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Abstract

In a previous paper, we developed a general framework for establishing tractability and strong
tractability for quasilinear multivariate problems in the worst case setting. One important example of
such a problem is the solution of the Helmholtz equatiohu + qu = f in the d-dimensional unit
cube, in which: depends linearly orf, but nonlinearly org. Here, bothf andg ared-variate functions
from a reproducing kernel Hilbert space with finite-order weights of a&ddrhis means that, although
can be arbitrary largef andg can be decomposed as sums of functions of at mogtriables, withw
independent ofl.

In this paper, we apply our previous general results to the Helmholtz equation, subject to either
Dirichlet or Neumann homogeneous boundary conditions. We study both the absolute and normalized
error criteria. For all four possible combinations of boundary conditions and error criteria, we show
that the problem idgractable That is, the number of evaluations gfandg needed to obtain ag
approximation is polynomial ia~1 andd, with the degree of the polynomial depending linearly«on
In addition, we want to know when the problemsigongly tractable meaning that the dependence is
polynomial only ine~1, independently of. We show that if the sum of the weights defining the weighted
reproducing kernel Hilbert space is uniformly bounded iand the integral of the univariate kernel is
positive, then the Helmholtz equation is strongly tractable for three of the four possible combinations of
boundary conditions and error criterion, the only exception being the Dirichlet boundary condition under
the normalized error criterion.

*This research was supported in part by the National Science Foundation.



1 Introduction

The worst case complexity of solving many importdrdimensional problems, such as integration, approx-
imation, and elliptic partial differential equations, is known to be exponenti@hitnen the input functions
belong to standard Sobolev spaces, see, e.g., [10, Chapter 3] and [14] for discussion and references. This
curse of dimensionalityneans that such problems are intractable. One major goal of information-based
complexity research has been to vanquish the curse of dimensionality by shrinking the class of input func-
tions, so that such problems can be made tractable in the worst case setting.

Much attention has been lavished on the tractabilitiirefar multivariate problems, see, e.g., [11] and
the references contained therein. However, many important problenm®alinear Perhaps the simplest
kinds of nonlinear problems to analyze are problems that appear to be linear, but have “hidden” nonlinear-
ities. For example, consider the solution of the Helmholtz equatio + qu = f on thed-dimensional
unit cube, with Dirichlet or Neumann boundary conditions. If we tgeas a fixed known function, then we
are only interested in the dependence @ f; this is a linear problem. However, if we treat bofrandg
as unknown functions, the nonlinear dependenaeai ¢ means that we now have a nonlinear problem.

The Helmholtz equation is an example ofja@asilinearproblem. A quasilinear multivariate problem is
determined by giving, for each positive integkran operatos,: F, x Q; — G4, where

1. F, andQ, are sets off-variate functions,

2. F; andG, are normed spaces,

3. S4(-, q) is alinear operator for eache Q,, and

4. S, satisfies a Lipschitz condition with respect to its two variables.

Note that the presence ¢f; distinguishes quasilinear problems from well-posed linear problems, as defined
in [9]. For example, a linear partial differential equatibn = f yields a linear problem if we are only
interested in howt depends ory'; however, if we also want to study hanwdepends on the coefficients bf
we will have a quasilinear problem.

In this paper, we consider algorithms that use the values of linear functionglanflg. We will be
interested in algorithms that allow the evaluation of any linear functionafsaridg, as well as those that
only allow the evaluation of andgq at points in the unit cube. Let cakd S,;) denote the minimal number
of such evaluations needed to compute @pproximation in the worst case settih@ family S = {S4}52,
of problems is said to beactableif card(e, S,) is bounded by a polynomial isr* andd. If this bound is
independent ofl, thensS is said to bestrongly tractable

Of course, tractability results depend on how we choBsand Q,. One idea that has worked well
for linear problems has been to choageightedspaces. These are spaces for which the dependence on
successive variables or groups of variables is moderated by corresponding weights, see [8] where this idea
was probably studied for the first time, and [14] for a survey. Recently, spacedimidiorderweights
have been thoroughly analyzed. These spaces were introduced in [4] for the integration problem; they were
first studied for general linear problems in [11], and for quasilinear problems in [13].

The main idea behind finite-order weights is as follows. We want to solve protiigmdered may be
arbitrarily large. This means that we want to approximstef, ¢), where the functiong’ andg depend on
d variables. However, we restrict our attention to spaces for wfiiahdg that can be decomposed as sums
of functions that depend on at mastvariables, wherev is independent ofi. We stress that algorithms

IThese concepts, among others, will be precisely defined in Section 2.



using function values of andg do not use the values of the terms appearing in the decompositigh of
andq. These decompositions only serve as a theoretical tool to prove tractability error bounds.

By considering only input functions belonging to spaces of finite-order weights, we find that the number
of evaluations needed to obtain arapproximation is at most,, (1/¢)%d", which is polynomial in e
andd. The degrees,, andb,, depend at most linearly an; however, the leading coefficieat, may depend
exponentially onv. Thus, we would hope that is relatively small. As an example, in guantum mechanics,
one commonly encounters sums

1
q(X1, ..., Xq3) = Z

.2 2y1/2
l§i<j§d/3 (”XI Xj||€2(R3) +a )

of modified Coulomb pair potentials, see, e.g., [6, pg. 71]. Here, eattelongs tdR®, so thaty depends
ond scalar variables; however, each ternyainly depends on 6 variables. Henee= 6 for this example.

The paper [11] developed a general framework for studying the tractabiliiyezfr multivariate prob-
lems over reproducing kernel Hilbert spaces with finite-order weights. One of the main results of [11] is that
such problems are always tractable, and they are sometimes even strongly tractable. In a recent paper [13],
we showed how the framework of [11] can be extended to cquesilinearproblems. Using this frame-
work, we presented general conditions for determining when quasilinear multivariate problems are tractable
or strongly tractable.

In this paper, we verify these general conditions for specific important multivariate problems. Namely,
for a non-negative functiog on 7¢, wherel = (0, 1), we study the variational formulation of ti&lmholtz
equation

—Au+qu=f in 19, QD

subject to one of two kinds of homogeneous boundary conditions:

1. Dirichlet boundary conditions
u=0 ondl‘.

2. Neumanrboundary conditions
d,u=0 onal?,

whered, is the outer-directed normal derivative.

As already mentioned, we assume that we can compute function valyearafg or, more generally,
arbitrary linear functionals of andg. The setF, of right-hand side functiong” will be a reproducing
kernel Hilbert spacéi (K,), andQ, will be chosen so that the variational form of the solutiog: S, (f, ¢)
exists for allf € H(K,;) andg € Q,. We consider the worst case setting, in which we want to compute an
g-approximation to the solutiom for all f € H(K,) andg € Q, N H(K ), assuming additionally that the
norms of f andqg are bounded by given numbers.

We study two error criteria:

1. Theabsolute error criterion Here, we want to guarantee that the worst case error of an algorithm is
at moste.

2The modification is the inclusion of the positive tesm Physicists often include a smallas a regularization parameter, to
makeg smooth.



2. Thenormalized error criterion Here, we want to guarantee that the worst case error is atstioses
the initial error. (By thenitial error, we mean the minimal error we can attain without sampling the
functions f andgqg.)

Combining the two kinds of boundary conditions with the two error criteria, we see that there are four
different combinations to consider. Furthermore, each of these four combinations is considered, both for
algorithms using function values and for algorithms using continuous linear functionals.

We consider reproducing kernel Hilbert spaces spatés,) with finite-order weights of ordep, and
prove tractability results for both the Dirichlet and Neumann problems. Moreover, we find that the problem
is strongly tractable in three of the four possible combinations mentioned above, provided that the sum of
the finite-order weights is uniformly boundeddnand the integral of the univariate kernel is positive; the
only exception is the Dirichlet boundary condition under the normalized error criterion, which is open.

We now present the main results of this paper in more precise terms\ kefA?!, A, whereA?"
denotes the case where we use arbitrary linear functionals\&fdlenotes the case where we only use
function evaluations. As before, cdedS,;) = carde, S;, A) denotes the minimal number of evaluations
needed to compute arrapproximation in the worst case setting under the absolute or normalized error
criterion.

To prove our tractability results, we use a maximum principle. For the Dirichlet problem, we use the
result found in [5], which bounds th&,,-norm of the solution by the&..,-norm of the right hand side
function. For the Neumann problem, we could not find such a result in the literature, and so a proof (based
on suggestions of T. |. Seidman) is provided in this paper.

Let perr and pgim denotes- andd-exponents of tractability, so that

1 Perr
carde, Sy, A) < C <—> dPdm Vee (0,1),d e Z*,
&

and letpsyongdenote the exponent of strong tractability, so that

1 Pstrong
carde, S;, A) < C (—) .
&

Here,C is an absolute constant, independent of lzo#mdd.
We assume that the reproducing kerkglof the weightecdRKHS H (K,;) has the form

Kq(X,y) = Z Vd,ul_[K(Xj,yj),
ue{l,....d}, [ <w jeu

whereK is the reproducing kernel of a Hilbert spaiéK ) of univariate functions, ang, ,, are non-negative
numbers (weights). Let

1 p1
Kzzf / K(x,y)dxdy < oo.
o Jo

SinceK is a reproducing kernel we know that > 0. Our results depend on whetheris positive or
zero, and whether we are dealing with the general case for finite-order weights ofardethether we are
dealing with finite-order weights of orderwith a uniformly bounded sum, i.e., for which

SUP Y Yau < 0.
&)

= uefl,...,

Then we have the following results:



1. For the Dirichlet and Neumann problems under the absolute error criterion, we have

General case Bounded sum
ko >0 k=0 ko >0
A Perr < 2, pdim < 20 | Perr < 2, pdim < 3w Dstrong = 2
ASH Perr < 4, pdim < 4w | perr < 2, pdim < 6w Pstrong = 4

We see that both these problems are tractable. Moreover, if the sum of weights is uniformly bounded
andk, > 0, then these problems are strongly tractable.

2. For the Dirichlet problem under the normalized error criterion, we have

K2 > 0
AT Perr < 2, pdim < 2+
AU Perr = 4, Pdim = 4+ 20w

Hence, this problem is tractable. However, we do not know conditions that guarantee strong tractabil-
ity for this problem. The case, = 0 is also open.

3. For the Neumann problem under the normalized error criterion, we have

General case Bounded sum
K2 > 0 Ko = 0 K2 > 0
AT Perr < 2, pdim < @ | Perr < 2, pdim < 20 Dstrong = 2
ASH Perr < 4, pdim < 20 | perr < 2, pdim =< 4w Pstrong < 4

Thus, this problem is tractable. Moreover, if the sum of weights is uniformly bounded,ardO,
then the problem is strongly tractable.

We stress that these results hold for the kerii&]swith any finite-order weights of orde#» andany
univariate kernelk. Of course, the smoothness of functions fréfiK,) will depend on the kernek,
which may be chosen arbitrarily. Therefore, it may be possible to improve the exponents of tractability and
strong tractability for a given choice of the kernel and weights by using an algorithm specially tailored to
the particular situation.

For the class\?', the results are constructive; that is, we know which linear functionals we should use
to obtain the bounds on caed S,;, A?"). For the class\sY, the results ar@ot constructive, since they are
based on probabilistic arguments. Making these results constructive has been an open problem for a long
time.

Finally, as in [13], we underline that our results for the Dirichlet and Neumann problems give bounds
only on theinformation costi.e., on the number of evaluations gfandg needed to obtain astapproxi-
mation. We have not considered the problem of how many arithmetic operations are needed to implement
the algorithms that use these evaluations. These algorithms have the following form:

1. Obtain approximationg of f andg of g.

2. CalculateS,(f, §) as an appropriate-approximation.



Note that the first stage uses linear algorithms to compute the needed approximations. The coefficients used
by these linear algorithms may be precomputed independenifyaoidg. If the cost of precomputation is
not counted, the arithmetic cost of the first stage is proportional to the information cost. However, the second
stage introduces some difficulty. Since the oper&tois not linear, it is not a priori clear how hard it will
be to computes, (f, §) or an approximation thereof. Hence, our positive tractability results on the number
of evaluations must be augmented with positive results on the approximate computafiaif of ), if we
wish to claim that the quasilinear Dirichlet and Neumann problems are computationally feasible fal. large
We have already mentioned some open problems. Let us close this Introduction by posing two more.

1. For simplicity’s sake, we have restricted our attentiondmogeneoubirichlet and Neumann bound-
ary conditions. To what extent do the results of this paper still hold when the boundary conditions
arenon-homogeneo@s To maintain the spirit of this paper, the functions describing the boundary
conditions should also belong to a space of finite-order weights on each face of the unit cube. If
such is the case, we expect that similar tractability results will hold for both the homogeneous and
non-homogeneous cases.

2. We have not discussed lower bounds for elliptic problems over spaces of finite-order weights. It is
easy to see that a lower bound is given by the problem of approximating the embedding operator from
H(K,;) to H71(I4). Note that the target space for this approximation probled i$(1¢), rather
than the more familiar spade,(7/¢). Moreover, in the sequel, we show that the Dirichlet problem
is at least as hard as computing the most difficult weighted averafe &f) functions, the weights
coming fromHg(1¢); furthermore, the Neumann problem is at least as hard as computing the integral
of H(K,) functions. The problem of finding lower bounds for all these subsidiary problems has not
yet been studied, and remains open.

2 Notation and assumptions

In this section, we first recall some notation and concepts from [13, Sect. 2], which the reader should consult
for motivation and more detailed explanation. In addition, we precisely define the Dirichlet and Neumann
problems that we study.

Let us first establish a few notational conventionsk i an ordered ring, theR™ andR** respectively
denote the non-negative and positive elementR.off X andY are normed linear spaces, then Lin[Y]
denotes the space of bounded linear transformatios iofo Y. We write Lin[X] for Lin[ X, X], and X*
for Lin[ X, R]. Finally, we use the standard notation for Sobolev inner products, seminorms, norms, and
spaces, found in, e.g., [7, 12].

Let K be a measurable non-zero reproducing kernel defineldsor with I = (0, 1). We will require
that

Ko ‘= €SSSU[K (x, x) < 00, 2)
xel
from which it follows that
0 < k2 < k1 < Ko,

where

1
K1=/ K (x,x)dx (3)
0



and Lo
Ky = / / K(x,y)dxdy. 4)
o Jo

Furthermore, botlk andk; are positive, buk, may be equal to zero, see the Remark below.
Let #, be the power setdfl, ..., d}, and let

y={yauiue Py decl"}
be a set of non-negative numbeys, (which we callweightg, with

Ymax -= SUP MaX yy ., < 0.
deZ++ UePy

We shall assume thatis a set offinite-orderweights oforder w € Z*, see [4], i.e., that
Yau#0 onlyif Ju <o VYue P delZ', (5)

wherew is the smallest positive integer such that (5) holds jané the cardinality oit.
For eachi € Z**, the spacéi (K,) is the reproducing kernel Hilbert spad®{HS) whose reproducing
kernel is
Kd = Z Vd,uKd,ua
ue P,
with
KowXoy) =[[K@yp)  Yxyel’ue 2,
Jjeu

For f € H(K;) we know (see, e.g., [11]) that

| fllLyay < oatk) f Il mK) (6)
where, here and elsewhere, we will often use the function
1/2
04(0) = (Z Vd,u@ul) Ve e RY. (7)
ue P,

Hence,H (K,) is embedded irL,(1?) for arbitrary weightsy. For finite-order weights of ordes, we can
estimates,; (0) by

0a(0) < v/2 max6®, 1} ymaxd /2 8)
see [13, Lemma 5.1].
Example.We illustrate our approach by timein-kernel

K(X,)’)=Kmin(xv)’) = min{x»)’} vaye[oa 1]’ (9)

which has been studied in many papers and is related to the Wiener measure and the Sobolev space of
univariate functions. More precisely, the spaf€K) consists of absolutely continuous functions vanishing
at zero and whose first derivatives belondtd /), with the inner product

(f. 8y ny = /f/(X)g/(X)dX-
1

7



In this case, we havey = 1, k1 = 3, k2 = 3.

For thed-variate case, the spade(K,) with finite-order weights of orde® consists of functiony :
1Y — R that can be uniquely decomposed as

fOO =Y fu,

ueZy, lul<w

with X = [x1,x2, ..., x4], Where f,(X) = f(X,) depends only on; for j € u, and f, € H(Kgz.).
Furthermore

2 -1 2
1 ky = D Yau bk, .-

ueZy, ul<w

where

5 glul 2
”fu”H(Kd,u) = il 3_Xuf(xu) dXy.

Here, by convention, we havg¢@= 0. That s, ify,, = 0, then the corresponding compongit= 0.

Observe that the constant functigiix) = ¢ for all x € 19 belongs toH (K ;) iff y, 4 > 0, in which case
1/2
we havel| f |l sk, = lcl/vy- O

Remark.As we shall see, tractability results will be different for the cages 0 andx, = 0. For the min-
kernel we have, > 0. For some other kernels, we may haye= 0. For instance, consider tl¥®robov
kernelK (x, y) = Ba(lx — y|), whereBy(t) = t> — t + % is the Bernoulli polynomial of degree 2. Then

the spaceH (K ) differs from the Sobolev space with the min-kernel by replacing the condjti@ = O

by fol f(x)dx = 0; more properties of these and similar spaces may be found in, i.e., [8]. For the Korobov
kernel, we have, = 0. O

We now recall the standard variational forms of the Dirichlet and Neumann problems for the Helmholtz
equation (1), see (e.g.) [3, pp. 35—-40]. In what follows, we write

Bi(v,w; q) = / [Vv - Vw + gow] Vo, we HY(IY), g € Loo(I%).
14

1. For theDirichlet problem let
05 =1{q €L :q>0)}.
For f € H(K,) andg € Q7, a solution element = SPR(f, q) € H}(1¢) is defined such that

Ba(u, w; q) = (fyw) g0  Yw € HyU)). (10)

2. For theNeumann problerriet g¢ be a positive number, independentdofDefine
04 =1{q € L") :q > qo}.
For f € H(K,) andg € Q%*, a solution element = SYEV(f, ¢) € HY(1¢) is defined such that

Ba(u, w; q) = (fyw) g0y Yw e H . (11)

The well-definedness &2'R and SYEY will be addressed in the sequel.

Let
Sy, 0. G) = (SP'R, 0z, H3(1%))  for the Dirichlet problem
doSeds A (SNEY, Qz*, H(1?)) for the Neumann problem

8



We want to efficiently compute approximations §f(f, g) for [f,q] € Ha, % (Qa N Hy,,), Where
01, p2 € R** are independent af, and

Hyp={fe€eHK Nflluky=p}

is the ball ofH (K,) of radiusp > O.

For the Neumann problem to be well-defined, we must assumeQjian H, ,, is nonempty. This
holds if 1 € H(K,), i.e., the constant function 1 belongs MXK,), and |1k, < p2/qo. Then the
constant functioryo jbelongs toQ* N Hy ,,. Itis known, see [2], that E H(Ky) if ya4 > 0, and then
Ilsxy < vy > Furthermore, if 1¢ H(K) then|lln«, = v, - Hence, ifqoy, ;> < po then
Q5* N Hy ,, is nonempty.

Let A, ,, be an algorithm using information evaluations from a clagsof linear functionals o (K ;).
Here, A is either the clasa " of all continuous linear functionals ol (K ), or the classAS of standard
informationconsisting of function evaluations.

The worst caserror of A, , is given by

e(Agn, Sa, A) = sup 1Sa(fs @) — Aan(fs Dllc,

[fsq]EHd‘plXQdﬂHd,pz

and thenth minimal erroris defined to be

e(nv Sda A) = ,I4nf e(Ad,nv Sd9 A)v
d,n

the infimum being over all algorithms using at mastformation evaluations from.. Note that the operator
S.(-,q): H(K;) — Gy islinear for anyy € Q,. Hence thenitial error ¢(0, S,;) is

e(0,8) =p1 sup |ISa(, IlLin{r(Kka).Gal- (12)

q€Q4aNHg, p,

We shall prove later that(0, S,) is finite.
If ¢ € (O, 1), we say that the algorithm, , provides are-approximation taS, if

e(Ad,n, Si, A) <eg- ErrCrit(Sd).
Here, ErrCrit will be one of the two error criteria

1 for absolute error

ErrCrit(S,) = .
e(0, S;) for normalized errar

Let
carde, Sz, A) =min{n € Z" : e(n, Sz, A) < ¢ - ErrCrit(S,) }

denote the minimal number of information evaluations fr@meeded to compute arapproximation ta,.
The family S = {S,}4cz++ is said to bdractablein the classA if there exist non-negative numbets pe,
and pgim Such that

Perr
carde, S;, A) < C (—) dPdm Vee (0,1),d eZ*. (13)
&



Numbersper = pen(S, A) and pgim = paim(S, A) such that (13) holds are called andd-exponents of
tractability; these need not be uniquely defined plf, = 0 in (13), thenS is strongly tractablen A, and
we define

pstrong(A) =

Perr
inf { Perr = 0: 3C > 0 such that car@, S;, A) < C (—) Vee(0,1),d eZ™ }
&

to be theexponent of strong tractability

Of course, a problem’s tractability or strong tractability will depend on the error criterion used. Hence
in the sequel, we will writgyads, pabs, andp3hs,,for thee- andd-exponents of tractability and the exponent
of strong tractability under the absolute error criterion; these exponents will be denopé] byj>, and
PstongWhen we are using the normalized error criterion.

We will establish tractability of the Dirichlet and Neumann problems by using the results of [13]. Sup-

pose that the following conditions hold:
1. S, is quasilinear That is, there exists a functiah: H(K;) — Qg, as well as a non-negative num-
berCy, such that
1S4(f: @) = Sa(F. 8@, = Ca[I1f = Fleasy + g =l ]
VIf.ql € Hipy x Qa, [f. 4] € H(Ka) x H(Ky). (14)

2. There exist& > 0 such that

N, = sup Call App, ”Lin[).Ll(Kd),Lz(ld)]
deZ++ d* ErrCrit(S,)

(15)

Here,C, is from (14) and App is the embedding, Appf = f, of H(K,) into L(19).

Under these assumptions, [13, Theorem 5.1] tells us that the quasilinear pHbtesy; }scz++ is tractable
if « > 0 and strongly tractable & = 0. More specific estimates with the exponents of tractability or strong
tractability will be presented later.

The first assumption (14) establishes a Lipschitz conditiorsfort also implies that for any € Qy,
the linear operato$, (-, ¢): H(K,) — Gy is continuous. To see this, note that if we tgke- g and f = 0
thenS,(f, #(3)) = 0, so that (6) and (14) imply that

1Sa(fs Dllc, = Call fllL,aay = CaoakD | f ks

as claimed.
To verify that the second assumption (15) holds, we will need to estimate the norm of MNige
that (6) implies that the embedding Apys well-defined, with

| APR, [ILin (k). Lo24y] < Oa(K1). (16)
More precise results far App, IlLinfr k), 2,4 are given in [11]:
1. There existg, € [«», k1] such that
| APR, IILin (K ), Lo14)] = Oa(Ca).

This result holds for any value @ > 0.

10



2. Whenk, = 0, we have the explicit formula

1/2
[u|
| APP, lILin 7 (K ), Lo(14)] = 52%( [Vd,u”WHLin[H(K)]] ,

where the operatdV € Lin[ H(K)] is defined as

1
Wf =/ K(x, ) f(x)dx Vfe HK). (17)
0

SincekK is non-zero, the norm d¥ is positive.

3 The Dirichlet problem

We now apply the machinery of [13] to the problem of approximating solutions to the variational form of
the Dirichlet problem for the Helmholtz equation.

3.1 Some preliminary bounds

We already know thaH (K ;) is embedded irL,(I?). Using condition (2), it is easy to see thAIK,) is
also embedded i (1¢).

Lemma 3.1.
lgllr ey < oalko)llgllaky Vge H(Ky).

Proof. For anyg € H(K,) andx < I¢, we have

g(X) = (g, Ka(-, X)) H(Kk,)>
and thus
g < llglaxplKa(, X aksy = 181 HEKHV Ka(X, X).

Moreover,
Ko ¥) = Y vau[ [ K@) = D vaury = 02(k0)

ue P, jeu ue P,

for almost everyk € 1. Thus

Iglloady < IgllaK,) SUPY Ka(X, X) < o4(ko)llgllak,)

xeld

as claimed. n

Although it is known that the bilinear form, (-, -; ¢) is stronglyH(I¢)-coercive and bounded for any
g € @}, weinclude a formal proof of this fact, so that we can establish values of the coercivity and bounding
factors.

Lemma 3.2. For anyq € Qj, we have
Ba(v,viq) = 30l Vv € Ho(I),
and

|Ba(v, wi @)l < maX{L, gl a} Il gz lwllggey  Yv.w e Hy(I?).

11



Proof. Letv, w € H(I¢). From the proof of Poincéis inequality [1, Lemma 6.30], we see that

1
I Nipaay < —= |- lgrgey  ONHy(I9). (18)

NG
Hence
Bd(v,v:q)zf [IVv]? + qv?] Z/ |V)?
14 14

=%/ |Vv|2+%,/ w%%[/ |v|2+/ |Vv|2] (19)
14 Id 14 1d

= 51101710
On the other hand,
Ba(v, v: q) = MaX(L, gz a0}Vl o) (20)

Using (19) and (20), we see thaj (-, -; ¢) is an inner product o/} (/¢); its associated norrBj/z(-, 5 q)

is equivalent to the usual norfn ||H(Z)L(1d). Hence using the Cauchy-Schwarz inequality, along with (20), we
find that

|Ba(v, w3 @)1 < v/Ba(w, v; 9)v/Baw, w; q) < maxX{L, 1l iy IVl g gy 1wl g g
holds, as required. O

SinceH(K,) is embedded irl.,(7¢), the Lax-Milgram Lemma [3, pg. 29] and Lemma 3.2 tell us that
for any [f, q] € H(K,) x Q%, the problem (10) has a unique solutior= S?'R(f, ¢) € Hi(I%). In other
words, the solution operats?'R: H(K,) x Q% — Hy (1) is well-defined.

We now show thas?'R satisfies a Lipschitz condition.

Lemma 3.3. Let
€7 = 3 max(l, pi(e — Doy (ko). (21)

Forany[f, q] € Hy,, x Q4 and[f,q] € H(K,) x Q%, we have
ISR ) = SPRC. Dllgasy = CR[IS = Py, + g = @l |-
Proof. Letu = SPR(f, ¢) andii = SP'R(£, ¢). For anyw € H}(I%), we have

(f — frw) a4 = Bau, w; q) — By(ii, w; q)
= [ [Vt = il + (g - G
1
= Bg(u —ut,w; ) +(q — g, uw) ,dy.

Takingw = u — u, we have

By(w, w; q) = (f — f, w),qa) — (@ — q, uw) g4y

From Lemma 3.2, we have

.o 2 2
Bd(w, w; Q) Z §||w”Hol([d)’

12



and thus

2 3
10, < 3 [|¢f = 7w

+ |(g = @, uw) 0] (22)

Now

(f = Fowdigan| = 1F = Fllgolwl o). (23)

Theorem 3.7 of [5] allows us to estimate thg,-norm of the solution: in terms of the same norm of the
right hand side functiorf. More precisely, we have

lwllp, g2y < (e = DI fllL, -
Applying Lemma 3.1, we obtain
lullL ey = (€ = Doako)ll fll ik, < pr(e — Doalko),

and thus

|(q -q, Mw)Lz(Id) <llg — q”Lz(I")”u”Lw(ld)”w”Lz(I‘l)

. (24)
< pale = Doa o) lwll g1 a)lg = qllL,a4)-
Substituting (23) and (24) into (22) and remembering that 1 — i, we immediately get
llu — b~l||HOl(1d) = % [||f - f||L2(1d) + p1(e — Doy (ko) llg — é”Lg(Id)]
= max(L, pule — Douko)} [If = Flleaus + g = @llzpan |
as claimed. O

SinceH (K,) is embedded il (1¢), we can define a mapping; H(K;) — Q} by
o (v)(X) = vy (X) := max{v(x), 0} vxe I ve H(K,).
We are now ready to show th&'® for our elliptic Dirichlet problem is quasilinear, i.e., (14) holds.

Lemma 3.4. Let CP'R be defined as in Lemn&3. Then

ISPRCF.0) = SPR(F. 9@ lggasy = CRR[IF = Flliacrr + g = Gl o]
VIf.q] € Hap x Qf, [f, 4] € H(Ky) x H(Ky).
Hence,S?'R is quasilinear.

Proof. We first claim that
lg — & DIlr,ae) < g — Gl

Indeed, let
A={xel’: §(x) >0} and B={xel’:§x) <0},
so that
- gx) ifxeA,
X) =
PDX=10" ixes.

13



Now for anyx € B, we haveg(x) < 0 andg(x) > 0, and thus 0< ¢(X) < ¢g(X) — g(X). Hence
lql12, 5 < g — G2, and so

llg — ¢(5])||L2(1d) lg — CI”LZ(A) + ”q”Lz(B) <llg — QHLZ(A) +llg — CI”LZ(B) llg — CI”LZ(M),

as claimed. Using this inequality along with Lemma 3.3, we have

ISPRCE @) = SPROE, @) garny = COR[IF = Pl + la = $@ o |

< COR[1 = Tl +11a = @llzn).
as required. This proves th§§'? is quasilinear, as claimed. O

3.2 The absolute error criterion

We are now ready to begin establishing tractability results for the elliptic Dirichlet problem. Our first result
establishes tractability under the absolute error criterion. Since Ei§@rie 1, findinga for which (15) is
satisfied means that we need to deternairgeich thatC2™R || App, lling (k). 1,4y iS O orderd®.

Theorem 3.1. The elliptic Dirichlet problem, defined for the spacH%K,) with finite-order weights of
order w, is tractable for the absolute error. More precisely, ¥, defined by(15), we have

N, <32 max{l, pi(e — 1)y/2maxd, KS)}"ymaX} J2maxTL, €7 max. (25)
and the following bounds hold:
1. Suppose that, > 0.
(a) Forthe classA?', we have
w 2
card®e, SR, A% < 2(py + p2)2N? (%) <;—L) a2

Hence
errS(sD|R Aall) < 2 and an?(SDIR Aall) < 2(()

(b) For the classAS"Y, we have
K1 20 1 4
card®e, SP'R, AS1) < |78(,01 + p2)* N2 <—> (;) d““’—‘ +1,
K2

and so
errs(SDIR Astd) <4 and abs(SDIR Astd) < dw.

Pdim
2. Suppose that, = 0, and let
max{1, «1}

r— ) 26
min{L, | W lLinfm(x)} (2

Then we have the following results:

14



(a) For the classA?', we have
1 2
card™e, S7'R, AY) < 4(py + p2)’ NI (—) d>,
&

and so
(SDlR Aall) < 2 and abs(SDIR Aall) < 36()

Perr Pdim

(b) For the classAS"d, we have
1 4
card™e, SP'R, A% < {32@1 + p2)* NI (—) dG‘“-‘ +1
&

and so
errs(SDIR Astd) <4 and an?(SDIR Astd) < 6w.
Proof. Using (8), (16), and (21), we find that
CERIAPP, i1k oo = 3 Max{ L, pate — 1)y/2MaXL, g imae] 2 MaAL, 17 Fimas- d°

Hence settinge = w in (15), we obtain (25). The remaining results of this theorem now follow from [13,
Theorem 5.4], withy = w. O

Example.Suppose thak is the min-kerneK . Sincexg = 1 andk; = % we have

N, < % max{l, p1(e — 1)y 2’7max} vV 2%¥max

from (25). Furthermore, since = % # 0, we see that case 1 holds in Theorem 3.1. Hence we find that the
elliptic Dirichlet problem is now tractable under the absolute error criterion, with

pgﬁs(SDlR’Aall) S 2 and abs(SDIR Aall) < 2a)
for continuous linear information and
pgﬁS(SDlR, Astd) < 4 and abs(SDIR Astd) < 4w

for standard information. O

Theorem 3.1 tells us that the elliptic Dirichlet problem for the absolute error criterion is tractable for any
finite-order weightedRKHS, no matter what set of weights is used. The reason we are unable to establish
strong tractability in this case is that the Lipschitz cons@fpift and|| App, lLing 2 (k). L,(14)] @r€ €xpressed
in terms ofo, (ko) ando (k1), whose product is bounded by a polynomial of degrvee d. Hence we can
only guarantee tha¥, is finite. It is proved in [13, Theorem 5.4] that strong tractability holds it~ 0 and
if Ny is finite. We can guarantee thay is finite if we follow the approach taken in [13, Theorem 5.5].

Theorem 3.2. Suppose that, > 0and

p3 = Sup Z Yd.u < 00. (27)
deZ+t ue{/}d

The elliptic Dirichlet problem defined for the spacHSK,) with finite-order weights of ordew satisfy-
ing (27)is strongly tractable for the absolute error. More precisely, My defined by 15), we have

No < 3p3/*max(d, «;/? }max{l p1p3’? (e — 1) max(1, x‘”/z}} , (28)

and the following bounds hold:

15



1. For the classA?!, we have

card™(e, SP'R, A™) < 2(p1 + p2)° NG (%) <E> :
2

Hence
abs g(SDIR Aall) < 2

Stron
2. For the classAS"Y, we have

2 yaN 4
card®e, S¢'%, A% < |78(,01 + p2)*Ng (ﬁ) (-) —‘ +1.
k2

&

Hence
abs SDIR Astd) <4

Pstron
Proof. Using (27), it follows that
0a(0) < py?maxl, 6% VO eR*". (29)
From (15), (16), and (29), we have
No < CPRp3/?max(1, k%),

where

CPR = sup CPR = gmax{l, pi(e —1) sup ad(xo)} < max{l pi(e — 1)p¥? max(d, K“’/Z}}
deZ++ deZ++

by (21) and (29). Combining these results, we obtain (28). The desired result now follows from [13,
Theorem 5.5]. O

Example.Suppose once again thiit= K,. Assume that (27) holds. Then the conditions of Theorem 3.2
are satisfied with

k1\” 3\“
No < $p3/?max(l, pip3°(e— 1)}  and <K_i) =(§> .

Hence, the elliptic Dirichlet problem is now strongly tractable under the absolute error criterion, with

abs g(SDIR Aall) <2 and abs g(SDIR Aall) <4 D

stron stro n

3.3 The normalized error criterion

We now consider the elliptic Dirichlet problem for finite-order weights under the normalized error criterion.
For this error criterion, we need a lower bound estimate on the initial error.

16



Lemma 3.5. Define the set

1
Hy () = {9 e H}(I): / O(x)dx = 1}.
0

Then for anyl € Z**, we have

2 oq(t(0)
e(0, S7™) = p1y/ =~ sup ( /) ,
3d GEHO*(I) ”9”L2(1)||9 ||L2(I)

1 1
r(@):/ / 0)0(NK (x,y)dxdy YO € Lo(I).
0 0

where

Proof. Since our problem is quasilinear, we may use (12) to see that

e, 857 =p1 sup  IIS7RC D liingrexa,maany = PLISE G O lLingrcka, day-

q€Q3NHa, py

Now let f € H(K,) andw € Hi(I?). Letu = SP'R(f, 0). Then
/ Vu - Vw‘ =
&

Ity (g) =/ gXw(X)dx Vg e H(Ky),
14

is a continuous linear functional. From [11, Lemma 2], we know that

||”||H01(1d)||w||1{0(1d) = |M|H1([d)|w|HOl(1d) =

Jd

It is easy to see that

[T —— [ ) f weowy)Ka(x. y) dxdy.
I I

The previous inequality may be rewritten as

187" Cf. Ol gz g o1t ()
I N1k —wllgggay 1 e ’

Sincef € H(K,) andw € Hi(I?) are arbitrary, this implies that

DIR ” Intd,w ||[H(Kd)]*
1S Cs O)”Lin[H(Kd),Hg(ld)] = Sup —
weHE (1) ||w||H(}(1d)

Now let6 € Hg, (), and define

Weg(X) =0(x1)...0(xg)  VX=(x1,...,xq) €%

(30)

(31)

(32)

(33)

(34)

Sincew, ¢ vanishes ord 19, we havew,, € H}(19). Let us calculate an upper bound 0,6l 1314

Using (19), we have

d
3 2
lwasll? Hird) = 2/ Vg gl = §Z||ajwd,9||L2(,d)-
Jj=1

17
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Now foranyj € {1, ..., d}, we have

djwae(X) = [ 1_[ Q(Xi)}e/(xj), VX = (x1,...,%0) € I,
1<i<d
i#]

and so
2 2d—2 2
10;wa0 7,y = 101750 10717, r)-

Substituting this equality into (35), we find

3d
lwasllman <\ = 1000 10" 0 (36)

Using (32), we find that

1/2
10ty o iK1 = (/d /d wa,0(X)wa,p(Y) Ka (X, y) dX dy)
1 Jr

d 1/2
(Z pao | fld1‘[9<x,->0(yj>HK(x,-,y»dxdy)
j=1

uc Py Jjeu

1 1 I 1/2
_ (Z Vd,u(f / 0(0)0(MK (x, y) dxdy) )
= 0 Jo

1/2
= <Z yd,ur(e)'“') =o(z(9)).

ue Py

Using this result, (33), and (36), we get our desired lower bound on the initial error. O

To use Lemma 3.5, we need to choose a functioa H&*(I) for eachd € Z**, and to estimate
oa(t®)/ (101,771l L,r)) from below. One possibility is as follows.
Fors € (0, 3], let

al if0 <x <3,
5(1—9)
1 .
95()6) = m if 8 <x<1-35, (37)
I S P
5(1—96)

Clearly,05 € H&*(I). A straightforward calculation yields

162( Ydx = 3—-46
/0 o= 3152

and

! l 2 2
/0 [05 ()] dx = 310
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Hence

3-45 \“*t 2
0 d-1 9/ — . 38
I 8||L2([)“ 5||L2(1) \/(3(1 _ 5)2) s(1— 5)2 ( )

We now choosé = §, such that (38) is of ordev/d. It is easy to see that this can be achieved by taking
8. = ®(d1). Since we want to control the constants, we need to see the details, which are as follows.
Ford = 1 we choose& = §; = % and obtain

d-1 3 3
165114165 1| oy = 3v/6 = 3/6d.

Ford > 2, let
4 1/(d-1)

oy = (5) , (39)

so that
a2:§>a3>--->1 with dlimadzl.
Let 1
Sd:l_§(2+\/4_3ad)’ (40)
d
which is a solution to 3 45
- d

—  C — . 41

3(1—s,2 (41)
Sincea, € (1, 3], we see thas, € (0, 5]. Clearly, for larged we have

In 4/3 3/21In 4/3
~ 1 Sy R ——,
oy + J-1 and d J-1
Now
C(ag) - Sty
_— = o = .
8a(1— 8)2 T 24 VEF=Ba)?(Bay — 2— /A= 3ay)
Moreover, we have
— n(ay) = ¢ ()
d-sg1—sp2 "0 ng
In o4

Plotting the functiom), we see that is increasing over the interval ,[g], with n(g) = 8. Hence

2
S—502 = “2

Using (38)—(42), we find that faf > 2 we have
1051425 16511 Loy < 2+/6d.
Combining the two cases far= 1 andd > 2 we write
105145 1051 oty < (3841 + 31— 84.0))V6d,

whereé, 1 denotes the Kronecker delta.
Applying Lemma 3.5 witlo = 6;,, we have proved the following lemma.
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Lemma 3.6. Let
04 =7 (65,)) -

where
e 7(-) is given by(30), and
e 05, is given by(37), with
5 : ford =1,
8, as defined if39)+(40) ford > 2.

Then for anyl € Z**, we have

R) > 2p104(T0a) E
T 9y1+8(1—-3841) d

We now find that the elliptic Dirichlet problem is always tractable for finite-order weights, modulo one

technical assumption. Recall the definitions (30) and (37) of the functiarlds, respectively. We will
require that

O]

e(0, S?

J70 > Osuchthat(ds) >0 V8 € (0, 3]. (43)
Note the following:

1. Condition (43) can only hold foryg < k,. To see that this is true, note that jiny 65 = 1 in (0, 1).
Using the Lebesgue dominated convergence theorem, we find that

lim z(6) = 7(1) = k2. (44)

In particular, this means that (43) cannot hola4f= 0.

2. We claim that condition (43) automatically holds whenayer 0 and the kernek is strictly positive
definite. Indeed, under these conditions, we haig) > 0 for all § € (0, %] andt(l) = «» > 0.
Using (44), we see that— t(0;) is a continuous function from [(%] — R**. Hence (43) holds, as
claimed.

We are now ready to prove the following tractability result.

Theorem 3.3. Suppose tha43) holds, so thak, > 0. Then the elliptic Dirichlet problem, defined for the
spacedH (K,) with finite-order weights of ordep, is tractable for the normalized error. More precisely, for
N14.,2 defined by(15), we have

27 max{ 1, p1(e — /2 ymmmax(d, Kg/z}} (Kl)w/z

To

Nitw2 < (45)

P1
and the following bounds hold:

1. For the classA?!, we have

card® (e, ST'R, AM) < 2(p1 + p2)°NE,, o (%) (g) d*+.
2

Hence
pggrr(SDIR,Aall) < 2 and pgionr](SDlR’Aall) < 2+w.
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2. For the classASY, we have

2w 4
1
card(s, SP®, A% < [8<p1 + 02 Ni o2 (%) (—) d4+ﬂ +1,
2

&

and so
PIO(SPR ASY) <4 and  pl9(SOR, ASY) < 44 20,

Proof. We first prove (45). Using Lemmas 3.3 and 3.6, along with condition (43), we have

IR = 3 max(1, pi(e — Doy(ko)},
2p104(T0)
(98414 8(1—841) d

e(0, SRy >

Hence we find that

CEIR” APy IlLin[H (k). La14)] - 3max1, pi(e — Doa(ko)} o4(k1)
di*e/2¢(0, SP'R) - p1d@/? 04(70)

(9841 +8(1—84)-

From (8) we have
04(Kko) < /2ymax Max(L, kg'%} d*"2,

and sincerp < k1, we have

oua(ky) _ (Zue{)”d iz Vau kD' l) " < (ﬂ)w/z (46)
0(0)  \Yiem, wzointe ) WS
Hence CER| App, i ‘
Nijo2 = sup = d1+w/dZel(_I(r)1[§(leg)’L2(l ’
deZ++ > Hd
27max{1, p1(e — 1)/ 2Zymaxmaxl, Ké"/z}} K\
< s (T_o) ’

establishing (45). The theorem now follows immediately from [13, Theorem 5.4] anithl + w/2. [

Example.Let us once again consider the min-kerRek= K. A straightforward (but tedious) calculation
reveals that
T(05) = 3(1+8 -8,

and thus (43) holds witlhy = }; Sincex, > 0, we may use Theorem 3.3 to see thatA8f, we have

nor(SDIR Aall) <2 and nor(SDIR Aall) < 2+w

Perr Pdim

whereas forAs"9, we have

nor SDIR Astd) <4 and nor(SDIR Aall) < 4+2w 0

Perr Pdim

Unfortunately, we are not able to provide a strong tractability result for the elliptic Dirichlet problem
under the normalized error criterion. The reason for this is that the best lower bound we know for the initial
error goes linearly withi ! to zero. Hence, we are unable to show thatis finite, which is needed for
strong tractability.
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4 The Neumann problem

We now apply the machinery of [13] to the problem of approximating solutions to the variational form of
the Neumann problem for the Helmholtz equation. Recall that for the Neumann problem to be well-defined,
we must assume th@* N Hy ,, is nonempty. This holds, in particularjf; s > 0 andqud_);/2 < p2, @s
explained before.

4.1 Some preliminary bounds

It is known that for anyy € Q7*, the bilinear formB, (-, -; ¢) is strongly H(I¢)-coercive and bounded.
However, we provide a proof of this fact, so that we can establish values for the coercivity and bounding
constants, just as we did in Section 3.1.

Lemma 4.1. For anyq € Q}*, we have
Ba(v,v; ¢) = min{L, go}lvl51 0, Yo € HYUY,

and
|By(v, w; )| < max{l, llg . qa} vl grgallwll giga Vo, we Hl(ld)-

Proof. Forg € Q*, we havey > go and therefore

Batw.viq) = [ V0 +qv7 = min(Lgol [ (V0P + 07 = minid. golols
1 1

The restis as in Lemma 3.2. O

Note thatg € Q** implies that|gll,_«) = go. Therefore mifl, g0} < maxi, |l¢ll. )} and the
bounds in Lemma 4.1 make sense.

As in Section 3.1, the Lax-Milgram Lemma [3, pg. 29] and Lemma 4.1 tell us that for Any] [
H(K,) x Q3, the problem (11) has a unique solution= SYEY(f,q) € H(I?). Hence the solution
operatorSYEY: H(K,) x Q% — HY(1?) is well-defined.

We now show thas eV satisfies a Lipschitz condition. This requires two preliminary steps. First, we

establish a maximum principle for our problem.

Lemma4.2. Let f € H(K,) andqg € Q*. Then

a.e.inl?,

SNV, gy < M)
qo0

where
M(f) =esssupf(X) < oa(ko)ll fllmck,-

xeld

Proof. Since the bound o = M(f) follows immediately from Lemma 3.1, we need only prove the
inequality foru = SNEY(f, ). Let

A:{Xeld:u(x)>%}.
q0
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We claim that the Lebesgue measureAofs zero. Indeed, suppose otherwise, i.e., thdtas positive
measure. Define

* M d
u*(X) = maxju(x) — —,0 Yx e I
q0

By [15, Cor. 2.1.8], we have* € H'(I%), with
Vu inA,
Vu* = )
{o inI4\ A,

noting thatu* > 0 almost everywhere il. Now in A, we haveVu* = Vu, and so|Vu*|?> = Vu* -
Vu* = Vu - Vu*. In the complement oft, we haveVu* = 0, so thaiVu*|> = 0 = Vu - Vu*. Hence,
|Vu*|? = Vu - Vu* everywhere inf?. Moreover,
u(X) > % > & XeA,
go ~ q(X)
and so
f—qu<0 inA.

Note that the functiom™* is an admissible test function for the Neumann problem, i.e., we canutake:*
in (11). We thus have

Of/qu*lzzf |Vu*|2:/ Vu-Vu*:Bd(u,u*;q)—/ quu*
A 14 14 14
= (fou") Lpa) —/ quu’ :f (f —quu* = /(f—qu)u* <0,
b i A

which is a contradiction. Thusj has measure zero, which implies thak M/qq a.e. inI¢, establishing
the lemma. O

Using this maximum principle, we can obtain Ag,-bound for the Neumann problem:
Lemma4.3. Let f € H(K,) andg € Q}*. Then

04(Ko)

NEU 1
1S, Cfs Dy < %”f”Loo(ld) = I f 1 a k) -

Proof. Since the second equality follows immediately from Lemma 3.1, we need only prove the first in-
equality. Letu = SYEY(f, ¢). For a.ex € I, we may use Lemma 4.2 (once withand once with- f) to
find that

u() < - ess SR (y)

q0 yerd
and 1
—u(X) < — esssup-f(y).
q0 yerd
Hence 1
lu(¥)| = maxu(x), —u(x)} < " ess fupnax{f(y), —fi
yel
1 1
= —esssupf| = — 1 fll.q9),
qo0  yeyd q0
as required. O
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Following the same ideas as in Lemma 3.3, we now show$}¥at satisfies a Lipschitz condition.

m ax{ L Prod (ko) }
qo
min{1, go}

Lemma 4.4. Let

C:i\IEU —
For any[f,q] € Hy,, x Q% and[f,q] € H(K,) x Q*, we have

ISYEUCS ) = SYEUCT, Dl = CYC L1 = Flliaany + 19 = Gl |-

Proof. Letw = u — i, whereu = SYEV(f, ¢) andii = SNEY(£, ). As in the proof of Lemma 3.3, we have

Bay(w, w; @) = (f — [, w)p,q4) — (@ — q, uW) p,4y-

From Lemma 4.1, we have
Ba(w, w; §) = min{L, go} w14,

and thus 5
min{1, go}|wll%: e, < \<f — fow)pyai| + (g — @ uw) 4] - (47)
Now
(f = frwh,an)| = 1 = fll,aollwll gagay- (48)
Using Lemma 4.3, we have
0104 (ko)
el oy < ——,
qo
and thus
. - 0104 (ko) -
(g — G, uw) ,q0)| < g = Gl lull L o llwll g < anum(mnq = Gllan-  (49)

Substituting (48) and (49) into (47) and remembering that u — iz, we immediately get

i 7 0104 (ko) s
_ R 3 -
lu — ull grgay < min(L. qo! [llf Fll ) + T g q||L2(1‘1):|
max{l, PlUd(Ko)}
90 [ - . ]
min{1, go} If = Fll,aa) + g = qlli,ae |

as claimed. O
Letus definep: H(K;) — Qi as
¢(q)(x) = max{g(X), qo} = (¢() — qo) . +q0  VYx €1’ g€ HKy.

As in the previous section, we conclude tha) belongs toQ*. We are now ready to show that (14) holds
for our elliptic Neumann problem.
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Lemma 4.5. LetC}FY be as in Lemmd.4. Then
ISYELCF, @) = SEEUCF S @)y < CYE (1 = Flla + g = Gl
VIf.q] € Hap x Q5 [f, 4] € H(Ka) x H(Ka).

Hence,SNEY is quasilinear.

Proof. We use a slight variation of the proof of Lemma 3.4. We claim that

g — ¢l L a0 < g — Gl Ly

Indeed, let
A={xel’:Gx)>q} and B={xel’:gX) <qo},
so that
~ g(x) ifxeA,
¢(q>(x)={q<) !
q0 if X € B.

Now for anyx € B, we haveg(X) < go andg(x) > go, and thus 0< g(X) — go < ¢(X) — g(X). Hence
lg — qoli2, s < g — G112, and so

lg — @3, 0y = g — G170 + 1 — q0ll3,5) < llg — G150 + lg — G135 = llg — 1%, ay»

as claimed. Using this inequality along with Lemma 4.4, we have

ISYECCF, @) = SEEUCF 6@ sy < EY[1F = Flligas) + g = 1)z
= O 1 = Flleaarnr + g = @l |

as claimed. n

4.2 The absolute error criterion

We are now ready to begin establishing tractability results for the elliptic Neumann problem. Our first result
establishes tractability under the absolute error criterion.

Theorem 4.1. The elliptic Neumann problem, defined for the spalléX ;) with finite-order weights of
order w, is tractable for the absolute error. More precisely, ¥, defined by(15), we have

p w w
max{ 1, q—;\/z max1, «g }'Ymax} \/2 max1, k7’ }¥Ymax

N, <

min{1, go} ’ (50)

and the following bounds hold:

1. Suppose that, > 0.
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(a) For the classA?', we have

&

%) 1 2
card™e, SYEY, A™) < 2(p1 + p2)?N? <ﬂ) (—) .
K2
Hence
pgRS(SNEU Aall) < 2 and ngn?(SNEUv Aall) S 2(0
(b) For the classAS"d, we have

2w 4
1
card®e, SNEY, ASt) < |78(,01 + p2)*N? (ﬂ) (—) d%—‘ +1,
K2

&

and so
g?rs SNEU Astd) <4 and an?(SNEU Astd) <4w

2. Suppose that, = 0. LetI" be as in(26).

(a) Forthe classA?', we have

1 2
card™e, SV, A% < 4(p1 + p2)?N2T* <g> >,
and so
err(SNEU Aall) < 2 and an?(SNEU Aall) < 3(0

(b) For the classAS"Y, we have

1 4
carde, SNEY, ASt) < [32(;)1 + p2)* NP2 (—) dew—‘ +1,
&

and so
g?rs(SNEU’ Astd) < 4 and abs(SNEU Astd) < 6w.

Pdim

Proof. Using (8), (16), and Lemma 4.4, we find that

max{l, &\/2 max1, K(()D}"Ymax}
90

min{1, go}

NEU
Cy 11 APPy ILin[H(k ), Loc14y) =

\/2 max1, «3"}Ymax d”.

Hence settinge = w in (15), we obtain (50). The remaining results of this theorem now follow from [13,
Theorem 5.4], withw = w. O

Example.Suppose thak is the min-kerneK . Sincexg = 1 andx; = % we can use (50) to see that

V2
max{l’ m

q0
min{1, go}

} v/ 2¥max
N, < .
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Furthermore, since, > 0, we see that case 1 holds in Theorem 4.1. Hence we find that the elliptic Neumann
problem is tractable under the absolute error criterion, with

ngrS(SNEUv Aall) E 2 and abs(SNEU Aall) < 20)
for continuous linear information, and
pgrbrs(SNEU’ Astd) < 4 and abs(SNEU Astd) < 4w

for standard information. O

Hence, the elliptic Neumann problem for the absolute error criterion is tractabénjwset of finite-
order weights and arbitrary spaclsK,). The reason we are unable to establish strong tractability in this
case is the same as for the Dirichlet problem. Since the Lipschitz colgtahand|| App, Iliintz (k)24
are expressed in terms @f (x¢) ando,(x1), whose product is bounded by a polynomial of degeeia d.
Hence we can only guarantee thg is finite. If we want to establish strong tractability, we need to prove
that Ng is finite. Just as in the Dirichlet problem, we can do this if we assumethatO and the sum of the
weights is uniformly bounded.

Theorem 4.2. Suppose that, > 0 and that condition(27) holds. Then the elliptic Neumann problem,
defined for the spacdg (K ;) with finite-order weights of ordep satisfying(27), is strongly tractable under
the absolute error criterion. More precisely, fof defined by(15), we have

/01,03
q0

py?max {1,

max1, Kl/z}} max(1, «}’/%}

N < , (51)

min{1, qo}
and the following bounds hold:
1. For the classA?', we have

card™e, S, AM) < 2(p1 + p2)°Ng (%) (—) :
2

&

Hence

gt?gng(SNEU Aall) < 2

2. For the classAS"Y, we have

2w 4
1
card™e, 55, A%) < {8(01 + p2)*Ng (%) (—) —‘ +1
2

&

Hence
abs NEU st
strong(S i\ d) <4

Proof. As in the proof of Theorem 3.2, we have

No < CNBYp2?max(1, «{?),
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where

CN®Y = sup C)FY.
deZ++t
Using Lemma 4.4 and (29), we have
0 ,01/2
max{l, P10 (K0) } max{l, 3 max, Kéu/z}}
CNEU _ q0 - g0
d min{1, go} - min{1, go}

Combining these results, we obtain obtain (51). The desired result now follows from [13, Theoreni5.5].
Example.Suppose once again th&it= K,. We find that the conditions of Theorem 4.2 hold, with

0 pl/2
/3;/2 max 1’ 1—3
q0

min{1, go}

No <

Hence the elliptic Dirichlet problem is strongly tractable under the absolute error criterion, with

PSS AT <2 and SNV A <4 O

4.3 The normalized error criterion

We now consider the elliptic Neumann problem for finite-order weights under the normalized error criterion.
For this case, we will need to make an additional assumption, namely, tbat/1K,) and || 1|y, <

p2/q0. As already mentioned in Section 2, this implies thae Q%" N H, ,,. We need this assumption to
establish a lower bound on the initial error of the Neumann problem.

Lemma 4.6.
e(0, SYY) > p104(kc2).

Proof. Define Int;, € [H(K,;)]* as

Inty(g) = / g dx Vg e H(KY).
Id

From [11, Lemma 2], we know that
10ty a1 = 0alk2).

Hence, it suffices to show that
e(0, SYEY) > pull Inty [l k- (52)

As mentioned above, the constant functigns an element o%* N H; ,,. Choosef € H(K,), and let
u = SYEY(f, qo). Sincego € H(19), we have

|<M, %)Hl 1d |
el gragray > ————T00 — (e, 1) g gay| = |Ba(u, L D) = [(f, 1) 0|
||QO||H1(1d)

[, rooax
Id

= |Intg(f)l.
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Hence NEU
1S (fs qo) | gy - | Intz ()]

(NAIVO ArTS
Sincef € H(K,) is arbitrary, this inequality and (12) imply that

e(0, S = p1ll SV, qo) luing gy, ey = Pl 1N i+
This yields (52), which establishes the Lemma. O

We are now ready to prove the following result.

Theorem 4.3. The elliptic Neumann problem, defined for the spaligx’ ;) with finite-order weights of
order w, is tractable for the normalized error. More precisely Wy, » defined by(15), we have

1
p1Min{1, go}
and the following bounds hold:

/2
Nyj2 < (ﬂ) maX{l B2 ma—)‘{Koal}’Ymax} . (53)
K2

1. Suppose that, > 0.

(a) FortheA?! we have
k@ [/ 1\?
Card10l‘(8 SNEU Aall) < 2(p1+p2) N£/2< 1> <g> dw.

Hence

Q?rr(SNEU Aall) <2 and Qlcr)rr](SNEU Aall) < w.

(b) For the classAS"Y, we have

2w 4
1
card(e, S)FY, A < [8(/)1 +02)* Ny (%) (—) dz‘”—‘ +1,
2

&

and so
pgﬁr(SNEU’ Astd) <4 and Q%(SNEU Astd) < 2w.
2. Suppose that, = 0. LetI" be as in(26).
(a) For the classA?', we have

1 2
card”(e, S, A%) < 4(p1 + p2)*NG /oI (;) a,

and so
pg?rr(SNEU,Aa") < 2 and nor SNEU Aall) < 2m.

(b) Forthe AS, we have
1 4
card (e, SYEY, A% < | 32(p1 + p2)* N, T2 (E) > | +1,

and so
prO(SNEU ASY) <4 and  phor(SNEY, ASY) < 3.
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Proof. Using Lemmas 4.4 and 4.6, we find that

plﬁd(Ko)}U k1)
— (04
CL\IEUHAPPLJ Il in & (k). Lo(19)] - qo

e(0, SYEY) ~  pamin{l, go}ou(k2)

oa(k1) _ (g)‘”/z

oq(k2) — \ k2

max{l,

From (46), we have

and so (8) yields

Co =1l APPy lliing 1 k. Lot ) < 1 (Kl

/2
L1 2
- — maxil, —./2maxl, «¥ ae’?.
6(0, S(’;IEU) ~ p1 mln{l, q0} K2> { qo\/ X{ 0')’max}}

Hence settinge = w/2 in (15), we obtain (53). The remaining results of this theorem now follow from [13,
Theorem 5.4], withe = w/2. O

Example.Suppose thak is the min-kerneKmin. Sincexg = 1, k1 = % andk, = % we can use (53) to see

that
2
m ax{ 1 P18/ 2 max

40 }<§)w/2
pminLgo)  \2)

Furthermore, since, # 0, we see that case 1 holds in Theorem 4.3. Hence we find that the elliptic Neumann
problem is tractable under the normalized error criterion, with

Nw/2 =

pgﬁr(SNEU’ Aall) < 2 and PQ%(SNEU, Aall) < w,
for continuous linear information and
Pgﬂr(SNEU, Astd) < 4 and pgi(r)]:(SNEU, Astd) < 20

for standard information. O

Hence the elliptic Neumann problem is tractableday set of finite-order weights, if we are using the
normalized error criterion. The reason we are unable to establish strong tractability in this case is similar
to that for the Dirichlet problem, namely, we can only establish Mab is finite. If we want to establish
strong tractability, we need to prove thd} is finite. As before, we can do thisiéb > 0 and the sum of the
weights is uniformly bounded.

Theorem 4.4. Suppose that, > 0 and that condition(27) holds. Then the elliptic Neumann problem,
defined for the spacdg (K ) with finite-order weights of ordep satisfying(27), is strongly tractable under
the normalized error criterion. More precisely, fof defined by(15), we have

p3/? max{ 1. 22 max(1, x(‘)”/z}} max(1, «}"/%}
q0

min{1, go}

and the following bounds hold:

30



1. For the classA?!, we have

w 1 2
card” (e, SY™V, AM) < 2(p1 + p2)°N§ (ﬁ) (—) :
K2 &
Hence
pgt%ng(SNEU’ Aall) <2
2. For the classASY, we have
K1 2w 1 4
card’(e, Sy, A% < [8(01 + p2)*Ng (—) (—) —‘ +1.
K2 &
Hence
Ponf SN, 4% < 4
Proof. As in the proof of Theorem 3.2, we have
No < CNEYpl?max(, «g'%),

where
CNEY = sup C)FY.
deZ+t
Using Lemma 4.4, we find that

1/2 w/2
max{1,
max{l, PlGd(KO)} max[l, P1P3 X1, ko }}
CNEU _ q0 40
¢ min{l, g0} ~ min{1, go}

Combining these results, we obtain obtain (54). The desired result now follows from [13, Theoreni5.5].

Example.Suppose once again thEt= K,. We find that the conditions of Theorem 4.4 hold, with

0 pl/2
,03:}/2 max\ 1, Pirs
q0

min{1, qo}
Hence, the elliptic Dirichlet problem is strongly tractable under the normalized error criterion, with

Parond SNV ATy <2 and  pgrfSMEY AT) <4 O

No <

In closing, we note that we have found conditions guaranteeing strong tractability for the Neumann
problem under the normalized error criterion when- 0. We have only tractability results for this problem
whenk, = 0.
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