SWAP: A Scheduler With Automatic Process Dependency Detection

Haoqgiang Zheng and Jason Nieh
{hzheng,nieh}@cs.columbia.edu

Department of Computer Science

Columbia University
Technical Report CUCS-005-003
April 2003

Abstract

Cooperating processes are increasingly used to struc-
ture modern applications in common client-server comput-
ing environments. This cooperation among processes often
results in dependencies such that a certain process cannot
proceed until other processes finish some tasks. Despite
the popularity of using cooperating processes in applica-
tion design, operating systems typically ignore process de-
pendencies and schedule processes independently. This
can result in poor system performance due to the actual
scheduling behavior contradicting the desired scheduling
policy.

To address this problem, we have developed SWAP,
a system that automatically detects process dependen-
cies and accounts for such dependencies in scheduling.
SWAP uses system call history to determine possible re-
source dependencies among processes in an automatic and
fully transparent fashion. Because some dependencies can-
not be precisely determined, SWAP associates confidence
levels with dependency information that are dynamically
adjusted using feedback from process blocking behavior.
SWAP can schedule processes using this imprecise depen-
dency information in a manner that is compatible with
existing scheduling mechanisms and ensures that actual
scheduling behavior corresponds to the desired scheduling
policy in the presence of process dependencies. We have
implemented SWAP in Linux and measured its effective-
ness on microbenchmarks and real applications. Our ex-
periment results show that SWAP has low overhead and
can provide substantial improvements in system perfor-
mance in scheduling processes with dependencies.

1 Introduction

Modern applications often consist of a number of co-
operating processes in order to achieve a higher degree of
modularity, concurrency, and performance. Applications
of this type span a broad range from high-end scientific
parallel applications to desktop graphical computing ap-
plications. Interactions among the cooperating processes
often result in dependencies such that a certain process
cannot continue executing until some other processes fin-

ish certain tasks. However, operating systems today often
ignore process dependencies and schedule processes inde-
pendently. This can result in poor system performance
due to the actual scheduling behavior contradicting the
desired scheduling policy.

Consider priority scheduling, the most common form
of scheduling used today in commercial operating systems
for general-purpose and real-time embedded systems. The
basic priority scheduling algorithm is simple: given a set
of processes with assigned priorities, run the process with
the highest priority. However, when processes share re-
sources, resource dependencies among processes can arise
that prevent the scheduler from running the highest prior-
ity process, resulting in priority inversion [1]. For example,
suppose there are three processes with high, medium, and
low priority such that the high priority process is blocked
waiting for a resource held by the low priority process. A
priority scheduler would run the medium priority process,
preventing the low priority process from running to release
the resource, thereby preventing the high priority process
from running as well. This situation is particularly prob-
lematic because the medium priority process could run
and prevent the high priority process from running for an
unbounded amount of time. Priority inversion can criti-
cally impact system performance, as demonstrated in the
case of the NASA Mars Pathfinder rover [2] when prior-
ity inversion caused repeated system resets and drastically
limited its ability to communicate back to the Earth.

Because the negative impact of priority inversion can
be significant, much work has been done to address this
resource management problem [1, 3, 4, 5, 6]. The gen-
eral idea behind these approaches is to boost the priority
of a low priority process holding the resource so that it
can run and release the resource to get out of the way
of a high priority process waiting on the resource to run.
However, there are four important limitations that occur
in practice with such approaches in the context of general-
purpose operating systems. First, these approaches focus
on mutex resources only and do not address other po-
tential resource dependencies among processes. For in-
stance, a high priority X window application can suffer
priority inversion while waiting on the X server to process
requests from other lower priority X applications with-
out any dependencies on mutexes [7]. Second, these ap-

proaches typically assume that it is possible to precisely
determine dependencies among processes and do not con-
sider dependencies such as those involving UNIX signals
and System V IPC semaphores [8] where no such direct
correlation exists. Third, these approaches generally as-
sume that priorities are static whereas priorities are in-
creasingly adjusted dynamically by scheduling policies in
modern operating systems. Fourth, implementing these
approaches for a given resource in a commercial operating
system can require adding detailed resource-specific usage
information and numerous modifications to many parts of
a complex operating system.

We have developed SWAP, a Scheduler With Auto-
matic process de Pendency detection, to effectively account
for process dependencies in scheduling in the context of
general-purpose operating systems. Rather than focus-
ing on process dependencies arising from mutex resources,
SWAP’s dependency detection mechanism tracks system
call history to determine a much broader range of pos-
sible resource dependencies among processes, including
those that arise from widely used interprocess communica-
tion mechanisms. Because some dependencies cannot be
precisely determined, SWAP associates a confidence level
with each dependency that is dynamically adjusted using
feedback from process blocking behavior. SWAP intro-
duces a general dependency-driven scheduling mechanism
that can use imprecise dependency information to sched-
ule processes to run that are determined to be blocking
high priority processes. SWAP scheduling is compatible
with existing scheduling mechanisms. It is more general
than popular priority inheritance approaches [1, 3] and
can be used with schedulers that dynamically adjust pri-
orities or non-priority schedulers such as fair queuing [9].
Furthermore, SWAP automatically accounts for process
dependencies in scheduling without any intervention by
application developers or end users. We have implemented
SWAP in Linux and measured its effectiveness on both mi-
crobenchmarks and real applications. Our experimental
results demonstrate that SWAP operates with low over-
head and can provide substantial improvements in system
performance when scheduling processes with dependen-
cies.

This paper presents the design and implementation of
SWAP. Section 2 discuses related work. Section 3 de-
scribes the SWAP automatic dependency detection mech-
anism. Section 4 describes SWAP dependency-driven sche-
duling. Section 5 provides an overview of our implemen-
tation of SWAP in Linux. Section 6 presents performance
results that quantitatively measure the effectiveness of a
Linux SWAP prototype implementation using both mi-
crobenchmarks and real application workloads. Finally,
we present some concluding remarks and directions for fu-
ture work.

2

2 Related Work

The priority inversion problem was first discussed by
Lampson and Redell [1] more than two decades ago. Lamp-
son and Redell introduced priority inheritance [1] to ad-
dress the problem. Using priority inheritance, a process
holding a resource inherits the highest priority of any higher
priority processes blocked waiting on the resource so that
it can run, release the resource, and get out of the way of
the higher priority processes. Priority inheritance assumes
that priorities are static while they are inherited because
recalculating the inherited priority due to dynamic prior-
ity changes is too complex. Priority inheritance addresses
the priority inversion problem assuming the resource de-
pendency is known; it does not address the underlying
issue of determining resource dependencies.

Sha, et. al. developed priority ceilings [3] to reduce
blocking time due to priority inversion and avoid deadlock
in real-time systems. However, priority ceilings assume
that the resources required by all processes are known in
advance before the execution of any process starts. This
assumption holds for some real-time embedded systems,
but does not hold for general-purpose systems. Other
approaches such as preemption ceilings [4] can also be
used in real-time embedded systems but also make as-
sumptions about system operation that do not hold for
general-purpose systems. Like priority inheritance, prior-
ity ceilings typically assume static priorities to minimize
overhead and does not address the issue of determining
resource dependencies among processes.

To address priority inversion in the presence of dynamic
priorities, Clark developed DASA for explicitly scheduling
real-time processes by grouping them based on their de-
pendencies [10]. While the explicit scheduling model is
similar to our scheduling approach, DASA needs to know
the amount of time that each process needs to run before
its deadline in order to schedule processes. While such pro-
cess information may be available in some real-time em-
bedded systems, this information is generally not known
for processes in general-purpose systems. DASA also as-
sumes that accurate dependency information is provided.
It does not consider how such information can be obtained,
and can fail with inaccurate dependency information.

Sommer discusses the importance of removing priority
inversion in general-purpose operating systems and iden-
tifies the need for addressing priority inversion beyond the
context of simple mutex resources [5]. Previous work fo-
cused almost exclusively on the priority inversion problem
for mutex resources. Sommer notes the difficulty of ad-
dressing priority inversion for non-mutex resources when
it is difficult if not impossible to determine precisely on
which process a high priority dependent process is wait-
ing. Sommer proposes a priority-inheritance approach for
addressing priority inversion due to system calls, but only
implemented and evaluated an algorithm for a single local
procedure system call in Windows NT. Sommer did not
address general interprocess communication mechanisms

that can result in priority inversion and does not consider
the impact of dynamic priority adjustments.

Steere, et. al. developed a feedback-based resource
reservation scheduler that monitors the progress of ap-
plications and uses that information to guide the alloca-
tion of resource [11]. The scheduler allocates resources
based on reservation percentages instead of priorities to
avoid explicit priority inversion. In this context though,
Steere introduces symbiotic interfaces to monitor appli-
cation progress to derive the appropriate assignment of
scheduling parameters for different applications based on
their resource requirements in the presence of application
dependencies. However, applications typically need to be
modified to explicitly use the interfaces for the system to
monitor progress effectively.

Mach’s scheduler handoff mechanism [12] and doors [13]
are mechanisms whereby applications can deal with pro-
cess dependencies by explicitly having one process give its
allocated time to run to another process. However, these
handoff mechanisms require applications to be modified
to explicitly use them. They also require applications to
identify and know which processes to run. These mecha-
nisms are not designed to resolve priority inversion in gen-
eral and do not resolve priority inversions that arise due
to process dependencies that are not explicitly identified
in advance.

Co-scheduling mechanisms have been developed to im-
prove the performance of parallel applications in parallel
computing environments [14, 15, 16, 17]. These mech-
anisms try to schedule cooperating threads or processes
belonging to the same parallel application to run con-
currently. This reduces busy waiting and context switch-
ing overhead and improves the degree of parallelism that
can be used by the application. Because many of these
applications are written using parallel programming li-
braries, these libraries can be modified to implement co-
scheduling. Co-scheduling mechanisms focuses on sup-
porting fine grained parallel applications. They typically
do not support multi-application dependencies and do not
address the problem of uniprocessor scheduling in the pres-
ence of process dependencies.

3 Automatic Dependency Detection

SWAP introduces a mechanism that automatically de-
tects potential process dependencies by leveraging the con-
trol flow structure of commodity operating systems. In
commodity operating systems such as Linux, process de-
pendencies occur when two processes interact with each
other via the interprocess communication and synchro-
nization mechanisms provided by the operating system.
These mechanisms are provided by the operating system
as system calls. This fact suggests a simple idea that
SWAP uses for detecting resource dependencies among
processes: if a process is blocked because of a process de-
pendency, determine the system call it was executing and

3

Requester A

Resource

Requester B

Figure 1: Abstract Resource Model

use that information to determine what resource the pro-
cess is waiting on and what processes might be holding
the given resource.

Based on this idea, SWAP provides a resource model
that is shown in Figure 1. The model contains three com-
ponents: resources, resource requesters, and resource pro-
viders. A resource requester is simply a process that is
requesting a resource. A resource provider is a process
that may be holding the requested resource and there-
fore can provide the resource by releasing it. If a certain
resource is requested but is not available, the resource re-
questers will typically need to block until the resource is
made available by the resource providers. SWAP uses this
simple yet powerful model to represent almost all possible
dependency relationships among processes. SWAP applies
this model to operating system resources to determine de-
pendencies resulting from interprocess communication and
synchronization mechanisms.

An assumption made by SWAP is that resources are
accessed via system calls. While this is true for many re-
sources, an important exception can be the use of memory
values for synchronization, most notably user space shared
memory mutexes. It is common for user space mutexes to
simply spin waiting to synchronize access to protected re-
sources. Since no system call is involved when accessing
this kind of mutex, our SWAP system model does not de-
tect this kind of dependency relationship. However, we
note that thread library mutex implementations such as
pthreads in Linux do not allow spin waiting indefinitely
while waiting for a mutex. Instead, they allow spin wait-
ing for only a time less than the context switch overhead
then block. Given that context switch times in modern
systems are no more than a few microseconds, the time
spent busy waiting and the time not accounted for by the
SWAP model is relatively small. For example, the Linux
pthread mutex implementation will spin wait for only 50
CPU cycles before blocking [18]. SWAP focuses instead
on process dependencies that can result in processes not
being able to run for long periods of time due to blocking.

3.1 SWAP Resource Model

In the SWAP resource model, each resource has a corre-
sponding resource object identified by a tuple consisting of

the resource type and the resource identifier. The resource
identifier can consist of an arbitrary number of integers.
The meaning of the resource identifier is specific to the
type of resource. For example, a socket is a resource type
and the inode number associated with this socket object is
used as the resource specific identifier for sockets. SWAP
associates with each resource object a list of resource re-
questers and a list of resource providers.

SWAP creates a resource object when a resource is ac-
cessed for the first time and deletes the object when there
are no more processes using it, which is when it has no
more resource requesters or providers. SWAP efficiently
keeps track of resource objects by using a resource ob-
ject hash table. A resource object is added to the hash
table when it is created and removed when it is deleted.
The hash key of a resource object is generated from its
resource identifier. If a resource identifier consists of N
integers, SWAP uses the modulus of the sum of all these
integers and the hash table size as the hash key for this re-
source. Generating the hash key this way allows resource
objects to be quickly added into or retrieved from the hash
table. Though infrequent, conflicts may occur if resource
identifiers hash to the same hash table entry. In the case
of conflicts, objects are simply stored in the table entry in
a doubly-linked list.

SWAP associates a process as a resource requester for
a resource object if the process blocks because it is re-
questing the respective resource. When a process blocks,
SWAP needs to first determine what resource the pro-
cess is requesting. Since resources are accessed via system
calls, SWAP can determine the resource being requested
by examining the system call parameters. For example,
if a process requests data from a socket resource by using
the system call read(sock,...), we can identify which
socket this process is accessing from the socket descrip-
tor sock. When a process executes a system call, SWAP
saves the parameters of the system call. If the process
blocks, SWAP then identifies the resource being requested
based on the saved system call parameters. Once the re-
source is identified, SWAP appends the process to the re-
source object’s list of resource requesters. When a resource
requester eventually runs and completes its system call,
SWAP determines that its request has been fulfilled and
removes the process from the requester list of the respec-
tive resource object.

To allow the resource requester to wake up and continue
to run, a resource provider needs to run to provide the re-
spective resource to the requester. To reduce the time the
resource requester is blocked, we would like to schedule the
resource provider as soon as possible. However, waking up
the requester by providing the necessary resource is an ac-
tion that will not happen until some time in the future.
Knowing which process will provide the resource to wake
up the requester is unfortunately difficult to determine be-
fore the wake up action actually occurs. The process that
will provide the resource may not have even been created
yet. Furthermore, there may be multiple processes that

4

could serve as the provider for the given requester. For
example, a process that is blocked on an IPC semaphore
could be provided the semaphore by any process in the
system that knows the corresponding IPC key. That is to
say, any process existing in the system could in theory be
the possible resource provider. In practice though, only
a few processes will have the corresponding IPC key and
hence the number of possible resource providers may be
more than one but is likely to be small.

To address the problem of identifying resource provi-
ders, SWAP uses a history-based prediction model. The
model is based on the observation that operating system
resources are often accessed in a repeating pattern. For ex-
ample, once a process opens a socket, it will usually make
many calls to access the socket before having it closed.
This behavior suggests that a process with a history of
being a good resource provider is likely to be a future
provider of this resource. SWAP therefore treats all past
providers of a certain resource as potential future resource
providers. SWAP first identifies these potential resource
providers and then applies a feedback-based confidence
evaluation using provider history to determine which po-
tential providers will actually provide the necessary re-
source to a requester in the most expedient manner.

SWAP associates a process as a potential resource pro-
vider for a resource object the first time the process exe-
cutes a system call that makes it possible for the process to
act as a resource provider. For example, if a process writes
data to a socket resource, SWAP identifies this process as
a resource provider for the socket. When a process exe-
cutes a system call, SWAP determines the resource being
provided by examining the system call parameters. Once
the resource is identified, SWAP appends the process to
the resource object’s list of resource providers. Note that
when SWAP adds a process to the resource provider list, it
has only been identified as a potential resource provider.
The potential provider must have provided the resource
at least once to be identified as a resource provider, but
just because it has provided the resource before does not
necessarily mean it will provide the resource again.

SWAP uses feedback-based confidence evaluation to pre-
dict which process in a list of potential resource providers
will provide the necessary resource most quickly to a re-
source requester. This is quantified by assigning a confi-
dence value to each potential resource provider. A larger
confidence value indicates that a provider is more likely
to provide the resource quickly to a resource requester.
A smaller confidence value indicates that a provider is
less likely to provide the resource quickly to a resource re-
quester. SWAP adjusts the confidence values of potential
providers based on feedback from their ability to provide
the resource quickly to a requester. If a resource provider
is run and it successfully provides the resource to a re-
quester, SWAP will use that positive feedback to increase
the confidence value of the provider. If a resource provider
is run for a certain amount of time and it does not provide
the resource to a requester, SWAP will use that negative

feedback to decrease the confidence value of the provider.

We first describe more precisely how SWAP computes
the confidence of each resource provider. Section 4 de-
scribes how SWAP uses the confidence of resource pro-
viders in scheduling to account for process dependencies.
SWAP assigns an initial base confidence value K to a pro-
cess when it is added to a resource object’s provider list.
SWAP then adjusts the confidence value based on feed-
back within a range from 0 to 2K. K can be configured
on a per resource basis. If a resource provider successfully
provides the resource to a requester, SWAP will increment
its confidence value by one. If a resource provider is run
for T time quanta and does not provide the resource to
a requester, SWAP will decrement its confidence value by
one. T can be configured on a per resource basis. A pro-
cess on the resource provider list will not be considered
as a potential resource provider if its confidence drops to
Zero.

Because it is possible to have cascading process depen-
dencies, a resource provider P; for a resource requester
P can further be blocked by another process P, which is
the resource provider for P;. As a result, P, can be in-
directly considered as a resource provider for P. SWAP
dynamically determines the confidence of an indirect pro-
vider as the product of the respective confidence values.
Let C(P, P1, R) be the confidence of resource provider P,
for resource R with requester P and C(Py, P2, Ry) be the
confidence of resource provider P, for resource R; with
requester P;. Then the indirect confidence C(P, Py, R) is
computed as C(P, P1,R) « C(P1, P, R1)/K. Since P is
not a direct resource provider for P, if P is run as an
indirect resource provider for P, the feedback from that
experience is applied to the confidence of P;. This ensures
that a resource provider that is blocked and has multiple
providers itself will not be unfairly favored by SWAP in
selecting among direct resource providers based on confi-
dence values.

A process will usually remain on the resource provider
list until it either terminates or executes a system call that
implicitly indicates that the process will no longer provide
the resource. For example, a process that closes a socket
would no longer be identified as a resource provider for
the socket. SWAP does, however, provide a configurable
parameter L that limits the number of resource providers
associated with any resource object. SWAP groups the
providers in three categories: high confidence providers,
default confidence providers, and low confidence provi-
ders. When this parameter L is set, SWAP only keeps
the L providers with highest confidence values. If a new
resource provider needs to be added to the provider list
and the list already has L providers, the provider is added
to the end of the default confidence providers list, and an
existing provider is removed from the front of the lowest
category provider list that is not empty. When there are
many potential resource providers, this limit can result in
a loss of past history information regarding low confidence

to be maintained for a resource object.
3.2 SWAP Dependency Detection in Linux

To further clarify how the SWAP resource model can
be generally and simply applied to automatically detect-
ing process dependencies in general-purpose operating sys-
tems, we consider specifically how the model can be ap-
plied to the kinds of resources found in Linux. These re-
sources include sockets, pipes and FIFOs, IPC message
queues and semaphores, file locks, and signals. We discuss
how these kinds of resources can be identified by SWAP
and how the requesters and potential providers of these
resources can be automatically detected.

3.2.1 Sockets

Sockets are duplex communication channels that can in-
volve communication either within a machine or across
machines. We only consider the former case since the
SWAP resource model only addresses process dependen-
cies within a machine. This includes both UNIX domain
sockets and Internet sockets with the same local source
and destination address. A socket has two endpoints and
involves two processes, which we can refer to as a server
and a client. SWAP considers each endpoint as a separate
resource so that each socket has two peer resource objects
associated with it. These objects can be created when
a socket connection is established. For example, when a
client calls connect and a server calls accept to establish
a socket connection, SWAP creates a client socket resource
object and a server resource object. All system calls that
establish and access a socket provide the socket file de-
scriptor as a parameter. SWAP can use the file descrip-
tor to determine the corresponding inode number. SWAP
then uses the inode number to identify a socket resource
object.

SWAP determines the resource requesters and provi-
ders for socket resource objects based on the use of system
calls to access sockets. A socket can be accessed using the
following system calls: read, write, readv, writev, send,
sendto, sendmsg, recv, recvfrom, recvmsg, select, poll
and sendfile. When a socket is accessed by a process,
the process is added as a resource provider for its socket
endpoint and the system call parameters are saved. The
process will remain a resource provider for the resource
object until it explicitly closes the socket or terminates.
If the system call blocks, it means that the process is re-
questing the peer resource object on the other end of the
socket. For example, when a client does a read on its
endpoint and blocks, it is because the server has not done
a write on its peer endpoint to make the necessary data
available to the client. If the system call blocks, SWAP
therefore adds the process as a resource requester for the

providers, but reduces the history information that needs 5 peer resource object.

3.2.2 Pipes and FIFOs

Pipes and FIFOs are another communication mechanism
used between processes. Unlike sockets, pipes and FIFOs
are one-way communication channels; all data written by
one process to a pipe or FIFO is then read by another pro-
cess. SWAP associates two resource objects with a pipe
or FIFO, one corresponding to read access and the other
corresponding to write access. These objects are created
when the respective resource is created by pipe for a pipe
and by open for a FIFO. All system calls that establish and
access a pipe or FIFO provide the resource file descriptor
as a parameter. SWAP can use the file descriptor to de-
termine the corresponding inode number. SWAP uses the
inode number and a binary value indicating whether the
access is a read or write to identify the respective resource
object.

SWAP determines the resource requesters and provi-
ders for pipe and FIFO resource objects based on the use
of system calls to read and write the resources. A read ac-
cess resource object can be accessed using the system calls
read, readv, select, and poll. When a read access re-
source object is accessed by a process, the process is added
as a resource provider for the object and the system call
parameters are saved. If the system call blocks, the calling
process is waiting for another process to write to the pipe
or FIFO, which means that it is a resource requester for
the peer write resource object. SWAP therefore adds the
process as a resource requester for the peer resource ob-
ject. A write access resource object can be accessed using
the system calls write, writev and poll. When a write
access resource object is accessed by a process, the process
is added as a resource provider for the object and the sys-
tem call parameters are saved. If the system call blocks,
the calling process is waiting for another process to read
from the pipe or FIFO, which means that it is a resource
requester for the peer read resource object. SWAP there-
fore adds the process as a resource requester for the peer
resource object. For both read and write resource objects,
a process remains a resource provider for the object until
it terminates or explicitly calls close on the respective
pipe or FIFO.

3.2.3 IPC Message Queues and Semaphores

System V IPC message queues provide another interpro-
cess communication mechanism and System V IPC sema-
phores provide an interprocess synchronization mechanism.
SWAP associates a resource object with each message queue.
An TPC message queue object is created when a process
calls msgget to create a message queue. msgget returns
a message queue identifier which is a parameter used by
all system calls that access the message queue. SWAP
therefore uses the message queue identifier to identify the
respective resource object. SWAP determines the resource
requesters and providers for message queues based on the
use of system calls msgrcv and msgsnd to read and write
the resource. When a message queue is accessed by a pro-

6

cess, the process is added as a resource provider and the
system call parameters are saved. The process will re-
main a resource provider for the resource object until the
message queue is explicitly destroyed or the process ter-
minates. If the system call blocks, the calling process is
added as a resource requester of the message queue object.

SWAP handles IPC semaphores in a similar fashion as
IPC message queues. An IPC semaphore object is cre-
ated when a process calls semget to create a semaphore.
semget returns a semaphore identifier which is a param-
eter used by all system calls that access the semaphore.
SWAP therefore uses the semaphore identifier to identify
the respective resource object. SWAP determines the re-
source requesters and providers for semaphores based on
the use of the semop system call to access the resource.
When a semaphore is accessed by a process, the process
is added as a resource provider and the system call pa-
rameters are saved. The process will remain a resource
provider for the resource object until the semaphore is ex-
plicitly destroyed or the process terminates. If the system
call blocks, the calling process is added as a resource re-
quester of the semaphore object.

3.2.4 File Locks

File locks provide a file system synchronization mechanism
between processes. Linux supports two kinds of file locking
mechanisms, fentl and flock. Since both of these mecha-
nisms work in a similar way and can both provide reader-
writer lock functionality, we just discuss how SWAP sup-
ports the flock mechanism. SWAP associates a resource
object with each file lock. An flock object is created when
a process calls flock to create a file lock for a file associ-
ated with the file descriptor parameter in flock. SWAP
distinguishes between exclusive locks and shared locks and
creates a different flock resource object for each case. Since
flock is used for all operations on the file lock, the file de-
scriptor is available for all file lock operations. SWAP can
therefore use the file descriptor to determine the corre-
sponding inode number. SWAP uses the inode number
and a binary value indicating whether the file lock created
is shared or exclusive to identify the respective resource
object.

SWAP determines the resource requesters and provi-
ders for flock resource objects based on the use of system
calls to access the resources. A shared flock resource ob-
ject is accessed when flock is called with LOCK_SH and the
respective file descriptor. When this happens, the calling
process is added as a resource provider for the object. If
the system call blocks, then some other process is hold-
ing the file lock exclusively, which means the process is a
resource requester for the exclusive flock object. SWAP
therefore adds the process as a resource requester for the
exclusive flock resource object. An exclusive flock resource
object is accessed when flock is called with LOCK_EX and
the respective file descriptor. When this happens, the call-
ing proecss is added as a resource provider for the object.
If the system call blocks, then some other process is hold-

ing the file lock either shared or exclusively, which means
the process is a resource requester for the both the exclu-
sive and shared flock object. SWAP therefore adds the
process as a resource requester for both flock resource ob-
jects. For both shared and exclusive flock resource objects,
a process remains a resource provider for the object un-
til it terminates or explicitly unlocks the flock by calling
flock with LOCK_UN.

3.2.5 Signals

Signals provide another mechanism that can be used to
do synchronization between processes. For example, the
Linux pthread mutex implementation uses a signal to
wake up a process blocking on a mutex. Not all signals
are used for synchronization. Signals such as SIGKILL and
SIGBUS are used for exception handling rather than syn-
chronization. SWAP ignores signals that are never used
for synchronization. For other signals, SWAP associates a
signal resource object with a process the first time that it
determines the process will receive a signal. SWAP iden-
tifies the signal resource object by the signal receiver’s
pid. If a process blocks in Linux, any signal can wake up
the process unless the signal is explicitly ignored by this
process. Since any signal can wake up a process, a sig-
nal resource object does not distinguish among different
signals sent to the respective process.

SWAP determines the resource requesters and provi-
ders for signal resource objects based on the use of sys-
tem calls to send signals and wait for signals. Signals can
be sent by the kill system call. When a process sends
a signal to another process, we first examine if the sig-
nal is a signal of interest to the destination process. A
process’s signals of interest include all the non-exception
handling signals that are not explicitly ignored by this
process. If a signal of interest is sent, the signal sender
process is added as a resource provider for the signal re-
source identified by the signal receiver’s pid. The sig-
nal resource provider is removed when the process ter-
minates. There are a number of system calls that can
be used to wait for signals: sigsuspend, rt_sigsuspend,
sigpending, rt_sigpending, rt_sigtimedwait,wait, and
pause. When these system calls are made, the calling pro-
cess is added as a resource requester for the signal resource
object identified by the calling process’s pid.

4 SWAP Dependency-Driven Scheduling

SWAP combines the information it has gathered from
its dependency detection mechanism with a scheduling
mechanism that is compatible with the existing schedu-
ling framework of an operating system but accounts for
process dependencies in determining which process to run.
To understand how this is done, we first describe briefly
how a conventional scheduler determines which process to
run and then discuss how SWAP augments that decision
to account for process dependencies.

7

A conventional scheduler maintains a run queue of run-
nable processes and applies an algorithm to select a pro-
cess from the run queue to run for a time quantum. Pro-
cesses that block become not runnable and are removed
from the run queue. Similarly, processes that wake up be-
come runnable and are inserted into the run queue. With
no loss of generality, we can view each scheduling decision
as applying a priority function to the run queue that sorts
the runnable processes in priority order and then selects
the highest priority process to execute [19]. This priority
model, where the priority of a process can change dynam-
ically for each scheduling decision, can be used for any
scheduling algorithm. To account for process dependen-
cies, we would like the priority model to account for these
dependencies in determining the priority of each process.
Assuming the dependencies are known, this is relatively
easy to do in the case of a static priority scheduler where
each process is assigned a static priority value. In this case
when a high priority process blocks waiting on a lower pri-
ority process to provide a resource, the the lower priority
process can have its priority boosted by priority inher-
itance. The scheduler can then select a process to run
based on the inherited priorities. However, priority inher-
itance is limited to static priority schedulers and does not
work for more complex, dynamic priority functions.

To provide a dependency mechanism that works for all
dynamic priority functions and therefore all scheduling al-
gorithms, SWAP introduces the notion of a virtual run-
nable process. A virtual runnable process is a resource
requester process that is blocked but has at least one run-
nable resource provider or virtual runnable resource pro-
vider that is not itself. Note that a resource requester
could potentially also be listed as a provider for the re-
source, but is explicitly excluded from consideration when
it is the resource requester. The definition is recursive in
that a process’s provider can also be virtual runnable. A
process that is blocked and has no resource providers is
not virtual runnable. A virtual runnable process can be
viewed as the root of a tree of runnable and virtual run-
nable resource providers such that at least one process in
the tree is runnable. SWAP makes a small change to the
conventional scheduler model by leaving virtual runnable
processes on the run queue to be considered in the sche-
duling decision in the same manner as all other runnable
processes. If a virtual runnable process is selected by the
scheduler to run, one of its resource providers is instead
chosen to run in its place. SWAP selects a resource provi-
der to run in place of a virtual runnable process using the
confidence associated with each provider. The confidence
of a runnable provider is just its confidence value. The
confidence of a virtual runnable provider is its indirect
confidence value as described in Section 3.1. If a virtual
runnable provider is selected, the confidence values of its
providers are examined recursively until a runnable pro-
cess with the highest confidence value is selected. Once
a virtual runnable requester process becomes runnable as
a result of being provided the resource, it is simply con-

sidered in the scheduling decision like all other runnable
processes.

Figure 2: SWAP Scheduling Example

Figure 2 shows an example to further illustrate how
SWAP dependency-driven scheduling chooses a resource
provider based on confidence. Virtual runnable processes
are shown in grey and runnable processes are shown in
white. Suppose at the time the scheduler is called, a vir-
tual runnable process P1 is currently the highest priority
process. In Step 1 in Figure 2, P1 is blocked because it is
requesting resource R1 which has two resource providers
P2 and P3. P3 is also blocked because of it is requesting
resource R2 which has two providers P4 and P5. In this
example, P4 needs to run for 40 ms to produce resource
R2, and P3 needs to run for 20 ms to produce resource
R1. P2 and P5 do not actually provide the respective
resources this time. In this example, we assume the con-
fidence quantum T described in Section 3.1 is 100 ms.
SWAP needs to decide which process among P2, P4, and
P5 is likely to wake up P1 early. It decides by using the
confidence value associated with each provider. Assume
there is no previous confidence history for these resources
so that all confidence values are equal to a base confidence
K of 20. In deciding which process to run in place of vir-
tual runnable process P1, SWAP then determines P2’s
confidence C(P1, P2, R1) as 20, P4’s indirect confidence
C(P1,P4,R1) as C(P1,P3,R1)«C(P3, P4, R2)/K = 20,

and P5’s indirect confidence C(P1, P5, R1) as C(P1, P3, R1)x

C(P3,P5,R2)/K = 20. The first provider with the high-
est confidence value is P2, so it will be selected to run first.
It will run for 100 ms and then receive negative feedback
because it does not wake up P1 after one confidence time
quantum is used. C(P1, P2, R1) will then become 19. P4
becomes the first provider with the highest confidence, so
it will be selected to run. After P4 runs for 40 ms, it pro-
vides the resource for P3, which wakes up P3, resulting
in the new situation shown in Step 2 in Figure 2. At this
time, P3 can be the selected to run for virtual runnable
P1 since it has a higher confidence value than P2. It will
continue to run for another 20 ms and eventually wake up
P1, resulting in P1 being runnable as shown in Step 3 in
Figure 2.

number of important benefits. By introducing a new vir-
tual runnable state for processes, SWAP leverages an ex-
isting scheduler’s native decision making mechanism to ac-
count for process dependencies in scheduling. SWAP im-
plicitly uses an existing scheduler’s dynamic priority func-
tion without needing to explicitly calculate process prior-
ities which could be quite complex. SWAP does not need
to be aware of the scheduling algorithm used by the sched-
uler and does not need to replicate the algorithm as part of
its model in any way. As a result, SWAP can be integrated
with existing schedulers with minimal scheduler changes
and can be easily used with any scheduler algorithm, in-
cluding commonly used dynamic priority schemes. By us-
ing a confidence model, SWAP allows a scheduler to ac-
count for process dependency information in scheduling
even if such information is not precisely known.

While the SWAP approach provides important advan-
tages, we also note that it can be limited by the decision
making algorithm of an existing scheduler in the context of
multiprocessors. To support scalable multiprocessor sys-
tems, schedulers typically associate a separate run queue
with each CPU to avoid lock contention on a centralized
run queue. Each CPU runs the scheduler on its run queue
to determine which process to run. Since CPU scheduling
decisions are decoupled from one another, the process that
is selected to run may not be the most optimal. In a simi-
lar manner, if a virtual runnable process is selected by the
scheduler on a CPU, it may not be globally the best virtual
runnable process to select. It is possible that the virtual
runnable process selected is not the one with the highest
priority across all CPUs according to the native sched-
uler’s priority model. Other approaches could be used to
select a globally more optimal virtual runnable process,
but would incur other disadvantages. One could provide
separately managed queues for virtual runnable processes,
but this would require duplicating scheduler functionality
and increasing complexity. If a single queue was used for
virtual runnable processes, this could also impact sched-
uler scalability.

5 Implementation

We have implemented a SWAP prototype in RedHat
Linux 8.0 which runs the Linux 2.4.18-14 kernel. The
SWAP automatic dependency detection mechanisms were
designed in such a way that they can be implemented
as a loadable kernel module that does not require any
changes to the kernel. Furthermore, the SWAP resource
model can be largely implemented in a resource indepen-
dent fashion. While dependency information by its na-
ture is resource-specific, SWAP only requires a few simple
methods to be added for each type of resource that is sup-
ported. These resource-specific methods primarily need to
check system call parameters specific to the given resource
to determine the resource type and identifier. For exam-

SWAP’s use of virtual runnable processes provides a 3 ple, in our implementation, the support for IPC sema-

phores consists of only about ten lines of code. The SWAP
dependency-driven scheduling mechanism was also largely
implemented in the same kernel module, but it does re-
quire some changes to the kernel scheduler. These changes
only involved adding about 15 lines of code to the kernel
and were localized to only a couple of kernel source code
files related to the kernel scheduler. As a result, SWAP
can be implemented in such a way that minimizes the need
to modify many different parts of the operating system
kernel.

SWAP dependency detection was largely implemented
by providing a mechanism for intercepting system calls
and associating their calling processes and parameters with
resource objects. Intercepting a system call within a Linux
kernel module is fairly simple. The module only needs
to replace the appropriate system call handler pointer in
the system call table by a pointer to the new system call
handler. In order to invoke the previous system call han-
dler, the new handler only needs to call the old function
pointer. This results in a small amount of additional over-
head due to the extra procedure call. When a system
call is intercepted, SWAP first examines the system call
parameters to see whether a resource of interest is being
accessed. If a resource of interest is being accessed, SWAP
determines whether the calling process is a potential re-
source requester or provider. If it is a potential resource
requester, it saves the system call parameters so that they
can be easily accessed later if the process blocks as a re-
source requester. If it is a potential resource provider,
SWAP associates the calling process as a resource provi-
der for the respective resource object based on the system
call parameters.

SWAP dependency-driven scheduling required making
a few implementation changes to the kernel scheduler to
keep both runnable and virtual runnable processes in the
kernel run queues. There are multiple run queues because
the Linux 2.4.18-14 kernel uses Ingo Molnar’s O(1) sched-
uler which employs a separate run queue for each CPU.
In Linux, a process is removed from a run queue when
it blocks and is added back to a run queue when it wakes
up. We had to modify the two functions that control these
operations so that a process is removed from a run queue
only when it is neither runnable nor virtual runnable. We
also had to modify the functions so that a process that
wakes up will cause all blocked processes that depend on
it to be added to the run queues as virtually runnable.
We further modified the Linux scheduler so that when a
virtual runnable process is selected as the next process to
run, SWAP is called to select a runnable process from the
next process’s resource providers and the selected process
is run in place of the virtual runnable process.

As discussed in Section 3.1, SWAP provides three con-
figurable parameters, the default maximum number of pro-
viders per resource L, the initial base confidence value K,
and the confidence quantum 7. In our SWAP implemen-
tation, the default values of L, K, and T were set to 20,
20, and 20 ms, respectively. We use this set of default

configuration parameters in the measurements presented
in Section 6.

6 Experimental Results

We have used our SWAP prototype implementation in
Linux to evaluate its effectiveness in improving system
performance in the presence of process dependencies. We
compared Linux SWAP versus vanilla Redhat Linux 8.0
using both microbenchmarks and real client-server appli-
cations. Almost all of our measurements were performed
on an IBM Netfinity 4500R server with a 933 MHz In-
tel Pentium III CPU, 512 MB RAM, 6 GB HD, and 100
Mbps Ethernet. We also report measurements obtained
on the same machine configured with two CPUs enabled
instead of just one. Section 6.1 describes the application
workloads we measured for our experiments. Section 6.2
presents the measurements obtained and discusses the re-
sults.

6.1 Application Workloads

We present some experimental data from measurements
on four types of application workloads: client-server mi-
crobenchmark, multi-server microbenchmark, thin-client
computing server, and a Java multiprocessor chat server.
The client-server microbenchmark workload is used to mea-
sure the overhead of SWAP and illustrate its performance
for different resource dependencies. The multi-server mi-
crobenchmark is used to measure the effectiveness of SWAP
when multiple processes can be run to resolve a resource
dependency. The thin-client computing server workload
is used to measure the effectiveness of SWAP in a server
environment supporting multiple user sessions. The chat
server workload is used to measure the effectiveness of
SWAP in a multiprocessor server environment supporting
many chat clients.

Client-server microbenchmark. The client-server
microbenchmark workload consisted of a simple client ap-
plication and server application that are synchronized to
start at the same time. The client waits for the server to
perform a simple bubblesort computation on a 4K array
and respond to the client via some method of communica-
tion, resulting in a dependency between client and server.
We considered six common communication mechanisms
between client and server:

e Socket (SOCK): Server computes and writes a 4 KB
data buffer to a Unix domain socket. Client reads
from the socket.

e Pipe/FIFO (PIPE): Server computes and writes a 4
KB data buffer to a pipe. Client reads the data from
the pipe.

e IPC message queue (MSG): Server computes and
sends a 4 KB data buffer via an IPC message queue.
Client receives the data from the message queue.

e IPC semaphores (SEM): Server computes and uses
semop to increment the semaphore when it com-
pletes its computation. Client waits until semaphore
is true and decrements the semaphore.

Signal (SIG): Server computes and sends a signal
to client when it completes its computation. Client
waits until it receives the signal.

File locking (FLOCK): Server uses flock to lock
a file descriptor while it does its computation and
unlocks when it is completed. Client uses flock to
lock the same file descriptor and therefore must wait
until server releases the lock.

We measured the time it took for the client to com-
plete for each of the six communication mechanisms when
using vanilla Linux versus SWAP. For this experiment,
we assumed that the client is an important application
and is therefore run as a real-time SCHED_FIFO process
in Linux. All other processes in the system are run us-
ing the default SCHED_OTHER scheduling policy. In
Linux, SCHED_FIFO processes are higher priority than
SCHED_OTHER processes and are therefore scheduled to
run before SCHED_OTHER processes. We measured the
client completion time when there were no other applica-
tions running on the system to provide a measure of the
overhead of SWAP compared to vanilla Linux. We then
measured the client completion time using vanilla Linux
versus SWAP when ten other application processes were
running at the same time as the client-server microbench-
mark. The application processes were simple while loops
imposing additional load on the system. This provides a
measure of the performance of vanilla Linux versus SWAP
on a loaded system in the presence of process dependen-
cies.

Multi-server microbenchmark. The multi-server
microbenchmark workload consisted of a simple client ap-
plication and five server applications that are started at
the same time. The microbenchmark is similar to the
client-server IPC semaphore microbenchmark with three
differences. First, since each server increments the sema-
phore and there are multiple servers running, the client
will only need to wait until one of the servers increments
the semaphore before it can run and decrement the sema-
phore. Second, each of the servers may do a different
number of bubblesort computations, resulting in the server
processing taking different amounts of time. For this ex-
periment, the five servers repeated the bubblesort compu-
tation 2, 5, 5, 10, and 10 times, respectively. As a result,
the servers vary in terms of the amount of processing time
required before the semaphore is incremented. Third, the
microbenchmark runs in a loop of 15 iterations so that we
can measure the client completion time for each iteration
and see how its performance varies over time.

We measured the time it took for the client to complete
each of the 15 loop iterations when using vanilla Linux
versus SWAP. For SWAP, we considered the impact of 1

0

different confidence feedback intervals by using two differ-
ent intervals, 20 ms and 200 ms. For this experiment, we
assumed that the client is an important application and
is therefore run as a real-time SCHED_FIFO process in
Linux. All other processes in the system are run using the
default SCHED_OTHER scheduling policy. We measured
the client iteration time when there were no other appli-
cations running on the system to provide a baseline per-
formance measure on vanilla Linux and SWAP. We then
measured the client completion time using vanilla Linux
versus SWAP when ten other application processes were
running at the same time as the client-server microbench-
mark. The application processes were simple while loops
imposing additional load on the system. This provides a
measure of the performance of vanilla Linux versus SWAP
on a loaded system in the presence of process dependen-
cies.

Thin-client computing server. The thin-client com-
puting server workload consisted of VNC 3.3.3 thin-client
computing sessions running MPEG video players. VNC [20]
is a popular thin-client system in which application and
window system logic are run on the server and display up-
dates are then sent to a remote client. Each session is a
complete desktop computing environment. We considered
two different VNC sessions:

e MPEG play: The VNC session ran the Berkeley
MPEG video player [21] which processed and dis-
played a 5.36 MB MPEG]1 video clip with 834 352x240
pixel video frames that was stored on the local disk.

Netscape: The VNC session ran a Netscape 4.79
Communicator web browser and downloaded and
displayed a Javascript-controlled sequence of 54 web
pages from a web server. The web server was a Mi-
cron Client Pro with a 450 MHz Intel Pentium II,
128 MB RAM, 14.6 GB HD, and 100 Mbps Ethernet,
running Microsoft Windows NT 4.0 Server SP6a and
Internet Information Server 3.0. It was connected to
our test system over a 100 Mbps LAN via a 3Com
Superstack IT 3900 switch.

We measured the time it took for the respective appli-
cation in one VNC session to complete when using vanilla
Linux versus SWAP. For this experiment, we assumed that
the application measured, either the video player or web
browser, is important and is therefore run as a real-time
SCHED_FIFO process in Linux. All other processes in the
system are run using the default SCHED_OTHER schedu-
ling policy. We measured the respective video player and
web browser completion times when there were no other
applications running on the system to provide a base-
line performance measure of each application running on
vanilla Linux and SWAP. We then measured each appli-
cation completion time using vanilla Linux versus SWAP
with 50 other VNC sessions running at the same time,
each session running the video player application.

Volano chat server. The Chat server workload con-
sisted of VolanoMark 2.1.2 [22], an industry standard Java

chat server benchmark configured in accordance with the
rules of the Volano Report. VolanoMark creates a large
number of threads and network connections, resulting in
frequent scheduling and potentially many interprocess de-
pendencies. It creates client connections in groups of 20
and measure how long it takes the clients to take turns
broadcasting their messages to the group. It reports the
average number of messages transferred by the server per
second. For this experiment, all processes were run using
the default SCHED_OTHER scheduling policy. We as-
sumed that the chat clients are important and are there-
fore run as at a higher priority by running them with nice
-20 with all other applications run at the default priority.
We measured the VolanoMark performance when there
were no other applications running on the system to pro-
vide a baseline performance measure on vanilla Linux and
SWAP. We then measured the VolanoMark performance
with different levels of additional system load. The sys-
tem load was generated using a simple CPU-bound appli-
cation. To produce different system load levels, we ran
different numbers of instances of the CPU-bound applica-
tion. We ran VolanoMark using the dual-CPU server con-
figuration. This provides a measures of the performance
of vanilla Linux versus SWAP with a resource-intensive
server application running on a loaded multiprocessor in
the presence of process dependencies. VolanoMark was
run using Sun’s Java 2 Platform 1.4.0 for Linux which
maps Java threads to Linux kernel threads in a one-to-one
manner. Linux kernel threads are mapped to processes
one-to-one as well.

6.2 Measurements

Figures 3 to 7 show the results of running the four ap-
plication workloads using vanilla Linux versus SWAP. As
described in 6.1, the workloads are mostly run under two
configurations, one with low system load and one with
high system load. Low system load refers to the baseline
measurements in which no other applications were running
other than the application being measured. High system
load refers to the measurements in which additional load
was imposed on the system as described in 6.1 for each
application workload.

Client-server microbenchmark. Figure 3 shows the
client-server microbenchmark measurements for each of
the six microbenchmarks. For low system load, the mea-
surements show that the client completion time for each
microbenchmark was roughly 100 ms for both vanilla Linux
and SWAP. The client completed quickly in all cases, and
there was essentially no difference between the comple-
tion times using SWAP and completion times using vanilla
Linux. The results show that even for small microbench-
marks, the additional overhead incurred from using SWAP
is negligible.

For high system load, the measurements show that the
client completion time for each microbenchmark was an or-
der of magnitude better using SWAP versus vanilla Linux.

11

[ELinux (Low) BSWAP (Low) OLinux (High) OSWAP (High)]

1800.00

1600.00 1%

1400.00
1258 1224

1200.00 1124

1045 1046

1000.00

Time (ms)

800.00

600.00 -

400.00

112
112

9% 112

112 [:17

SIGNAL FCNTL

200.00 - 1z

0.00 -

SOCK SEM

Figure 3: Client-server Microbenchmark Results

Despite the fact that the client was the highest priority
process in the system, the client completion times when
using vanilla Linux ballooned to over 1 second, roughly
ten times worse than for low system load. The problem is
that the client depends on the server, which runs at the
same default priority as the other processes in the system.
Since Linux schedules processes independently, it does not
account for the dependency between client and server, re-
sulting in the high priority client process not being able
to run. In order to run the server at high priority as
well, Linux places the burden on the user to identify pro-
cess dependencies and explicitly raise the priority of the
server. On the other hand, the client completion times
when using SWAP remained almost the same for both
high and low system load at roughly 100 ms for all of the
microbenchmarks. In all cases, the client performance us-
ing SWAP for high system load is roughly ten times better
than vanilla Linux for high system load and essentially the
same as vanilla Linux for low system load. SWAP auto-
matically identifies the dependencies between client and
server processes for each microbenchmark and correctly
runs the server process ahead of other processes when the
high priority client process depends on it.

Multi-server microbenchmark. Figure 4 and Fig-
ure 5 show the multi-server microbenchmark measurements.
Figure 4 shows the measured client iteration completion
time for each iteration using vanilla Linux and SWAP for
low system load. Figure 5 shows the measured client it-
eration completion time for each iteration using vanilla
Linux and SWAP for high system load. In both figures,
SWAP-20 is used to denote the measurements done with a
SWAP confidence feedback interval of 20 ms and SWAP-
200 is used to denote the measurements done with a SWAP
confidence feedback interval of 200 ms.

For low system load, Figure 4 shows that client iter-
ation time is roughly the same at 1 second when using
SWAP or vanilla Linux for the first iteration. However,
the client iteration time when using SWAP is much better
than when using vanilla Linux for subsequent iterations.
While the client iteration time remains at roughly 1 sec-
ond for all iterations when using vanilla Linux, the client
iteration time drops to about 200 ms when using SWAP,

10 -

== Linux

—=t==SWAP-20

SWAP-200

Time (s)

0.1

1 2 3 4 5 6 7 8 9 100 11 12 13 14 15
Round of Test (Low System Load)

Figure 4: Multi-server Microbenchmark Results (Low

Load)

100

=== _inux
= SWAP-20
SWAP-200

@
[
£
E

1]

0.1 T T T T T T T T T T T T T !

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Round of Test (High System Load)

Figure 5: Multi-server Microbenchmark Results (High
Load)

with the iteration time dropping faster using SWAP-200
versus SWAP-20. Of the five servers running, the server
running the bubblesort computation twice increments the
semaphore the fastest at roughly 200 ms. As a result, the
client completes its iteration the fastest when this server is
scheduled to run instead of the other servers. The results
in Figure 4 show that SWAP eventually finds the fastest
server to run to resolve the process dependency between
the high priority client and the servers.

The client takes about 1 second to complete an iteration
using vanilla Linux because the default SCHED_OTHER
scheduling policy used in the Linux 2.4.18-14 kernel is ba-
sically a round-robin scheduling algorithm with a time
quantum of 150 ms. The Linux scheduler therefore will
end up running each of the five servers in round-robin
order until one of the servers increments the semaphore
allowing the high-priority client to run and complete an
iteration. The fastest server needs to run for 200 ms to
increment the semaphore. Therefore, depending on when
the fastest server is run in round-robin order, it could take
between 800 ms to 1400 ms until the semaphore is incre-
mented and the client can run, which is consistent with
the results shown in Figure 4.

On the other hand, using SWAP the client only takes
200 ms to complete an iteration because SWAP’s confi-
dence feedback model identifies the fastest server after the

1

first iteration because that server is the one that incre-
ments the semaphore and allows the client to run. In
subsequent iterations, SWAP gives that server preference
to run, resulting in lower client iteration time. Figure 4
also shows that SWAP with a feedback interval of 200
ms will reach the optimal level faster than SWAP with
a feedback interval of 20 ms. This is because the confi-
dence value is adjusted one unit for each feedback, which
means each positive feedback will make the process run 1
quantum more ahead of the other processes. The larger
the quantum, the more benefit a process will receive from
a positive feedback. In this sense, it is desirable for the
confidence quantum to be as large as possible. However,
if the quantum is too large, the dependency-driven sched-
uler will behaveee in a FIFO manner, which can result in
longer response times. In this case, configuring the confi-
dence time quantum to be 200 ms works well because it
is the time needed for the fastest provider to produce the
desired resource.

For high system load, Figure 5 shows that client iter-
ation time is roughly the same at 10 seconds when using
SWAP or vanilla Linux for the first iteration. However,
the client iteration time when using SWAP is significantly
better than when using vanilla Linux for subsequent iter-
ations. The reasons for SWAP’s better performance for
high system load are the same as for low system load, ex-
cept that the difference between SWAP and vanilla Linux
is magnified by the load on the system.

Thin-client computing server. Figure 6 shows the
thin-client computing server measurements for the VNC
session running MPEG play and the VNC session run-
ning Netscape. For low system load, the measurements
show that the client completion time for both real appli-
cations was roughly the same. The overhead caused by
SWAP is less than 0.5%. For high system load, the mea-
surements show that the client completion time for each
application was an order of magnitude better using SWAP
versus vanilla Linux. Despite the fact that the client was
the highest priority process in the system, the video play-
back rate of MPEG play was only 0.72 frm/s when using
vanilla Linux, which means that each video frame took on
average 1389 ms to be processed and displayed. In the
same situation, it took Netscape more than 11 seconds
to download a single web page. In both cases the per-
formance was unacceptable. The problem is that MPEG
play and Netscape, as graphics-intensive applications, de-
pend on the X Server to render the video frames and web
pages. Since the X server was run at the same default
priority as all the other VINC sessions in the system, this
will effectively make all the clients depending on it run at
low priority also.

On the other hand, Figure 6 shows the performance of
both MPEG play and Netscape remained to be satisfac-
tory even under very high system load when using SWAP
. This further proves the effectiveness of the automatic
dependency detection mechanism and dependency driven
scheduler used by SWAP. The small difference between us-

[ELinux (Low) BISWAP (Low) OLinux (High) CISWAP (High)]

100000.0

11111
10000.0 +

1389
1000.0 4

100.0 .

10.0 +

1.0 +

MPEG_Play (ms/frm) Netscape (ms/page)
Figure 6: Thin-client Computing Server Benchmark Re-
sults

ing SWAP for high and low system load can be explained
by two factors. First, Linux still doesn’t support features
like a preemptive kernel which is important to real-time
applications. Second, since access to resources such as
memory and disk are not scheduled by the CPU sched-
uler, our SWAP CPU scheduling implementation does not
solve performance degradation problems caused by access-
ing these resources.

Volano chat server. Figure 7 shows the performance
of VolanoMark for different levels of system load. These re-
sults were obtained on the dual-CPU configuration of the
server. The system load is equal to the number of addi-
tional CPU-bound applications running at the same time.
For no additional system load, vanilla Linux averaged 4396
messages per second on VolanoMark test while SWAP av-
eraged 4483. The measurements show that VolanoMark
performs roughly the same for both vanilla Linux and
SWAP, with the performance of SWAP slightly better.
This can be explained by the fact that the Volano clients
frequently call sched_yield, which allows the CPU sched-
uler to decide which client should run next. Because SWAP
is aware of the dependency relationships among clients,
SWAP can make a better decision than vanilla Linux re-

garding which client should run next.
5000

4483
== Linux

WAP

4000

3091

3000

2000 A 1899

Throughput (msg/s)

1000 4 1222

10 15

System Load

20

Figure 7: Volano Chat Server Benchmark Results

The performance of vanilla Linux and SWAP diverge
significantly with additional system load. At a system

13

load of 20, SWAP provides VolanoMark performance that
is more than 2.5 times better than vanilla Linux. Although
SWAP does perform much better than vanilla Linux, both
systems show degradation in the performance of VolanoMark
at higher system load. At a system load of 20, SWAP per-
formance is about 70 percent of the maximum performance
while vanilla Linux performance is less than 30 percent of
the maximum performance. The degradation in perfor-
mance on SWAP can be explained because of its reliance
on the CPU scheduler to select among runnable and vir-
tual runnable processes and the multiprocessor scheduling
algorithm used in the Linux 2.4.18-14 kernel. For SWAP
to deliver the best performance, high priority virtual run-
nable processes should always be scheduled before lower
priority runnable processes. However, the Linux scheduler
does not necessarily schedule in this manner on a multi-
processor. The Linux scheduler employs a separate run
queue for each CPU and partitions processes among the
run queues based on the number of runnable processes in
each queue. It does not take into account the relative pri-
ority of processes in determining how to assign processes
to run queues. As a result, for a two-CPU machine, the
scheduler can end up assigning high priority processes to
one CPU and lower priority processes to another. With
SWAP, this can result in high priority virtual runnable
processes competing for the same CPU even though lower
priority processes are being run on the other CPU. As a
result, some high priority virtual runnable processes end
up having to wait in one CPU run queue when there are
other lower priority CPU-bound applications which end
up running on the other CPU.

Since Linux schedules processes independently, it does
not account for the dependencies between client and server,
resulting in high priority Volano clients not being able
to run in the presence of other CPU-bound applications.
Linux either delivers poor performance for these clients or
places the burden on users to tune the performance of their
applications by identifying process dependencies and ex-
plicitly raising the priority of all interdependent processes.
SWAP instead relieves users of the burden of attempting
to compensate for scheduler limitations. Our results show
that SWAP automatically identifies the dynamic depen-
dencies among processes and correctly accounts for them
in scheduling to deliver better scheduling behavior and
system performance.

7 Conclusion and Future Work

Our experiences with SWAP and experimental results
in the context of a general-purpose operating system demon-
strate that SWAP is able to effectively and automatically
detect process dependencies and accounts for these de-
pendencies in scheduling. We show that SWAP effectively
uses system call history to handle process dependencies
such as those resulting from interprocess communication
and synchronization mechanisms which have not been pre-

viously addressed. We also show that SWAP’s confidence
feedback model is effective in finding the fastest way to
resolve process dependencies when multiple potential de-
pendencies exist.

These characteristics of SWAP result in significant im-
provements in system performance when running appli-
cations with process dependencies. Our experimental re-
sults show that SWAP can provide more than an order of
magnitude improvement in performance versus the pop-
ular Linux operating system when running microbench-
marks and real applications on a heavily loaded system.
We show that SWAP can be integrated with existing sche-
duling mechanisms and operate effectively with schedulers
that dynamically adjust priorities. Furthermore, our re-
sults show that SWAP achieves these benefits with very
modest overhead and without any application modifica-
tions or any intervention by application developers or end
users.

While effective processor scheduling in the presence of
process dependencies is crucial for system performance,
processors are just one set of components in an overall
system. Other resources that require effective resource
management include I/O bandwidth, memory, networks,
and the network/host interface. Meeting the demands of
modern multi-process, client-server applications will re-
quire coordinated resource management across all critical
resources in the system. Providing resource management
mechanisms and policies across multiple resources that ef-
fectively support these applications remains a key chal-
lenge. We believe that the ideas discussed here for pro-
cessor scheduling will serve as a basis for future work in
addressing the larger problem of managing system-wide
resources to support process dependencies.

References

[1] B. W. Lampson and D. D. Redell, “Experience with
processes and monitors in Mesa,” Communications of
the ACM, vol. 23, pp. 105-117, Feb. 1980.

G. E. Reeves, “What really happened on mars,” The
Risks Digest, vol. 19, 1997.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Prior-
ity inheritance protocols: An approach to real-time
synchronization,” IEEE Transactions on Computers,

vol. 39, pp. 1175-1185, Sept. 1990.

T. Baker, “Stack-based scheduling of real-time pro-
cesses,” Real-Time Systems, vol. 3, Mar. 1991.

S. Sommer, “Removing priority inversion from an op-
erating system,” in Proceedings of Nineteenth Aus-
tralasian Computer Science, 1996.

IEEE, 1996 (ISO/IEC) [I[EEE/ANSI Std 1003.1,
1996 Edition] Information Technology — Portable
Operating System Interface (POSIX®) — Part 1:

14

[16]

[17]

System Application: Program Interface (API) [C
Language]. New York, NY, USA: IEEE, 1996.

J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A.
Wall, “SVR4 UNIX scheduler unacceptable for mul-
timedia applications,” in Proceedings of the Fourth
International Workshop on Network and Operating
System Support for Digital Audio and Video, (Lan-
caster, UK.), pp. 35-48, 1993.

W. R. Stevens, UNIX Network Programming, Inter-
process Communications, vol. 2. Upper Saddle River,
NJ 07458, USA: Prentice-Hall, second ed., 1998.

J. C. R. Bennett and H. Zhang, “WF 2 q: Worst-
case fair weighted fair queueing,” in INFOCOM (1),
pp. 120-128, 1996.

R. K. Clark, Scheduling Dependent Real-Time Activ-
ities. PhD thesis, Carnegie Mellon University, 1990.

D. C. Steere, A. Goel, J. Gruenberg, D. McNamee,
C. Pu, and J. Walpole, “A feedback-driven proportion
allocator for real-rate scheduling,” in Proceedings of
the 3rd Symposium on Operating Systans Design and
Implementation (OSDI-99), (Berkeley, CA), pp. 145-
158, Usenix Association, Feb. 22-25 1999.

D. L. Black, “Scheduling support for concurrency
and parallelism in the mach operating system,” IEEFE
Computer, vol. 23, no. 5, pp. 35—43, 1990.

J. Mauro and R. McDougall, Solaris Internals: Core
Kernel Architecture. Prentice Hall PTR, first ed.,
2000.

J. K. Ousterhout, “Scheduling techniques for con-
current systems,” International Conference on Dis-
tributed Computing Systems, pp. 22-30, 1982.

P. G. Sobalvarro, S. Pakin, W. E. Weihl, and A. A.
Chien, “Dynamic coscheduling on workstation clus-
ters,” Lecture Notes in Computer Science, vol. 1459,
pp. 231-257, 1998.

A. C. Arpaci-Dusseau, “Implicit coscheduling: coor-
dinated scheduling with implicit information in dis-

tributed systems,” ACM Transactions on Computer
Systems (TOCS), vol. 19, no. 3, pp. 283-331, 2001.

D. G. Feitelson and L. Rudolph, “Coscheduling
Based on Run-Time Identification of Activity Work-
ing Sets,” International Journal of Parallel Program-
ming, vol. 23, pp. 136—160, April 1995.

X. Leroy, “The linuxthreads library.” Available from
”http://pauillac.inria.fr/ “xleroy/linuxthreads/”.
Now a part of glibc GNU C library.

M. Ruschitzka and R. S. Fabry, “A unifying approach
to scheduling,” Communications of the ACM, vol. 20,
pp. 469-477, July 1977.

[20]

“Virtual network computing.” Available from
"http://www.uk.research.att.com/vnc/”. 7AT&T
Laboratories Cambridge”.

“The berkeley mpeg player.” Available from
"http://bmrc.berkeley.edu/frame/research/mpeg/
mpeg-_play.html”.

“Volanomark benchmark.” Available from
"http://www.volano.com/benchmarks.html”.
”Volano LLC”.

15

