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Abstract

We investigate elastic block ciphers, a method for constructing variable length block ciphers, from a
theoretical perspective. We view the underlying structure of an elastic block cipher as a network, which
we refer to as an elastic network, and analyze the network in a manner similar to the analysis performed
by Luby and Rackoff on Feistel networks. We prove that a three round elastic network is a pseudorandom
permutation and a four round network is a strong pseudorandom permutation when the round functions
are independently chosen pseudorandom permutations. As a result, the elastic network allows for the
creation of pseudorandom permutations and strong pseudorandom permutations with variable length
inputs from PRPs with fixed length inputs.
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1 Introduction

Within this paper we analyze the elastic block cipher construction defined in [1]. This is a method for
converting existing block ciphers into variable length block ciphers. The elastic block cipher construction
can be viewed as a network, which we will refer to as the elastic network. We investigate the network from
a theoretical perspective. We perform an analysis similar to that performed on Feistel networks by Luby
and Rackoff in [2] and by Noar and Reingold in [3]. The purpose of our analysis is to capture the intrinsic
properties of the network, assuming certain properties of the round functions, as Luby and Rackoff did for
Feistel networks.

We first show that the elastic network with three or more rounds and round functions that are random
permutations is a pseudorandom permutation (PRP). This allows us to prove that a three round elastic net-
work is a PRP and a four round network is a strong PRP (SPRP) when the round functions are independently
chosen PRPs. Our results show that the elastic network can be used to create PRPs and SPRPs with variable
length inputs from PRPs with fixed length inputs. We also show that a two round elastic network and a
modified three round elastic network are not PRPs, and that a three round elastic network is not a SPRP.

The remainder of the paper is organized as follows. In Section 2 we provide an overview of the elastic
network structure, compare the elastic network to a Feistel network and review the concepts of a PRP and
a SPRP. In Section 3 we prove that an elastic block cipher is a PRP when the original cipher contains at
least two rounds and each round function is an independently chosen random permutation. In Section 4
we consider two, three and four round versions of an elastic network in terms of which ones are PRPs and
which ones are SPRPs. We prove that a three round elastic network with independently chosen PRPs as
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round functions is a PRP and that a four round elastic network with independently chosen PRPs as round
functions is a SPRP. In Section 5 we conclude the paper.

2 Background

2.1 Elastic Network

We review the elastic network from [1] and the difference between it and a Feistel network. The purpose
of an elastic block cipher is to create a variable length block cipher from an existing block cipher. Given a
block cipher, G, that is structured as a series of r rounds and processes b bit blocks, a variable length block
cipher, G′, will be created that can process block sizes of b+y bits where 0 ≤ y ≤ b. The number of rounds,
r′, in G′ will be r + dyr/be. We note that if G is a Feistel network, the round function of G will be viewed
as consisting of one cycle of the Feistel network as opposed to just the function used within the Feistel
network. The elastic network structure is shown in Figure 1. Using a round function which processes b
bits, the elastic network processes b + y bits, where 0 ≤ y ≤ b, by leaving y bits out of the round function
in each round. Between rounds the bits omitted from the round function are XORed with a subset of y bits
output from the round function, with the subset of y bits becoming the bits omitted from the next round. The
decryption function for G′ consists of the network applied in reverse and the round function replaced by its
inverse. If G is a Feistel network, the inverse of the round function is a cycle of G run in reverse. We omit
the intial and final key dependent mixing steps present in [1] from our description because these are external
to the elastic network structure and do not impact our analysis of the elastic network.

Figure 1: Elastic Network

The general design for elastic ciphers is similar to an unbalanced Feistel network, thus it is worth ex-
plaining the difference between the elastic network and an unbalanced Feistel network [4]. Figure 2 shows
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Figure 2: Unbalanced Feistel Network Compared to Elastic Network

the structure of an unbalanced Feistel network compared to the elastic network. In a (balanced) Feistel
network, the block is split into two components of equal length; whereas, in an unbalanced Feistel network
the components do not have the same length and the lengths of the round function’s input differs from the
length of its output. The structure of the Feistel network allows the same round function to be used for
both encryption and decryption. The elastic network also involves splitting the block into two components,
applying the round function to one component then XORing and swapping bits between the components to
form the input to the next round. The elastic network differs from an unbalanced Feistel network in several
ways. First, the round function of the elastic network must be invertible; whereas, the round function of the
unbalanced Feistel network does not need to be invertible. This is because the structures differ in what bits
form the input to the round function. In an unbalanced Feistel network the input to round n is XORed with
the output of round n + 1 to form the input to round n + 2. In the elastic network, bits from the outputs
of rounds n and n + 1 are XORed when forming the input to round n + 2. Second, the bit positions for
the y bits omitted from the round function vary in the elastic block cipher; whereas, they are always the
least significant bits in the unbalanced Feistel network. Third, the round function maps b bits to b bits in
the elastic network and maps b bits to y bits in the unbalanced Feistel network. Fourth, y ≤ b in the elastic
network; whereas, an unbalanced Feistel network places no restriction on the length of y in relation to b.

While the elastic network requires the inverse of the round function, the rate of diffusion is greater than
that of the unbalanced Feistel network when the round functions provide the same amount of diffusion,
y 6= b, and if all input bits to the round function do not impact all output bits. In fact, the round function
in an unbalanced Feistel network must be defined very carefully; otherwise, it is possible for certain bits to
have no impact on the other bits over several rounds or even over all the rounds. This results in the elastic
network requiring fewer rounds to achieve complete diffusion than the number required by an unbalanced
Feistel network under the conditions stated. We note that when the original block cipher is a Feistel network,
an elastic version can be created without requiring the round function be invertible by using a complete cycle
of the Feistel network as the round function.
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2.2 PRPs and SPRPs

We informally remind the reader of the meaning of a PRP and a SPRP. We refer to a permutation on n
bits that is chosen randomly from all permutations on n bits as a random permutation. A permutation, G,
on n bits is a PRP if it is not possible to distinguish G from a random permutation in polynomial (in n)
time. Given a black box which either contains G or a random permutation, if an attacker makes polynomial
many queries to the black box and receives the output of the permutation within the box, the probability
the attacker correctly guesses the contents of the box is less than 1

2
+ e for negligible e ≥ 0. In terms of

block ciphers, this corresponds to the attacker being able to make either adaptive chosen plaintext queries or
adaptive chosen ciphertext queries (but not both) to a black box which contains either the cipher or a random
permutation.

A permutation , G, on n bits is a SPRP if it is not possible to distinguish G from a random permutation
in polynomial (in n) time when queries to both the permutation and its inverse are permitted. Given a black
box which either contains G or a random permutation, the attacker can make polynomial many queries to
the black box where the query indicates whether the permutation or its inverse is to be applied to the n bit
input. The probability the attacker correctly guesses the contents of the box is less than 1

2
+ e for negligible

e ≥ 0. In terms of block ciphers, this corresponds to the attacker being able to make both adaptive chosen
plaintext queries and adaptive chosen ciphertext queries in any order to a black box which contains either
the cipher or a random permutation.

Luby and Rackoff proved that when using round functions which are independently chosen pseudo-
random functions (PRFs) three rounds are required in a Feistel network to protect against known plaintext
attacks and four rounds are required to protect against known plaintext, ciphertext attacks [2]. Naor and
Reingold provided slightly modified constructions which achieve the same resistance to such attacks. The
first round of the three round version is replaced with a permutation, and the first and last rounds of the four
round version are replaced with independent permutations [3].

3 PRP from Random Permutations

In Section 4 we will prove that a three round elastic network is a PRP and that a four round elastic network
is a SPRP when the round functions are independently chosen PRPs. Prior to doing so, we need to prove a
property which is used as a building block for our proofs. Specifically, we claim that an elastic network is a
PRP when the round function is a random permutation and there are at least 3 rounds in the elastic network.
In this section, we first prove a theorem concerning the relationship between the elastic version of a block
cipher and the original block cipher. We then show that our claim follows directly from the theorem’s proof.

We consider a block cipher, G, operating on b bits and its elastic version, G ′, operating on b + y bits
where 0 ≤ y ≤ b. We prove that G′ is a PRP if each round of G is an independent random permutation
and G contains at least two rounds (in order for G ′ to contain at least three rounds). The proof is due to
the fact we are able to define the output of G ′ as the output of one instance of G concatenated with y bits
from a second overlapping instance of G with the inputs and round keys of the two instances being related.
The relationship between the pairs of inputs and between the pairs of round keys is a function of the cipher
structure only and treats the key and message variables symbolically. If G contains two or more rounds
that are each random permutations then each instance of G (G with a specific key) must correspond to a
random permutation. Thus, two instances of G with related keys - related inputs must also each correspond
to random permutations and a related key - related input attack cannot exist which distinguishes G from a
random permutation. We show if there is a distinguisher for G ′, this distinguisher can be used to distinguish
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related key - related input instances of G from random permutations. From the pairs of outputs from G,
b+ y bit strings are formed to which the distinguisher for G ′ is applied and will recognize the bias bounded
away from the assumed random permutation.

Before stating our theorem, we first state three obvious facts. Let RP1 and RP2 denote two random
permutations, each on b bits. Let KW1 and KW2 denote b bit strings which are formed independently of
the inputs and outputs of RP1 and RP2.

• Fact 1: The composition of RP1 and RP2 is a random permutation on b bits. In relation to G, this
means a sequence of rounds which are each random permutations is also a random permutation;
therefore, G is a random permutation if it consists solely of a series of random permutations.

• Fact 2: KW1⊕RP1, RP1⊕KW2, and KW1⊕RP1⊕KW2 are random permutations. In relation
to G, this means that adding whitening before and/or after a round (such as when forming G ′) does
not change the fact that the round is a random permutation, provided that the key bits used for the
whitening are independent of the round function’s input and output (for example, if the end of round
whitening was always the output of the round, the round would always output a string of b zeroes).

• Fact 3: A function which is defined by applying RP1 to b bits then selecting any y bit subset of RP1’s
output is a random function mapping b bits to y bits.

end of round whitening

initial whitening

round function

end of round whitening

round function

x1

end of round whitening

initial whitening

round function

end of round whitening

round function

x2
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round function

round function

x’
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x1 (b bits) y bits

x2
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c2
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Gk1(x1)

Gk2(x2)

Gk2(x2) || Fk1(x1)
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Figure 3: Related Instances of G within G′

Theorem I: An elastic block cipher, G′ is a PRP on b + y bits, 0 ≤ y ≤ b, if the original block cipher, G,
is a random permutation on b bits formed from at least two rounds and each round of G is an independent
random permutation on b bits.
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Before beginning the proof of Theorem I, we first formally describe how the output of G ′ (when used
for encryption) is the output of one instance of G concatenated with y bits from a second instance of G with
the inputs and round keys of the two instances related. Without loss of generality, we describe G as if it
contained initial and end of round whitening. By Fact 2, the assumption that G contains these whitening
steps does not impact the condition that the round functions are random permutations. Let:

• rkji denote the ith round key of the set of round keys rkj with rkj0 referring to the key bits used for
the initial whitening. For completeness and in order to later apply this notation to versions where each
round function is not a random permutation, we define the round key to include both end of round
whitening key bits and key bits used within the round function. When the round function is a random
permutation, any round key bits used within the round function can be viewed as being discarded and
do not impact the round function.

• IRFrkIRF
denote initial whitening and the round function, excluding the end of round whitening, of

G using key material rkIRF .
• x∗ be a b + y bit string.
• x′ be the b + y bit output of the (r′− r− 1)th round of G′ prior to the end of round whitening. Recall

that r′ and r are the number of rounds in G′ and G, respectively.
• x1, x2 be two b bit strings such that x1 is the leftmost b bits of x′ and x2 = IRFrkIRF

(x1).
• k1, k2 and rk1, rk2 be two keys for G and their corresponding sets of round keys, respectively, such

that:
– rk2i = rk1i+1 for i = 0 to r − 1.
– rk20 = the key bits from rk11 used for the end of round whitening.
– rk10 = the key bits from rkIRF used for the inital whitening step in IRF .

• c1 = Gk1(x1) and c2 = Gk2(x2)

• q be the y bits from c1 in the same position as the y bits from the leftmost b bits which are involved in
the swap in round r′ − 1 of G ′ when forming the input to round r′ of G ′.

• v ← {0, 1}y

• G′−1 denotes the inverse of G′, specifically G′ when is used for decryption.

Define Fk1(x) = q ⊕ v. The output of G′

k(x
∗) is Gk2(x2)||Fk1(x1).

For clarity, we point out that the pair of related inputs (x1, x2) to G are defined such that x2 is equivalent
to applying a single round of G′ to x1 using a round key which is held constant when forming multiple
related message pairs of the form (x1, x2). The round keys of G are related in that they are shifted one
round.

We note that the variables defined in this proof are defined as if G′ is being used for encryption. The
same reasoning applies when G′ is used for decryption by viewing the output of G′−1 as the b bit plain-
text produced by G−1

k1
concatenated with the XOR of y bits from the plaintext produced by G−1

k2
and y

pseudorandom bits. Thus we omit restating this proof in terms of decryption.
Figure 3 illustrates the relationship using a G with two rounds. The right part of the diagram reflects

the initial whitening step followed by 3 rounds of G ′. Thus x1 can be viewed as either the leftmost b bits
of the input to a 3 round version of G ′ or of the output of a previous round of G ′ after the swap step. The
”whitening with ⊕y bits” and ”whitening” within these 3 rounds are an equivalent representation of the end
of round whitening and swap steps in G ′.
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We prove the following two claims to provide the intuition as to why Theorem I is true.

Claim I: If G consists of a series of two or more rounds such that each round function is an independently
and randomly chosen random permutation on b bits and y < b then the output of G ′ can be defined as the
output of a random permutation concatenated with the output of a random function.

Proof: The leftmost b bits of output of G′ are from an instance of G and thus are the output of a random
permutation. By Fact 3, Fk1(x1) is a random function mapping b bits to y bits. Thus the output of G′ is the
output of a random permutation concatenated with the output of a random function.

Claim II: If G consists of a series of two or more rounds such that each round function is an independently
and randomly chosen random permutation on b bits and y = b then the output of G ′ can be defined as the
concatentation of the output of two independently chosen random permutations.

Proof: The leftmost b bits of output of G′ are from an instance of G and thus are the output of a random
permutation. The rightmost y bits of output of G′ are from an instance of G and thus are the output of a
random permutation. The two instances of G are different and thus the same random permutation is not
used to form both the b and y bit portions, except for the negligible probability that the same permutation
was selected randomly from all permutations when forming both instances of G.

We now prove Theorem I.

Proof of Theorem I: We will refer to the random permutation which outputs the leftmost b bits of G ′ as RB
and to the random function (when y < b) or random permutation (when y = b) which outputs the rightmost
y bits of G′ as RY . In regards to the requirement that G contains at least 2 rounds, this is necessary so that
it is not possible to alter the input to either RB or RY without altering the input to both. As a result, it is
not possible to hold either the leftmost b bit component of the output or the rightmost y bit component of
the output constant with non-negligible probability while altering the other component. It is this property
of not being able to hold part of the output constant with non-negligible probability when the input changes
that leads to the pseudorandomness of the output of G′. Note that RY can produce the same output with
negligible probability when given different inputs and y < b. It is also possible through a series of rounds
that the input to either RB or RY (but not both) will be identical for two different inputs to G ′ with negligible
probability. Obviously, if it was possible to hold the output of one component constant while varying the
other then G′ could be distinguished from a PRP using two queries.

In order to complete our proof of Theorem I, we need to show that the concatenation of the outputs of
RB and RY formed by the related key - related input pairs cannot be distinguished from random with non-
negligible probability. Specifically, if G′

k(x) is a PRP, we need to show the concatentation of outputs from
Gk2(x2) and Fk1(x1) cannot be distinguished from random with nonnegligble probability using polynomial
such outputs; where k1, k2, x1, x2 may vary to correspond to different inputs of x and fixed key k. To
accomplish this, we show how a distinguisher that distinguishes G ′ from a random permutation can be used
to prove G is not a random permutation. Assume G ′ is not a pseudorandom permutation. Then there exists
a distinguisher D ′ such that if polynomial many, n, inputs are given to a black box that contains either
G′ with a fixed, but randomly chosen key, or a random permutation, D ′ can determine from the outputs
whether the black box contains G′ or a random permutation with non-negligible probability. The n inputs
to the black box can be adaptively chosen and any specific input to the black box always produces the same
output. Each output from the black box is given to D ′, which then outputs a 0 if it thinks the output came
from an instance of G ′ and outputs 1 otherwise. On n inputs, D ′ will answer correctly with probability
1

2
+ ε for some non-negligible ε.

D′ can be used to construct a distinguisher, D, for G that distinguishes G from a random permutation.
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Using the notation and relations defined previously, let Gk1 and Gk2 be two instances of G with keys k1
and k2 that are related, but are otherwise unknown. We consider a black box, B, that takes pairs of b bit
inputs and contains either a random permutation on 2b bits or the two instances of G. The two instances
of G are such that Gk1 is applied to the first b bits and Gk2 is applied to the last b bits. Without loss of
generality, the outputs, c1 and c2, of the two instances of G are concatenated to form the output from B, and
the random permutation treats the pairs of b bits as 2b bit strings and outputs 2b bits. It should not be possible
to determine with non-negligible probability the contents of B on polynomial many queries to it if G is a
random permutation. because doing so implies a related key attack on G. Furthermore, the inputs used in the
queries may be adaptively chosen (we will require only that they can be chosen, not necessarily adaptively)
Thus even if the pairs of b bit inputs consist of related b bit strings, x1 and x2 as defined previously, a
distinguisher should not exist if G is a random permutation.

However, if G ′ is not a pseudorandom permutation on b + y bits, we can create a D that succeeds with
non-negligible probability and thus G cannot be a random permutation on b bits. Use n pairs of (x1, x2) as
the inputs to B (where x1 and x2 are related) and apply D to the 2b bit outputs of B. Let w1||w2 denote an
output of B, where |w1| = |w2| = b. Define D as follows to output 0 if B contains the two instances of G
and 1 otherwise:

Form a y bit random string, v, that is constant for all inputs to D: v ← {0, 1}y

D(w1||w2) {
Form a y bit string, q, by taking the y bits from w1 that are in the same y

positions used in the last swap step in G ′.
ans← D ′(w2||q ⊕ v)
Return ans.

}

We note that the bit positions chosen in each swap step of G ′ are part of the definition of G ′ and depend
at most on y (they are neither dependent on the key nor on the input), thus they can be known by D. The
b+ y bit string formed by D and given to D ′ is precisely Gk2(x2)||Fk1(x1) when the 2b bits input to D are
from the related key instances of G using related inputs, and thus is the output from an instance of G ′. The
b + y bit string formed by D is random when the 2b bits input to D are from a random permutation. Since
D ′ succeeds in distinguishing G ′ from a random permutation and D returns a 0 whenever D ′ returns a 0,
D will succeed with non-negligible probability in determining whether B contains the two instances of G
or a random permutation.

If n queries to D′ are required to distinguish the output of G ′ from a random permutation, then n queries
constructed from 2n outputs (n pairs) of inputs of B are required to use D to distinguish the outputs of G
(with the related key - related input pairs) from outputs of a random permutation. Therefore, by using related
keys and related inputs, the outputs of G can be distinguished from random with non-negligible probability
on polynomial many queries. Thus if G ′ is not a pseudorandom permutation then G cannot be a random
permutation, and if G is random permutation formed from a series of rounds of which each is a random
permutation then G ′ is a pseudorandom permutation. This concludes our proof of Theorem I.

Our next claim follows directly from Theorem I’s proof.

Claim III: A three round elastic network in which each round function is a random permutation on b bits is
a pseudorandom permutation on b + y bits.

Proof: In the proof to Theorem I, the only requirement regarding the number of rounds is that G ′ contain at
least three rounds. If we define G to be the first two round functions of G′ and set the number of rounds in
G′ to three regardless of the exact size of y (0 ≤ y ≤ b) then the proof to Theorem I still holds. We note

8



that according to the algorithm for constructing an elastic block cipher, when G contains two rounds, the
number of rounds in G′ is normally set to 3 if y ≤ b

2
and to 4 if b

2
< y ≤ b. However, 3 rounds is sufficient

to create a psuedorandom permutation on b + y bits when the round functions are random permutations.

4 PRP and SPRP

4.1 Overview

In Section 3 we proved that the elastic network can be used to create a PRP from random permutations. We
now analyze the elastic network to determine how it may be used to construct a PRP and a SPRP from PRPs.
The results are similar to the results Luby and Rackoff obtained for Feistel networks. In [2] it was shown
how to construct a PRP and a SPRP from random functions using a Feistel network. We prove that a three
round elastic network is a PRP and a four round network is a SPRP when the round functions are PRPs. We
also show that a two round elastic network and a modified three round elastic network are not PRPs, and
that a three round elastic network is not a SPRP. We note that we are using pseudorandom permutations as
the round function in our constructions; whereas, pseudorandom functions are used in the analysis provided
by Luby-Rackoff. This is due to the fact that the elastic network requires the round function be invertible.

4.2 Two Round and Modified 3 Round Elastic Networks

We consider two versions of the elastic network which is not a PRP. The first is a two round version. The
second is a three round version in which the second and third round functions are identical, there is no
whitening applied to bits omitted from the round function and y = b.

Claim IV: An elastic network with exactly two rounds is not a PRP.

Proof: This claim holds regardless of the properties of the round function. Consider the case where y = b.
Given two 2n bit plaintexts of the form B||Y 1 and B||Y 2, let the ciphertexts be denoted by C1||Z1 and
C2||Z2, respectively. As shown in Figure 4 C1 ⊕ Z1 = C2 ⊕ Z2 with probability 1. If the two round
construction was a PRP, this equality would occur with probability 2−n ± e for negligible e instead of with
probability 1. In general for any y ≤ b, C1⊕ Z1 and C2⊕ Z2 will match in the y specific positions of the
leftmost b bits involved in the swap after round 1. In contrast, if the two round construction was a PRP, the
match would occur with probability 2−y ± e for negligible e.

The following claim is made regarding a modified three round version.

Claim V: In a three round elastic network, if the round function does not change between the second and
third rounds (i.e. the round keys and round function are identical) and there is no whitening applied to the
bits omitted from the round function, then it is possible to distinguish the decryption function from a PRP
using a chosen ciphertext when y = b. (If any whitening is applied to the leftmost b bits at the end of each
round, this whitening step is considered to be part of the round function.)

Proof: This is illustrated in Figure 5. Using a 3 round version of the elastic network, let β denote the n
2

bit
output of the second round function prior to the XOR. Let C denote the ciphertext and let 0 denote a string
of n

2
zeroes. Choose C = 0||β. Then the outputs of both the second and third round functions, prior to the

XOR in each case, is β. The output of the first round function must be β⊕f2−1(β). The input to the second
round function is f2−1(β). Thus, the rightmost n

2
bits of the plaintext is β ⊕ f2−1(β) ⊕ f2−1(β) = β. If

the network was a pseudorandom permutation on n bits, the probability the rightmost n
2

bits output by the
inverse of the network equals β when the input is 0||β is 2−

n

2 ± e for negligible e.
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Figure 4: Elastic Block Cipher Structure - Two Round Attack

The network shown in Figure 5 is not the elastic network used in the elastic block cipher construction
because whitening of the rightmost y bits is omitted, the round key bits do not vary between the second and
third rounds, and y must equal b. If any one or more of these three conditions does not hold, the attack is
no longer applicable. If the round function uses key material and the key material varies amongst rounds
(which is typical of block ciphers) then the attack will not hold because f2−1(β) becomes f−1

ki (β) for some
key material ki that varies per round and the rightmost n

2
bits of the plaintext will be β⊕ f−1

k3
(β)⊕ f−1

k2
(β),

where k2, k3 denote the key material used in the second and third rounds. The attack will also not hold even
if the round function is identical across the second and third rounds (identical round keys, if any) but there
is whitening after each round applied to the rightmost bits which were omitted from the round function.
This is because the input to the second round when decrypting will be β⊕ whitening as opposed to β (any
whitening applied to the leftmost b bits output from the round function can be considered to be part of the
round function). In the case where the same leftmost b whitening bits are applied in rounds 2 and 3, the
attack holds. If these b whitening bits differ between rounds 2 and 3, this falls under the case of the key bits
differing and the attack does not hold. Finally, the attack also does not work if y < b. When y < b, the bits
input to the first two rounds of decryption will not be identical due to the specific bit positions involved in
the XOR because some bits from f2−1(β) will be input to the second decryption instead of this input being
exactly β.

4.3 Three Round Elastic Network is a PRP

We now show when a three round elastic network is a PRP. For simplicity, we show all of the three and four
round elastic networks in the remainder of this section without the last swap step which does not impact the
security of the elastic network.

Theorem II: A three round elastic network is a PRP if the round functions are independently chosen PRPs.
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Figure 5: Modified Three Round Elastic Network - Chosen Ciphertext Attack

Proof: We consider the relationships between the four versions shown in Figure 6 of a three round elastic
network. In each version, the round functions are chosen independently of each other and map a b bit input
to a b bit output.

We define the following six permutations:

• Let PRP1, PRP2, PRP3 be 3 independently chosen random permutations.

• Let RP1, RP2, RP3 be 3 independently chosen random permutations.

Let Ni refer to a 3 round elastic network in which the first i round functions are pseudorandom permu-
tations and the remaining round functions are random permutations, for i = 0, 1, 2, 3 defined as follows:

• Network 0 (N0): Each round function is a RP. The round functions are RP1, RP2, RP3.
• Network 1 (N1): The first round function is the PRP. The second and third round functions are RPs.

The round functions are PRP1, RP2 and RP3.
• Network 2 (N2): The first two round functions are PRPs and the third round function is a RP. The

round functions are PRP1, PRP2 and RP3.
• Network 3 (N3): Each round function is a PRP. The round functions are PRP1, PRP2 and PRP3.

As shown by Claim III in Section 3, N0 is a PRP. Therefore, if Theorem II is not true it is possible
to distinquish N3 from N0 with probability ≥ α for some non-negligible α where 0 < α ≤ 1. We will
show that if N3 can be distinquished from random then at least one of PRP1, PRP2 and PRP3 can be
distinguished from random in order to derive a contradiction and thus conclude Theorem II is true.

Let D be a distinguisher that takes b+y bit inputs and runs in polynomial time. D outputs a 1 if it thinks
the inputs are the outputs of a random permutation and outputs a 0 otherwise. Let Pr(Ni) be the probability
that D outputs a 1 when given polynomial many inputs from Ni. The outputs are from Ni is applied in one

11



Figure 6: 3 Round Networks Consisting of RPs and PRPs

direction only (e.g., encryption or decryption). If N3 can be distinguished from a random permutation, then
|Pr(N0)− Pr(N3)| ≥ α.
However,
|Pr(N0)− Pr(N3)| = |Pr(N0)− Pr(N1) + Pr(N1)− Pr(N2) + Pr(N2)− Pr(N3)|
≤ |Pr(N0)− Pr(N1)|+ |Pr(N1)− Pr(N2)|+ |Pr(N2)− Pr(N3)|.

Therefore, α ≤ |Pr(N0)− Pr(N1)|+ |Pr(N1)− Pr(N2)|+ |Pr(N2)− Pr(N3)|.
This implies at least one term on the right side of the inequality is ≥ α

3
and thus it is possible to distinguish

between a three round elastic network which has i round functions which are pseudorandom permutations
and one which has i−1 round functions which are pseudorandom permutation with non-negligible probabil-
ity. Therefore, it is possible distinguish between a round function which is a random function and one which
is a pseudorandom function with non-negligible probability, contradicting the definition of pseudorandom.

4.4 Three Round Elastic Network is not a SPRP

In [2], it was shown that a three round Feistel network is not a SPRP. The attack used to show this is an
adaptive chosen plaintext - chosen ciphertext attack using two encryptions and one decryption. A three
round elastic network is also not a SPRP. This can be shown with an adaptive attack which encrypts two
chosen plaintexts then decrypts two chosen plaintexts formed from the two resulting ciphertexts.

Claim V: A three round elastic network is not a strong PRP when b = y.

Proof: The following sequence of two encryptions and two decryptions can be used to distinguish the 3
round elastic network from a SPRP when b = y. Each plaintext and ciphertext is of length 2b, ı.e. |B| =
|Bi| = |Y i| = |Ci| = |Zi| = b ∀i.

Encrypt two plaintexts of the form B||Y 1 and B||Y 2. The b bit portion is constant and the Y i ′s may
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be any b bits such that Y 1 6= Y 2. Let C1||Z1 and C2||Z2 be the resulting ciphertexts. This is depicted in
Figure 7.

From the two resulting ciphertexts, form and decrypt the two ciphertexts C1||(Z1⊕Z2) and C2||(Z1⊕
Z2). Let B3||Y 3 and B4||Y 4 denote the two resulting plaintexts. This is depicted in Figure 8. Y 3⊕ Y 4 =
Z1⊕ Z2 with probability 1.

Figure 7: Chosen Plaintexts for the Chosen Plaintext - Chosen Ciphertext Attack

Figure 8: Chosen Ciphertexts for the Chosen Plaintext - Chosen Ciphertext Attack

The equality is obtained as follows:

• Let the wi values denote the whitening bits as shown in the figures.
• Let α, α1 and α2 denote the bits left out of the second round as shown on the figures.
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• Let µ = Z1⊕ Z2⊕w6.
• Let ω be the output from the round function in the second round of decryption when the input to the

round function is µ⊕ w3.
• Let u = Z1⊕ Z2⊕ w6.

Notice that:
α = Z1⊕ w6 ⊕ f3−1(C1⊕ w5)⊕ w4

= Z2⊕ w6 ⊕ f3−1(C2⊕ w5)⊕ w4
α1 = f3−1(C1⊕ w5)⊕ u⊕ w4
α2 = f3−1(C2⊕ w5)⊕ u⊕ w4

Expanding u then substituting α in α1 results in:
α1 = f3−1(C1⊕ w5)⊕ Z1⊕ Z2⊕w6 ⊕ w4.

= Z2⊕ α.
Likewise,

α2 = Z1⊕ α

Rewriting Y 3 and Y 4 in terms of α1 and α2 results in:
Y 3⊕ Y 4 = ω ⊕ w2⊕ α1⊕ ω ⊕ w2⊕ α2

= α1⊕ α2
= Z2⊕ α⊕ Z1⊕ α
= Z1⊕ Z2

Therefore, with probability 1, Y 3 ⊕ Y 4 = Z1 ⊕ Z2 in this adaptive chosen plaintext - chosen ciphertext
attack. If the elastic network was a SPRP, this equality would hold with probability 2−b± e for negligible e.

We point out that when y < b the attack does not hold because entering the second round of decryption,
Z1⊕ Z2 involves y bits. Since C1 6= C2, the remaining b− y bits are not guaranted to be equal.

4.5 Four Round Elastic Network is a SPRP

We will show that a four round elastic network in which the round functions are independently chosen
random permutations is a SPRP. Before stating our theorem, we prove two claims.

By the definition of a SPRP, any random permutation is a SPRP. Let RP1 and RP2 be two independently
chosen random permutations, each on n bits. Define Perm1(p) = RP2(RP1(p)), where x is of length
n. Perm1 is a random permutation on n bits and is a SPRP. Now we consider what happens if we use two
pseudorandom permutations instead of random permutations.

Claim VI: Let PRP1 and PRP2 be two independently chosen pseudorandom permutations, each on n
bits. Define Perm2(p) = PRP2(PRP1(p)), where x is of length n. Perm2 is a SPRP.

Proof: Obviously, Perm2 is a pseudorandom permutation on n bits. Any change in the input to Perm2
results in a change to the output of PRP1 and thus changes the input of PRP2 and the output of PRP2.
Since both PRP1 and PRP2 are pseudorandom permutations, both the input and output of the PRP2
portion of Perm2 cannot be distinguished from random.

In order for Perm2 to be a SPRP it must not be possible to distinguish Perm2 from a random permuta-
tion on polynomial many (m) queries to Perm2 and its inverse, Perm2−1. For simplicity, when we say an
attacker is querying Perm1 or Perm2, we mean the attacker is able to issue queries to both the permutation
and its inverse.
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• Let (pi, ci), for i = 1 to m be pairs of n bit strings such that ci = Perm2(pi).
• Let < +, pi > denote a query to Perm2 using input pi.
• Let < −, ci > denote a query to Perm2−1 using input ci.
• Let ti be the output of the ith query. ti = ci when the query is < +, pi > and ti = pi when the query

is < −, ci >.
• Let T = (t1, t2, ....tm) be the output of m distinct queries to Perm2. If the ith query is < +, pi >

and the jth query is < −, ci >, tj = pi if and only if ti = cj , for i 6= j. Without loss of generality we
can assume if an attacker queries with < +, pi > that he will not later query with < −, ci > since he
knows the answer will be pi regardless of whether he is querying Perm1 or Perm2.

• Let U = (u1, u2, ....um) be the output of m distinct queries made to Perm1.

We will refer to U and T as transcripts of Perm1 and Perm2, respectively. In order for Perm2 to be a
SPRP, it must not be possible to distinguish T from U with non-negligible probability. The probability of
ui+1 ocurring given (p1, c1), (p2, c2)...(pi, ci) is 1

2n
−i

because Perm1 is a random permutation.
Since Perm2 is a pseudorandom permutation, it is not possible to distinguish the output, ti, of any

single query from the output of a random permutation with non-negligble probability. For any single query
to Perm2, the output occurs with probability 1

2n ± e for some negligible e.
When an attacker does not issue any queries such that (pi, ci) = (pj , cj) for i 6= j, the probability of ti+1

given (p1, c1), (p2, c2)...(pi, ci) is 1

2n
−i
± ê for some negligible ê. Therefore, it is not possible to distinguish

T from U with non-negligble probability.

Claim VII: A four round elastic network in which each round function is an independently chosen random
permutation is a SPRP.

Proof: We will show that the four round elastic network can be viewed as two pseudorandom permutations
and then apply Claim VI. We define the following for use in the proof:

• Let N0 denote a four round elastic network on b + y bits in which the round functions are indepen-
dently chosen random permutations.

• Let RPi denote the random permutation used for the round function in round i, for i = 1, 2, 3, 4.
• Let G1′ denote the first two rounds of N0. G1′−1 refers to the inverse of G1′.
• Let G2′ denote the last two rounds of N0. G2′−1 refers to the inverse of G2′.
• Let V bi be a b bit string.
• Let V yi be a y bit string.
• Let V bi||V yi denote the output of G1′ and of G2′−1.
• Let < +, pi > and < −, ci > be defined in our proof of Claim VI. The lengths of pi and ci are both

b + y.
• Let pbi refer to the leftmost b bits of pi and let pyi refer to the rightmost y bits of pi.
• Let cbi refer to the leftmost b bits of ci and let cyi refer to the rightmost y bits of ci.
• Let wi indicate whitening bits (as shown in Figure 9). w(2i − 1) is the leftmost b bit portion of the

end of round whitening for round i and w(2i) is the rightmost y bits of the end of round whitening for
round i.

• Let fi(x) be a function with a b bit input and a y bit output that extracts from x the same y bits that
would be swapped out after the ith round of N0, e.g., these would be the y bits left out of round i + 1
if x was the output of RPi.
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• Let hbi(x4, x5) be a function with a b bit input, x4, a y bit input, x5, and a b bit output, x3, such
that when x4 is the input to RP (i + 1) and x5 is the y bits left out of round i + 1 in N0, then x3
is the output of RPi ⊕ w(2i − 1). e.g. hbi is a function which XORs x4 and x5 in the bit positions
corresponding to the swap after round i.

• Let hyi(x4, x5) be a function with a b bit input, x4, a y bit input, x5, and a y bit output, x6, such
that when x4 is the output of (RP (i + 1))−1 and x5 are the y bits left out of round i + 1 in N0, then
x6⊕ w(2i) are the y bits left out of round i in N0.

Figure 9 shows G1′, G2′, f1, f2, hbi and hby as they are related to N0.

Figure 9: 4 Round N0

We reconsider the number of rounds required in the original block cipher, G. Recall that in Theorem
I we restricted the original block cipher to be one which contains at least two rounds solely to insure that
the elastic version contains at least three rounds, making it impossible for an attacker to hold either the b
bit or y bit portion to the last round constant while varying the other portion. A two round elastic network
with independently chosen random permutations as round functions cannot be distinguished from a random
permutation if the attacker is restricted to queries in which both the b bit left portion and y bit right portion
must differ between any pair of queries. Under the restriction that G1′ can only be queried with b + y bit
inputs of the form pbi||pbyi such that both pbyi 6= pbjj and pbyi 6= pyj for any i 6= j, G1′ cannot be
distinguished from a random permutation. Likewise for G2′.

We now define V bi and V yi in terms of the RPi’s when encrypting and when decrypting. When N0 is
queried with < +, pi >, the output, ci, is the output of G2′ when G2′ is given input V bi||V yi such that:

• x2 = RP2(RP1(pbi)⊕ w1) ⊕ pyi ⊕ w2) ⊕ w3

• V bi = x2⊕ f1(RP1(pbi)⊕w1) ⊕ w4

• V yi = f2(x2)
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When N0 is queried with with < −, ci > (so the inverse of N0 is applied), the output, pi, is the output of
G1′−1 when G1′−1 is given input V bi||V yi such that:

• V bi = RP3−1(hb3(RP4−1(cbi ⊕w7), cyi ⊕ w8) ⊕ w5)

• V yi = hy3(RP4−1(cbi ⊕ w7), cyi ⊕ w8)⊕ w6

If any bit in the input pi to N0 changes, both V bi and V yi change in the input to G2′, except with negligble
probability. If any bit in the input cj to N0−1 changes, both V bj and V yj change in the input to G1′−1,
except with negligble probability. As a result, N0 can be viewed (per Theorem I) as two pseudorandom
permutations. Therefore, Claim VI can be applied to N0 and we conclude that N0 is a SPRP.

Theorem III: A four round elastic network in which the round functions are independently chosen PRPs is
a SPRP.

Proof: We consider the relationships between the five versions of a four round elastic network defined
below. This is the same as method used in the proof to Theorem II. In each version, the round functions are
chosen independently of each other and map a b bit input to a b bit output. We define the following eight
permutations:

• Let PRP1, PRP2, PRP3, PRP4 be 4 independently chosen pseudorandom permutations.
• Let RP1, RP2, RP3, RP4 be 4 independently chosen random permutations.

Let Ni refer to a 4 round elastic network in which the first i round functions are pseudorandom permu-
tations and the remaining round functions are random permutations, for i = 0, 1, 2, 3, 4 defined as follows:

• Network 0 (N0): Each round function is a RP. The round functions are RP1, RP2, RP3, RP4.
• Network 1 (N1): The first round function is the PRP. The second, third and fourth round functions

are RPs. The round functions are PRP1, RP2, RP3 and RP4.
• Network 2 (N2): The first two round functions are PRPs, and the third and fourth round functions are

RPs. The round functions are PRP1, PRP2, RP3 and RP4.
• Network 3 (N3): The first three round functions are PRPs and the fourth round function is a RP. The

round functions are PRP1, PRP2, PRP3 and RP4.
• Network 4 (N4): Each round function is a PRP. The round functions are PRP1, PRP2, PRP3 and

PRP4.

As we just proved, N0 is a SPRP. Therefore, if Theorem III is not true it is possible to distinquish N4
from N0 with probability ≥ α for some non-negligible α where 0 < α ≤ 1. We will show that if N3 can
be distinquished from random then at least one of PRP1, PRP2, PRP3 and PRP4 can be distinguished
from random in order to derive a contradiction and thus conclude Theorem III is true.

Let D be a distinguisher that takes b+y bit inputs as defined previously in the proof to Theorem II, except
now the inputs given to D are from both the forward and backward directions of the network. D outputs
a 1 if it thinks the input is the output of a random permutation and outputs a 0 otherwise. Let Pr(Ni) be
the probability that D outputs a 1 when given polynomial many inputs from Ni where the inputs to D are
outputs of both the forward (encryption) and backward (decryption) direction of Ni. If N4 is not a SPRP,
then
|Pr(N0)− Pr(N4)| ≥ α.
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|Pr(N0)−Pr(N4)| = |Pr(N0)−Pr(N1)+Pr(N1)−Pr(N2)+Pr(N2)−Pr(N3)+Pr(N3)−
Pr(N4)|
≤ |Pr(N0)− Pr(N1)|+ |Pr(N1)− Pr(N2)|+ |Pr(N2)− Pr(N3)|+ |Pr(N3)− Pr(N4)|.
Therefore, α ≤ |Pr(N0) − Pr(N1)| + |Pr(N1) − Pr(N2)| + |Pr(N2) − Pr(N3)| + |Pr(N3) −

Pr(N4)|.
This implies at least one term on the right side of the inequality is ≥ α

4
and thus it is possible to distin-

guish between a four round elastic network which has i round functions which are pseudorandom permu-
tations and one which has i− 1 round functions which are pseudorandom permutation with non-negligible
probability. This implies it is possible distinguish between a round function which is a random function
and one which is a pseudorandom function with non-negligible probability, contradicting the definition of
pseudorandom.

5 Conclusions

We analyzed the underlying network structure of elastic block ciphers to show the network can be used to
construct PRPs and SPRPs on b + y bits from a round function which is a PRP on b bits, where 0 ≤ y ≤ b.
We proved that an elastic block cipher is a PRP when the original cipher contains at least two rounds and
each round function is an independently chosen random permutation. Using this result, we proved that a
three round elastic network with independently chosen PRPs as round functions is a PRP and that a four
round elastic network with independently chosen PRPs as round functions is a SPRP. We showed that these
are the minimum number of rounds required to obtain a PRP and a SPRP. Therefore, the number of rounds
required to construct a PRP and a SPRP from PRPs using an elastic network are the same number of rounds
required when using a Feistel network. Furthermore, because the elastic network works on a range of input
sizes from b to 2b bits, our results show that the elastic network can be used to create PRPs and SPRPs with
inputs ranging from b to 2b bits from PRPs with fixed length inputs of b bits.
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