
Performance and Usability Analysis of Varying Web Service
Architectures

Michael Lenner

Department of Computer Science
Columbia University

mml2108@cs.columbia.edu

Henning Schulzrinne
Department of Computer Science

Columbia University
hgs@cs.columbia.edu

Abstract

We tested the performance of four web
application architectures, namely CGI, PHP, Java
servlets, and Apache Axis SOAP. All four
architectures implemented a series of typical web
application tasks. Our findings indicated that PHP
produced the smallest delay, while the SOAP
implementation produces the largest.

1. Introduction

As the World Wide Web grew, it became clear

that simply serving static HTML web pages would
not be adequate to support the complex needs of the
various new and emerging web applications.[3] In
the past, HTML web servers followed the basic
HTTP protocol [11] to receive a client request, and
return a static document with HTML content. In this
design, the HTML webpage was a physical file the
web server accessed and returned. Because of this,
all HTML content had to be created beforehand and
then saved where the web server would have access
to it. Not only was this impractical for web
applications that needed to display frequently
changing data or large volumes of data with similar
structure, but it also presented storage issues as the
amount of static HTML data that was required to be
saved increased.

The introduction of server-side processing that
produced dynamic HTML content was the solution.
One of the first such architectures to become a
standard was the Common Gateway Interface
(CGI).[15] CGI allowed web developers to author a
script that would run automatically on the web
server when the proper URI was accessed. This
script could read input parameters from the user,
access a server side data source, and of course,

produce dynamic HTML to be returned to the
requesting host.

Following CGI, there were other such server
side processing architectures that were developed.
PHP [12], which provided all the functionality that
CGI did, provided the ability to embed dynamic
instructions within a static HTML document, such
that the web server would execute a sort of
preprocessor before sending a response to the client.
While both PHP and CGI provided powerful
functionality to a web developer, they lacked the
robustness of a more powerful, higher level language.

To allow a web application to harness the
power of the more powerful languages, a number of
technologies were developed. One of these was Java
servlets. Java servlets are applications written in
Java that run on a Java application server. An
application server is a web server that is also capable
of running high level language applications to
produce dynamic HTML content for the requesting
client. Additionally, the application server provided
not only the framework in which to run these
servlets, but also a wide array of supporting
functionality for customizing the web application
behavior. To name only a few, application servers
provide the ability to use load balancing
functionality, persistent and non-persistent objects,
and transactional processing. These advancements
gave web developers the power to write web
applications that match the functionality of a
standalone program.

Finally, one of the more recent advancements
in web applications has been the XML Simple
Object Access Protocol (SOAP) standard.[13]
Distinguishing this technology from the previous
three, this advancement was not in the form of a new
means for server side processing resulting in
dynamic HTML content. What SOAP brought to
the table was a new way for a client and host to

communicate complex data. While the previous
three technologies gave much more power to server
side processing, the output to the client was not
standardized beyond the HTTP specification. The
SOAP standard created a protocol for the data
contained within the HTTP requests and responses
that allowed web applications to communicate more
complex data than simply HTML tags.[3]
Additionally, through the use of the Web Service
Description Language (WSDL) [14] standard, the
SOAP architecture allowed for a universally
accepted format for exposing a web application for
automatic access via a SOAP client.

2. Performance Testing Environment

The above mentioned four web service

architectures comprised the subset which will be
tested. All applications will be tested in their ability
to receive an input parameter from the user, process
that parameter, and respond to the user with
dynamically created content. CGI, PHP, and Java
servlet returned HTML, while the SOAP web
service returned XML.

The overall metric measured in these time
trials was response time. That is, the start time of
the access was compared against the end time of the
response for the overall response time. No
measurements of throughput for the tested
architectures was made.

2.1 Testing Setup

In order to create a controlled environment in

which to test these architectures, the following setup
was used:

1) Web Server: The web server used was the

Apache HTTP server, version 2.0.54. By default,
the Apache web server is capable of handling
CGI scripts.

2) PHP Module: Using the Apache web server’s
ability to use dynamically loadable shared
modules, the PHP shared module was loaded
into the Apache web server for PHP support.
PHP version 5.0.4 was installed.

3) Application Server: We used the Jakarta Tomcat
application server, version 5.5.

4) Apache-Tomact Connector: To keep the testing
environment as close to a control as possible,

We forced all client requests to go through the
Apache web server, including those that are
requesting URL’s served by the application
server. This required the installation of another
shared module into the Apache web server to
allow for communication via the web server and
the Tomcat application server. We installed the
mod_jk2 connector. [6]

5) Database Server: Since some of the benchmark
functionality testing included database access,
we installed the MySQL database server, version
4.1.12. [9]

6) SOAP Server: Installation of a SOAP
implementation was required to respond to the
SOAP requests. We used the Apache Java Axis
SOAP implementation, version 1.2. Axis is
actually a Java servlet that runs within the
Tomcat application server.

Below is a diagram showing the overall data flow of
the testing environment.

Figure 1: General data flow for web requests and

responses

As shown, all incoming requests pass first through
the web server. In the case of CGI and PHP, the
processing is done within the web server, including
access to the database if necessary. Servlets and
SOAP applications, requests are passed to the
application server, which in turn sends the results
back to the web server. All responses are sent back
to the requesting host via the web server.

2.2 Web Service Benchmark Functionalities

As stated, we used a suite of conceptual tasks

that each of the four tested architectures
implemented.[1][2] Each task was meant to exercise
that architectures’ ability to accomplish a commonly
used web application design. What the tasks have in

Web Server

User Requests

Application Server

database server

Responses
(HTML or XML)

Connector requests
and responses

JDBC requests
 and responses

DBI / PHP
library calls

common is that each requires the client to supply
one input parameter, which is read by the web
application. Then, the application responds to the
client with either an HTML or XML message. We
used a total of four tasks in the benchmark suite.

Simple Database Access: Implementations
of this task read in one parameter from the user’s
HTTP request. This parameter was used as part of a
single select query accessing one table of the
database. The returned result consisted of one tuple
from that database table, the specific tuple
depending on the input parameter from the client.
The result was then returned as an HTML web page
containing the data within the returned tuple. In the
case of the SOAP implementation, the returned data
was an XML encoded string array, each string
containing one item from the database tuple.

Large Database Access: This task is much
the same as the previous, except for the fact that a
large data set is returned to the user. Whereas the
previous task returns one tuple, this task returns data
on the order of 15,000 tuples. Again, the specific
data is dependent on a user input parameter
contained within the HTTP request. As was the case
with the previous task, a simple select query was
used on one table in the database. All data returned
was via an HTML response, except, of course for the
SOAP implementation. In this case, raw XML
(within the SOAP envelope) containing the database
tuples was returned.

Large File Access: Implementations of this
task were required to read in one large text file
(approximately 4 MB) and return the text to the user.
The selection of the file was determined by a user
supplied input parameter contained within the HTTP
request. Results were returned via an HTML
response except for the SOAP implementation
which returned a single XML encoded string
containing the text.

Null Operation: In order to aid in properly
calibrating the performance results, we implemented
a null task using all four architectures. This task
requires no input from the requesting host and
simply returns a “Hello World!” string back to the
requesting client. In calibration, normally a true
non-operation would be ideal, however for the web
application domain this type of function does not
exists. Regardless, the data provided still provides a
valid starting point for performance testing and
evaluation.

2.3 Gathering Performance Metrics

The issue most often arrived at in attempting

to measure the performance of these applications is
in trying to maintain a controlled environment. To
that end, testing was done at specific points in the
data flow of a URL access common to all four
architectures. As shown in Figure 1, all accesses
arrive via the web server and all responses are sent
via the web server. Therefore, we used the web
server as the ultimate authority in terms of response
times of the varying architectures.

Upon reception of the initial HTTP request,
the web server logs the access as well as the time the
access was received. This gives us a valid start point
at which to begin measuring the web applications
response time. Once the web server has served the
request back to the requesting host, a log entry, with
the current time, is made once again. This is used as
the completion of the web applications’ response
time.

As shown in Figure 1, a testing strategy such
as this does penalize the applications that run on the
application server as compared to those that run on
the web server. However, in testing we feel that this
penalty is warranted, as these applications are
required to run on such an application server, which
is a necessary level of complexity the other
architectures do not have.

To accurately record these start and end times
for each web application access, we took advantage
of the stages contained within the request loop the
Apache web server uses to serve requests. [4] Once
the web server receives an incoming request, it reads
the HTTP headers and verifies it is a valid request.
The very next step is what is called the Post Read
Request Phase, and shared modules can be written to
be activated at this stage. For testing, we wrote a
module that is activated during post read request.
The module simply reads the URL being accessed,
and logs the access to a file with the current time.
This method gives a valid start time.

In the request loop, the final stage, which
occurs directly after the response is served, is the
logging stage. However taking advantage of this
stage is not as simple as using the Apache custom
log feature to record time stamps. Doing so will
produce erroneous results as the current time cannot
be accessed via the custom log format, only the
access time, which is recorded at some earlier point

in the request loop cycle. Instead, we forced the
custom log to pipe to a small application that
recorded the URL as well as the current time, giving
an accurate time for the completion of the response
phase of the request loop.

2.4 Testing Environment Controls

Further measures were taken to ensure as

close to a controlled testing environment as possible.
First, all server daemons were run on a single host.
This was done as to remove network latency from
the performance results. While a case could be
made that having a web, application, and database
server all running on one host could introduce
possible scheduling delays, these factors were
deemed far less significant than those that would
arise from running on separate hosts.

Additionally, no web browser was used in
accessing the web applications. This was done for
two reasons. The first being that the addition of the
web browser into the data flow could add
unnecessary variables as the web server’s logging of
the completion of the response may depend on the
browser’s ability to receive the response. Second,
the SOAP applications could not be accessed via the
web browser (at least not directly). Instead, all
applications were accessed via simple client code
writing in Java, running on the same host that all the
services were deployed on.

3. Performance Testing Results

Using the testing environment described

above, a series of tests were executed on the
implemented architectures using the benchmark
suite of web application tasks. Two separate clients,
both written in Java, were used to access the various
web applications deployed on the web and
application servers. The first client accessed those
web applications that were exposed via the HTTP
Post method. These included the CGI, PHP, and
Java servlet. The second client was used to send
SOAP requests and receive SOAP responses. Both
clients made one hundred accesses to the various
web applications per test execution to provide a
valid sample size for performance metrics.

As accesses were made by each client, a log
file was built which contained the initial request time
as well as the final response time for each URL

access. Once complete, a simple Perl script was
used to analyze the log and provide performance
statistics for each URL.

3.1 SOAP Access Issues

In performing the access time trials, it was

discovered that the SOAP implementation was
incapable of handling datasets on the order that the
Large Database and File Access tasks required. This
was not due to any limitations in the Axis SOAP
servlet that was processing all SOAP requests but
rather to the testing environment itself.

As stated earlier, all requests came in via the
web server, and, if necessary, were forwarded to the
application server (and returned back) via an Apache
to Tomcat connector. It was at this point in the data
flow that the SOAP implementation broke down. In
attempting to send the very large SOAP envelope
(all XML plain text) back to the Apache web server,
the connector would crash.

Because of this limitation, the SOAP
architecture could not be tested for the Large
Database and Large File Access tasks. While the
functionality of the application could be tested by
accessing the services directly from the application
server (and therefore bypassing the connector),
doing so would violate the control of the experiment.
Additionally, circumventing the web server in the
data flow does not allow for the performance metric
gathering as described earlier.

Since this limitation is not truly a quality of
the SOAP implementation but rather of the
connector, it cannot be counted against the SOAP
architecture. The SOAP response is returned as
expected when the Web Service is accessed from the
application server directly.

That being said, it is a very common set up for
a system to use a web server as its common gateway
and make use of connector technology to access
applications that must run under an application
server. Because of the fact that the SOAP
implementation requires the return of a fully formed
SOAP envelope, it would not be uncommon for such
a large piece of data to cause a crash. Therefore, in
this respect, we think this issue can be seen as a
drawback to the SOAP implementation.

3.2 Initialization Issues

In the process of testing, it was determined

that for certain web service architectures, there was a
considerable increase in delay for the very first
access. Once that access was complete, the
performance time stayed relatively constant at a
value significantly lower than that of the first access.

Below (Figure 2) is a table showing typical
first access skews for the various architectures along
with the skew factor from the average access time.
In all cases there is at least a doubling of the average
access time, and in some cases as high as a factor of
39 increase.

Architecture Task

Average
First

 Access Time
(s)

Average
Access Time

(s) Skew Factor

Simple DB 0.304 0.126 2.413

Long DB 18.629 1.610 11.571

File Access 11.282 0.898 12.563

Simple DB 0.112 0.005 22.400

Long DB 17.081 0.551 31.000

File Access 11.588 0.220 52.673

Simple DB 0.530 0.025 21.200

Long DB 19.180 0.485 39.546

File Access 10.780 3.823 2.820

Simple DB 1.051 0.472 2.227

Long DB

File Access

CGI

PHP

Java Servlet

SOAP

Figure 2: Initialization latency chart

It is interesting to note that the overall skews

seem to be higher for both the PHP and Java servlet
architectures than for that of CGI. This can most
likely be attributed to the fact that both PHP and
Java servlet require the use of an installed shared
module in the Apache web server, whereas the CGI
implementation does not. It would make sense that
the native Apache web server code would run faster
than that of installed modules.

Additionally, these results are effected by the
order of magnitude of a given application’s response
time for a given task. In the case of the architecture-
task combinations that had a larger average access
time, in general, the skew factor was less dramatic.
This is to be expected as the above mentioned
running of shared module code most likely
contributes a constant time latency, which would
seem much larger in comparison to an application
whose average time is quite small. The one
exception to this is the large database access via Java
servlet. In the majority of the time trials, this access

demonstrated response times with increases by a
factor of 40. This is most likely attributed to the
JDBC driver used to connect the servlet with the
MySQL database.

Finally, database caching behavior can be
cited as well as one of the reasons for this
initialization skew. While the caching behavior of
the MySQL database is out of the scope of this paper,
we can assume that the initial execution of the SQL
query will likely be the most expensive one.

3.3 Final Response Time Results

After removing initial accesses from the

results, the data below was obtained. In Figures 3-6,
average access times are shown for each of the four
benchmark tasks, including the Null task.

0

20

40

60

80

100

120

CGI PHP Java Servlet SOAP

Architecture

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 3: Null (Hello World) task average response

times

0

20

40

60

80

100

120

140

CGI PHP Java Servlet SOAP

Architecture

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 4: Simple database task average response times

The order of performance, from fastest to slowest,
varied across all four tasks. Beginning with the
“Hello World” operation, it is quite clear that the
SOAP implementation requires the greatest
overhead. This was as expected as the generation of

the XML SOAP envelope is an additional step that
none of the other architectures require.

As far as overall performance, the PHP
implementation finished fastest in three out of the
four tasks, while finishing in second in the
remaining task. The CGI implementation performed
the slowest, finishing last in two out of the four tasks.

0

200

400

600

800

1000

1200

1400

1600

1800

CGI PHP Java Servlet

Architecture

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 5: Large database task average response times

0

500

1000

1500

2000

2500

3000

3500

4000

4500

CGI PHP Java Servlet

Architecture

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 6: Large file access task average response times

Since the SOAP implementation was not
testable in two of the four tasks, it was not
considered in the overall performance comparison.
However, it can be assumed from the Null operation
results as well as the fact that the added SOAP
envelope creation is required, that the SOAP
implementation would perform the slowest overall if
forced to complete the larger tasks. In fact, rough
estimates using sent and received times from the
SOAP clients show that the large database (11.297
sec. average) and the large file access (9.534 sec.
average) response times support that claim.

3.4 Response Time Consistency

Worth mentioning is the fact that for almost

all tasks across all architectures, the response times

remained relatively close to constant. When
comparing standard deviations to the means, the data
point spreads were small. For example, the CGI
implementation of the large database access task had
a mean response time of 1.934 seconds, with a
standard deviation of 0.275, a full order of
magnitude less (as explained in Section 3.2, these
values are calculated excluding initial response
times).

For tasks that had much smaller mean run
times (on the order of 10 ms and less) the standard
deviations appear larger when compared to the mean.
For example, the Java servlet implementation of the
simple database access task had a mean execution
time of 30.4 ms, with a standard deviation of 86 ms.
While this value seems high when compared to the
mean, one must keep in mind a fact of analyzing
response times. That point is that all execution
times are of course bounded by zero. This
effectively skews the results normally obtained by
comparing a standard deviation with a mean, as data
points cannot be normally distributed as would be
expected. Therefore while under a normal
distribution an 86 ms standard deviation would seem
high in comparison to the 30.4 ms mean, in this
scenario it is actually still quite low.

The one exception to consistent response time
results was the Java servlet implementation of the
large file access task. While all other
implementations of this task remained at a somewhat
constant response time, the servlet data yielded a
1.923 second mean, with a standard deviation of
3.396 seconds. Data points ranged from 0.83
seconds to some very lengthy response times over
17 seconds. These high data points were not merely
outliers as they appeared consistently in all trials.

We have come to believe the explanation lies
in the Java implementation of file I/O. All file input
and output is stream based, and in the case of the
Java servlet, we implemented a FileReader class
wrapped in a BufferedReader class (J2SE ver.
1.4.2). The workflow through which the file data
travels before actually being sent out to the
requesting client is significantly complex when
compared to the other architectures. By introducing
this much additional program logic, the response
time would understandably have larger variations.
Additionally, the servlet implementation of this task
read and sent out file data within the same loop, as
opposed to reading in all data into a buffer, then
outputting it all at once. Again, this introduces

further complications in terms of possible timing
issues between the output stream from the servlet to
the web server and the input stream from the servlet
to the file.

4. Usability Testing Results

By nature of any usability test, the results can

tend to be somewhat subjective. In determining
what architecture is the most intuitive, or most
straightforward, it is difficult to report impartial data.
To produce the most objective results, heuristic user
trials and evaluations would be required, however in
the case of this paper, only the findings of the
authors are taken into account. With that in mind,
every attempt was made to make the usability
analysis as empirical as possible.

To that end, we have broken down the
implementation of the four benchmark tasks into
smaller, logical design pieces. Then, for each piece,
we discuss the ease of difficulty of implementation.
Finally, we end with some architecture specific
benefits and limitations.

4.1 Deployment

Examining the Null implementations is a good

point at which to evaluate the level of effort in
simply deploying a web service under each
architecture. Deployment here does not consider test
environment setup, as covered in Section 2.1.
Rather, this section deals with implementation after
the framework is in place.

For a CGI Null operation, little is required.
The empty CGI file must be placed in the proper
location for the web server to access, and also must
be set with the correct permissions. In the case of
Perl CGI, no compilation is required (as Perl is
interpreted), however an empty CGI executable
written in C++ would still need to be compiled prior
to deployment.

To deploy a PHP service that, in effect, does
nothing, is absolutely trivial. It is no more difficult
than writing an HTML static page in plain text that
merely has empty <html> and <body> tags.

In the case of the Java servlet, a java class
must be created that inherits from the
HttpServlet class. In the case of the Axis
SOAP service, a deployment descriptor XML
document must be included along with a Java class

that executes the actual service functionality. In
both these cases, the level of complexity is far
greater than that of CGI or PHP.

The Axis SOAP implementation does
however provide an alternate deployment strategy
that rivals CGI and PHP for simplicity. By writing a
Java class that implements the Web Service
functionality (in the Null case, a class with a method
that returns a “Hello World!” string), and simply
giving it a “.jws” file extension, the Axis SOAP
implementation will automatically create the service
without requiring any XML descriptors.

4.2 Database Access

For all architectures, additional modifications
were required to access the MySQL database. In the
case of PHP, this modification was the most trivial,
as a compiler option was provided when building the
PHP shared module to include MySQL support. In
the case of the other architectures, a separate
database package was required. This package had to
be downloaded, installed and configured.

There are three different API’s used to access
the MySQL database used in the four architectures.
Those include Perl DBI, the PHP API, and the Java
JDBC API. The PHP API requires four function
calls to achieve the large database access
implementation, the Perl DBI uses six, and the
JDBC requires seven.

4.3 HTML Output

HTML output of course applies to all

architectures except the SOAP implementation, as
that does not return HTML. Using Perl CGI, all
HTML output is sent to the client using print
statements. Within the print statements are the
actual HTML tags, with dynamic data included as
well. This is a similar method used in the Java
servlet architecture, using println statements
from a Writer object from the
HttpServletRequest object. PHP stands alone
in that an actual HTML document is created with the
dynamic content being provided by embedded PHP
statements. In terms of simplicity, the PHP
implementation again seems superior.

4.4 SOAP Client Access

A distinguishing factor of a SOAP

implementation is the XML SOAP Envelope that
requests and responses are sent within. This makes
accessing a SOAP web service (and receiving as
well) more complex. In the case of the remaining
three architectures, they are simply serving HTML
over HTTP. As this practice is so common, the
ability to receive such responses is embedded into
any web browser (via the <form> element) as well
as many programming languages
(URLConnection class in Java).

Because of this, an additional level of
complexity is required to access SOAP web services
as compared to the others. That being said, SOAP
web services were design to do much more than
send simply HTML, and from that standpoint the
comparison is somewhat unfair. However, from a
pure usability standpoint in terms of deploying
general web applications, the requirement of a
special client to send and receive messages within a
SOAP envelope makes the SOAP architecture more
complex to use and implement.

5. Conclusion and Future Work

The intent of this paper was not to discover
the “best” architecture to use for a web service. If
anything, the results have shown that each have pros
and cons, as well as their specific domain in which
they excel.

In terms of overall quantitative response times,
the results are self-explanatory. As shown from
Figures 3-6, overall, the PHP architecture
implementations performed the best across the
widest range of tasks. In terms of usability, we
would argue again that PHP came out ahead of the
others. Taking into account the trivial deployment
strategy, an easily configurable and usable database
API, and an embedded HTML design, it is not
surprising at all that PHP has become one of, if not
the most, popular method for implementing web
applications on the Internet today.

For future work, we would like to of course be
able to fully test the SOAP implementation as we
were unable to do. Using possible modifications to
the connector application, or perhaps a separately
developed connector, future tests could be closer to
complete. Additionally, we would like to expand

the benchmark task suite to include tasks more
suited for the SOAP protocol. These tasks would
include passing complex data back and forth
between clients, to be used by applications in
complex ways. It would be interesting to see how
the “lower level” architectures could handle passing
that type of data, and with what performance results.

6. References

[1] Lance Titchkosky, Martin Arlitt, Carey

Williamson. A Performance Comparison of
Dynamic Web Technologies, Proceedings of
IEEE MASCOTS 2003, October 2003

[2] Giulano Casale. Combining Queueing
Networks and Web Usage Mining Techniques
for Web Performance Analysis, 2005 ACM
Symposium on Applied Computing, 2005

[3] Madhusudhan Govindaraju, Aleksander
Slominski, Kenneth Chiu, Pu Liu, Robert van
Engelen, Michael J. Lewis. Toward
Characterizing the Performance of SOAP
Toolkits, Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing,
Novermber 2004

[4] Lincold Stein, Doug MacEachern, Writing
Apache Modules with Perl and C, O’Reilly &
Associates, 1999

[5] Apache Software Foundation, “Axis User’s
Guide,” http://ws.apache.org

[6] Apache Software Foundation, “The Apache
Jakarta Tomcat Connector Documentation
Index,” http://jakarta.apache.org

[7] Eric Armstrong, Jennifer Ball, Stephanie
Bodoff, Debbie Bode Carson, Ian Evans, Dale
Green, Kim Haase, Eric Jendrock, “The J2EE
1.4 Tutorial,” http://java.sun.com/j2ee

[8] Lei Xu, Baowen Xu, Jixiang Jiang. Testing
Web Applications Focusing on Their
Specialties, ACM SIGSOFT Software
Engineering Notes, January 2005

[9] MySQL AB “MySQL Reference Manual,”
http://www.mysql.com

[10] P. Barford and M. Crovella. Measuring Web
Performance in the Wide Area, ACM
Performance Evaluation Review, September
1999

[11] W3C, HTTP – Hypertext Transfer Protocol,
http://www.w3.org/Protocols/

[12] Mehdi Achour, Friedhelm Betz, Antony
Dovgal, Nuno Lopes, Philip Olson, Georg
Richter, Damien Seguy, Jakub Vrana, PHP
Manual, http://www.php.net/manual/en/

[13] W3C, SOAP Version 1.2,
http://www.w3.org/TR/soap/

[14] W3C, Web Services Description Language
Version 1.1, http://www.w3.org/TR/soap/

[15] W3C, Common Gateway Interface,
http://www.w3c.org/CGI

A. Appendix

Below are listings of the web service implementations using the four architectures tested.

A.1 CGI – Simple Database Access (Simple_db.cgi)
#!/usr/bin/perl -wT

use DBI;
use CGI;

$cgi = new CGI;
$id = $cgi->param("player_id");

print $cgi->header;

get data
$db_handle = "database=ws;mysql_socket=/tmp/mysql.sock";
$db = DBI->connect("DBI:mysql:$db_handle", 'mike') or die "Can't connect: " . DBI->errstr;
$st = $db->prepare("select * from Roster where player_id = $id") or die "Can't prepare: " . $db->errstr;
$st->execute() or die "Can't execute: " . st->errstr;

print "<html>\n";
print "<head></head>\n";
print "<body>\n";

output data
@data = $st->fetchrow_array();
print <<"EOF";
<table cellspacing="4">
<tr>
<th>First Name</th><th>Last Name</th><th>Pos</th><th>Order</th><th>OPS</th>
</tr>
<tr>
<td>$data[2]</td><td>$data[1]</td><td>$data[3]</td><td>$data[4]</td><td>$data[5]</td>
</tr>
</table>
</body></html>
EOF

disconnect
$db->disconnect;

A.2 PHP – Simple Database Access (Simple_db.php)
<html>
<head></head>
<body>

<?php
// connecting
$link = mysql_connect('localhost', 'mike') or die('Could not connect: ' . mysql_error());

// selecting db
mysql_select_db('ws') or die('Could not select database');

// retrieve parameter from html form
$id = $_POST['player_id'];

// Performing SQL query
$query = "select * from Roster where player_id = $id";
$data = mysql_query($query) or die('Query failed: ' . mysql_error());

// process results
$data = mysql_fetch_array($data, MYSQL_NUM);
?>

<table cellspacing="4">
<tr>
<th>First Name</th><th>Last Name</th><th>Pos</th><th>Order</th><th>OPS</th>
</tr>
<tr>
<td><?php echo $data[2]?></td>
<td><?php echo $data[1]?></td>
<td><?php echo $data[3]?></td>
<td><?php echo $data[4]?></td>
<td><?php echo $data[5]?></td>
</tr>
</table>

<?php
// cleanup
mysql_close($link);
?>

</body>
</html>

A.3 Java servlet – Simple Database Access (Simple_db.java)
import javax.servlet.http.*
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.ResultSet;
import java.sql.Statement;

public class Simple_db extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws java.io.IOException {

 try {
 // grab data from http request
 String id = req.getParameter("player_id");

 // connect to db
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection conn = DriverManager.getConnection("jdbc:mysql://localhost/ws?user=mike ");

 // set up statement
 Statement stmnt = null;
 ResultSet rs = null;

 // execute
 stmnt = conn.createStatement();
 rs = stmnt.executeQuery("select * from Roster where player_id = " + id);

 // set headers for output
 resp.setContentType("text/html");
 resp.setBufferSize(8192);
 java.io.PrintWriter out = resp.getWriter();

 // output
 out.println("<html>");
 out.println("<head></head>");
 out.println("<body>");

 out.println("<table cellspacing=\"4\">");
 out.println("<tr>");
 out.println("<th>First Name</th><th>Last Name</th><th>Pos</th><th>Order</th><th>OPS</th>");
 out.println("</tr>");
 out.println("<tr>");

 // show results
 rs.next(); // get first row
 out.println("<td>" + rs.getString(3) + "</td>");
 out.println("<td>" + rs.getString(2) + "</td>");
 out.println("<td>" + rs.getString(4) + "</td>");
 out.println("<td>" + rs.getString(5) + "</td>");
 out.println("<td>" + rs.getString(6) + "</td>");

 out.println("</tr>");
 out.println("</table>");
 out.println("</body>");
 out.println("</html>");

 // cleanup
 out.close();
 stmnt.close();

 } catch (Exception e) {
 System.err.println(e);
 }
 }
}

A.4 Java Axis SOAP – Simple Database Access (Simple_db.jws)
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.ResultSet;
import java.sql.Statement;

public class Simple_db {

 public String[] queryLineup(String id) {

 try {

 // connect to db
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection conn = DriverManager.getConnection("jdbc:mysql://localhost/ws?user=mike");

 // set up statement
 Statement stmnt = null;
 ResultSet rs = null;

 // execute
 stmnt = conn.createStatement();
 rs = stmnt.executeQuery("select * from Roster where player_id = " + id);

 // return results
 rs.next(); // get first row
 String[] result = {rs.getString(3),rs.getString(2),rs.getString(4),rs.getString(5),
 rs.getString(6)};
 // cleanup
 stmnt.close();

 return result;

 } catch (Exception e) {
 System.err.println(e);
 return null;
 }
 }
}

A.5 CGI – Large Database Access (long_db.cgi)
#!/usr/bin/perl -wT

use DBI;
use CGI;

$cgi = new CGI;
$letter = $cgi->param("letter");

print $cgi->header;

get data
$db_handle = "database=ws;mysql_socket=/tmp/mysql.sock";
$db = DBI->connect("DBI:mysql:$db_handle", 'mike') or die "Can't connect: " . DBI->errstr;
$st = $db->prepare("select nameFirst, nameLast, birthDay, birthYear, birthMonth, weight, height, bats,
 throws from Master where nameLast like '$letter%' order by nameLast")
 or die "Can't prepare: " . $db->errstr;
$st->execute() or die "Can't execute: " . st->errstr;

print "<html>\n";
print "<head></head>\n";
print "<body>\n";

output data
print <<"STOP";
<table cellspacing="4">
<tr>
<th align="left">First Name</th><th align="left">Last Name</th><thalign="left">D.O.B.</th>
<th>Weight</th><th>Height</th><th>Bats</th><th>Throws</th>
</tr>
STOP

while (@data = $st->fetchrow_array()) {
 print "<tr>";
 print "<td align=\"left\">$data[0]</td><td align=\"left\">$data[1]</td>";
 print "<td>$data[4]/$data[2]/$data[3]</td>";
 print "<td>$data[5]</td><td>$data[6]</td>";
 print "<td>$data[7]</td><td>$data[8]</td>";
 print "</tr>";
}

print "</table>";
print "</body></html>";

disconnect
$db->disconnect;

A.6 PHP – Large Database Access (long_db.php)
<html>
<head></head>
<body>

<?php
// connecting
$link = mysql_connect('localhost', 'mike') or die('Could not connect: ' . mysql_error());

// selecting db
mysql_select_db('ws') or die('Could not select database');

// retrieve parameter from html form
$letter = $_POST['letter'];

// Performing SQL query
$query = "select nameFirst, nameLast, birthDay, birthYear, birthMonth, weight, height, bats, throws from
Master where nameLast like '$letter%' order by nameLast";
$data = mysql_query($query) or die('Query failed: ' . mysql_error());
?>

<table cellspacing="4">
<tr>
<th align="left">First Name</th>
<th align="left">Last Name</th>
<th align="left">D.O.B.</th>
<th>Weight</th>
<th>Height</th>
<th>Bats</th>
<th>Throws</th>
</tr>
<?php while ($result = mysql_fetch_array($data, MYSQL_NUM)) : ?>
 <tr>
 <td><?php echo $result[0];?></td>
 <td><?php echo $result[1];?></td>
 <td><?php echo "$result[4]\\$result[2]\\$result[3]";?></td>
 <td><?php echo $result[5];?></td>
 <td><?php echo $result[6];?></td>
 <td><?php echo $result[7];?></td>
 <td><?php echo $result[8];?></td>
 </tr>
<?php endwhile; ?>
</table>

<?php
// cleanup
mysql_close($link);
?>

</body>
</html>

A.7 Java servlet – Long Database Access (Long_db.java)
import javax.servlet.http.*;
import java.sql.*;

public class Long_db extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse resp) throws java.io.IOException {

 try {

 // grab data from http request
 String letter = req.getParameter("letter");

 // connect to db
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection conn = DriverManager.getConnection("jdbc:mysql://localhost/ws?user=mike");

 // set up statement
 Statement stmnt = null;
 ResultSet rs = null;

 // execute
 stmnt = conn.createStatement();
 rs = stmnt.executeQuery("select nameFirst, nameLast, birthDay, birthYear, birthMonth, weight,
height, bats, throws from Master where nameLast like '" + letter + "%' order by nameLast");

 // set headers for output
 resp.setContentType("text/html");
 resp.setBufferSize(8192);
 java.io.PrintWriter out = resp.getWriter();

 // output
 out.println("<html>");out.println("<head></head>");out.println("<body>");

 out.println("<table cellspacing=\"4\">");
 out.println("<tr>");
 out.println("<th align=\"left\">First Name</th>");
 out.println("<th align=\"left\">Last Name</th>");
 out.println("<th align=\"left\">D.O.B.</th>");
 out.println("<th>Weight</th>");out.println("<th>Height</th>");
 out.println("<th>Bats</th>");out.println("<th>Throws</th>");
 out.println("</tr>");

 while (rs.next()) {
 out.println("<tr>");
 out.println("<td>" + rs.getString(1) + "</td>");
 out.println("<td>" + rs.getString(2) + "</td>");
 out.println("<td>" + rs.getString(5) + "/" +
 rs.getString(3) + "/" +
 rs.getString(4) + "</td>");
 out.println("<td>" + rs.getString(6) + "</td>");
 out.println("<td>" + rs.getString(7) + "</td>");
 out.println("<td>" + rs.getString(8) + "</td>");
 out.println("<td>" + rs.getString(9) + "</td>");
 out.println("</tr>");
 }
 out.println("</table>");
 out.println("</body>");
 out.println("</html>");

 // cleanup
 out.close();stmnt.close();

 } catch (Exception e) {System.err.println(e);}
 }
}

A.8 Java Axis SOAP – Long Database Access (Long_db.java)
import java.sql.*
import org.w3c.dom.*;
import javax.xml.parsers.DocumentBuilder;
import org.apache.axis.utils.XMLUtils;

public class Long_db {

 public Element[] queryLineup(Element[] input) {

 try {

 String letter;

 // for returning record ids
 int count=0;

 // connect to db
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection conn = DriverManager.getConnection("jdbc:mysql://localhost/ws?user=mike");

 // set up statement
 Statement stmnt = null;
 ResultSet rs = null;

 // extract letter from input xml element
 Node temp = input[0].getFirstChild();
 if (temp.getNodeType() == Node.TEXT_NODE)
 letter = temp.getNodeValue();
 else
 letter = "_";

 // execute
 stmnt = conn.createStatement();
 rs = stmnt.executeQuery("select nameFirst, nameLast, birthDay, birthYear, birthMonth, weight,
height, bats, throws from Master where nameLast like '" + letter + "%' order by nameLast");

 // prepare xml document
 DocumentBuilder docBld = XMLUtils.getDocumentBuilder();
 Document doc = docBld.newDocument();

 // create root node
 Element results = doc.createElement("results");

 // return results
 while (rs.next()) {

 // create record node
 Element rec = doc.createElement("record");
 rec.setAttribute("id",String.valueOf(count++));

 // create data nodes - first name
 Element fname = doc.createElement("first_name");
 fname.appendChild(doc.createTextNode(rs.getString(1)));

 // last name
 Element lname = doc.createElement("last_name");
 lname.appendChild(doc.createTextNode(rs.getString(2)));

 // birth day
 Element bday = doc.createElement("birth_day");
 bday.appendChild(doc.createTextNode(rs.getString(3) + "/" +
 rs.getString(5) + "/" +
 rs.getString(4)));

 // weight
 Element weight = doc.createElement("weight");
 weight.appendChild(doc.createTextNode(rs.getString(6)));

A.8 [cont.] Java Axis SOAP – Long Database Access (Long_db.java)

 // height
 Element height = doc.createElement("height");
 height.appendChild(doc.createTextNode(rs.getString(7)));

 // bats
 Element bats = doc.createElement("bats");
 bats.appendChild(doc.createTextNode(rs.getString(8)));

 Element thrws = doc.createElement("throws");
 thrws.appendChild(doc.createTextNode(rs.getString(9)));

 // add data to record node
 rec.appendChild(fname);
 rec.appendChild(lname);
 rec.appendChild(bday);
 rec.appendChild(weight);
 rec.appendChild(height);
 rec.appendChild(bats);
 rec.appendChild(thrws);

 // add to root node
 results.appendChild(rec);

 }

 // cleanup
 stmnt.close();

 Element[] ret = { results };
 return ret;

 } catch (Exception e) {
 System.err.println(e);
 return null;
 }
 }
}

A.9 CGI – File Data (file_data.cgi)
#!/usr/bin/perl -wT

use CGI;

$cgi = new CGI;
$id = $cgi->param("file_id");

print $cgi->header;

choose file
if ($id == 1) {
 $file = "text1";
} elsif ($id == 2) {
 $file = "text2";
} else {
 $file = "text3";
}

open file
open(INPUT, "/home/mike/ws/file_data/data/" . $file)
 or die "Can't open file: " . $file;

read data
@data = <INPUT>;

close file
close(INPUT);

print "<html>\n";
print "<head></head>\n";
print "<body>\n";

output data
print @data;

print "</body></html>";

A.10 PHP – File Data (file_data.php)
<html>
<head></head>
<body>

<?php // start php

// retrieve parameter from html form
$id = $_POST['file_id'];

// select file name
switch ($id) {
 case 1:
 $file = "/home/mike/ws/file_data/data/text1";
 break;
 case 2:
 $file = "/home/mike/ws/file_data/data/text2";
 break;
 case 3:
 $file = "/home/mike/ws/file_data/data/text3";
 break;
}

// open file and read
$fp = fopen($file,'r');
$data = fread($fp, filesize($file));

// output data
echo $data;

// end php
?>

</body>
</html>

A.11 Java servlet – File Data (file_data.java)
import javax.servlet.http.*;
import java.io.BufferedReader;
import java.io.FileReader;

public class File_data extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse resp) throws java.io.IOException {

 try {

 // grab data from http request
 String id = req.getParameter("file_id");
 String file;

 switch (Integer.parseInt(id)) {
 case 1:
 file = "/home/mike/ws/file_data/data/text1";
 break;
 case 2:
 file = "/home/mike/ws/file_data/data/text2";
 break;
 case 3:
 file = "/home/mike/ws/file_data/data/text3";
 break;
 default:
 file = "";
 }

 // open file reader
 FileReader filereader = new FileReader(file);
 BufferedReader reader = new BufferedReader(filereader);

 // set headers for output
 resp.setContentType("text/html");
 resp.setBufferSize(8192);
 java.io.PrintWriter out = resp.getWriter();

 // output
 out.println("<html>");
 out.println("<head></head>");
 out.println("<body>");

 // send file data
 while (reader.ready())
 out.println(reader.readLine());

 out.println("</body>");
 out.println("</html>");

 // cleanup
 out.close();

 } catch (Exception e) {
 System.err.println(e);
 }
 }
}

A.12 Java Axis SOAP – File Data (file_data.jws)
import java.io.BufferedReader;
import java.io.FileReader;

public class File_data {

 public String getFileData(int id) throws java.io.IOException {

 String ret = "";
 String file;

 switch(id) {
 case 1:
 file = "/home/mike/ws/file_data/data/text1";
 break;
 case 2:
 file = "/home/mike/ws/file_data/data/text2";
 break;
 case 3:
 file = "/home/mike/ws/file_data/data/text3";
 break;
 default:
 file = "";
 }

 // open file reader
 FileReader filereader = new FileReader(file);
 BufferedReader reader = new BufferedReader(filereader);

 // send file data
 while (reader.ready())
 ret += reader.readLine();

 return ret;

 }
}

