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Abstract

TCP Friendly Rate Control (TFRC) is a congestion control algorithm that provides a smooth transmission rate for real-time
network applications. TFRC refrains from halving the sending rate on every packet drop, instead it is adjusted as a function of
the loss rate during a single round trip time. TFRC has been proven to be fair when competing with TCP flows over congested
links, but it lacks quality-of-service parameters to improve the performance of real-time traffic. A problem with TFRC is that it
uses additive increase to adjust the sending rate during periods with no congestion. This leads to short term congestion that can
degrade the quality of voice applications.

We propose two changes to TFRC that improve the performance of VoIP applications. Our implementation, TFRC with Token
Bucket (TFRC-TB), uses discrete calculated bit rates based on audio codec bandwidth usage to increase the sending rate. Also, it
uses a token bucket to control the sending rate during congestion periods. We have used ns2, the network simulator, to compare
our implementation to TFRC in a wide range of network conditions. Our results suggest that TFRC-TB can provide a quality of
service (QoS) mechanism to voice applications while competing fairly with other traffic over congested links.

I. INTRODUCTION

Current Internet stability depends on the end-to-end congestion control provided by TCP which is based on an Additive
Increase Multiplicative Decrease (AIMD) algorithm. This mechanism allows flows to share bandwidth fairly over congested
links. Data transfer application, such as HTTP, FTP and SMTP, greatly benefit from the bandwidth sharing and are not affected
by the drastic rate changes. Multimedia applications, by contrast, require a consistent transmission rate, since abrupt rate
changes can cause noticeable degradation in user-perceived quality. The widespread use of Internet media applications such
as audio players, IP-telephony, video conferencing and other real-time applications can significantly increase the amount of
non-TCP traffic over the Internet. Since most of this traffic has no congestion control algorithms, and given the best-effort
nature of the current Internet it can lead to TCP traffic starvation or even congestion collapse [1].

Researchers have developed TCP-friendly protocols to prevent such a collapse. Protocols are considered TCP friendly when
their long term throughput does not exceed the throughput of a TCP flow under similar network conditions. This is accomplished
by modeling the TCP throughput as an equation based on measurable network parameters such a round-trip time (RTT) and
packet loss. Senders then use this equation to modify their sending rate. The three main efforts in this area are TCP-Friendly
Rate Control (TFRC) [2], Datagram Congestion Control Protocol (DCCP) [3], and the development of rate-adaptive audio
codecs [4]. For the rest of our study, we will focus only on TFRC and will use TFRC and TCP-friendly interchangeably.

TFRC is a receiver-based congestion control mechanism designed for unicast flows operating in an Internet environment and
competing with TCP traffic [5]. TFRC is designed to be reasonably fair when competing for bandwidth with TCP flows; its
sending rate is generally within a factor of two of a TCP flow under similar network conditions. In order to have a relatively
smooth sending rate, TFRC flows respond slowly to changes in available bandwidth. The TFRC [2] protocol works as follows:

• The receiver measures the loss event rate and returns it to the sender.
• The sender uses this feedback messages to calculate the RTT
• The sender uses the RTT and the loss event rate to calculate the transmit rate.
• The sender adjusts its sending rate accordingly.

The TFRC throughput equation is based on a simplified version of the throughput equation for Reno TCP [2]:
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where,λ is the transmission rate in bytes/sec,s is the the packet size in bytes, andp is the loss event rate.

TFRC uses the loss event rate to model a protocol that reduces its data window once per congestion notification. The loss
event rate is measured in terms of loss intervals, spanning the number of packet between consecutive loss events, which are
averaged with decaying weights [6]. Also, TFRC is not a complete transport protocol, therefore, it requires to be deployed
together with transport protocols such as UDP, or DCCP [2]. Finally, TFRC is designed for applications that use a fixed packet
size and vary their sending rate in response to a congestion notification.
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TFRC has been designed to compete fairly with TCP, but little attention has been given to the quality of service (QoS) for
real-time applications [7]. A major limitation of TFRC is that it is still inherently an AIMD mechanism. This leads to short
term congestion that can degrade the quality of voice applications. In voice traffic, small increments in available bandwidth
do not affect the overall quality of the communication. Our implementation, TFRC with Token Bucket (TFRC-TB), focuses
on providing a QoS mechanism for VoIP applications. It uses discrete bit rates based on calculated audio codec bandwidth
usage to control the sending rate. This allows voice applications to manage the communication quality, since depending on the
available bandwidth the sender and receiver can utilize the appropriate voice encoding. The selected encoding rate must be less
than the calculated fair rate of the TFRC equation in order to maintain fairness with competing traffic. TFRC-TB uses a token
bucket to store the difference between the selected encoding and the sending rate calculated from the congestion equation.
These tokens can be used during a congestion period. Token buckets are widely utilized to smooth bursty traffic by forcing a
constant transmission rate.

Our work focuses on the believe that the use of discrete sending rates and the token bucket strategy will result in a more
stable sending rate, that results in a smoother traffic pattern. Also, we will verify that TFRC-TB still competes fairly with TCP
traffic when sharing a common bottleneck link. This idea was partially motivated by the Internet Architecture Board (IAB)
discussion of voice traffic congestion control [6], in which it is assured that VoIP applications that use end-to-end congestion
control, and that have codecs that can adapt to the bit rate received by the client can be successfully deployed in the current best
effort environment. Also, TFRC-TB was influenced by the voice transmission system [7] (Fig. 1), discussed in Section II-A

Fig. 1. Voice transmission system [7]

II. RELATED WORK

Below, we summarize related work for improving TFRC.

A. TCP-Friendly Transmission of Voice over IP

Francesco Beritelli, Giuseppe Ruggeri, and Giovanni Schembra addressed the problem of TCP-friendly algorithms for real-
time applications which are more concerned with QoS than fairness with TCP [7]. They analyzed the problem of transmitting
voice using TCP-friendly protocols and proposed a VoIP architecture for improving the subjective quality of the transmissions.
Their voice transmission system (Fig. 1), has three main components, the TCP-friendly algorithm, the voice encoder and the
encoder controller.

The voice encoder receives the input from the voice source and uses a multi-rate encoder that adapts to the bandwidth
imposed by the TCP-friendly rate control mechanism [7]. The voice encoder sends the voice frame to the packetizer which
prepares the packet for the TCP-friendly rate controller. The encoder controller uses the information from the TFRC algorithm
to select the appropriate voice encoding. Since for voice applications a high loss rate may not produce acceptable quality
for voice communication, the authors proposed a change for TCP-friendly protocols to take into consideration the RTT delay
variation. When the delay variation surpasses a decision threshold, the application cuts its rate in half and goes into a slow-start
phase. Their experiment focused on a set of voice sources sharing a common bottleneck link. Their results showed an increase
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in perceived user quality on sets of sources, which consists of 10 to 40 unique voice flows over a single link of capacity 150
kbit/s, simulated n ns-2 [7].

B. TFRC for Voice

Sally Floyd and Eddie Kohler are currently working in a variant of TFRC for VoIP that provides fairness to applications
that send small packets. They argue [6] that it is acceptable for VoIP flows to assume that network limitations are in bytes per
second, which measure congestion in terms of the available bandwidth, instead of the more common measurement of packet
per second which relates to routing functions such as header processing and packet forwarding. They proposed the following
changes to the basic TFRC protocol:

• set the nominal packet size to 1460 bytes,
• reduce the allowed transmit rate to account for the packet header,
• impose a minimal interval between packets of 10 ms.

These changes not only help the flow to share the available bandwidth in bytes per second, but also discourage application
from using extremely small packet sizes.

A faster restart is also introduced to improve voice application responsiveness after idle periods. Faster restart allows a idle
flow to quadruple its sending rate in every congestion free RTT up to their previously achieved transmission rate [8]. For
example, we will consider a G.711 VoIP call, which has a sending rate of 12 kB/s, and a estimated RTT of 0.15 seconds.
The sending rate account for the audio packet size and the headers of the IP, UDP and RTP protocols, which are commonly
used for the audio packets [7]. During the silent periods the source sending rate will be around 1 kB/s, since the application
still sends a packet every couple of RTT to maintain network state information. Using the faster restart and, assuming no
congestion is detected during the restart phase, the flow requires only 2 RTTs to achieve the previous stable sending rate of
12 kB/s, current implementations of TCP and TFRC would require 4 RTTs.

III. EXPERIMENTAL EVALUATION

We tested TFRC-TB rate control extensively using the ns-2.28 [9] network simulator. We used the dumbbell topology for
our experiments (Fig. 2). This topology allowed us to evaluate the effect of different congestion mechanisms over a shared

Fig. 2. Dumbbell Topology for experiment simulation.

bottleneck link [10]. We focused on measuring the fairness between competing flows and the variance of the transmission rate
for individual flows. We tested our implementation under a wide variety of traffic mixes that not only highlight the properties
of the mechanism, but also attempt to simulate realistic network environments. All of our simulations use a common bottleneck
link of 1.5 Mb/s and 20 ms delay using Random Early Detection (RED) queue management. To simulate realistic voice traffic,
our TFRC-TB rate corresponds to the rate generated by the G.711 (64 kb/s), G.726 (32 kb/s), G.728 (16 kb/s), G.729 (10
kb/s) and G.723 (6.4 kb/s) codecs. The transmission rate for each codec is calculated by adding size of the header of the IP,
UDP and RTP protocols to the audio packets.

IV. SIMULATION RESULTS

In order to prove that our TFRC-TB implementation can be safely deployed in Internet, we must demonstrate that it competes
fairly with other network traffic when sharing a common bottleneck link. Also, we need to analyze the rate variance of TFRC-
TB in comparison to TFRC during realistic network traffic scenarios. Finally, we investigate the effect of idle periods on the
transmission rates for voice traffic.

A. Fairness

Our initial test focuses on the fairness of TFRC-TB when competing with TCP traffic over a shared link. We conducted
tests over a wide range of network conditions and will only present a summary of our work. These tests consist ofn TCP and
n TFRC flows sharing a common bottleneck link. We calculate the mean throughput for each flow, this value is normalized
in relation to the fair share per flow of the link bandwidth. The results (Fig. 3) , show that our TFRC-TB implementation is
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Fig. 3. Normalized mean throughput of TCP flows competing with TFRC or TFRC-TB flows over shared bottleneck link.

comparable in fairness to TFRC. Furthermore, it highlights that, when a small number of TFRC-TB flows are present on the
congested link, TCP gets more than its fair share of the throughput. This is because TFRC-TB uses the discrete bit rate of the
available codecs to control transmission rate. Our implementation does not transmits faster than the sending rate of its best
quality codec. This is an acceptable limitation for voice application since we have no necessity to transmit faster than this.
The results also show a limitation of TCP-friendly protocols, since they are slow to respond to changes in link bandwidth
on periods of high congestion when it uses more that its fair share of the available bandwidth. This is a characteristic of
the TCP-friendly protocol, since the behavior for TFRC-TB when the sending rate is less than the lowest encoding is solely
dictated by TFRC. Upon closer inspection of the traffic shape (Fig. 4) , it shows that our TFRC-TB provides a more stable

Fig. 4. Sample set of TCP flows competing with TFRC or TFRC-TB throughput from Figure 3 as a function of time.

sending rate when compared to TFRC, but also the TCP flows receive more bandwidth with TFRC-TB than when competing
with TFRC.

B. Coefficient of Variation

For the next simulation scenario, we want to test the variance in the sending rate for a single TFRC-TB flow and a single
TFRC flow under similar network conditions. In order to quantify the variance of a flow we will use the coefficient of
variation [5], which is the standard deviation divided by the mean. It can be defined using the following function for the
sending rate R over an interval of time as follows:

Rδ,F (t) =
packet size∗ number of packets send betweent and t + δ

δ

In this simulation scenario we are looking to model the effect of competing web traffic on the smoothness [5] of our TFRCTB
implementation. We define smooth traffic as one that is able to hold a consistent transmission rate for a determine period of
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time. Our simulation consist of a long-lived TCP flow, a long-lived TFRC-TB or TFRC flow and a series of UDP on and off
heavy-tailed distribution flows. The UDP flows have a mean on period of one second with a sending rate of 200 Kb/s and a
mean off period of two seconds. The simulation ran for 2500 seconds and averages five runs, each set of runs used between
50 and 100 on and off connections.

Our test results (Fig. 5) showed that TFRC and TFRC-TB have a similar coefficient of variation. The coefficient of variation

Fig. 5. Coefficient of Variation of TRFC and TFRC-TB when competing with web traffic.

of the TFRC-TB simulations for 16 on and off source is very close to zero because of the maximum sending rate limitation
discussed in Section IV-A. The other difference that can be observed is that for TFRC-TB the coefficient of variation remains
more stable across the various time-scales. We believe this is caused by a smaller quantity of larger magnitude rate changes
from the discrete audio rates implemented in TFRC-TB. We had expected TFRC-TB to have a smaller coefficient of variation
that TFRC, but we are satisfied with the results since a typical TCP connection under similar scenarios can have a coefficient
of variation four times this value [5].

C. Impact of Voice Activity Detection

The final aspect of our implementation studied is the responsiveness of TCP-friendly rate control to VoIP silence periods.
Our investigation so far has focused on the fairness and variance of TCP-friendly rate control using long lived flows with
constant senders. This model does not represent the typical voice communication where senders have similar mean ON and
OFF periods. This a major concern for voice application, since it not acceptable for users to open and close a connection
before resuming the voice call. Also, current networking practices do not allow a idle sender to maintain an active sending
rate. S. Floyd and E. Kohler [8] discussed that it is reasonable for an application that contributes to transient congestion, by
remaining idle during silence periods, to improve it responsiveness after silence periods by a faster rate ramp up. They propose
a faster restart mechanism that allows a idle VoIP connection to quadruple their sending rate every congestion free RTT, until
the last achieved rate.

For the next set of simulations we use a long lived TFRC or TFRC-TB flow with 10 second talk spurts, and 10 second
silent periods. Since we wanted to focus on the impact of voice activity detection and the connection restart mechanism, not
on the actual quality of the voice communication these value are sufficient for our experiment. We also use 25 on and off
sources, as defined for the simulations in Section IV-B, for background traffic. We compared both TFRC and TFRC-TB using
a TCP like slow-start mechanism (Fig 6), and using the fast restart algorithm (Fig 7). The fast restart allows the flows to

Fig. 6. Voice over TFRC or TFRC-TB with no fast restart.

resume their previous sending rate in a very consistent manner, but on some cases it causes congestion in the middle of the
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Fig. 7. Voice over TFRC or TFRC-TB with fast restart.

talk spurt. This is especially highlighted on the TFRC-TB graph of (Fig 7), where the transmission rate is reduced during
voice activity periods. On the other hand, the slow-start mechanism has more variance in the transmission rate after the idle
periods, but it seldomly significantly reduce the transmission rate during the length of the talkspurt. These experiments do not
provide conclusive evidence that any of the mechanism is better than the other.

V. CONCLUSION

In this paper we have proposed a QoS mechanism for voice transmission using TCP-friendly rate control. Our algorithm,
TFRC-TB, uses discrete sending bit rates and a token bucket to provide QoS parameter to voice traffic. We extensively tested
our implementation under the ns2 simulator. TFRC-TB is able to maintain fairness when competing with TCP traffic under a
wide range of network conditions. It has demonstrated that it is able to successfully use the discrete sending rates to maintain
a more constant transmission rate. This proves that it is possible to develop QoS aware algorithms that can be implemented
at the end host without requiring further changes in the current network architecture and that is safe to be deployed in best
effort networks.

VI. FUTURE WORK

Currently TFRC-TB has only been simulated under ns2. Thus an actual implementation will be a natural step in the
development of TFRC-TB voice applications. Another interesting aspect that we have yet to test is user perception of the
proposed QoS mechanism. Currently, it is assumed that higher bit rates correspond to better quality as was the case in the
older codecs. This is no longer the case with the wide range of audio codecs that are currently available. In order to improve
TFRC-TB responsiveness to calculated available bandwidth, the TFRC protocol headers can be extended to help the sender
and the receiver agree on the codec. The transmission rate after idle periods for voice applications is another area for future
research.
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