A General Analysis of the Security of Elastic Block Ciphers

Debra L. Cook and Moti Yung and Angelos Keromytis
Department of Computer Science, Columbia University
{dcook,moti,angel os} @cs.columbia.edu

September 28, 2005

Abstract

We analyze the security of elastic block ciphers in general to show that an attack on an elastic version
of block cipher implies a polynomial time related attack on the fixed-length version of the block cipher.
We relate the security of the elastic version of a block cipher to the fixed-length version by forming
a reduction between the versions. Our method is independent of the specific block cipher used. The
results imply that if the fixed-length version of a block cipher is secure against attacks which attempt key
recovery then the elastic version is also secure against such attacks.

Keywords: Elastic Block Cipher, Security Proofs.

1 Introduction

A method for transforming existing block ciphers into variable length block ciphers was defined in [1]. The
variable length version of a block cipher is referred to an elastic block cipher. We analyze the security of
elastic block ciphers in general by relating the security of the elastic version of a block cipher against key
recovery attacks to that of the original fixed-length version of the block cipher. Our analysis is independent
of the specific block cipher used. By forming a reduction from the elastic version to the fixed-length version,
we are able to show that an attack which recovers the expanded key of the elastic version can also be used
to recover the expanded key of the fixed-length version. As a result, if the fixed-length version of a block
cipher is secure against key recovery attacks (including linear, differential, impossible differentials, higher
order differential and square attacks, among others, which all attempt key recovery), then the elastic version
is also secure against such attacks.

The remainder of the paper is organized as follows. In Section 2 we review the elastic block cipher
construction. In Section 3 we show how any attack on an elastic block cipher which recovers the key can be
converted into an attack on the original cipher. In Section 4 we state the implications of our results.

2 Background

The purpose of an elastic block cipher is to create a variable length block cipher from an existing block
cipher. We briefly review the elastic block cipher construction presented in [1]. We include a full description
of the key schedule properties because certain properties of the key schedule are necessary for our analysis.

Given an block cipher, G, that is structured as a series of r rounds and processes b bit blocks, a variable
length block cipher, G’, will be created that can process block sizes of b + y bits where 0 < y < b. The

number of rounds, 7/, in G’ will be + [yr/b]. We note that if G is a Feistel network, the round function
of G will be viewed as consisting of one cycle of the Feistel network as opposed to just the function used
within the Feistel network.

The data block processed by G’ is treated as a left b bit block which is processed by the round function
and a right y bit block which is omitted from the round function. Between rounds, the y bit block is XORed
into the b bit block and y bits from the b bit block become the next y bit block. This is similar to an
(unbalanced) Feistel network. The main difference is that in an elastic block cipher the swapping of bits
between rounds involves bits from the outputs of the last two rounds; whereas in a Feistel network, the
output of the last round and the input from the next to last round are XORed.

LhJ?mQ bLbLlLS_‘ } Plaintext b+y bits, 0 <y <b bits

‘ Whitening ‘
'
‘Key Dependent Mixing ‘
|
>y
Round
Function
!
‘ Whitening ‘
ﬁ XOR vy bits left out of round with
y bits that were in the round and
swap the two segments
Exact bit positions used from round’s output
[] l | | T | in the swap varies by round.
! 1

‘Key Defendent Mixinf ‘

‘ Whitening ‘

l. l } Ciphertext

Figure 1: Elastic Block Cipher Structure

The general structure of G’ is shown in Figure 1. G’ consists of the following:
e An initial and final key dependent mixing step that permutes the b + y bits.
o Initial whitening and end of round whitening.

e Between rounds, there is a swapping of bits from the left b bit block and the right ¥ bit block in order
to alternate which y bits are left out of the round function. This step is defined as follows:

1. Let Y denote the y bits that were left out of the round function.

2. Let X denote some subset of y bits from the round function’s output of b bits. A different set of
X bits (in terms of position) is selected in each round. How to best select X is dependent on the
specific block cipher.

3. SetY — X Y.

4. Swap X and Y to form the input to the next round.

The decryption function for G’ consists of the network applied in reverse and the round function replaced
by its inverse. If G is a Feistel network, the inverse of the round function is a cycle of G run in reverse.

In regards to the key schedule, G’ requires more expanded key bits then G due to the whitening steps,
the key dependent mixing steps and the increased number of rounds. Even if G includes an initial whitening
steps and end of round whitening, additional whitening key bits are needed for the extra y bits and the
additional rounds. Therefore, the key schedule of G cannot simply be reused for G’. In the definition of
elastic block ciphers, some assumptions are made regarding the key schedule in order to avoid a highly
structured key schedule with a direct relationship between expanded key bits, which is typical of existing
block ciphers. Ideally, the expanded key bits should be pseudorandom. At a minimum, the whitening
bits must be independent of any key bits used internal to the round function and the key bits used in the
mixing steps must be independent of all other expanded key bits. It is also required that the key schedule
is independent of the b + y bit data block input to G, meaning the expanded key bits are fixed for a given
key and do not vary based on the input to G’. This last requirement is a typical property of existing block
ciphers.

3 Security of G’/

3.1 Oveview

For any concrete block cipher used in practice (and not treated as a pseudorandom permutation or a member
of a family of functions), the cipher cannot be proven secure in a theoretical sense but rather is proven secure
against known types of attacks. Thus, we can only do the same for the elastic version of such a cipher.
In order to provide a general understanding of the security of our construction, we provide a method for
reducing the security of the elastic version to that of the original version, showing that a security weakness
in G/ implies a weakness in G. Our security analysis of G ’ exploits the fact that there is an instance of G
embedded in G .

We concentrate on key-recovery attacks. We show how to reduce G ’/ to G in a manner that allows
an attack which finds the round keys of G ’ to be used to find the round keys for G. Security against
key-recovery attacks does not by itself imply security (e.g., the identity function which ignores the key is
insecure while key recovery is impossible). However, all concrete attacks against real ciphers (differential,
linear, etc.) attempt key recovery and thus practical block ciphers should be secure against such attacks.

In order to focus on the core components of the algorithm for creating G ' from G, we consider G
without the initial and final key-dependent mixing steps. If present, these intuitively only serve to increase
the security of G’ since they prevent an attacker from knowing with probability 1 which bits are omitted from
the first application of the round function. Furthermore, since the mixing steps are added steps (as opposed
to modifications to components of (=) using key material that is independent of the round and whitening key
material (by the assumption on the key schedule), they do not impact our analysis.

3.2 Round Key Recovery Attack

We use the fact that an instance of G is embedded in G’ to create a reduction from G’ to G. As a result of
this reduction, an attack against G’ that allows an attacker to determine some of the round keys implies an
attack against G itself which is polynomially related in resources to the attack on G’. Assuming that G itself
is resistant to such attacks, we conclude that G’ does not reveal round-key bits to the attacker. The reduction

requires a set of (plaintext, ciphertext) pairs. This is not considered a limiting factor because in most types
of attacks, whether they are known plaintext, chosen plaintext, adaptive plaintext, chosen ciphertext €etc., the
attacker acquires a set of such pairs. We assume that the key schedule is independent of the plaintext and
ciphertext. This assumption is true of block ciphers used in practice. We also assume G contains end of
round whitening, as is the case with AES.

bbits [owie |

} Input after initial whitening

round function
A 4
o L P

(X e]

l&

i

round function

Input after initial whitening
on
/ Bits

} Round 1
[IXT ey oe] } Round 2

. } -3 rounds
[

Round 2

ENEEI. E
><

\

E N

B

r-3 rounds

A 4

L b
<

round function v [] Tkey bits Round r

[(Rew] | [
v e E—

Round r

X1-& o0

i
) 6

Round r+1

Figure 2: G within G’

In order to aid our analysis, we draw attention to the fact that the operations performed in G ' on the
leftmost b bit positions in r consecutive rounds is an application of GG. This is depicted intuitively in Figure 2.
This relationship can be used to convert an attack which finds the round keys for G ’ to an attack which finds
the round keys for G. Let G, denote G using round keys rk. Specifically, if G}/'(p ||) = ¢ || z, a set of
round keys, rk, for G such that G, (p) = ¢ can be formed from the round keys and the round outputs in G
" by collapsing the end-of-round whitening and swapping steps in G’ into a whitening step. The leftmost
b bits of the round key for the initial whitening are unchanged, and the rightmost y bits are dropped. The
resulting whitening key bits will vary in up to y positions across the (plaintext, ciphertext) pairs due to the
previous round’s output impacting the end-of-round whitening step. However, it is possible to use these keys
to solve for the round keys of G.

We state the following claim to assist the reader in understanding the linkage between G and G’. The
claim shows that for any set of plaintext, ciphertext pairs encrypted under sets of round keys in G’ where

the rightmost y bits used for whitening in each round may vary amongst the sets and all other key bits are
identical amongst the sets, there exists a corresponding set of plaintext, ciphertext pairs for G where the
round keys used in G’ for the round function and the leftmost b bits of each whitening step are the same
as those used in G, the plaintexts used in G are the leftmost b bits of the plaintexts used in G’, and the
ciphertexts for G are the same as the leftmost b bits of output of the r* round of G prior to the swap step.

Claim I: Let {(pi, ci) } denote a set of n plaintext, ciphertext pairs and let |w| = |vi| = y. If G (pi) = ci
then there exists n sets of round keys for the first 7 rounds of G’ that are consistent with inputs pi || w
producing ci || vi as the output of the " round prior to the swap at the end of the r*" round, fori = 1 to n,
such that the following condition applies:

Condition I: The leftmost b bits used for whitening in each round are identical across the n sets and any

bits used internal to the round function are identical across the n sets.

Furthermore, y may be any valid value. The bits in v7 are not used and thus no restrictions are placed on
their values.

Proof: Let rk = {rk; for j = 0 to r} be the set of round keys corresponding to key k for G. rkq denotes
the key bits used for initial whitening. For (pi, ci), form a set of the first » round keys for G ' as follows:
Pick a constant string, w, of y bits, such as a string of 0s. Let pi || w be the input to G’. Let rki’ = {rki
for j = 0 to r} denote the round keys for G’ through the 7" round for the pair (pi, ci). Set any bits in rki;-
used internal to the round function to be the same as the corresponding bits in rk ;. Set the leftmost b bits
used for whitening in ’rkz’} to the b bits used for whitening in rk;. Set the rightmost y bits used for whitening
in rkz’; to be the same as the y bits left out of the round function in round j of G’. This is illustrated by
Figure 3. Notice that the leftmost b bits used for whitening in each round are identical across the n sets, and
any bits used internal to the round function are identical across the n sets; specifically, they correspond to
rk in each case, and the rightmost y bits used in each whitening step differ based on (pi, ci) across the n
sets. The case in which GG does not contain whitening steps corresponds to using 0’s for the leftmost b bits
of each whitening step in G’.

IN (b bits) ‘ ‘Y(ybits)

Round
Function

B =b whitening

whitenin,
key bits Y <

key bits =Y

ouT
XOR y bits
of OUT’ with
v

our y bits from OUT’

Converted round key for G = (B with y bits replaced by their XOR with Y’) =B

Figure 3: Converted Key Unchanged in L eft b Bits

The operations of G’ on the leftmost b bits through round 7, prior to the last swap, are identical to the
operations in Gy (pi) because the swap step in G’ results in XORing y bits of a round function’s output
with 4 0's. Therefore, the leftmost b bits output from the 7** round prior to the swap in the " round is ci.
Therefore, for ¢ = 1 to n there exists a set of round keys, rki’ for G/, ., such that G’ (pi) produces ci as the
leftmost b bits in the r*" round prior to the swap step and Condition I holds, thus proving Claim I.

Theorem |: If there exists an attack on G ’ that allows the round keys to be determined for » consecutive
rounds, then there exists a polynomially time related attack on G with r rounds, assuming:

e (& contains end-of-round whitening.

e No message-related round keys. Namely, if there are expanded key bits utilized in G, these expanded
key bits depend only on the key and do not vary across inputs.

The second condition is typical of existing block ciphers. With respect to the first condition placed on
G in Theorem I, the condition may be removed if the attack on G ’ involves solving for the round key bits
directly and allows the bits used in the whitening steps to be set to 0 for bit positions not swapped and to 0
or 1, as necessary, for bit positions swapped, to ensure the whitening on the leftmost b bits is equivalent to
XORing with 0, which is the same as having no whitening in G. If the attack on G ’ finds all possible keys
or sets of round keys, the attack must find the key(s) or set(s) of round keys corresponding to round keys
that are equivalent to XORing with 0.

The method described here treats whitening key bits as if they are pseudorandom in that the whitening
key bits can take on any value. If there is a relationship amongst the whitening key bits and/or between
whitening key bits and key material used within the round function, such keys will be a subset of the
possible keys found and can be determined by checking which of the potential keys corresponds to the key
schedule.

When we refer to converting the round keys of G’ into round keys for G we mean the following: In
round j of G’, let b;; denote the i" bit of the b bits output from the round function prior to the end of
round whitening. Let kwj; denote the end of round whitening key bit applied to b;;. If bj; is involved
in the swap step at the end of round j, let y;;, denote the bit from the rightmost y bits with which b;; is
swapped and let kw;, denote the whitening key bit applied to y,. Set the it whitening bit in round j of
G to kwj; ® kw;p, @ y;p, if bj; is involved in the swap step in G'. Set all other key bits used in G (both
whitening and any internal to the round function) to be identical to the key bits used in G’. We refer to the
initial whitening as round 0. The initial whitening for G’ is converted to initial whitening for G by using
the leftmost b expanded key bits of the initial whitening as the initial whitening in G. We describe here
a method for converting the attack on G’ to an attack on GG. Without loss of generality, we use the first 7
rounds of G’ as the r consecutive rounds for which the round keys are found. The attacks are presented
in terms of solving for the round keys from the initial whitening to round 7, but may also be performed by
working from round r back to the initial whitening or by using any consecutive 7 rounds.

Proof:

This attack runs in quadratic time in the number of rounds of G. The attack on G ' is used to solve for
round keys 0 and 1 for G, then repeatedly solves for one round key of GG at a time, using the output of one
round of G as partial input to a reduced round version of G ’, running the attack on G ’ and converting the
1%t round key of G ’ to the round key for the next round of G. We assume that if an attack on G ’ with r
rounds exists, then a reduced round attack on G ’ exists for any number of rounds < 7.

Given a set {(P*,C*)} = {(pi*, ci*)} of n (plaintext, ciphertext) pairs for G, create a set {(P,C)} =
{(pi* || 0,ci* || vir)} of n (plaintext, ciphertext) pairs for an r round version of G ’. Note: we only require

that the y bits appended to each pi* when forming {(P,C)} be a constant; we choose to use 0. The vi,
values appended to the ci’s are arbitrary and do not need to be identical. The r subscript in vi, denotes the
number of rounds. Our method runs reduced round attacks on G’ and the vi,’s can vary each time. Solve
G’ for round keys 0 and 1. By the pseudorandomness of the round keys described in the definition of elastic
block ciphers, sets of round keys exist that correspond to {(P,C')} and which are identical in at least the
first two rounds (the round keys across all n pairs may be identical in additional rounds, but we are only
concerned with the first two rounds). Denote these as rk(, and rk}. Use the leftmost b bits of rk(, as round
key 0, rko, for G. Since the rightmost y bits are identical across all inputs to G/, when k] is converted to
a round key for G, the result will be the same across all n elements of {(P,C)}. Use the converted round
key as round key 1, k1, for G. For each pi*, apply the initial whitening and first round of G using the two
converted round keys. Let p1i denote the output of the first round of G for ¢ = 1 to n. Using a reduced round
version of G/ with — 1 rounds and the initial whitening removed, set {(P,C)} = {(p1i || 0, ci* || vi,—1)}
and solve for the first round key of G /. As before, convert the resulting round key(s) to a round key for G.
Again, the converted round keys for G will be identical across all n values. Use the converted round key as
the second round key for GG. Repeat the process for the remaining rounds of G, each time using the outputs
of the last round of G for which the round key has been determined as the inputs to G' ' and reducing the
number of rounds in G’ by 1, to sequentially find the round keys for G.

This attack involves applying each round of G to n inputs for a total of rn rounds of G. rounds
of G’ are computed in the worst case if Ay, requires knowing the output of each round of the reduced round
version of G’ to find the first round key. r applications of A, on G’ are needed on the reduced round
versions of G’ when solving for the round keys of G ’. Let ¢4 denote the time to run A/.,. The time to
attack G is O(nr? + rta).

n(r+1)r
2

In summary, the attack on G can be written as:
Input {(P*,C*)} = {(pi*, ci*) fori = 1 to n}.
Create {(P,C)} = {(pi* || 0, ci* || vi,) fori = 1 to n} for a r round version of G,
where the vi’s are arbitrary.
Using Ay, solve a r reduced round version of G’ for rk{ and rk].
Convert rk, to rkg and 7k} to rk;.
Set pli = first round output of GG using rkg and rky, for i = 1 to n.
Forj=1tor—1{
{(P,C)} ={(pji || 0,ci* || vi,—_;) fori = 1to n}.
Solve a r — j reduced round version of G ’ for the first round key, rk].
Convert 7k to form rk; 1.
p(j + 1)i = output of round j + 1 of G on pji using rk;j41 fori = 1ton.

}

Another method for proving the theorem is provided in Appendix A. It is included because it requires
fewer computations than the method described here and assists in explaining how the round keys of G’
can be converted to round keys for G. When given the round keys for G ’ which correspond to n plaintext
ciphertext pairs, the method described here produces round keys for G which correspond to n plaintext
ciphertext pairs. Whereas, the alternative method described in the appendix produces the round keys for
G for at most n plaintext, ciphertext pairs and requires 2¥("~2)n, plaintext, ciphertext pairs to guarantee the
resulting round keys will correspond to at least n plaintext, ciphertext pairs. However, since the method in
Appendix A requires fewer computations, it may useful when y is small relative to b.

4 Conclusions

We have described how any key recovery attack on an elastic block cipher can be converted into a key
recovery attack on the original block cipher. The implications of this conversion is that if a block cipher
is secure against a specific practical attack which attempts key recovery, then so is the elastic version. The
attacks covered include linear, differential, impossible differentials, higher order differentials and square
attacks, among others.

References

[1] D. Cook, M. Yung, and A. Keromytis. Elastic Block Ciphers. Cryptology ePrint Archive, 2004/128,
2004. http://eprint.iacr.org/.

Appendix A

We describe here an alternative method for proving Theorem I which requires fewer computations than the
method described in the paper, but provides rounds keys for a smaller set of plaintext, ciphertext pairs.

This method produces an attack on G that runs in time polynomial in the attack on G’ and r. The attack
works as follows: Assume there exists a known (plaintext, ciphertext) pair attack on G’ which produces the
round keys either by finding the original key and then expanding it, or by finding the round keys directly.
Using round keys for rounds 0 to 7 of G/, convert the round keys into round keys for G one round at a time.
For each round, extract the largest set of (plaintext, ciphertext) pairs used in the attack on G ' that have the
same converted round key. If there are n; (plaintext, ciphertext) involved at round j, there will be at least 5
pairs remaining for which the round keys are consistent after round j. The end result is a set of round keys
for G that are consistent with a set of 77— b-bit (plaintext, ciphertext) pairs for G. We then describe how
to take a set of (plaintext, ciphertext) pairs for G, convert them into a set of (plaintext, ciphertext) pairs for
G’ in order to run the attack on G ’ to find the round keys for G. Finally, we discuss the bounds on y for
which this attack is more efficient than an exhaustive key search.

Let {(P,C)} = {(pi || wi,ci || zi)} (for i = 1 to n) denote a set of n known b + y-bit (plaintext,
ciphertext) pairs for G/, where |pi| = |ci| = b and |zi| = |zi| = .

Assume the existence of an algorithm A that finds all possible keys, {k;}, corresponding to {(P,C)}
in time less than a exhaustive search for the key. Let m denote the number of keys found. Without loss of
generality, it is assumed the keys are available in expanded form.

Let S = {ek;} for j = 1 to m be the set of expanded keys used for whitening for which ek is from the
expansion of key k; and G ﬁgj (pi || xi) = ci || zi fori =1ton.

Let R;,: denote any key material utilized within the round function. The values found for such key bits
will be the same for the solutions derived by the attack for G/ and G.

Let {(P,U)} = {(pi||zi,ui|[vi)} such that ui||vi is the output of the r*" round of G/, where |ui| = b
and |vi| = y.

Let 8" = {ekj|ek; = bits of ek; € S corresponding to rounds 0 to r used for whitening } be the set of
expanded key bits used for whitening in rounds 0 to r of G '.

For each ek; € S" and each (pi || zi,ui || vi) € {(P,U)}, convert the round keys to round keys for
G. Let ekl’-j be the converted key corresponding to the i element of {(P,U)} and the j* element of S’
The part of ek:gj corresponding to round O will be identical across all elements. When the round keys are

converted, at most y bits change in the leftmost b bits. Thus, the resulting round keys forround ¢, 0 < ¢ < r

can be divided for each of the y impacted bits into those that have a 0 in the affected bit and those that have a
1 in the affected bit. For ¢ = 1 to r, define S, nd, 3 the maximum-sized set of ek, ;8 from Srnd,_, that have
identical round key(s) for round ¢, where Smd , = S’ Let {(P, U)mdq} be the correspondlng elements of
{(P,U)}. When forming {(P,U)nq, }, at least 27Y[{(P, U)n4,_, }| of the elements from {(P,U);nq,_; }
are included.

To illustrate how the sets S;,ndq and {(P,U)nq, } are created, consider the example shown in Figure 4
where b = 4, y = 2, and the leftmost 2 bits are swapped with the y bits in the swap step. The round number is
qand {(P,U)nq,_, } contains three (plaintext, ciphertext) pairs. Suppose the outputs of the round function
in the ¢*" of G " are 100101,110011 and 111111 and the whitening bits in the ¢** round are 011010. The
converted round keys corresponding to the three cases are 0110, 1110 and 1110. Since 1110 occurs in the
majority of the cases, set the ¢*" round key of G to 1110. S;,ndq contains the round keys for rounds O to
g — 1 from Smd and 0010, and {(P,U),nq, } contains the second and third (plaintext, ciphertext) pairs

from {(P, U)rndq71}

1001 01 1100 11 1111 11

KB «—KY KB#% %ﬁm KB—» «— KY

1111 00 1010 10 1001 10

KB =0110
KY =01
1111 11 0010 10 0001 10
1001 1100 1111
COHV§rted converted converted
key bits key bits key bits
0110 1110 1110
1111 0010 0001

Figure 4: Forming 57,

Let {(P.C)a} = {(pi,cd)|(pi || yi,ui || vi) € {(P,U)pna }} H(P.C)G}] = n/2r. {(P,C)c} isa
set of (plaintext, ciphertext) pairs for which G,(pi) = ci V (pi, ci) € {(P,C)g} with the whitening round
keysof rk € S/, dy and any additional key material utilized by the rounds is the same as that for G /, namely
Rint~

Let ¢, denote the time to run r rounds of G/, and ¢ 4 denote the time to run A¢y. In the case of obtaining
at least one set { (P, U)nq, } of size > 5=, the time required beyond ¢ 4 consists of: nmt, time to obtain the
outputs of the first 7 rounds for each {(P,U)}, O(nmr) time to perform the conversion of the round keys
from G ' to round keys for G’ and O(nmr) time to form the S, ; sets. Thus, the additional time required
to attack G (beyond the time required to attack G, is O(nm(r + t,)). The only unknown value is m,
the number of keys produced by the attack on G |, 41 If m is large enough, to the extent that it approaches
the average number of keys to test in a brute force attack on G ’, then this contradicts the assumption that
an efficient attack exists on G ’ because the attacker is left with a large set of potential keys for decrypting

additional ciphertexts.

To perform the attack on G when given a set of (plaintext, ciphertext) pairs for GG, convert the pairs into
a set of (plaintext, ciphertext) pairs for G’ and find the round keys for G ’ then for G as follows: Let k.,
where 1 < | < v’ — r, denote a set of randomly chosen round keys for rounds r + 1 to the last round of
G ' that will be held constant, and let RF,,4 denote the last »’ — r rounds of G'’ using these round keys.
Given a set {(P*,C*)} = {(pi*, c¢i*)} for i = 1 to n known (plaintext, ciphertext) pairs for G, create the
set {(P,C)} of (plaintext, ciphertext) pairs to use in the attack on G ’ by setting pi || zi = pi* || 0 and
ci || zi = RFepq(ci* || 0) for i = 1 to n. This choice of ¢i || zi corresponds to an output of ¢i* || 0 in the
r" round of G'’. For the set of (P, C) pairs are created, {P,U)} = {(pi* || 0,ci* || 0)}. Apply the attack
on G’ to solve for the round keys of G ’ then produce the sets {P,U),nq, } and Synq,. The sets of round
keys in S,,,4, will be consistent with the (plaintext, ciphertext) pairs in {P,U)n4, }-

We now discuss how the number of (plaintext, ciphertext) pairs required. Recall that so far we have
defined a method which produces a set of at least o (plaintext, ciphertext) pairs which are consistent with
the round keys. This lower bound on the number of plaintext, ciphertext pairs can be slightly increased to
ﬁ by using b + y bit plaintexts that are the same in the rightmost y bits, and by defining the ui values

representing the ciphertext output of G in the *" round of G’ to be the output of the r*" round prior to the
swapping step. This will result in [S], ; | = nand |S], ; | = [S],; |, thus in first and rt rounds the set
of (plaintext, ciphertext) pairs is not reduced. The number of (plaintext, ciphertext) pairs produced for G
that are consistent with the round keys for G is > ﬁ The number of possible plaintexts for G is 2°;
therefore, it is necessary for y(r — 2) < b for the attack on G’ to be applied to G. Our method defined in
Section 3 overcomes this restriction at the cost of increased computation.

10

