A Cluster-based Approach to Browsing
Large Document Collection”, Proceedings of SIGIR ’92,
15th ACM International Conference on Research and
Development in Information Retrieval, 1992

[4] Suhit Gupta, Gail Kaiser, David Neistadt, Peter Grimm,
"DOM-based Content Extraction of HTML Documents",
12th International World Wide Web Conference, May 2003

[5] Suhit Gupta; Gail E Kaiser, Peter Grimm, Michael F Chiang,
Justin Starren, "Automating Content Extraction of HTML
Documents" Submitted to the World Wide Web Journal,
January 2004

[6] Suhit Gupta, Gail Kaiser, "CRUNCH - Web-based
Collaboration for Persons with Disabilities", W3C Web
Accessibility Initiative, Teleconference on Making
Collaboration Technologies Accessible for Persons with
Disabilities, Apr 2003

[7] Yong-Bae Lee, Sung Hyon Myaeng, “Text Genre
Classification with Genre-Revealing and Subject-Revealing
Features”, Proceedings of SIGIR ’02, 25th ACM
International Conference on Research and Development in
Information Retrieval, 2002

[8] Tao Li, Sheng Ma, Mitsunori Ogihara, “Document
Clustering via Adaptive Subspace Iteration”, Proceedings of
SIGIR ’04, 27th ACM International Conference on Research
and Development in Information Retrieval, 2004

[9] Tom Mitchell, “Machine Learning”, McGraw-Hill
Science/Engineering/Math, March, 1997

[10] Andrew Ng, Michael Jordan, and Yair Weiss, “On spectral
clustering: Analysis and an algorithm”, In Advances in
Neural Information Processing Systems, 2001

[11] Fabrizio Sebastiani, “Text categorization”, In Alessandro
Zanasi (ed.), Text Mining and its Applications, WIT Press,
Southampton, UK, 2005

[12] Dou Shen, Zheng Chen, Qiang Yang, Hua-Jun Zeng, Benyu
Zhang, Yuchang Lu, Wei-Ying Ma, “Web-page
Classification through Summarization”, Proceedings of
SIGIR ’04, 27th ACM International Conference on Research
and Development in Information Retrieval, 2004

[13] Stefan Siersdorfer, Sergej Sizov, “Restrictive Clustering and
Metaclustering for Self-Organizing Document Collections”,
Proceedings of SIGIR ’04, 27th ACM International
Conference on Research and Development in Information
Retrieval, 2004

[14] Noam Slonim, Nir Friedman, Naftali Tishby, “Unsupervised
Document Classification using Sequential Information
Maximization”, Proceedings of SIGIR ’02, 25th ACM
International Conference on Research and Development in
Information Retrieval, 2002

[15] C.J. van Rijsbergen, “Information Retrieval”, Butterworths,
London, 2nd ed., 1979

[16] Peter Willett, “Recent Trends in Hierarchic Document
Clustering: A Critical Review”, Journal Information
Processing and Management, 1988

[17] Wei Xu, Xin Liu, Yihong Gong, “ Document Clustering
Based on Non-negative Matrix Factorization”, Proceedings
of SIGIR ’03, 26th ACM International Conference on
Research and Development in Information Retrieval, 2003

[18] Yiming Yang, Jian Zhang, Bryan Kisiel, “A scalability
analysis of classifiers in text categorization”, Proceedings of
SIGIR ’03, 26th ACM International Conference on Research
and Development in Information Retrieval, 2003

[19] Oren Zamir, Oren Etzioni, “A Dynamic Clustering Interface
to Web Search Results”, Proceedings of Eighth World Wide
Web Conference, 1999

[20] Oren Zamir, Oren Etzioni, “Web Document Clustering: A
Feasibility Demonstration”, Proceedings of SIGIR ’98, 21st
ACM International Conference on Research and
Development in Information Retrieval, 1998

[21] Tian Zhang and Raghu Ramakrishnan and Miron Livny,
“BIRCH: an efficient data clustering method for very large

databases”, ACM SIGMOD International Conference on
Management of Data, 1996

9. APPENDIX

Figure 10 - Cluster containing tech blog sites including

DigitalMediaThoughts, PocketPCThoughts,
SmartphoneThoughts and MSDN Blog

Figure 11 - Cluster containing several astronomy-related sites

including spacetoday.com, spaceflightnews.com,
spacedaily.com and spaceflightnow.com

	INTRODUCTION
	RELATED WORK
	APPROACH
	Crunch

	IMPLEMENTATION
	EXPERIMENTS & RESULTS
	Clustering
	Speech rendering experiment
	Constrained screen testing

	SUMMARY OF CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX

