
Learning mixtures of product distributions over discrete domains

Jon Feldman∗

Industrial Engineering and Operations Research
Columbia University

jonfeld@ieor.columbia.edu

Ryan O’Donnell†

Microsoft Research
Redmond, WA

odonnell@microsoft.com

Rocco A. Servedio‡

Department of Computer Science
Columbia University

rocco@cs.columbia.edu

Abstract

We consider the problem of learning mixtures of product distributions over discrete domains
in the distribution learning framework introduced by Kearns et al. [18]. We give a poly(n/ε)
time algorithm for learning a mixture of k arbitrary product distributions over the n-dimensional
Boolean cube {0, 1}n to accuracy ε, for any constant k. Previous polynomial time algorithms
could only achieve this for k = 2 product distributions; our result answers an open question
stated independently in [8] and [14]. We further give evidence that no polynomial time algorithm
can succeed when k is superconstant, by reduction from a notorious open problem in PAC
learning. Finally, we generalize our poly(n/ε) time algorithm to learn any mixture of k = O(1)
product distributions over {0, 1, . . . , b}n, for any b = O(1).

∗Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship
†Some of this work was done while at the Institute for Advanced Study, supported in part by the National

Science Foundation under agreement No. CCR-0324906. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

‡Supported in part by NSF CAREER award CCF-0347282.

0

1 Introduction

1.1 Framework and motivation. In this paper we study mixture distributions. Given distri-
butions X1, . . . ,Xk over Rn and mixing weights π1, . . . , πk that sum to 1, a draw from the mixture
distribution Z is obtained by first selecting i with probability πi and then making a draw from Xi.
Mixture distributions arise in many practical scientific situations as diverse as medicine, geology,
and artificial intelligence; indeed, there are several textbooks devoted to the subject [24, 19].

Assuming that data arises as a mixture of some distributions from a class of distributions C, it is
natural to try to learn the parameters of the mixture components. Our work addresses the learning
problem in the PAC-style model introduced by Kearns et al. [18]. In this framework we are given a
class C of probability distributions over Rn and access to random data sampled from an unknown
mixture Z of k unknown distributions from C. The goal is to output a hypothesis mixture Z′ of k
distributions from C which (with high confidence), is ε-close to the unknown mixture. The learning
algorithm should run in time poly(n/ε). The standard notion of “closeness” between distributions
Z and Z′, proposed by Kearns et al. and used in this work, is the Kullback-Leibler (KL) divergence
(or relative entropy), defined as KL(Z||Z′) :=

∫
x Z(x) ln(Z(x)/Z′(x)).1

In this paper we learn mixtures of product distributions over the Boolean cube {0, 1}n, and more
generally over the b-ary cube {0, . . . , b− 1}n; i.e., the classes C will consist of distributions Xi whose
n coordinates are mutually independent distributions over {0, 1} and {0, . . . , b− 1}, respectively.2

Such learning problems have been well studied in the past, as we now describe.

1.2 Related work. In [18] Kearns et al. gave efficient algorithms for learning mixtures of Ham-
ming balls; these are product distributions over {0, 1}n in which all the coordinate means E[Xi

j]
must be either p or 1−p for some unknown p which is fixed over all mixture components. Although
these algorithms can handle mixtures with k = O(1) many components, the fact that the com-
ponents are Hamming balls rather than general product distributions is a very strong restriction.
(The algorithms also have some additional restrictions: p has to be bounded away from 1/2, and a
more generous learning scenario is assumed in which the learner is in addition given oracle access
to the target distribution Z — i.e. she can submit an input x and get back the probability mass Z
assigns to x.)

More recently, Freund and Mansour [14] gave an efficient algorithm for learning a mixture of
two general product distributions over {0, 1}n. Around the same time Cryan et al. [9, 8] gave an
efficient algorithm for learning phylogenetic trees in the two-state general Markov model; for the
special case in which the tree topology is a star, this gives an algorithm for learning an arbitrary
mixture of two product distributions over {0, 1}n. Both [14] and [8] stated as an open question
the problem of obtaining a polynomial-time algorithm for learning a mixture of k > 2 product
distributions. Indeed, recent work of Mossel and Roch [20] on learning phylogenetic trees argues
that the rank-deficiency of transition matrices is a major source of difficulty, and this may indicate
why k = 2 has historically been a barrier — a two-row matrix can be rank-deficient only if one row
is a multiple of the other, whereas the general case of k > 2 is much more complex.

In other related work, there is a vast literature in statistics on the general problem of analyzing
mixture data — see [19, 22, 24] for surveys. To a large degree this work centers on trying to find
the exact best mixture model (in terms of likelihood) which explains a given data sample; this is
computationally intractable in general. In contrast, our main goal (and the goal of [18, 14, 9, 8, 20])

1We remind the reader (see e.g. [7]) that ‖Z − Z′‖1 ≤ (2 ln 2)
√

KL(Z||Z′) where ‖ · ‖1 denotes total variation
distance; hence if the KL divergence is small, then the total variation distance is also small.

2Of course, the algorithm works for product distributions over Σn for any alphabet Σ with |Σ| = b; i.e., the names
of the characters in the alphabet do not matter.

1

is to obtain efficient algorithms that produce ε-close hypotheses.
We also note that there has also been recent interest in learning mixtures of n-dimensional

Gaussians from the point of view of clustering [10, 11, 2, 25]. In this framework one is given
samples from a a mixture of “well-separated” Gaussians, and the goal is to classify each point in
the sample according to which Gaussian it came from. We discuss the relationship between our
scenario and this recent literature on Gaussians in Section 6; here we emphasize that throughout
this paper we make no “separation” assumptions (indeed, no assumptions at all) on the component
product distributions in the mixture.

Finally, the problem of learning discrete mixture distributions may have applications to other
areas of theoretical computer science, such as database privacy [23, 6] and quantum complexity [1].

1.3 Our results. In this paper we give an efficient algorithm for learning a mixture of k = O(1)
many product distributions over {0, 1}n. Our main theorem is the following:

Theorem 1 Fix any k = O(1), and let Z be any unknown mixture of k product distributions over
{0, 1}n. Then there is an algorithm that, given samples from Z and any ε, δ > 0 as inputs, runs in
time poly(n/ε) · log(1/δ) and with probability 1− δ outputs a mixture Z′ of k product distributions
over {0, 1}n satisfying KL(Z||Z′) ≤ ε.

We emphasize that our algorithm requires none of the additional assumptions — such as mini-
mum mixing weights or coordinate means bounded away from 0, 1/2, or 1 — that appear in some
work on learning mixture distributions.

Our algorithm runs in time (n/ε)k3
, which is polynomial only if k is constant; however, this

dependence may be unavoidable. In Theorem 7 we give a reduction from a notorious open question
in computational learning theory (the problem of learning decision trees of superconstant size)
to the problem of learning a mixture of any superconstant number of product distributions over
{0, 1}n. This implies that solving the mixture learning problem for any k = ω(1) would require a
major breakthrough in learning theory, and suggests that Theorem 1 may be essentially the best
possible.

We also generalize our result to learn a mixture of product distributions over {0, . . . , b− 1}n

for any constant b:

Theorem 2 Fix any k = O(1) and b = O(1), and let Z be any unknown mixture of k product
distributions over {0, . . . , b− 1}n. Then there is an algorithm that, given samples from Z and any
ε, δ > 0 as inputs, runs in time poly(n/ε) · log(1/δ) and with probability 1− δ outputs a mixture Z′

of k product distributions over {0, . . . , b− 1}n satisfying KL(Z||Z′) ≤ ε.

Taking b = k, this gives a polynomial time algorithm for learning k-state Markov Evolutionary
Trees with a star topology. (Note that the main result of Cryan et al. [9, 8] is an algorithm for
learning two-state METs with an arbitrary topology; hence our result is incomparable to theirs.)

2 Overview of our approach

2.1 The WAM algorithm. The cornerstone of our overall learning algorithms is an algorithm
we call WAM (for Weights And Means). WAM is a general algorithm taking as input a pa-
rameter ε > 0 and having access to samples from an unknown mixture Z of k product distributions
X1, . . . ,Xk. Here each Xi = (Xi

1, . . . ,X
i
n) is an Rn-valued random vector with independent co-

ordinates. The goal of WAM is to output accurate estimates for all of the mixing weights πi and
coordinate means µi

j := E[Xi
j]. Note that a product distribution over {0, 1}n is completely specified

by its coordinate means.

2

More precisely, WAM outputs a list of poly(n/ε) many candidates (〈π̂1, . . . , π̂k〉, 〈µ̂1
1, µ̂

1
2, . . . , µ̂

k
n〉);

each candidate may be viewed as a possible estimate for the correct mixing weights and coordinate
means. We will show that with high probability at least one of the candidates output by WAM is
parametrically accurate; roughly speaking this means that the candidate is a good estimate in the
sense that in the sense that |π̂i−πi| ≤ ε for each i and that |µ̂i

j −µi
j | ≤ ε for each i and j. However

there is a slight twist: if a mixing weight πi is very low then WAM may not receive any samples
from Xi, and thus it is not reasonable to require WAM to get an accurate estimate for µi

1, . . . , µ
i
n.

On the other hand, if πi is so low then it is not very important to get an accurate estimate for
µi

1, . . . , µ
i
n because Xi has only a tiny effect on Z. We thus make the following formal definition:

Definition 1 A candidate (〈π̂1, . . . , π̂k〉, 〈µ̂1
1, µ̂

1
2, . . . , µ̂

k
n〉) is said to be parametrically ε-accurate if:

1. |π̂i − πi| ≤ ε for all 1 ≤ i ≤ k;

2. |µ̂i
j − µi

j | ≤ ε for all 1 ≤ i ≤ k and 1 ≤ j ≤ n such that πi ≥ ε.

The main technical theorem in this paper, Theorem 4, shows that so long as the Xi’s take
values in a bounded range, WAM will with high probability output at least one candidate that is
parametrically accurate. The proof of this theorem uses tools from linear algebra (singular value
theory) along with a very careful error analysis.

Remark 3 As will be clear from the proof of Theorem 4, WAM will succeed even if the mixture
distributions Xi are only pairwise independent, not fully independent. This may be of independent
interest.

2.2 From WAM to PAC learning (binary case). As we noted already, in the binary case a
product distribution on {0, 1}n is completely specified by its n coordinate means; thus a candidate
can essentially be viewed as a hypothesis mixture of product distributions. (This is not precisely
correct, as the candidate mixing weights may not precisely sum to 1 and the candidate means
might be outside the range [0, 1] by as much as ε.) To complete the learning algorithm described in
Theorem 1 we must give an efficient procedure that takes the list output by WAM and identifies a
candidate distribution that is close to Z in KL divergence, as required by Theorem 1. We do this
in two steps:

1. We first give an efficient procedure that converts a parametrically accurate candidate into a
proper hypothesis distribution that is close to Z in KL divergence. We apply this procedure
to each candidate in the list output by WAM, and thus obtain a list of mixtures (hypotheses),
at least one of which is close to Z in KL divergence.

2. We then show that a maximum-likelihood procedure can take a list of hypotheses, at least
one of which is good (close to Z in KL divergence), and identify a single hypothesis which is
good.

2.3 Larger alphabets. In the larger alphabet setting, Z is a mixture of k product distributions
X1, . . . ,Xk over {0, . . . , b− 1}n. Now each mixture component Xi is defined by bn parameters pi

j,`

(with j = 1, . . . , n and ` = 0, . . . , b− 1) where pi
j,` is the probability that a draw from Xi

j yields `.
The simple but useful observation that underlies our extension to {0, . . . , b− 1}n is the following:
just as any distribution over {0, 1} is completely specified by its mean, any distribution Xi

j over
{0, . . . , b− 1} is completely specified by its first b − 1 moments E[Xi

j],E[(Xi
j)

2], . . . ,E[(Xi
j)

b−1].
Our approach is thus to run WAM b−1 times; for ` = 1, . . . , b−1 the `th run will sample from the

3

mixture distribution given by converting each sample (z1, . . . , zn) to the sample (z`
1, . . . , z

`
n). We

then carefully combine the lists output by the runs of WAM, and follow similar steps to (1) and
(2) above to find a good hypothesis in the combined list.

2.4 Outline. Most of the main body of this paper, Section 3, is dedicated to explaining the ideas
behind the WAM algorithm and its proof of correctness. (The detailed algorithm and proof appear
in Appendices A through C.) We discuss the application of WAM to the b-ary case in Section 4,
and in Section 5 we detail our reduction from a notorious open question in computational learning
theory. We conclude in Section 6 with a discussion of applications and future work.

The two steps outlined in Section 2.2 are conceptually straightforward, but the details are quite
technical, and are given in Appendices E through G. The pieces are all put together to prove
Theorems 1 and 2 in Appendix H.

3 The WAM Algorithm

In this section we describe our main algorithm, WAM. We assume a general mixture setting: WAM
has access to samples from Z, a mixture of k product distributions X1, . . . ,Xk with mixing weights
π1, . . . , πk. Each Xi = (Xi

1, . . . ,X
i
n) is an n-dimensional vector-valued random variable. We will

further assume that all components’ coordinates are bounded in the range [−1, 1]; i.e., Xi ∈ [−1, 1]n

with probability 1. We have chosen [−1, 1] for mathematical convenience; by scaling and translating
samples we can get a theorem about any interval such as [0, 1] or [0, (b−1)b−1], with an appropriate
scaling of ε. We write µi

j := E[Xi
j] ∈ [−1, 1] for the mean of the jth coordinate of Xi.

Our main theorem is the following:

Theorem 4 There is an algorithm WAM with the following property: for any k = O(1) and any
ε, δ > 0, WAM runs in time poly(n/ε) · log(1/δ) and outputs a list of poly(n/ε) many candidates,
at least one which (with probability at least 1− δ) is parametrically ε-accurate.

We give the full proof of correctness in Appendix C. The remainder of this section is devoted
to explaining the main ideas behind the algorithm and its analysis.

3.1 Overview of WAM. There is of course a brute-force way to come up with a list of candidates
(〈π̂1, . . . , π̂k〉, 〈µ̂1

1, µ̂
1
2, . . . , µ̂

k
n〉), at least one of which is parametrically ε-accurate: simply “try all

possible values” for the parameters up to additive accuracy ε. In other words, try all values
0, ε, 2ε, 3ε, . . . , 1 for the mixing weights and all values −1,−1+ ε, . . . , 1− ε, 1 for the means. We call
this approach “gridding”. Unfortunately there are Θ(n) parameters in a candidate so this naive
gridding strategy requires time (and produces a list of length) (1/ε)Θ(n), i.e. exponential in n, which
is clearly unacceptable.

The basic idea behind WAM is as follows: given all pairwise correlations between the coordi-
nates of Z, it can be shown that there are a constant number of “key” parameters that suffice to
determine all others. Hence in polynomial time we can empirically estimate all the correlations, try
all possibilities for the constantly many key parameters, and then determine the remaining Θ(n)
parameters.

The main challenge in implementing this idea is that it is not at all a priori clear that the error
incurred from gridding the key parameters does not “blow up” when these are used to determine
the remaining parameters. The heart of our analysis involves showing that it suffices to grid the
key parameters to granularity poly(ε/n) in order to get final error ε.

3.2 The algorithm, and intuition for the analysis. We will now go over the steps of the
algorithm WAM and at the same time provide an “intuitive” discussion of the analysis. A concise

4

description of the steps of WAM is given in Appendix A for the reader’s convenience. Throughout
this section we will assume for the sake of discussion that the steps we take incur no error; a sketch
of the actual error analysis appears in Section 3.3.

The first step of WAM is to “grid” the values of the mixing weights {πi} to granularity εwts := ε3.
Since there are only constantly many mixing weights, this costs just a multiplicative factor of
poly(1/ε) in the running time. The remainder of the algorithm “assumes” that the values currently
being gridded for the mixing weights are the nearly-correct values of the mixing weights. In fact, for
the purposes of this intuitive description of WAM, we will simply assume we have exactly correct
values.

The next step is simple: Suppose some s of the k mixing weights we have are smaller than ε. By
the definition of being “ε-parametrically accurate”, we are not obliged to worry about coordinates
with such small mixing weights; hence we will simply forget about these mixture components
completely and treat k as k − s in what follows. (We assign arbitrary values for the candidate
means of the forgotten components.) We may henceforth assume that πi ≥ ε > 0 for all i.

The next step of algorithm WAM is to use samples from Z to estimate the pairwise correlations
between the coordinates of Z. Specifically, for all pairs of coordinates 1 ≤ j < j′ ≤ n, the algorithm
WAM empirically estimates

corr(j, j′) = E[ZjZj′].

The estimation will be done to within additive accuracy εmatrix = poly(ε/n); specifically, εmatrix :=
τk+1, where τ := ε2/n2. With high (i.e. 1− δ) confidence we will get good such estimates in time
poly(n/ε). Again, for the purposes of this intuitive description of WAM we will henceforth assume
we have exactly correct values for each value corr(j, j′). (As an aside, this is the only part of the
algorithm that uses samples from Z; as we will shortly see, this justifies Remark 3.)

Observe that since Xi
j and Xi

j′ are (pairwise) independent we have

corr(j, j′) = E[ZjZj′] =
k∑

i=1

πiE[Xi
jX

i
j′] =

k∑
i=1

πiE[Xi
j]E[Xi

j′] =
k∑

i=1

πiµi
jµ

i
j′ .

Let us define
µ̃i

j =
√

πiµi
j

and write µ̃j = (µ̃1
j , µ̃

2
j , . . . , µ̃

k
j) ∈ [−1, 1]k for 1 ≤ j ≤ n. We thus have

corr(j, j′) = µ̃j · µ̃j′ ,

where · denotes the dot product in Rk. The remaining task for WAM is to determine all the
values µi

j . Since WAM already has values for each πi and each πi ≥ ε > 0, it suffices for WAM to
determine all the values µ̃i

j and then divide by
√

πi.
At this point WAM has empirically estimated values for all the pairwise dot products µ̃j · µ̃j′ ,

j 6= j′, and as mentioned, for intuitive purposes we are assuming all of these estimates are exactly
correct. Let M denote the k × n matrix whose (i, j) entry is the unknown µ̃i

j ; i.e., the jth column
of M is µ̃j . The statement that WAM has all the dot products µ̃j · µ̃j′ for j 6= j′ is equivalent to
saying that WAM has all the off-diagonal entries of the Gram matrix M>M . We are thus led to
what is essentially the central problem WAM solves:

Central Task: Given (estimates) for the off-diagonal entries of the n× n Gram matrix M>M ,
generate (estimates of) all possible candidates for the entries of the k × n matrix M .

5

k

k kk

n

MJ̄ MJ

MJ

Matrix M of µ̃i
j ’s

M >̄
J

n− k

= B

solved for

gridded

estimated

Figure 1: The full rank case. We solve for the unknown µ̃i
j ’s in MJ̄ .

(A remark: The diagonal entries of M>M are the quantities µ̃j · µ̃j =
∑k

i=1 πi(µi
j)

2 and there is
no obvious way to estimate these quantities using samples from Z. Also there are n such quantities,
which is too many to “grid over”. Nevertheless, the fact that we are missing the diagonal entries
of M>M will not play an important role for WAM.)

In general, a complete n × n Gram matrix determines the original k × n matrix matrix up to
isometries on Rk. Such isometries can be described by k × k orthonormal matrices, and these k2

“degrees of freedom” roughly correspond to the constantly many key parameters that we grid over
in the end. A geometric intuition for the Central Task is the following: there are n unknown vectors
in Rk and we have all the “angles” between them (more precisely, the dot products) between them.
Thus fixing k of the vectors (hence k2 unknown coordinates) is enough to completely determine
the remainder of the vectors.

The full rank case. We proceed with our intuitive description of WAM and show how to solve
the Central Task when M has full rank. Having done this, we will give the actual steps of the
algorithm that show how the full rank assumption can be removed.

So suppose for now that M has full rank. Then there exists some set of k columns of M that
are linearly independent, say J = {j1, . . . , jk} ⊂ [n]. Algorithm WAM tries all

(
n
k

)
= poly(n)

possibilities for the set J and then grids over the vectors µ̃j1 , . . . , µ̃jk
with granularity εmatrix =

poly(ε/n) in each coordinate. As usual for the purposes of intuition, we assume that we now have
µ̃j1 , . . . , µ̃jk

exactly correct.
Let MJ be the k×k matrix given by the J-columns of M , and let MJ̄ be the k× (n−k) matrix

given by deleting the J-columns of M . WAM now has the entries of MJ and must compute the
remaining unknowns, MJ̄ . Since WAM has all of the off-diagonal entries of M>M , it has all of
the values of B = M >̄

J MJ . (See Figure 1.) But the columns of MJ are linearly independent, so
MJ is invertible and hence WAM can compute M >̄

J = BM−1
J in poly(n) time. Having done this,

WAM has all the entries of M and so the Central Task is complete, as is the algorithm.

The general case. Of course in general, M does not have full rank. This represents the main
conceptual problem we faced in rigorously solving the Central Task. Indeed, we believe that
handling rank-deficiency is the chief conceptual problem for the whole learning mixtures question,
and that our linear algebraic methods for overcoming it (the description of which occupies the
remainder of Section 3) are the main technical contribution of this paper.

Suppose rank(M) = r < k. By trying all possible values (only constantly many), algorithm
WAM can be assumed to know r. Now by definition of rank(M) = r there must exist k − r

6

orthonormal vectors ur+1, . . . , uk ∈ [−1, 1]k which are orthogonal to all columns of M . WAM grids
over these vectors with granularity εmatrix, incurring another multiplicative poly(n/ε) time factor.
As usual, assume for the intuitive discussion that we now have the uj ’s exactly. Let these vectors
be adjoined as columns to M , forming M ′. But now the matrix M ′ has full rank; furthermore,
WAM knows all the off-diagonal elements of (M ′)>M ′, i.e. all the pairwise dot products of M ′’s
columns, since all of the new dot products which involve the uj ’s are simply 0! Thus we now have
an instance of the Central Task with a full-rank matrix, a case we already solved. (Technically, n
may now be as large as n + (k − 1), but this is still O(n) and hence no time bounds are affected.)
Given all entries of M ′ we certainly have all entries of M , and so we have solved the Central Task
and completed the algorithm WAM in the rank-deficient case.

3.3 Sketch of the actual analysis of WAM. The preceding intuitive discussion of algorithm
WAM neglected all error analysis. Correctly handling the error analysis is the somewhat subtle
issue we discuss in this section. As mentioned, the full proof is given in Appendix C.

The main issue in the error analysis comes in understanding the right notion of the rank of M
— since of all our gridding inevitably yields only approximations of the entries of M , the actual
notion of rank is far too fragile to be of use. Recall the outline of the algorithm in our idealized
intuition (rank-deficient case):

r = dimension of subspace in which µ̃j ’s lie

⇒ augment M by k − r orthogonal ui’s, forming M ′ ⇒ M ′ now full rank

⇒ find nonsingular k × k submatrix M ′
J ⇒ solve linear system M ′>

J̄M ′
J = B

For the purposes of the error analysis, we reinterpret the operation of WAM as follows:

r∗ = dimension of subspace in which the µ̃j ’s “essentially” lie

⇒ augment M by k − r “essentially” orthogonal ui’s, forming M ′ ⇒ M ′ now “strongly” full rank

⇒ find “strongly” nonsingular k × k submatrix M ′
J ⇒ solve linear system M ′>

J̄M ′
J = B (1)

The real difficulty of the error analysis comes in the last step: controlling the error incurred from
the solution of the linear system. Since we will only have approximately correct values for the
entries of M ′

J and B, we need to analyze the additive error arising from solving a perturbed linear
system. Standard results from numerical analysis (see Corollary 5 in Appendix B) let us bound
this error by a function of: (i) the error in M ′

J and B, and (ii) the smallest singular value of M ′
J ,

denoted by σk(M ′).
Let us briefly recall some notions related to singular values: Given any k × n matrix M ,

the first (largest) singular value of M is σ1(M) = max‖u1‖2=1 ‖u>1 M‖2, and a u1 achieving this
maximum is taken as the first (left) singular vector of M . The second singular value of M is
σ2(M) = max‖u2‖2=1,u2⊥u1

‖u>2 M‖2, and u2 is the second left singular vector of M . In general,
the ith singular value and vector are given by maximizing over all ‖ui‖2 = 1 orthogonal to all
u1, . . . , ui−1. In a well-defined sense (the Frobenius norm), the smallest singular value σk(M)
measures the distance of M from being singular.

WAM’s final error bounds arise from dividing the error in its estimates for M ′
J and B by

the smallest singular value of M ′
J . The error in the estimates for the entries of M ′

J come from
gridding, and thus can essentially be made as small as desired; WAM makes them smaller than
εmatrix. The errors in B come from two sources: some of the entries of B are estimates of quantities
µ̃j · µ̃j′ = corr(j, j′), and again these errors can be made essentially as small as desired, smaller

7

than εmatrix. However the other errors in B come from approximating the quantities µ̃j · ui by 0;
i.e, assuming the augmenting vectors are orthogonal to the columns of M .

As the reader may by now have guessed, the vectors with which WAM attempts to augment M
will be the last k−r∗ singular vectors of M , ur∗+1, . . . , uk. The hope is that for an appropriate choice
of r∗, these singular vectors will be “essentially” orthogonal to the columns of M , and that the
resulting M ′ will be “strongly” full rank, in the sense that σk(M ′) will be somewhat large (cf. (1)).
One can show (see Proposition 9 of Appendix B) that the extent to which the ui’s are orthogonal
to the columns of M is controlled by the (r∗ + 1)th singular value of M ; i.e., |µ̃j · ui| ≤ σr∗+1(M)
for all i ≥ r∗ + 1; this is precisely the error we incur for the zero entries in B. On the other hand,
one can also show that the augmented M ′ has smallest singular value at least σr∗(M). Thus we
are motivated to choose r∗ so as to get a large multiplicative gap between σr∗(M) and σr∗+1(M):

Definition 2 Given τ > 0, the τ -essential rank of M is

r∗(M) = r∗τ (M) = min{0 ≤ r ≤ k : σr+1(M)/σr(M) ≤ τ},

where we take σ0(M) = 1 and σk+1(M) = 0.

One might think that if the additive error incurred from solving the linear system were to be roughly
σr∗(M)/σr∗+1(M) then it should suffice to select τ on the order of poly(ε). However, there is still a
missing piece of the analysis: Although the smallest singular value of M ′ becomes at least σr∗(M)
after adjoining the uj ’s, we only use a k×k submatrix M ′

J to solve the linear system. Is it the case
that if M ′ has a large smallest singular value then its “best” k× k submatrix also has a somewhat
large smallest singular value? We need a quantitative version of the fact that a nonsingular k × n
matrix has a k × k nonsingular submatrix (again, cf. (1)).

This does not seem to be a well-studied problem, and indeed there are some open questions in
linear algebra surrounding the issue. It is possible to derive an extremely weak quantitative result
of the required nature using the Cauchy-Binet formula. We instead give the following quantitatively
strong version:

Corollary 5 Let A be a k × n real matrix with σk(A) ≥ ε. Then there exists a subset of columns
J ⊆ [n] with |J | = k such that σk(AJ) ≥ ε/

√
k(n− k) + 1.

(We call the result a corollary because our proof in Appendix B is derived from a 1997 linear
algebraic result of Goreinov, Tyrtyshnikov, and Zamarashkin [15]. Incidentally, it is conjectured in
their paper, and we also conjecture, that

√
k(n− k) + 1 can be replaced by

√
n.)

With this result in hand it becomes sufficient to take τ = ε2/n2, as described in the previous
section. Now the error analysis can be completed:

• If M has a singular value gap of τ and so has essential rank r∗ < k, then when WAM tries
out the appropriate r∗ and singular vectors, the error it incurs from solving the linear system
is roughly at most O(

√
nτ) = O(ε2/n3/2); and as we show at the end of Appendix C, having

this level of control over errors in solving the linear system for the unknown µ̃i
j ’s lets us obtain

the final µi
j values to the required ε-accuracy.

• On the other hand, if M has no singular value gap smaller than τ then its smallest singular
value is at least τk to begin with; thus it suffices to take εmatrix = τk+1 = poly(ε/n) to control
the errors in the full-rank case.

See Appendix C for the detailed proof of correctness.

8

4 Estimating Higher Moments

In this section we explain our remarks from Section 2.3 more thoroughly; specifically, how to use
WAM to learn a mixture Z of k product distributions X1, . . . ,Xk over {0, . . . , b− 1}n. Such a
distribution can be “parametrically” described by mixing weights {πi}i∈[k] and probabilities {pi

j,`},
where pi

j,` = Pr[Xi
j = `].

Running WAM on samples from Z gives a list of estimates of mixing weights and coordinate
means E[Xi

j], but these coordinate means are insufficient to completely describe the distributions
Xi

j . However, suppose that we run WAM on samples from Z` (i.e. each time we obtain a draw
(z1, . . . , zn) from Z, we actually give (z`

1, . . . , z
`
n) to WAM). It is easy to see that by doing this, we

are running WAM on the π-weighted mixture of distributions (X1)`, . . . , (Xk)`; we will thus get as
output a list of candidates for the mixing weights and the coordinate `th moments E[(Xi

j)
`] for Z.

Our algorithm for distributions over {0, . . . , b− 1}n uses this approach to obtain a list of candi-
date descriptions of each of the first b−1 coordinate moments of Z. The algorithm then essentially
takes the cross-product of these b − 1 lists to obtain a list of overall candidates, each of which is
an estimate of the mixing weights and all b − 1 moments. Since WAM guarantees that each list
contains an accurate estimate, the overall list will also contain an accurate estimate of the mixing
weights and of all moments. For each candidate the estimate of the moments is then easily con-
verted to “parametric form” {pi

j,`}, and as we show, any candidate with accurate estimates of the
moments yields an accurate estimate of the probabilities pi

j,`.
We now give the main theorem of the section, the proof of which (in Appendix D) contains the

details of the algorithm:

Theorem 6 Fix k = O(1), b = O(1). Let Z be a mixture of k product distributions X1, . . . ,Xk over
{0, . . . , b− 1}n, so Z is described by mixing weights π1, . . . , πk and probabilities {pi

j,`}i∈[k],j∈[n],`∈{0,...,b−1}.
There is an algorithm with the following property: for any ε, δ > 0, the algorithm runs in

poly(n/ε) · log 1
δ time and with probability 1− δ outputs a list of candidates 〈{π̂i}, {p̂i

j,`}〉 such that
for at least one candidate in the list, the following holds:

1. |π̂i − πi| ≤ ε for all i ∈ [k]; and

2. |p̂i
j,` − pi

j,`| ≤ ε for all i, j, ` such that πi ≥ ε.

5 Hardness of Learning Mixtures of Product Distributions

In this section we give evidence that the class of mixtures of k(n) product distributions over the
Boolean cube may be hard to learn in polynomial time for any k(n) = ω(1).

Before describing our results, we recall some standard terminology about Boolean decision trees.
A decision tree is a rooted binary tree in which each internal node has two children and is labeled
with a variable and each leaf is labeled with a bit b ∈ {0, 1}. A decision tree T computes a Boolean
function f : {0, 1}n → {0, 1} in the obvious way: on input x ∈ {0, 1}n, if variable xi is at the root
of T we go to either the left or right subtree depending on whether xi is 0 or 1. Continue in this
fashion until reaching a bit leaf; the value of this bit is f(x).

Our main result in this section is the following theorem:

Theorem 7 For any function k(n), if there is a poly(n/ε) time algorithm which learns a mixture
of k(n) many product distributions over {0, 1}n, then there is a poly(n/ε) time uniform distribution
PAC learning algorithm which learns the class of all k(n)-leaf decision trees.

9

The basic idea behind this theorem is quite simple. Given any k(n)-leaf decision tree T , the
set of all positive examples for T is a union of at most k(n) many disjoint subcubes of {0, 1}n,
and thus the uniform distribution over the positive examples is a mixture of at most k(n) product
distributions over {0, 1}n. If we can obtain a high-accuracy hypothesis mixture D for this mixture
of product distributions, then roughly speaking D must put “large” weight on the positive examples
and “small” weight on the negative examples. We can thus use D to make accurate predictions of
T ’s value on new examples very simply as follows: given a new example x to classify, we simply
compute the probability weight that the hypothesis mixture D puts on x, and output 1 or 0
depending on whether this weight is large or small. We give the formal proof of Theorem 7 in
Appendix I.

We note that after years of intensive research, no poly(n) time uniform distribution PAC learning
algorithm is known which can learn k(n)-leaf decision trees for any k(n) = ω(1); indeed, such an
algorithm would be a major breakthrough in computational learning theory.3 The fastest algorithms
to date [12, 3] can learn k(n)-leaf decision trees under the uniform distribution in time nlog k(n).
This suggests that it may be impossible to learn mixtures of a superconstant number of product
distributions over {0, 1}n in polynomial time.

6 Conclusions and Future Work

We have shown how to learn mixtures of any constant number of product distributions over {0, 1}n,
and more generally over {0, . . . , b− 1}n, in polynomial time.

The methods we use are quite general and can be adapted to learn mixtures of other types of
multivariate product distributions which are definable in terms of their moments. Along these lines,
we have used the approach in this paper to give a PAC-style algorithm for learning mixtures of k =
O(1) axis-aligned Gaussians in polynomial time [13]. (We note that while some previous work on
learning mixtures of Gaussians from a clustering perspective can handle k = ω(1) many component
Gaussians, all such work assumes that there is some minimum separation between the centers of
the component Gaussians, since otherwise clustering is clearly impossible. In contrast, our result
in [13] — in which we do not attempt to do clustering but instead find a hypothesis distribution with
small KL-divergence from the target mixture — does not require us to assume that the component
Gaussians are separated.) We expect that our techniques can also be adapted to learn mixtures of
other distributions such as products of exponential distributions or beta distributions.

It is natural to ask if our approach can be extended to learn mixtures of distributions which are
not necessarily product distributions; this is an interesting direction for future work. Note that our
main algorithmic ingredient, algorithm WAM, only requires that that the coordinate distributions
be pairwise independent.

Finally, one may also ask if it is possible to improve the efficiency of our learning algorithms —
can the running times be reduced to nO(k2), to nO(k), or even nO(log k)?

References

[1] S. Aaronson. Multilinear formulas and skepticism of quantum computation. In Proceedings of
the 36th Annual Symposium on Theory of Computing (STOC), pages 118–127, 2004.

[2] S. Arora and R. Kannan. Learning mixtures of arbitrary Gaussians. In Proceedings of the 33rd
Symposium on Theory of Computing, pages 247–257, 2001.

3Avrim Blum has offered a $1000 prize for solving a subproblem of the k(n) = n case and a $500 prize for a
subproblem of the k(n) = log n case; see [4].

10

[3] A. Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing
Letters, 42(4):183–185, 1992.

[4] A. Blum. Learning a function of r relevant variables (open problem). In Proceedings of the
16th Annual Conference on Learning Theory and 7th Kernel Workshop, pages 731–733, 2003.

[5] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning
DNF and characterizing statistical query learning using Fourier analysis. In Proceedings of the
Twenty-Sixth Annual Symposium on Theory of Computing, pages 253–262, 1994.

[6] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Towards privacy in public databases.
To appear, Theory of Cryptography, 2005.

[7] T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.

[8] M. Cryan. Learning and approximation algorithms for problems motivated by evolutionary
trees. PhD thesis, University of Warwick, 1999.

[9] M. Cryan, L. Goldberg, and P. Goldberg. Evolutionary trees can be learned in polynomial
time in the two state general Markov model. SIAM Journal on Computing, 31(2):375–397,
2002.

[10] S. Dasgupta. Learning mixtures of gaussians. In Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, pages 634–644, 1999.

[11] S. Dasgupta and L. Schulman. A Two-round Variant of EM for Gaussian Mixtures. In
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 143–151,
2000.

[12] A. Ehrenfeucht and D. Haussler. Learning decision trees from random examples. Information
and Computation, 82(3):231–246, 1989.

[13] J. Feldman, R. O’Donnell, and R. Servedio. PAC Learning mixtures of axis-aligned Gaussians.
manuscript, 2005.

[14] Y. Freund and Y. Mansour. Estimating a mixture of two product distributions. In Proceedings
of the Twelfth Annual Conference on Computational Learning Theory, pages 183–192, 1999.

[15] S. Goreinov, E. Tyrtyshnikov, and N. Zamarashkin. A theory of pseudoskeleton approxima-
tions. Linear Algebra and its Applications, 261:1–21, 1997.

[16] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

[17] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

[18] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On the learnability of
discrete distributions. In Proceedings of the Twenty-Sixth Symposium on Theory of Computing,
pages 273–282, 1994.

[19] B. Lindsay. Mixture models: theory, geometry and applications. Institute for Mathematical
Statistics, 1995.

11

[20] E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden markov models. In To
appear in Proceedings of the 37th Annual Symposium on Theory of Computing (STOC), 2005.

[21] A. Ray. . Personal communication, 2003.

[22] R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM algorithm.
SIAM Review, 26:195–202, 1984.

[23] A. Smith. Personal communication. 2005.

[24] D.M. Titterington, A.F.M. Smith, and U.E. Makov. Statistical analysis of finite mixture
distributions. Wiley & Sons, 1985.

[25] S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. In
Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, pages 113–
122, 2002.

A Algorithm WAM

Algorithm WAM has access to samples from the mixture Z and takes as input parameters ε, δ > 0.
Algorithm WAM:

1. Let εwts = ε3, τ = ε2/n2, and εmatrix = τk+1.

2. Grid over the mixing weights, producing values π̂1, . . . , π̂k ∈ [0, 1] accurate to
within ±εwts. If s of these weights are smaller than ε− εwts, eliminate them
and treat k as k − s in what follows.

3. Make empirical estimates ĉorr(j, j′) for all correlations
corr(j, j′) = E[ZjZj′] = µ̃j · µ̃j′ for j 6= j′ to within ±εmatrix, with confidence 1− δ.

4. Let M be the k × n matrix of unknowns (Mij) = (µ̃i
j), and try all possible

integers 0 ≤ r∗ ≤ k for the essential rank of M.

5. Grid over k − r∗ vectors ûr∗+1, . . . , ûk ∈ [−1, 1]k to within ±εmatrix in each

coordinate and augment M with these as columns, forming M̂ ′.

6. Try all possible subsets of exactly k column indices of M̂ ′; write these
indices as J = J ∪ J ′, where J corresponds to columns from the original
matrix M and J ′ corresponds to augmented columns. Grid over [−1, 1] for the
entries of M in columns J to within ±εmatrix, yielding { ˆ̃µi

j : i ∈ [k], j ∈ J}. Let

M̂ ′
J denote the matrix of estimates for all the columns in J . (See Figure

2.)

7. Let J̄ denote the columns of M other than J, and let MJ̄ denote the matrix

of remaining unknowns formed by these columns. Let B̂ be the matrix with
rows indexed by J̄ and columns indexed by J whose (j, j′) entry is the estimate
ĉorr(j, j′) of µ̃j · µ̃j′ if j′ ∈ J, or is 0 if j′ ∈ J ′. Using the entries of B̂ and

M̂ ′
J (all of which are known), solve the system M >̄

J M̂ ′
J = B̂ to obtain

estimates ˆ̃µi
j for the entries of MJ̄ (which are the unknown µ̃i

j’s), thus

producing estimates ˆ̃µi
j for all entries of M. (If the matrix M̂ ′

J is
singular, simply abandon the current gridding.)

12

︷ ︸︸ ︷J ︷ ︸︸ ︷J ′︸ ︷︷ ︸
k columns of J

︷ ︸︸ ︷
t columns
ûr∗+1, . . . , ûk

which augment M︷ ︸︸ ︷n columns of M

︸ ︷︷ ︸
columns of J̄


k rows
of M

µ̃1
1 · · · · · ·

...

...

...

...

µ̃1
k · · · · · ·

· · · · · · µ̃1
n
...
...
...
...

︸ ︷︷ ︸
n + (k − r∗) columns of M̂ ′

Figure 2: A depiction of the matrix used by WAM. For ease of illustration the columns J of M are
depicted as being the rightmost columns of M, and the columns J ′ from the augmenting columns
ûk−t+1, . . . , ûk are depicted as being the leftmost of those augmenting columns.

8. From the estimated values ˆ̃µi
j, compute the estimates µ̂i

j = ˆ̃µi
j/
√

π̂i for all i, j.

(Note that π̂i is never 0 since each is at least ε− εwts > 0.)

9. Output the candidate (〈π̂1, . . . , π̂k〉, 〈µ̂1
1, µ̂

1
2, . . . , µ̂

k
n〉).

B Linear algebra necessities

In this section we give the results from linear algebra and numerical analysis necessary for the
analysis of WAM.

Let A = (aij) be any k × n real matrix and write its singular value decomposition as A =
UΣV . We let σ1 ≥ · · · ≥ σk ≥ 0 denote the singular values of A, and let u1, . . . , uk denote the
corresponding left singular vectors of A, i.e., the columns of U . Recall that

• the vectors u1, . . . , uk form an orthonormal basis for Rk;

• σ1 = max‖x‖2=1 ‖x>A‖2 and σk = min‖x‖2=1 ‖x>A‖2.

The Frobenius norm ‖A‖F of a k × n matrix A is defined as ‖A‖F =
√∑

i,j(Ai,j)2. Recall that

σk(A) equals the Frobenius norm distance from the k × n matrix A to the nearest rank-deficient
matrix Ã, i.e.

σk(A) = min
rank(Ã)<k

‖A− Ã‖F .

The spectral norm ‖A‖2 of a k × n matrix A is ‖A‖2 = max‖x‖2=1 ‖Ax‖. It is well known that

‖A‖2 = σ1 and ‖A‖F =
√

σ2
1 + · · ·+ σ2

k; note that this implies ‖A‖2 ≤ ‖A‖F .

Our first necessary result is a quantitative version of the elementary fact that a full-rank k× n
matrix has a full-rank k×k submatrix. We will use the following theorem of Goreinov, Tyrtyshnikov,
and Zamarashkin [15]:

13

Theorem 8 [15] Let V be a k × n real matrix with orthonormal rows. Then there is a k × k
submatrix VJ which has σk(VJ) ≥ 1/

√
k(n− k) + 1.

The result we need is an easy corollary:

Corollary 5 Let A be a k×n real matrix with σk(A) ≥ ε. Then there exists a subset of columns
J ⊆ [n] with |J | = k such that σk(AJ) ≥ ε/

√
k(n− k) + 1.

Proof: By the singular value decomposition we have A = UΣV where U is a k × k matrix with
orthonormal columns, Σ is a k×k diagonal matrix with diagonal entries σ1, . . . , σk, and V is a k×n
matrix with orthonormal rows. Let VJ be the k× k submatrix of V whose existence is asserted by
Theorem 8, so σk(VJ) ≥ 1/

√
k(n− k) + 1. We have σk(U) = 1 (since U is an orthogonal matrix)

and σk(Σ) ≥ ε, so
σk(UΣVJ) ≥ σk(U)σk(Σ)σk(VJ) ≥ ε/

√
k(n− k) + 1

where the inequality holds since σk(PQ) ≥ σk(P)σk(Q) for any k × k matrices P, Q (this is easily
seen from the variational characterization σk(P) = min‖x‖2=1 ‖x>P‖2.) The corollary follows by
observing that UΣVJ is the k × k submatrix of A whose columns are in J.

The next result we will need is the characterization of what happens when the last k − r∗ left
singular vectors of a matrix are adjoined to it:

Proposition 9 Let A be a k× n matrix with columns a1, . . . , an. Fix any r∗ and let ur∗+1, . . . , uk

be the left singular vectors corresponding to the smallest singular values σr∗+1, . . . , σk of A. Let A′

be A with the vectors ur∗+1, . . . , uk adjoined as columns. Then

σk(A′) ≥ min{1, σr∗(A)},

and for all r∗ + 1 ≤ ` ≤ k and for all columns aj of A we have

|aj · u`| ≤ σr∗+1(A).

Proof: Write the singular value decomposition A = UΣV where U is a k×k matrix with orthonor-
mal columns u1, . . . , uk, Σ is a k × k diagonal matrix with σ1 ≥ · · · ≥ σk ≥ 0 on the diagonal, and
V is a k × n matrix with orthonormal rows. It follows that for any vector x ∈ Rk we have

‖x>A‖2
2 = σ2

1(x
>u1)2 + · · ·+ σ2

k(x
>uk)2.

Let R denote the k× (k− r∗) matrix whose columns are ur∗+1, . . . , uk, so we have A′ = [A R]. It is
easily verified that the left singular vectors of R are simply ur∗+1, . . . , uk, while the singular values
of R are all 1. Consequently we have

‖x>R‖2
2 = (x>ur∗+1)2 + · · ·+ (x>uk)2

for any x ∈ Rk.
Now recall the variational characterization of σk(A′), namely σk(A′) = min‖x‖2=1 ‖x>A′‖2. Since

‖x>A′‖2 =
√
‖x>A‖2

2 + ‖x>R‖2
2, we have

σk(A′) = min
‖x‖2=1

√
σ2

1(x>u1)2 + · · ·+ σ2
k(x

>uk)2 + (x>ur∗+1)2 + · · ·+ (x>uk)2. (2)

14

Since u1, . . . , uk form an orthonormal basis for Rk we have that (x>u1)2 + · · ·+(x>uk)2 = 1 for all
‖x‖2 = 1. If we let αx = (x>ur∗+1)2 + · · ·+ (x>uk)2 then the quantity inside the square root of (2)
is at least σ2

r∗(1− αx) + αx ≥ min{σ2
r∗ , 1}. This proves the first inequality of the proposition.

For the second inequality, we observe that aj · u` = u>` UΣvj where vj is the jth column of V .
Since U is orthonormal and Σ`,` = σ` we thus have

|u>` UΣvj | = |σ`v`,j | ≤ σ` ≤ σr∗+1,

where the first inequality holds since the rows of V are orthonormal and hence each entry of V
must be at most 1 in magnitude.

The final result we will need is a very basic fact from numerical analysis controlling the error
in a perturbed linear system:

Theorem 10 Let A be a nonsingular k×k matrix, b be a k-dimensional vector, and x the solution
to Ax = b. Suppose A′ is a k×k matrix satisfying ‖A−A′‖F ≤ ε1 < σk(A). Let b′ be a k-dimensional
vector satisfying ‖b− b′‖2 ≤ ε2 and let x′ be the solution to A′x′ = b′. Then

‖x− x′‖2 ≤ ε1‖x‖2 + ε2
σk(A)− ε1

.

The proof of a result like this can be found in most textbooks on numerical analysis (although it
is more common to use the condition number of A rather than its smallest singular value). Since
we are more interested in the ‖ · ‖∞ measure of distance, we give the following simple corollary:

Corollary 11 Let A be a nonsingular k×k matrix, b be a k-dimensional vector, and x the solution
to Ax = b. Assume that ‖x‖∞ ≤ 1. Suppose A′ is a k× k matrix such that each entry of A−A′ is
at most εmatrix in magnitude, and assume that εmatrix < σk(A)/2k. Let b′ be a k-dimensional vector
satisfying ‖b− b′‖∞ ≤ εrhs. Let x′ be the solution to A′x′ = b′. Then we have

‖x− x′‖∞ ≤ O(k)
εmatrix + εrhs

σk(A)
.

C Proof of Theorem 4

We go through the algorithm step by step, as it appears in Appendix A. In Step 1 of WAM, we
define constants εwts = ε3, τ = ε2/n2, and εmatrix = τk+1, which we use throughout the proof.

In Step 2 of WAM the algorithm will grid over estimates π̂i that satisfy |π̂i − πi| for all i. In
this case, any mixing component Xi whose mixing weight πi is at least ε will not be eliminated.
Since we need not be concerned with accuracy for the means of the other mixing components, we
can ignore them and assume for the rest of the proof that πi ≥ ε for all i.

Now we come to the main work in the proof of correctness of Theorem 4: namely, showing that
in Steps 3–7 of algorithm WAM, accurate estimates for the µ̃i

j ’s are produced. Our goal for most
of the remainder of the proof will be to show we obtain estimates ˆ̃µi

j satisfying

| ˆ̃µi
j − µ̃i

j | ≤ ε̃ := ε2

for all i.

To that end, let r∗ = r∗τ (M), the τ -essential rank of M . We will quickly dismiss the two easy
cases, r∗ = 0 and r∗ = k; we then treat the general case 0 < r∗ < k.

15

r∗ = 0 case. By definition, in this case σ1(M) ≤ τ ≤ ε̃. Since σ1(M) is at least as large as the
magnitude of M ’s largest entry we must therefore have |µ̃i

j | ≤ ε̃ for all i, j. Now when WAM tries
r∗ = 0 in Step 4, tries the k standard basis vectors for û1, . . . , ûk in Step 5, and chooses all of these
vectors for J in Step 6, it will set B̂ = 0 in Step 7 and get ˆ̃µi

j = 0 for all i, j when it solves the
linear system. But this is indeed within an additive τ ≤ ε̃ of the true values, as desired.

r∗ = k case. By definition, it’s not hard to see that in this case we must have σk(M) ≥ τk. Now
consider when WAM tries r∗ = k in Step 4. Step 5 becomes vacuous. By Corollary 5 there is some
set of k columns J = J such that σk(MJ) ≥ σk(M)/

√
k(n− k) + 1 ≥ τk/n. In Step 6 WAM will

try out this J and grid the associated entries to within ±εmatrix. In Step 7 the algorithm will use
only ĉorr’s in forming B̂ and these will also be correct to within an additive ±εmatrix. We can now
use Corollary 11 — note that εmatrix = τk+1 ≤ (τk/n)/2k ≤ σk(MJ)/2k, as necessary. This gives
estimates in Step 7 satisfying

| ˆ̃µi
j − µ̃i

j | ≤ O(k)
2εmatrix

τk/n
= O(knτ) ≤ ε̃,

as desired.

0 < r∗ < k case. In this case, by definition of the essential rank, we have

τσr∗(M) ≥ σr∗+1(M) ≥ τk. (3)

In Step 4 WAM will try out the correct value for r∗ and in Step 5 WAM will grid over vectors
ûr∗+1, . . . , ûk that are within ±εmatrix in each coordinate of the actual last left singular vectors
of M , ur∗+1, . . . , uk. Let M ′ denote the matrix M with these true singular vectors adjoined. By
Proposition 9 we have

σk(M ′) ≥ min{1, σr∗(M)}. (4)

From the crude upper bound σr∗(M) ≤ ‖M‖F =
√∑

i,j(µ̃
i
j)2 ≤

√
kn, we can restate (4) as simply

σk(M ′) ≥ σr∗(M)/
√

kn. Now applying Corollary 5 we conclude there is a subset J of M ′’s columns
with |J | = k such that

σk(M ′
J) ≥ σk(M ′)/

√
k(n− k) + 1 ≥ σr∗(M)/kn. (5)

In Step 6, WAM will try this set of columns J = J ∪ J ′; it will also grid estimates for the entries
in this column that are correct up to an additive ±εmatrix. Note that WAM now has an M̂ ′

J that
has all entries correct up to an additive ±εmatrix. Now consider the matrix B̂ WAM forms in
Step 7. For the columns corresponding to J the entries are given by ĉorr’s, which are correct to
within ±εmatrix. For the columns corresponding to J ′ the entries are 0’s; by the second part of
Proposition 9 these are correct up to an additive σr∗+1(M). We now use Corollary 5 to bound
the error resulting from solving the system M >̄

J M̂ ′J = B̂ in Step 7. To check that the necessary
hypothesis is satisfied we combine (3) and (5):

σk(M ′
J)/2k ≥ σr∗(M)/2k2n ≥ τk−1/2k2n ≥ τk+1 = εmatrix.

Now Corollary 11 tells us that the ˆ̃µi
j produced satisfy

| ˆ̃µi
j − µ̃i

j | ≤ O(k)
εmatrix + max{εmatrix, σr∗+1(M)}

σk(M ′
J)

≤ O(k2n)
εmatrix + σr∗+1(M)

σr∗(M)
,

16

where in the last step we used (5). But by (3) we have εmatrix/σr∗(M) ≤ εmatrix/τk−1 = τ2 and
also σr∗+1(M)/σr∗(M) ≤ τ . Thus we have

| ˆ̃µi
j − µ̃i

j | ≤ O(k2n)τ ≤ ε̃,

as desired.

It remains to bound the error blowup in Step 8. By this point we have values for the πi’s that
are accurate to within ±εwts, and further, all πi’s are at least ε. We also have values for all µ̃i

j ’s
that are accurate to within ±ε̃. Since the function g(x, y) = y/

√
x satisfies

sup
x∈[ε,1]

y∈[−1,1]

∣∣∣∣ ∂

∂x
g(x, y)

∣∣∣∣ = 2ε−3/2 and sup
x∈[ε,1]

y∈[−1,1]

∣∣∣∣ ∂

∂y
g(x, y)

∣∣∣∣ < ε−1/2,

the Mean Value Theorem implies that in Step 8 our resulting estimates µ̂i
j are accurate to within

additive error
εwts · 2ε−3/2 + ε̃ · ε−1/2 ≤ ε,

as necessary.

This completes the proof of WAM’s correctness. As for the running time, it is easy to see that
the dominating factor comes from gridding over the entries of MJ and ur∗+1, . . . , uk. Since there
are k2 entries and we grid to granularity εmatrix = τk+1 = poly(n/ε)k, the overall running time is
poly(n/ε)k3

; i.e., poly(n/ε) for constant k.

D Proof of Theorem 6

For each ` = 1, . . . , b−1, the algorithm runs WAM on the random variable Z`. In each such run, the
“ε” parameter of WAM is set to ε′ := εσb/(O(b) · (b−1)b−1), where σb is a constant we define later,
and the “δ” parameter is set to δ′ := δ/(b−1). From these runs we obtain (b−1) lists L1, . . . , Lb−1

of candidates 〈{π̂i}, {µ̂i
j,`}i,j〉, where µ̂i

j,` is an estimate of µi
j,` = E[(Xi

j)
`]. The algorithm then

uses these (b − 1) lists to construct one larger list L of candidates 〈{π̂i}, {µi
j,`}i,j,`〉, where each

candidate estimates the mixing weights and all b− 1 moments. This is done by taking all possible
combinations of one candidate from each of the b − 1 lists L1, . . . , Lb−1, and combining them as
follows: take the mixing weights {π̂i} from the candidate from list L1, and for ` = 1, . . . , b−1, take
{µi

j,`}i,j from the candidate from list L`. The list L will have size |L| =∏b−1
`=1 |L`| = poly(n, 1/ε).

Theorem 4 on the WAM algorithm guarantees that with probability at least 1−(b−1)δ′ = 1−δ,
each list L` contains a candidate whose {µ̂i

j,`} are accurate estimates of the `th moments. When
we choose the accurate candidate from each list, we will obtain an overall candidate in L that
is accurate on all b − 1 moments. Define ε′′ := ε′(b − 1)b−1/2 = εσb/O(b). Formally, the list L
will contain a candidate 〈{π̂i}, {µ̂i

j,`}i,j,`〉 such that (i) |π̂i − πi| ≤ ε′′ for all i ∈ [k]; and (ii)
|µ̂i

j,` − µi
j,`| ≤ ε′′ for all i, j, ` such that πi ≥ ε′′. (The extra factor of (b − 1)b−1/2 comes from the

need to scale the distributions for WAM so that the means fall into the range [−1, 1].)
To complete the proof of the theorem, we must show how the algorithm converts each candidate

〈{π̂i}, {µ̂i
j,`}〉 in the list L into “parametric” form 〈{π̂i}, {p̂i

j,`}〉 so that the “good” candidate satis-
fying (i) and (ii) above does not incur much error. It is easy to see that for a given i ∈ [k], j ∈ [n],
we have (µi

j,0, . . . , µ
i
j,b−1) = (pi

j,0, . . . , p
i
j,b−1)V , where V is a b× b Vandermonde matrix (more pre-

cisely, Vα,β = (α − 1)β−1, with V1,1 = 1.) Following this characterization, the algorithm computes

17

(p̂i
j,0, . . . , p̂

i
j,b−1) = (µ̂i

j,0, . . . , µ̂
i
j,b−1)V

−1 for each i, j to obtain parametric estimates {p̂i
j,`} for the

probabilities {pi
j,`}.

Now applying Corollary 11, we have that for all i, j, `, we have |p̂i
j,` − pi

j,`| ≤ ε′′ · O(b)/σb = ε,
where σb is set equal to σb(V), the smallest singular value of V . (Since the Vandermonde matrix
is nonsingular, even without specifying σb we have that it is a positive constant that depends only
on b; it can be shown to be at least b−poly(b)) The running time is dominated by the time to take
the cross-product of the lists. This concludes the proof of Theorem 6. We remark that the running
time dependence on b is of the form (n/ε)poly(b); since a b in the exponent is inevitable in our
cross-product approach, we have refrained from excessive optimization of the dependence on b (by
doing things such as representing the alphabet by bth roots of unity rather than equally spaced
reals, which would have given a better Vandermonde singular value bound).

E The road ahead

Since the binary domain {0, 1}n corresponds to the b = 2 case of the general {0, . . . , b− 1}n domain,
here we shall deal only with the latter.

Recall that pi
j,` is the probability that under the ith product distribution over {0, . . . , b− 1}n

in the target mixture Z, the jth coordinate takes value `. From Theorem 6, we have a list L of M
candidates 〈{π̂i}, {p̂i

j,`}〉 such that at least one candidate is parametrically accurate — i.e., satisfies
the following:

1. |π̂i − πi| ≤ ε for all i = 1 . . . k; and

2. |p̂i
j,` − pi

j,`| ≤ ε for all i ∈ [k], j ∈ [n] and ` ∈ {0, . . . , b− 1} such that πi ≥ ε.

In Section F, we show how to convert candidate into a true mixture of product distributions, in
such a way that any parametrically accurate candidate becomes a mixture distribution with small
KL divergence from the target distribution (see Theorem 12). Applying this conversion procedure
to the list from Theorem 6, we get a list of M hypothesis mixture distributions such that at least
one hypothesis in the list has small KL divergence from the target Z (see Theorem 16).

Then in Section G we show how a maximum-likelihood procedure can find a KL-accurate
hypothesis (one with small KL divergence from Z) from among a list of hypothesis, one of which
is guaranteed to have good KL divergence (see Theorem 17).

In Section H we combine Theorem 17 with Theorem 16 to obtain Theorem 2.

F From candidates to hypothesis mixture distributions

The following theorem defines a process that converts a single candidate for the πi’s and pi
j,`’s of

Z to a true mixture of product distributions over {0, . . . , b− 1}n that has at least some minimum
mass on every point in {0, . . . , b− 1}n (as we will see in Section G, this minimum mass condition is
required by the maximum-likelihood procedure). More importantly, the theorem guarantees that
if the candidate is parametrically accurate then the process outputs a mixture distribution with
small KL divergence relative to Z.

Theorem 12

1. There is an efficient procedure A which takes values εbprobs, εwts > 0 and π̂i,p̂i
j,` as inputs and

outputs a mixture Ż of k product distributions over {0, . . . , b− 1}n with mixing weights π̇i > 0
and probabilities ṗi

j,` > 0 satisfying

(a)
∑k

i=1 π̇i = 1, and for each i ∈ [k] and j ∈ [n],
∑b−1

`=0 pi
j,` = 1;

18

(b) Ż(x) ≥ (εbprobs)n for all x ∈ {0, . . . , b− 1}n.

2. Furthermore, suppose Z is a mixture of k product distributions on {0, . . . , b− 1}n with mixing
weights π1, . . . , πk and probabilities pi

j,`, and that the following are satisfied:

(a) for i = 1 . . . k we have |πi − π̂i| ≤ εwts, and

(b) for all i, j, ` such that πi ≥ εminwt we have |pi
j,` − p̂i

j,`| ≤ εbprobs.

Then for sufficiently small εbprobs and εwts, the mixture Ż will satisfy

KL(Z||Ż) ≤ η(εbprobs, εwts, εminwt), (6)

where
η(εbprobs, εwts, εminwt) := n · (12b3ε

1/2
bprobs) + kεminwtn ln(b/εbprobs) + ε

1/3
wts.

We prove Theorem 12 in Section F.2 after setting up the required machinery in Section F.1.

F.1 Some tools. Here we give some propositions which will be used in the proof of Theorem 12.

The following simple proposition bounds the KL divergence between two product distributions
in terms of the KL divergences between their coordinates.

Proposition 13 Suppose P1, . . . ,Pn and Q1, . . . ,Qn are distributions satisfying KL(Pi||Qi) ≤ εi

for all i. Then KL(P1 × · · · ×Pn||Q1 × · · · ×Qn) ≤∑n
i=1 εi.

Proof: We prove the case n = 2:

KL(P1 ×P2||Q1 ×Q2) =
∑
x

∑
y

P1(x)P2(y) ln
P1(x)P2(y)
Q1(x)Q2(y)

=
∑
x

∑
y

P1(x)P2(y) ln
P1(x)
Q1(x)

+
∑
x

∑
y

P1(x)P2(y) ln
P2(y)
Q2(y)

=
∑

P2(y)KL(P1||Q1) +
∑

P1(x)KL(P2||Q2)
≤ ε1 + ε2.

The general case follows by induction.

Very roughly speaking, the following proposition states that if P is a π-weighted mixture of
distributions P1, . . . ,Pk and Q is a γ-weighted mixture of distributions Q1, . . . ,Qk, then if each
Qi is “close” to the corresponding Pi and the π-weighting is “close” to the γ-weighting, then Q is
“close” to P. To make this precise we need several technical conditions as stated in the proposition.

Proposition 14 Let π1, . . . , πk, γ1, . . . , γk ≥ 0 be mixing weights satisfying
∑

πi =
∑

γi = 1. Let
I = {i : πi ≥ ε3}. Let P1, . . . ,Pk and Q1, . . . ,Qk be distributions. Suppose that

1. |πi − γi| ≤ ε1 for all i ∈ [k];

2. γi ≥ ε2 for all i ∈ [k];

3. KL(Pi||Qi) ≤ εI for all i ∈ I;

4. KL(Pi||Qi) ≤ εall for all i ∈ [k].

19

Then, letting P denote the π-mixture of the Pi’s and Q the γ-mixture of the Qi’s, for any ε4 > ε1
we have

KL(P||Q) ≤ εI + kε3εall + kε4 ln
ε4
ε2

+
ε1

ε4 − ε1
.

Proof:

KL(P||Q) =
∑(∑

i
πiPi

)
ln
∑

i π
iPi∑

i γ
iQi

≤ ∑∑
i

πiPi ln
πiPi

γiQi
(by the log-sum inequality [7])

=
∑
i

πi∑(Pi ln
Pi

Qi
+ Pi ln

πi

γi

)
=

∑
i

πiKL(Pi||Qi) +
∑
i

πi ln
πi

γi

=
(∑

i∈I
πiKL(Pi||Qi)

)
+

(∑
i6∈I

πiKL(Pi||Qi)

)
+
∑
i

πi ln
πi

γi
. (7)

For the first term of (7), we have ∑
i∈I

πiKL(Pi||Qi) ≤ εI .

For the second term of (7), we have∑
i6∈I

πiKL(Pi||Qi) ≤ kε3 ·max
i∈[k]

{KL(Pi||Qi)} ≤ kε3εall.

For the third term of (7), letting I ′ = {i ∈ I : πi ≥ ε4}, we have

∑
i

πi ln
πi

γi
=
∑
i/∈I′

πi ln
πi

γi
+
∑
i∈I′

πi ln
πi

γi
. (8)

For the first sum in (8) we have ∑
i/∈I′

πi ln
πi

γi
≤ kε4 ln

ε4
ε2

.

Since γi ≥ πi − ε1 for all i, we have that for all i ∈ I ′

πi

γi
≥ ε4

ε4 − ε1
= 1 +

ε1
ε4 − ε1

.

Hence for the second sum in (8), we have

∑
i∈I′

πi ln
πi

γi
≤ ∑

i∈I′
πi ln

(
1 +

ε1
ε4 − ε1

)
≤ ε1

ε4 − ε1
.

Putting all the bounds together the proof is done.

Finally, we will also need the following elementary proposition:

20

Proposition 15 Let P and Q denote distributions over {0, . . . , b− 1} where P has probabilities
p0, . . . , pb−1 and Q has probabilities q0, . . . , qb−1. Suppose that |p` − q`| < ξ ≤ 1

4 for all ` ∈
{0, . . . , b− 1}, and that also q` ≥ τ for all ` ∈ {0, . . . , b− 1}, where τ < ξ. Then KL(P||Q) ≤
2ξ1/2 + bξ3/2/τ.

Proof: Let Lsmall = {` ∈ {0, . . . , b− 1} : p` ≤ ξ1/2} and Lbig = {0, . . . , b− 1} \ Lsmall. We bound
the contribution to KL(P||Q) from Lsmall and Lbig separately.

Now for the Lsmall case. For all `, it is easy to see that ln p`
q`
≤ ln ξ+τ

τ = ln(1 + ξ
τ) ≤ ξ

τ . Thus

each ` ∈ Lsmall contributes at most p` ln p`
q`
≤ ξ3/2

τ . Since |Lsmall| ≤ b the total contribution to

KL(P||Q) from Lsmall is at most b ξ3/2

τ .
If ` ∈ Lbig, then we have

p`

q`
≤ p`

p` − ξ
= 1 +

ξ

p` − ξ
≤ 1 +

ξ

ξ1/2 − ξ
≤ 1 + 2ξ1/2

where the last inequality holds since ξ1/2 ≤ ξ1/2/2 (since ξ ≤ 1
4). We thus have that the total

contribution to KL(P||Q) from ` ∈ Lbig is at most ln(1+2ξ1/2) ≤ 2ξ1/2. This proves the proposition.

F.2 Proof of Theorem 12. We construct a mixture Ż of product distributions Ż1, . . . , Żk by
defining new mixing weights π̇i and probabilities ṗi

j,`. The procedure A is defined as follows:

1. For all i = 1, . . . , k let

π̈i =
{

π̂i if π̂i ≥ εwts

εwts if π̂i < εwts.

Now let s be such that s
∑k

i=1 π̈i = 1, and take π̇i = sπ̈i.

2. For all i ∈ [k] and j ∈ [n], let

p̈i
j,` =

{
p̂i

j,` if p̂i
j,` ≥ εbprobs

εbprobs if p̂i
j,` < εbprobs.

Now let t be such that t
∑

`∈{0,...,b−1} p̈i
j,` = 1, and take ṗi

j,` = tp̈i
j,`.

It is clear from construction that this yields π̇i, ṗi
j,` that satisfy condition 1(a) of the theorem. It

is also clear that for each i ∈ [k] we have that the distribution Żi satisfies Żi(x) ≥ εn
bprobs for all

x ∈ {0, . . . , b− 1}n, and thus the mixture Ż must satisfy Ż(x) ≥ εn
bprobs for all x. This gives part

1(b) of the theorem.
We now turn to part 2, and henceforth assume that the conditions on πi, π̂i, pi

j,`, p̂i
j,` from part

2 are indeed all satisfied. Roughly speaking, these conditions tell us that π̂i, p̂i
j,` are “good” (in the

sense that they are parametrically accurate); we will show that the resulting π̇i, ṗi
j,` are “good” (in

the sense of giving rise to a mixture Ż that satisfies (6)).
Our goal is to apply Proposition 14 with parameter settings

ε1 = 3kεwts; ε2 =
εwts

2
; ε3 = εminwt; ε4 = ε

1/2
wts; εI = 12nb3ε

1/2
bprobs; εall = n ln(b/εbprobs). (9)

to bound KL(Z||Ż). To satisfy the conditions of Proposition 14 we must (1) upper bound |πi − π̇i|
for all i; (2) lower bound π̇i for all i; (3) upper bound KL(Zi||Żi) for all i such that πi ≥ εminwt;
and (4) upper bound KL(Zi||Żi) for all i ∈ [k]. We now do this.

21

(1) Upper bounding |πi−π̇i|. Fix any i ∈ [k]. If π̂i ≥ εwts then we have π̈i = π̂i so |πi−π̈i| ≤ εwts.
On the other hand, if π̂i < εwts then it must be the case that πi ≤ 2εwts so we again have
|πi − π̈i| ≤ εwts. Since

∑k
i=1 πi = 1 it follows that∣∣∣∣ k∑

i=1
π̈i − 1

∣∣∣∣ ≤ kεwts (10)

and thus
k∑

i=1
π̈i ∈ [1− kεwts, 1 + kεwts].

By definition of s this gives

s ∈
[

1
1 + kεwts

,
1

1− kεwts

]
(11)

Multiplying inequality (10) by s, recalling that s
∑k

i=1 π̈i = 1, and assuming εwts ≤ 1/(2k), we
obtain

|1− s| ≤ skεwts ≤ kεwts

1− kεwts
≤ 2kεwts.

Thus, we have

|πi − π̇i| ≤ |πi − π̈i|+ |π̈i − π̇i|
≤ εwts + |π̈i − π̇i|
= εwts + |(1− s)π̈i|
≤ εwts + 2kεwts|π̈i|
≤ εwts + 2kεwts;

certainly, this gives |πi − π̇i| ≤ 3kεwts.

(2) Lower bounding π̇i. To lower bound π̇i, we note that since π̈i ≥ εwts for all i, and assuming
εwts ≤ 1/k, we have

π̇i = sπ̈i ≥ 1
1 + kεwts

π̈i ≥ εwts

1 + kεwts
≥ εwts

2
where the first inequality follows from (11).

(3) Upper bounding KL(Zi||Żi) for all i such that πi ≥ εminwt. Fix an i such that πi ≥
εminwt and fix any j ∈ [n]. Let P denote the distribution over {0, . . . , b− 1} with probabilities
pi

j,0, . . . , p
i
j,b−1 and let Q denote the distribution over {0, . . . , b− 1} with probabilities ṗi

j,0, . . . , ṗ
i
j,b−1.

We first show that each ṗi
j,` is close to p̂i

j,` and thus also to pi
j,`. This is done much as in (1)

above. If p̂i
j,` ≥ εbprobs then we have p̈i

j,` = p̂i
j,` so |pi

j,` − p̈i
j,`| ≤ εbprobs (by condition 2(b) in the

theorem statement). On the other hand, if p̂i
j,` < εbprobs then it must be the case that pi

j,` ≤ 2εbprobs

so we again have |pi
j,` − p̈i

j,`| ≤ εbprobs. Since
∑b−1

`=0 pi
j,` = 1 it follows that∣∣∣∣b−1∑̀

=0

p̈i
j,` − 1

∣∣∣∣ ≤ bεbprobs (12)

and thus
b−1∑̀
=0

p̈i
j,` ∈ [1− bεbprobs, 1 + bεbprobs].

22

By definition of t this gives

t ∈
[

1
1 + bεbprobs

,
1

1− bεbprobs

]
(13)

Multiplying inequality (12) by t, recalling that t
∑b−1

`=0 p̈i
j,` = 1, and assuming εbprobs ≤ 1/(2b), we

obtain
|1− t| ≤ tbεbprobs ≤ bεbprobs

1− bεbprobs
≤ 2bεbprobs.

Thus, we have

|pi
j,` − ṗi

j,`| ≤ |pi
j,` − p̈i

j,`|+ |p̈i
j,` − ṗi

j,`|
≤ εbprobs + |p̈i

j,` − ṗi
j,`|

= εbprobs + |(1− t)p̈i
j,`|

≤ εbprobs + 2bεbprobs|p̈i
j,`|

≤ εbprobs + 2bεbprobs;

certainly, this gives |pi
j,` − ṗi

j,`| ≤ 3bεbprobs.

Moreover, since p̈i
j,` ≥ εbprobs for all ` and ṗi

j,` = tp̈i
j,` where t > 1

2 (by (13) and εbprobs ≤ 1/b),
we also have ṗi

j,` ≥ εbprobs/2. We may thus apply Proposition 15 to P and Q (taking τ = εbprobs/2
and ξ = 3bεbprobs), and we obtain KL(P||Q) ≤ 2(3bεbprobs)1/2 +b(3bεbprobs)3/2/(εbprobs/2). Routine
simplification gives that this is at most 12b3ε

1/2
bprobs. Each Zi (Żi respectively) is the product of n such

distributions P (distributions Q respectively) over {0, . . . , b− 1}. Therefore, by Proposition 13, we
have KL(Zi||Żi) ≤ n · (12b3ε

1/2
bprobs) for all i with πi ≥ εminwt.

(4) Upper bounding KL(Zi||Żi) for all i ∈ [k]. This is simple: fix any i ∈ [k]. Since we know
that Żi(x) ≥ εn

bprobs for all x ∈ {0, . . . , b− 1}n, we immediately have

KL(Zi||Żi) ≤ −H(Zi) + ln(1/(εbprobs)n) ≤ n ln(b/εbprobs),

where H(X) :=
∑

x X(x) ln(1/X(x)) denotes the“entropy in nats” of the random variable X.
We can now apply Proposition 14 with the parameter settings given by (9). Proposition 14

implies:

KL(Z||Ż) ≤ n · (12b3ε
1/2
bprobs) + kεminwtn ln(b/εbprobs) +

[
kε

1/2
wts ln

ε
1/2
wts

εwts/2
+

3kεwts

ε
1/2
wts − 3kεwts

]
.

Considering the terms of the expression in brackets above, we have that

kε
1/2
wts ln

ε
1/2
wts

εwts/2
= kε

1/2
wts ln

2

ε
1/2
wts

≤ 1
2
ε
1/3
wts

and
3kεwts

ε
1/2
wts − 3kεwts

≤ 6kε
1/2
wts ≤

1
2
ε
1/3
wts

(note that these inequalities only require that εwts is at most a sufficiently small constant depending
only on k, roughly 1/k6).

Hence
KL(Z||Ż) ≤ n · (12b3ε

1/2
bprobs) + kεminwtn ln(b/εbprobs) + ε

1/3
wts.

This concludes the proof of Theorem 12.

23

F.3 Some candidate distribution is good. Here we establish the following:

Theorem 16 Let b = O(1) and let Z be any unknown mixture of k product distributions over
{0, . . . , b− 1}n. There is a poly(n/ε) · log 1

δ time algorithm which, given samples from Z, outputs a
list of poly(n/ε) many mixtures of product distributions over {0, . . . , b− 1}n with the property that:

• every distribution Z′ in the list satisfies (ε
36nb3

)2n ≤ Z′(x) ≤ 1 for all x ∈ {0, . . . , b− 1}n; and

• with probability 1− δ, some distribution Z? in the list satisfies KL(Z||Z?) ≤ ε.

Proof: We will use a specialization of Theorem 6 in which we have different parameters for the
different roles that ε plays:

Theorem 6′: Fix k = O(1), b = O(1). Let Z be a mixture of k product distributions X1, . . . ,Xk over
{0, . . . , b− 1}n, so Z is described by mixing weights π1, . . . , πk and probabilities {pi

j,`}i∈[k],j∈[n],`∈{0,...,b−1}.
There is an algorithm with the following property: for any εwts, εbprobs, εminwt, δ > 0, with proba-

bility 1−δ the algorithm outputs a list of candidates 〈{π̂i}, {p̂i
j,`}〉 such that for at least one candidate

in the list, the following holds:

1. |π̂i − πi| ≤ εwts for all i ∈ [k]; and

2. |p̂i
j,` − pi

j,`| ≤ εbprobs for all i, j, ` such that πi ≥ εminwt.

The algorithm runs in time poly(n/ε′) · log(1/δ), where ε′ = min{εwts, εbprobs, εminwt}.
Let ε, δ > 0 be given. We run the algorithm of Theorem 6′ with parameters εbprobs = (ε

36nb3
)2,

εminwt = ε
3kn ln(1296b7n2/ε2)

, and εwts = ε3

27 . With these parameters the algorithm runs in time
poly(n/ε) · log 1

δ . By Theorem 6′, we get as output a list of poly(n/ε) many candidate parameter
settings 〈{π̂i}, {µ̂i

j}〉 with the guarantee that with probability 1 − δ at least one of the settings
satisfies

• |πi − π̂i| ≤ εwts for all i ∈ [k], and

• |p̂i
j,` − pi

j,`| ≤ εbprobs for all i, j, ` such that πi ≥ εminwt.

We now pass each of these candidate parameter settings through Theorem 12. It follows that
the resulting distributions each satisfy εn

bprobs = (ε
36nb3

)2n ≤ Z′(x) ≤ 1 for all x ∈ {0, 1}n. A routine
verification shows that with our choice of εbprobs, εminwt and εwts we have

n · (12b3ε
1/2
bprobs) ≤

ε

3
, kεminwtn ln

b

εbprobs
≤ ε

3
, and ε

1/3
wts ≤

ε

3
.

Thus η(εbprobs, εwts, εminwt) ≤ ε, and we have that at least one of the resulting distributions Z?

satisfies KL(Z||Z?) ≤ ε.

G Finding a good hypothesis using maximum likelihood

Theorem 16 gives us a list of distributions at least one of which is close to the target mixture
distribution Z that we are trying to learn. Now we must identify some distribution in the list which
is close to the target. In this section we give a simple maximum likelihood algorithm which helps
us accomplish this. This is a standard situation (see e.g. Section 4.6 of [14]) and we emphasize that
the ideas behind Theorem 17 below are not new. However, we were unable to find in the literature

24

a clear statement of the exact result which we need, so for completeness we give our own statement
and proof below.

Let P be a target distribution over some space X. Let Q be a set of hypothesis distributions
such that at least one Q∗ ∈ Q has KL(P||Q∗) ≤ ε. The following algorithm will be used to find a
distribution QML ∈ Q which is close to P: Draw a set S of samples from the distribution P. For
each Q ∈ Q, compute the log-likelihood

Λ(Q) =
∑
x∈S

(− lnQ(x)).

Now output the distribution QML ∈ Q such that Λ(Q) is minimum. This is known as the
Maximum Likelihood (ML) Algorithm since it outputs the distribution in Q which maximizes
arg maxQ∈Q

∏
x∈S Q(x).

Theorem 17 Let β, α, ε > 0 be such that α < β. Let Q be a set of hypothesis distributions for
some distribution P over the space X such that at least one Q∗ ∈ Q has KL(P||Q∗) ≤ ε. Suppose
also that α ≤ Q(x) ≤ β for all Q ∈ Q and all x such that P(x) > 0.

Run the ML algorithm on Q using a set S of independent samples from P, where S = m. Then,
with probability 1− δ, where

δ ≤ (|Q|+ 1) · exp
(
−2m

ε2

log2 (β/α)

)
,

the algorithm outputs some distribution QML ∈ Q which has KL(P||QML) ≤ 4ε.

Before proving Theorem 17 we give some preliminaries. Let P and Q be arbitrary distributions
over some space X. We can rewrite the KL divergence between P and Q as

KL(P||Q) = −H(P)− ∑
x∈X

P(x) lnQ(x), (14)

where H(P) = −∑x∈X P(x) lnP(x) is the “entropy in nats” of P.
Consider the random variable − lnQ(x), where x is a sample from the distribution P. Us-

ing (14), we can express the expectation of this variable in terms of the KL-divergence:

Ex∈P[− lnQ(x)] = KL(P||Q) + H(P). (15)

Recall that when the ML algorithm runs on a list Q of distributions, it uses a set S of indepen-
dent samples from P, where m = |S|. For each distribution Q ∈ Q, the algorithm computes

Λ(Q) =
∑
x∈S

(− lnQ(x)).

So, by (15), we have that the expected “score” of distribution Q is the following:

ES [Λ(Q)] = m(H(P) + KL(P||Q)). (16)

We recall the theorem of Hoeffding [16]:

Theorem 18 (Hoeffding) Let x1, . . . , xn be independent bounded random variables such that each
xi falls into the interval [a, b] with probability one. Let X =

∑n
i=1 xi. Then for any t > 0 we have

Pr[X −E[X] ≥ t] ≤ e−2t2/n(b−a)2 and Pr[X −E[X] ≤ −t] ≤ e−2t2/n(b−a)2 .

25

Now we can prove Theorem 17.

Proof of Theorem 17: Call a distribution Q ∈ Q good if KL(P||QML) ≤ 4ε, and bad otherwise.
Note that by assumption, we have at least one good distribution in Q.

The probability δ that the algorithm fails to output some good distribution is at most the
probability that either some bad distribution Q has Λ(Q) ≤ m(H(P)+3ε) or the good distribution
Q∗ has Λ(Q∗) ≥ m(H(P) + 2ε). Thus, by a union bound, we have

δ ≤ |Q| · Pr
[
Λ(Q) ≤ m(H(P) + 3ε) |KL(P||Q) ≥ 4ε

]
+ Pr

[
Λ(Q∗) ≥ m(H(P) + 2ε)

]
(17)

For each bad Q ∈ Q which has KL(P||Q) > 4ε, we have

Pr[Λ(Q) ≤ m(H(P) + 3ε)] = Pr[Λ(Q) ≤ m(H(P) + 4ε)− εm)]
≤ Pr[Λ(Q) ≤ m(H(P) + KL(P||Q))− εm)] (18)
= Pr[Λ(Q) ≤ ES [Λ(Q)]− εm] (19)

≤ exp
(
−2m

ε2

log2 (β/α)

)
. (20)

Equation (18) follows from the bound on the KL-divergence, equation (19) follows from (16), and
equation (20) follows from the Hoeffding bound (Theorem 18).

Following the same logic for Q∗ where KL(P||Q∗) ≤ ε, we get

Pr[Λ(Q∗) ≥ m(H(P) + 2ε)] = Pr[Λ(Q∗) ≥ m(H(P) + ε) + mε]
≤ Pr[Λ(Q∗) ≥ m(H(P) + KL(P||Q∗)) + mε]
= Pr[Λ(Q∗) ≥ ES [Λ(Q∗)] + mε]

≤ exp
(
−2m

ε2

log2 (β/α)

)
. (21)

Theorem 17 follows from plugging equations (20) and (21) into equation (17).

H Putting it all together

All the pieces are now in place for us to prove our main learning result, Theorem 2, for learning
mixtures of product distributions over {0, . . . , b− 1}n.

Proof of Theorem 2: Run the algorithm described in Theorem 16. With probability 1− δ this
produces a list of T =poly(n/ε) many hypothesis distributions, one of which has KL divergence at
most ε from Z and each of which puts weight at least (ε

36nb3
)2n on every point in {0, . . . , b− 1}n.

Now run the ML algorithm with α = (ε
36nb3

)2n, β = 1, and m = poly(n, 1/ε) ln(T/δ). By Theorem
17, with probability at least 1 − δ the ML algorithm outputs a hypothesis with KL divergence at
most 4ε from Z. Thus with overall probability 1 − 2δ we get a hypothesis with KL divergence at
most 4ε from Z, and the total running time is poly(n/ε) · log(1/δ). Replacing ε by ε/4 and δ by
δ/2 we are done.

Tracing through the proofs, it is easy to check that the running time dependence on k is
(n/ε)O(k3) · log 1

δ .

I Proof of Theorem 7

The following claim is used in the proof of Theorem 7:

26

Claim 19 Let T be a k-leaf decision tree, let b ∈ {−1, 1} be a bit, let S = {x ∈ {0, 1}n : T (x) = b},
and let US denote the uniform distribution over S. Then US is a mixture of k product distributions.

Proof: We show that US is a mixture of ` product distributions, where ` is the number of leaves
in T which are labeled with bit b. To see this, observe that the k leaves of T partition {0, 1}n into
k disjoint subsets, each consisting of those x ∈ {0, 1}n which reach the corresponding leaf. For a
leaf at depth d the corresponding subset is of size 2n−d and consists of those x ∈ {0, 1}n which
satisfy the length-d conjunction defined by the path from the root to that leaf. Thus, choosing a
uniform element of S can be performed by the following process: (i) choose a leaf whose label is b,
where each leaf at depth d is chosen with probability proportional to 1/2d; and then (ii) choose a
uniform random example from the set of examples which satisfy the conjunction corresponding to
that leaf. The uniform distribution over examples which satisfy a given conjunction is easily seen
to be a product distribution X over {0, 1}n in which E[Xi] ∈ {0, 1

2 , 1} for all i = 1, . . . , n. It follows
that the uniform distribution over S is a mixture of ` product distributions of this sort.

Theorem 7: For any function k(n), if there is a poly(n/ε) time algorithm which learns a mixture
of k(n) product distributions over {0, 1}n, then there is a poly(n/ε) time uniform distribution PAC
learning algorithm which learns the class of all k(n)-leaf decision trees.

Proof: We suppose that we are given access to an oracle EX(T,U) which, at each invocation, sup-
plies a labeled example (x, T (x)) ∈ {0, 1}n×{0, 1} where x is chosen from the uniform distribution
U over {0, 1}n and T is the unknown k(n)-leaf decision tree to be learned. We describe an efficient
algorithm A′ which with probability 1− δ outputs a hypothesis h : {0, 1}n → {0, 1} which satisfies
PrU [h(x) 6= T (x)] ≤ ε. The algorithm A′ uses as a subroutine an algorithm A which learns a mix-
ture of k(n) product distributions. Let M be the number of examples required by algorithm A to
learn an unknown mixture of k(n) product distributions to L1-norm accuracy 1− ε

2 and confidence
1− δ

3 . Recall from Section 1.1 that to learn to L1-norm error ε it suffices to learn to KL-divergence
ε2, and thus we have that M =poly(n/ε) by our assumption on the running time of A.

Algorithm A′ works as follows:

1. Determine b ∈ {−1, 1} such that with probability 1 − δ
3 tree T outputs b on at least 1/3 of

the inputs in {0, 1}n. Let S denote {x ∈ {0, 1}n : T (x) = b}, and let US denote the uniform
distribution over S.

2. Run algorithm A using samples from the uniform distribution US ; simulate US by invoking
EX(T,U), and using the only examples with labels T (x) = b. To be confident that algorithm
A receives at least M examples from US , we draw Θ(M log(1/δ)) examples from EX(T,U).
Let D′ be the hypothesis which is the output of A.

3. Output the hypothesis h : {0, 1}n → {−1, 1} which is defined as follows: given x, if D′(x) ≤
1

2·2n then h(x) = −b else h(x) = b.

We now verify the algorithm’s correctness. Note first that Step 1 can easily be performed by
making O(log 1

δ) draws from EX(T,U) to obtain an empirical estimate of PrU [T (x) = b]. Assum-
ing that |S| is indeed at least 2n/3, a simple Chernoff bound shows that O(M log 1

δ) draws from
EX(T,U) suffice to obtain M examples with label b in Step 2 with probability 1 − δ

3 . We run A
on examples generated by US , which by Claim 19 is a mixture of k product distributions. Con-
sequently, with overall probability at least 1 − δ the hypothesis D′ generated in Step 2 satisfies
‖D′ − US‖1 ≤ ε

2 .

27

Now observe that the hypothesis h in Step 3 disagrees with T on precisely those x which either
(i) belong to S but have D′(x) < 1

2·2n ; or (ii) do not belong to S but have D′(x) ≥ 1
2·2n . Each

x of type (i) contributes at least 1
2·2n toward ‖D′ − US‖1 since US(x) ≥ 1

2n for each x ∈ S. Each
x of type (ii) also incurs at least 1

2·2n toward ‖D′ − US‖1. Consequently, since ‖D′ − US‖1 ≤ ε
2 ,

there are at most ε2n points x ∈ {0, 1}n on which h is wrong. Thus, we have shown that with
probability at least 1 − δ, the hypothesis h is an ε-accurate hypothesis for T with respect to the
uniform distribution as desired.

Remark 1: We note that our reduction to decision tree learning in fact only uses quite restricted
mixtures of product distributions in which (i) the mixture coefficients are proportional to powers
of 2, (ii) the supports of the product distributions in the mixture are mutually disjoint, and (iii)
each product distribution is a uniform distribution over some subcube of {0, 1}n (equivalently, each
product distribution has each E[Xi] ∈ {−1, 0, 1}). Thus, even this restricted class of mixtures of
k(n) product distributions is as hard to learn as k(n)-leaf decision trees.

Remark 2: Known results of Blum et al. [5] imply that the class of k(n)-leaf decision trees
unconditionally cannot be learned under the uniform distribution in time less than nlog k(n) in the
model of learning from statistical queries.

A “Statistical Query” learning algorithm is only allowed to obtain statistical estimates (accurate
to within some specified error tolerance) of properties of the distribution over pairs (x, T (x)), and
does not have access to actual labeled examples (x, T (x)). The algorithm is “charged” more time
for estimates with a higher precision guarantee; this is motivated by the fact that such high-
precision estimates would normally be obtained, given access to random examples, by drawing a
large sample and making an empirical estimate. (See [17] for a detailed description of the Statistical
Query model.)

Note that our algorithm for learning mixtures of product distributions interacts with the data
solely by constructing empirical estimates of probabilities; thus, when this algorithm is used in the
reduction of Theorem 7, the resulting algorithm for learning decision trees is easily seen to have an
equivalent Statistical Query algorithm. Thus the results of Blum et al. unconditionally imply that
no algorithm with the same basic approach as our algorithm can learn mixtures of k(n) product
distributions in time less than nlog k(n).

28

