Projecting XML Documents

Amélie Marian Jérdme Singon
Columbia University Bell Laboratories

Abstract

XQuery is not only useful to query XML in databases, but also to applications that must process
XML documents as files or streams. These applications suffer from the limitations of current main-
memory XQuery processors which break for rather small documents. In this paper we propose tech-
niques, based on a notion of projection for XML, which can be used to drastically reduce memory
requirements in XQuery processors. The main contribution of the paper is a static analysis technique
that can identify at compile time which parts of the input document are needed to answer an arbitrary
XQuery. We present a loading algorithm that takes the resulting information to bpittjexted docu-
ment which is smaller than the original document, and on which the query yields the same result. We
implemented projection in the Galax XQuery processor. Our experiments show that projection reduces
memory requirements by a factor of 20 on average, and is effective for a wide variety of queries. In
addition, projection results in some speedup during query evaluation.

1 Introduction

After several years of development by the World Wide Web Consortium, XQuery [36] is becoming more
stable and starts being implemented and used. Although originally designed to query XML databases [27,
38, 6], XQuery is now being considered as a viable alternative in the context of many other XML applica-
tions, such as streaming [35], information integration [14, 22], services [12], full text querying [3, 16], the
Semantic Web [2, 26, 24], or simply to process the growing number of XML files generated from various
data sources. Main-memory XQuery processors [15, 17, 25, 28] are often the primary choice for those
applications that do not wish or cannot afford to build secondary storage indexes or load a database before
starting query processing.

However, existing main-memory XQuery implementations break for rather small documents. Table 1
shows the largest document that we were able to process with four popular XQuery implementations and two
XSLT implementations, on an IBM T3 laptop with 256Mb of RAMMemory limitations are problematic as
larger XML documents are becoming more common. Only half of the systems we tried, including the more
mature XSLT implementations, were able to process the XML version of the EDICT English-Japanese

Those tests were run using the first query of the XMark [31] benchmark, which is a simple lookup query. The XSLT imple-
mentations were tested using a simple XSLT translation of the original XQuery.

‘ XQuery Processors‘ Maximum Document Size

QUuIP [25] 7 Mb
Kweelt [28] 17 Mb
IPSI-XQ [15] 27 Mb
Galax [17] 33 Mb

XSLT Processors ‘ Maximum Document Size

Saxon [30] 50 Mb
Xalan [33] 75 Mb

Table 1: XML processors maximum document size

dictionary’ (about 28Mb), and none of them were able to process the XML version of BRalfout
145Mb). This is due in part to the significant overhead imposed by XML data models [4, 13], which have
been reported in [20, 32], but more importantly to the fact that implementations load the complete document
in memory before processing it. In this paper, we propose techniques based on a notion of projection for
XML documents to address current memory limitations in main-memory XQuery processors.

We define the projection of an XML document by the set of paths, within the document tree, which
specify the nodes to keep inpaiojected documentOur approach relies on the following simple idea: for
a given query, a projected document, smaller than the original document, and on which the query yields
the same result, can be created. The main technical challenge is to be able to identify at compile-time the
paths which are required to evaluate a given query. This requires a static analysis of the paths used within
a given XQuery expression, and is difficult because of both syntactic and semantics aspects of the XQuery
language.

Syntactic sugar. XQuery often offers several ways to write the same operation. Navigation steps can be
written with either the XPath abbreviated or unabbreviated syntax [34], composition of steps can be written
with the XPath notation/(and//) or by composindgor loops with navigation steps, predicates can be
written with the XPath notation.(]) or using awhere clause, etc.

Variables. The analysis must be able to remember which paths were used to compute the content of each
variable, in order to apply navigation steps on variables correctly.

Composability. XQuery expressions can be composed arbitrarily, which means navigation can occur within
any sub-expression or be applied to a previously computed result. The analysis has to identify on which
part of the document a particular step applies. For instance, if a new element is constructed, further nav-
igation does not apply to the input document and must not be taken into account. Moreover, only certain
sub-expressions contribute to the result, while other sub-expressions (such as predicates) do not. Hence
navigation steps must be applied selectively to a subset of the paths previously computed.

2http://WWW.csse.monash.edu.au/ ~jwb/j jmdict.html
3http://dblp.uni—trier.de/xml

The main contribution of the paper is a static inference algorithm which addresses these problems and
computes the paths needed by an arbitrary XQuery expression at compile time. More specifically, the paper
makes the following contributions:

e We define a notion of projection suitable for XML documents, based on paths within the document
tree.

e We develop a static analysis algorithm for XQuery, which computes the set of paths used during the
evaluation of a given expression. This algorithm is shown to be correct, i.e., a query yields the same
result when evaluated on the projected document for the inferred paths, as on the original document.

e We present a loading algorithm which, given a set of projection paths, builds the projected document
suitable for query processing. This algorithm works for both XML files and XML streams.

e We show how projection techniques can be integrated with minimal effort in a standard XQuery
processing architecture.

e We present detailed experiments that demonstrate the effectiveness of the static analysis, and study
the impact of projection on execution time.

We implemented the projection technique as part of the Galax [17] XQuery engine. Using projection,
we were able to run more than half of the XMark [31] queries over a 1-Gigabyte document using an IBM
T23 laptop with 256 Megabytes of memory, and all queries on a 100Mb document, increasing the maximal
document size for every query by at least a factor of 5. To the best of our knowledge, this is the first
XQuery implementation to support querying over such large XML files without the need for secondary
storage indices. Our projection implementation can be downloaded from the Web or tried on-line at:

http://db.bell-labs.com/galax/optimization/

The rest of the paper is organized as follows. Section 2 describes the architecture of a main-memory
XQuery processor and how projection impacts on that architecture. The notion of XML projection is intro-
duced in Section 3. Section 4 gives the static path analysis algorithm for XQuery, and Section 5 describes
the loading algorithm. Section 6 contains the experimental evaluation for our projection techniques. We
review the related work in Section 7, and conclude the paper with some future work in Section 8.

2 Processing XQuery in Main-Memory

Before describing the projection technique, we first show how it fits in a typical main-memory XQuery
processor. We use the Galax system [17] as an illustration. We believe our projection technique can be
applied to any other main-memory XQuery implementation in a similar way.

Architecture. Figure 1(a) shows the Galax processing architecture in the absence of projection. On the one
hand, the XQuery expression is parsed to an abstract syntax tree. On the other hand, the input document is

3

'

Path
Analysis

Projection Paths
Input XML SAX XML Data Data Model Input XML SAX XML Data
Document | SAX Parser Events ™| Model Loader Instance Document | SAX Parser Evenis ™ | Model Loader

(a) XQuery processing architecture (b) XQuery processing architecture with projection

XQuery XQuery XQuery Abstract Query XML Query XQuery XQuery XQuery Abstract Query XML Query
— — —_—
Expression Parser Syntax tree Evaluation Result Expression Parser Syntax tree Evaluation Result

Projected Data
Model Instance

Figure 1: XQuery processing architecture

parsed in a streamed fashion using SAX [29], then loaded in memory as an XML data model instance. In
the case of a streaming processor, the document is parsed directly from the network instead of a local file.
Finally, the query is applied on the data model instance to yield a result.

Document | Memory | Memory as percentage
Size (text) | Usage of Document Size
500Kb 2.2Mb 392 %
10Mb 38.9Mb 341 %
20Mb 77.9Mb 339 %
50Mb 192.4Mb 339 %

Table 2: Document size in Galax: file vs. memory

The role of the data model. The need for building a data model in memory before query processing is
due, to a large extent, to the complexity of evaluating languages such as XSLT and XQuery. Processing
XML only as a stream without building a data model instance is an active area of research [1, 9], but such
approaches only consider fragments of XPath, and cannot deal with most XQuery expressions. Indeed,
many XQuery expressions (joins, type operations sudy@eswitch , operations on document order,
backward XPath axis, function calls, let expressions, namespaces, sorting, etc.) require to materialize part(s)
of the document. This is typically done using one of the existing XML data models [4, 13], which provide
information necessary for query processing such as node identity, type annotations resulting from validation,
namespace nodes, pointers to parent nodes, etc.

The complexity of XML data models accentuate the problems related to memory management in
XQuery implementations. Benchmarks [20, 32] show that the size of a DOM representation in memory
is typically 4-5 times larger than the original file. Some techniques can be used to build a more compact
representation. For instance, Galax uses a simple hash-table to compress the tag names used in the docu-
ment instead of duplicating them. Still, Table 2 shows that the data model representation in Galax is still
3-4 times larger than the original file. Rather than trying to improve further the data model representation,
we focus on avoiding to build a complete data model instance in the first place. Our projection approach is

4

independent from the data model implementation and is expected to result in memory gains regardless of
the underlying data model.

Architecture with projection. An advantage of the projection technique is that it can be integrated in a
main-memory XQuery processor with minimal effort. Figure 1(b) shows how the modified architecture with
projection works: after the query is parsed, it is analyzed to produce a set of projection paths. The result of
this analysis is sent to the data model loader which uses it to build a “projected” data model instance which
contains only the nodes specified by the projection paths.

3 XML Projection

We now define projection over an XML document, and introduce some notations for the projection paths.

3.1 Example

We illustrate projection using a simple example. Consider the first query of the XMark benchmark [31],
which returns the name of the person wiith attribute"person0"

XMark Query 1

for $b in /site/people/person[@id="person0"]
return $b/name

XMark queries are expressed against a document containing information about auctions, including bid-
ders, bids, items with their descriptions organized by categories, and their location organized by region, etc.
A fraction of the XMark document is shown on Figure 2. This is likely that some of the information in the
document is not required to answer any particular query. In the case of XMark Query 1 opkr¢he
elements with theiid attribute anchame children are actually needed. The corresponding subset of the
original document is indicated in bold on Figure 2.

We use simple path expressions, that we callpitogection pathsto describe the corresponding subset
of the original document. For XMark Query 1, we only need two projection paths:

Isite/people/person/@id
[site/people/person/name #

The #’ notation is used to indicate that the name elements’ subtrees, which are part of the query result,
should be kept. The result of applying the projection paths to a given document is callpobjdeed
documentOur projection approach is based on the following observations:

e The projected document tends to be much smaller than the original document. For XMark Query 1,
it is less than 2% of the original document.

e The query on the projected document yields the same result as if run on the original document.

5

<site>
<regions>...</regions>
<categories...</categories-
<catgraph-...</catgraph-
<people>

<person id="person120">
<name>Wagar Bougaut</name>
<emailaddressmailto:Bougaut@wgt.eda/emailaddress
<Iperson>
<person id="person121”>
<name>Waheed Rande</name>
<emailaddressmailto:Rando@pitt.eda/emailaddress
<address
<street-32 Mallela Sk/street>
<city>Tucson</city>
<country>United States/country>
<zipcode>37</zipcode>
</address
<creditcard>7486 5185 1962 7735/creditcard-
<profile income="59224.09%
<education-Other</education-
<business Yes</business
<age>35</age>
</profile>
<Iperson>

Figure 2: The XMark auction document.

It is clear that different sets of projection paths will result in different projected documents. A query will
only give a correct result on the projected document if it preserves the information needed to evaluate the
query. The algorithm in Section 4 is such that it preserves the information needed to evaluate the given

query.

3.2 XML Data Model

We use a simple XML tree data model. We assume the existence of two infinit8tsitg,of string values,
andQName of qualified names [7]. In additior§equence(S) stands for the set of all ordered sequences
composed with elements of the set

Definition 3.1: [XML Document] A XML documents a 5-tuple(N, tag, child, attr,root), where:

e N is a set of nodes;

tag is a function mapping nodes to their labels or text content, i.e., fskotn QNameuU String;

child is a function mapping nodes to their children, i.e., fréfrto Sequence(N);

attr is a partial function from nodes and attribute hame to a sequence of atomic values, i.e., from
N x QName to Sequence(String);

root is a special element a¥ called the root of the tree.

3.3 Projection Paths

We define projection paths using a simple fragment of XPath [34], which contains fdmaridjation but

not predicates. A projection path is made of a sequence of steps composed Bgch step contains an

axis and a node test. Projection paths are described by the following grammar and have the same semantics
as in XPath 2.0 [34].

SimplePath = Axis NodeTest
| SimplePath! Axis NodeTest
Axis = child:
self::
descendant::

|
|
| descendant-or-self:
| attribute::
NodeTest i= ((NCName|*):)?(NCName | *)
| node()
| text()

Definition 3.2: [Projection Path] A projection path always starts from the root of the docufeand
contains a simple path expression followed by an optiotdiliag.

Path := [SimplePath #?

The #’ flag indicates whether the descendants of the nodes returned by the path expression should be
kept in the projected document. The flag is merely a convenience, as the relevant paths could always be
enumerated.

“Note that we do not currently support tharent axis, but rewriting techniques such as those presented in [23] should apply.
SFor simplicity, the presentation assumes there is only one document.

3.4 Projected Document

Projection is an operation that takes a document and a set of projection paths as input and returns a projected
document. To define projection, we need the following operatiBath N odes(P, D) returns the set of

nodes in the documeri? that result from the evaluation of the pathon D. Projection is then defined as
follows:

Definition 3.3: [Projection] Given an input documer?, and a set of projection patl®roj Path, ..., ProjPath,,).
The projected documem®’ is a 5-tuple(N’, tag’, child', attr’, root’) such that:
1. N C N;
2. ne N'if:
e Jk: PathNodes(ProjPathy, D) = n,
e orn; : ny € N andn; € child(n),
e or dng, k : PathNodes(ProjPathy, D) = ny andny € ancestor(n) andprojPathy has the
flag #.

3. tag’, child', attr’ are the restrictions dfug,child, andattr to N’;

4. root' = root.

4 Static Path Analysis

We now present the path analysis algorithm, which computes a set of projection paths from an arbitrary
XQuery expression. In Section 4.1, we illustrate some of the problems involved in the development of the
algorithm through some examples, and introduce some basic notations. Section 4.2 gives the main algo-
rithm. Section 4.3 states the correctness theorem for the algorithm. It turns out the algorithm in Section 4.2
is not optimal for an important class of path expressions, in Section 4.4 we propose an optimization of the
main algorithm which addresses that issue.

4.1 Analyzing an XQuery Expression

Analyzing an arbitrary XQuery expression is not a simple task. In particular, the algorithm must be robust
under the syntactic variations supported by XQuery, and must deal with variables and XQuery composabil-

ity.

4.1.1 XQuery Syntax and the XQuery Core

XQuery often offers several ways to write the same operation. For instance, the following two XQuery
expressions are equivalent to the XMark Query 1 given in Section 3.1, but are constructed in very different
ways.

Query 1 (a)

for $b in /site/people/person
where $b/@id="personQ"
return $b/name

Query 1 (b)

for . in / return
for . in child::site return
for . in child::people return
for . in child::person return
if ((some $id in (attribute::id) satisfies
typeswitch ($id)
case $n as node return data($n)
default $d return $d) = "personQ")
then child::name
else ()

Query 1(a) is identical to the original XMark Query 1, except that the condition predicate has been
expressed with avhere clause. Query 1(b) seems more complex, but it is the same query, in which some
implicit XPath operations have been replaced by explicit XQuery expressions. Path navigation is done step
by step, using XPath unabbreviated syntebild::), and binding the current node)(explicitly in a
for expression. Thevhere clause has been replaced by a conditiofifathgn..else). Finally, a
typeswitch is used to extract the attribute value.

The path analysis algorithm has to be robust under XQuery syntactic variations. To address this problem,
the analysis is performed after the query has be@malizedin the XQuery core [37]. The XQuery core
is a subset of XQuery in which all implicit operations are made explicit. In fact, Query 1 (b) above is very
similar to the normalized version of XMark Query 1. An additional advantage is that the paths analysis only
has to be defined on the XQuery core instead of the whole language.

Notations. The following grammar gives the XQuery core expressions used in the rest of the paper.

Var m= $QName
Expr = Literal
0
| Expr, FExpr
|/
| $Var
| for $ Var in Expr return Expr
| let$ Var := Expr return Eaxpr
| AzisNodeTest
| if (Expr) then FEzpr else FExpr
| typeswitch (Expr) Cases
| Ezxpr (=|>) Expr
| Expr sortby (SortList)
| cast as Datatype (Expr)
| (element | attribute) (QName | {Expr}) {Exzpr}
| document {Eaxpr}
| text {String}
| QName Ezpr?)
Cases = default return Expr
| case Type return Expr Cases
SortList = FExpr (ascending | descending) (, SortList)?

This grammar contains: literal values (e.g., strings, integers), the empty seq(encseguence con-
struction, the root patl/ (), variables,for andlet expressions, XPath steps, conditionals, typeswitch,
comparisonssort by , casting, element and attribute constructors, and function calls. This grammar is
sufficient [37] to capture all of XPath 1.0 plus XQuery FLWR expressions. We use this grammar to illustrate
the technical problems involved in the development of the algorithm.

4.1.2 Variables and Environments

XQuery supports variables which can be bound using, for instdete,or for expressions. Once a
variable is bound, it can be used in a subexpression. During the static analysis, we need to be able to
retrieve the set of projection paths that correspond to a given variable, in order to apply further navigation
steps. For example, consider the query:

for $x in /site/people
return $x/person/name

During the analysis, we need to remember that the variibleas been bound to nodes resulting from
the evaluation of the pathite/people

10

To address this problem, we use environments which store bindings between variable and their corre-
sponding projection paths. We will see in Section 4.2 how the environment is maintained for each expres-
sion.

Notations. We write
Paths = Env(Var)

if Var is mapped taPaths in the environmen&nv. And we write

Env' = Env + (Var = Paths)

to construct an environmettnv’ with a new binding for variablé ar to the projection path®aths.
For example, the following creates a new environment in which the varfgbls bound to the one

projection path/site/people

Env' = Env + ($x = {/site/people)

4.1.3 XQuery Composability

XQuery expressions can be composed arbitrarily. To address that problem, the analysis algorithm operates
in a bottom up fashion: the set of projection paths for a given expression is computed from those of its
subexpressions. The analysis must carefully examine the semantics of each kind of XQuery expression for
the algorithm to work, as illustrated by the following example. Consider the query:

(if (true())
then /site/people/person
else /site/open_auctions/open_auction)/@id

This query can be analyzed from its sub-expression:

e true() does not require any node from the tree;
e thethen clause requires nodes reachable from the patte/people/person

e theelse clause requires nodes reachable from the paife/open _auctions/open _auction

Therefore, the conditional requires the set of two paths:

{ [/site/people/person ,
[sitelopen _auctions/open _auction }

The conditional is itself a subexpression of the path expressibn.)/ @id). The path step can be
applied to the previous result, giving us the following two paths:

{ /site/people/person/@id ,
Isitefopen _auctions/open _auction/@id }

11

A superficial analysis might conclude that the last navigation step should apply to all paths computed for its
input expression. Unfortunately, this does not work in the case wheresome paths are used in the condition,
since the corresponding nodes are not actually returned as a result. For instance consider the following

variation of the previous query:
(if (count(/site/regions/*) = 3)

then /site/people/person
else /site/open_auctions/open_auction)/@id

By applying the same reasoning as before, we would end up with the following paths:

{ [site/region/@id ,
Isite/people/person/@id ,
[sitefopen _auctions/open _auction/@id }

However, the path expressio@id is never applied to the pathite/region/* , the resulting path may
not even exist. Nevertheless, the pailte/regions/* is indeed necessary to answer the query, but the

last step@id should not be applied to it.
As a consequence, the algorithm must differentiate paths that are only used during the query, on which

no further navigation step will apply, from paths returned by the query. Paths describing nodes which are
returned by the query are calleeturnedpaths. Paths describing nodes which are necessary to compute an

intermediate result but are not actually returned as result are calbtpaths.
For the above expression, the set of returned paths is:

{ Isite/people/person/@id ,
Isite/open _auctions/open _auction/@id }

and the set of used path is:

{ [site/region/* }

Notations. We are now ready to introduce the main judgment used during the path analysis. The judgment:

Env - Expr = Paths; using Pathss

holds iff, under the environmeriinv, the expressiotivzpr returns the set of pathBaths;, and uses the set
of pathsPaths,. Whether this judgment holds or not is defined through the path analysis algorithm itself.

4.2 Paths Analysis Algorithm

We now give the path analysis rules, starting with the simpler expressions. The algorithm is written using
the inference rule notation familiar to the fields of programming languages and program analysis [21, 37].

12

4.2.1 Literal values

Literal values do not require any path.

Env & Literal = {} using {}
The fact that there is nothing written above the inference rule indicates that this judgment is always true
(it does not have any precondition).
4.2.2 Seguences

The empty sequence does not require any path.

Envt () = {} using {}
Projection paths are propagated in a sequence.

Envt Expri = Paths; using UPaths,
EnvE Expro = Pathsy using UPathss

Envt Expri, FExpro = Paths; U Pathsy using UPaths, UUPathss

The two judgments above the rule are preconditions for the judgment below the rule to hold. Com-
puting the projection paths for a sequence of two expressions is done based on the result of computing the
projection paths for those two sub-expressions.

4.2.3 Root path

Computing the root expressions requires to keep the root path. The root expression is always the entry point
for the query and for the paths analysis.

Envk/!l ={/} using {}

4.2.4 Conditionals

Projection paths in the clauses of a conditional expression are propagated. The paths required to compute
the condition are added to the final set of used paths.

EnvE Exprg = Pathsg using U Pathsg
EnvE Expri = Paths; using UPaths,
Envt Expro = Pathse using U Pathss

EnvtEif (Exprg) then Ezpr; else Expry
= Pathsy U Pathss using Pathsg U U Pathg U U Paths, U U Pathss

13

4.2.5 Comparisons

Comparisons are interesting in that they never return nodes, but a literal (boolean). Therefore, the paths
needed for the comparison will not be further modified and are placed in the set of used paths.

Envt Expry = Paths; using UPaths;,
Envt Expro = Pathse using U Pathss

Envt Expry = Exprg = {} using Paths; U Pathsa UU Pathsy U U Pathss

4.2.6 Variables

The algorithm returns the set of paths to which the variable is bound in the environment, as discussed in
Section 4.1.3.

Paths = Env(Var)
Envt Var = Paths using {}

4.2.7 for andlet expressions
for andlet expressions are binding new variables in the environment.

Envk Expri = Paths; using UPaths,
Env' = Env+ (Var = Paths;)
Env' = Expry = Pathsy using U Pathss

Envkfor $ Var in Expr; return Exprg
= Pathso using Pathsy UU Paths; U U Pathss

There are two important things to note here. First, the environment is extended with a binding of the
variable used in the expression, and passed to the evaluatiompot,, in order to compute the right set of
paths. Then, the returned paths #ox:pr; will not be extended any further, unless the variable is used, in
which case they will be accessed through the variable, thus these paths are kept as used patbs of the
expression.

A similar rule applies tdet .

Envt Expry = Paths; using UPaths;
Env' = Env+ (Var = Paths;)
Env' -+ Expro = Paths, using UPathss

Envklet $ Var := Ezpr; return Expro = Pathss using U Paths,; UUPathss

4.2.8 XPath steps

XPath steps are the most important operation for the path analysis since they actually modify the projection
paths. XPath steps are processed by first retrieving the projection paths for the context)nfsde (the
environment, then applying the XPath step to each of the retrieved paths.

14

Paths = Env(.)
Paths = {Path,, ..., Path, }

Env = Axis NodeTest
= {Path./ Azxis NodeTest, ..., Path,l Azis NodeTest} using {}

Paths analysis exploits the fact that expressions are normalized into the XQuery core. For instance, the
path expressiorn'site/people is normalized as a combination fafr expressions and path steps:

for . in (for . in / return child:site)
return child::people

We illustrate the path analysis on this expression step by step. The algorithm starts from the sub-
expression/’ (matching Exzpr for the innerfor loop). The name of the inference rule applied is indicated
in the prefix.

(ROOT) Envk/ ={/} using {}

(FORy, Env'=Env+(. =1/)

(STEPY Env't-site = {/site } using {}

(FOR)y, Envikfor . in /[.. = {/site } using {/}

(FOR), Env” = Env+ (. = /site)

(STEP) Env” - people = {/site/people } using {}

(FOR), FEnvtfor . in (for ... = {/site/people }
using {/,/site }

Note that intermediate paths are bound to the current nogeutd retrieved to apply the next XPath
step. The resulting set of paths is:

{ [,Isite ,/site/people }

Note that the path analysis keeps all intermediate paths, which can result in the construction of some
unnecessary nodes in the projected document. For instance, in the above examipde, alements are
kept by the projection although we only need ¢ite elements which havgeople elements as children to
evaluate the query. This is an unwanted side effect of normalization, as all paths expressions are decomposed
in for loops, resulting in intermediate paths being saved in the set of used paths. We will see in Section 4.4
how to optimize the inference rule féor to remove those unwanted intermediate paths.

4.2.9 Typeswitch

Typeswitch, although a complex XQuery operation, is not particularly difficult to analyze. Its inference rule
is very similar to the one for conditional, except that it needs to handle multiple branches.

15

Envt Exprg = Pathsg using U Pathsg
Envt Expri = Paths; using UPaths,

Env - Expr, = Paths, using UPaths,

Env Ftypeswitch (Exprg)
case Type; return Expr;

default return Expr,
= Pathsy U ...U Paths,, using PathsyU U Pathg U ... UU Paths,

4.2.10 Sort by

Sort by only returns the expression that is sorted. Expressions used for sorting are not used further in the
guery and therefore are returned as used paths.

Envt Exprg = Pathsg using U Pathsg
Env' = Env + (. = Paths)
Env' = Expry = Paths; using U Paths;

Env' v+ Expr, = Paths, using UPaths,

Envt (Exprg) sort by
(ascending |descending) Expr;

(ascending |descending) Expr,
= Pathsy using UPathsgU Pathsy U ...U Paths, UUPaths; U ...U U Paths,

4.2.11 Casting
The casting rule is straightforward: the expression being casted is evaluated.

Envt Expri = Paths; using UPaths,

Envtcast as Type FExpry = Paths, using U Paths;

4.2.12 Constructors

Constructors always yield a set of empty return paths. As a result, the rest of the analysis always ignore
paths applied to a constructed node, since these nodes are created by the query and are not part of the
original document. However, in order to keep all information the query may need, the paths returned by the
expression used to construct a node must contain the whole subtree.

Envk Expri = Paths; using UPaths,

Env F (element |attribute) QName FExzpri = {} using Pathsi# UU Paths;

16

Envt Expry = Paths; using UPaths;

EnvF (document) Exzpr; = {} using Pathsi# U U Paths;

Envt (text) String = {} using {}

4.2.13 Functions

We performed a case by case analysis of built-in functions. Depending on the type of function, the analysis
might keep all the function expression paths as used paths, or return some of them. For example, the
functioncount returns a literal, so the paths involved in the evaluation of the function are returned as used
paths. In contrast, thenion function returns the nodes resulting from the evaluation of the function, the
return paths resulting from the evaluation of the function are then kept as return paths.

Currently, we do not provide user-defined functions analysis as the function itself should be analyzed.
For non-recursive functions, we chose the conservative approach and return the function’s return paths with
their subtrees, and keep the function used paths as used paths.

4.2.14 Wrapping up

Finally, after the set of projection paths has been computédmarker must be added at the end of each
returned paths, as they corresponds to the actual result of the query.

4.3 Correctness

An essential property of the algorithm is that evaluating the query on the projected document obtained
using the paths resulting from the inference must yield the same result than on the original document. The
algorithm described in Section 4.2 verifies the following theorem.

Theorem 1 [Correctness]Let D be an XML document anfizpr be an XQuery expression. LBuths be
the result of the static path analysis fétcpr, i.e.,- Expr = Paths. Let D’ be the projected document of
D for the pathsPaths. Then the evaluation dfzpr on D and the evaluation aExpr on D’ are the same.

A proof for the correctness theorem can be constructed by induction on the inference rules for each
expressions.
To prove the correctness theorem we need the following results:

Lemma 1: [Return Paths] Applying thereturn pathsfrom the static path analysis @& zpr on a document
D will return a projected documeiii?”, which contains all nodes that are part of the answer of the evaluation
of Expr overD. m

Proof. [Return Paths] This lemma can be proven by induction over each expression.

17

Literal values: Literal values never return any nodes, thus the set of nodes returned by a literal is
included in the empty set.

Root: The evaluation of th&Rootexpression returns the node that is the root of the document, i.e.,
root() , which is the node that can be accessed when applying the return path to the document.

Sequences:Sequences return the union of the nodes of their sub-sequences. Assuming the sub-
sequences return paths are correct, then the path analysis rule for sequences will ietadugaths
that contain all nodes that are part of the answer for the sequence expression.

Conditionals: Conditionals return either the nodes that can be reached frotheine or theelse
expressions. If the set of nodes returned by each expression is included in their return paths, then
their union is included in the union of theen andelse return paths.

Comparison: Comparisons return Boolean variables, thus no node are returned by these expression

for and let expressions:for and let return the nodes that can be accessed fromrt#teim clause
expression. If the set of nodes returned byréteirn expression is included in its return paths, then
itis included in thefor (orlet) expression return paths.

Typeswitch: Typeswitches are very similar to conditionals; they return nodes that can be reached
from thecase anddefault expressions.

Sort by: A Sort by expression only returns the expression that is sorted. If this expression is evaluated
correctly, then the sort by is evaluated correctly.

Casting: Casting is straightforward: it returns the nodes from the expression being cast. If this
expression is evaluated correctly, then the casting expression is evaluated correctly.

Constructors: Constructors build completely new nodes. Any further operations are applied on these
new nodes; thus constructors do not return any node from the original document.

The last two expressions (Variables and XPath steps) also return the correct set of return paths as ex-

plained in the following result.

Lemma 2: [Variables] The set of paths associated to a variable allows to reach all nodes that the variable

can iterate on. -

Proof. [Variables] Only two expression can associate a set of paths to a varitdle:andlet . These

expression associate the setrefurn paths of the expression in their (for) or := (let) clause. The

variable is only instanciated with the nodes that are returned from the expression it is associated with. As

we saw above, the set of return paths of an expression contains all nodes that are returned by the expression,

thus the variable is associated to the correct set of paths.

18

This result on variables allows to prove that the last XQuery Core expressiath Axis returns the
correct result. XPath Axis applies a path on all nodes associated to tlagiable. Since we showed that
variables to paths mapping are correct, then the XPath Axis expression yields the corremtsen gfaths
Proof. [Correctness] The correctness theorem states that for an XQuery expreBsipn, the result of the
evaluation ofEzpr over a documenb is the same as the result of the evaluatiorzafyr over D’, where
D’ is the projected document resulted from applying the projection gadiss of Expr on D. For this to
be correct,D’ must contain all the nodes if that are needed to evaluate the XQuékypr.

We proved that the nodes necessary to evaluate any given sub-expression are contained in the projected
document based on the paths for that sub-expression. To prove that the final projection is correct we need
to prove that all paths needed by an expression’s sub-expressions are present in the expression projection
paths:

Lemma 3: [Monotonicity] The projection paths computed fatcpr include all projection paths computed
by the projection analysis of the sub-expressioizopr. [

Proof. [Monotonicity] Trivial by induction: each inference rule propagates the return paths and used paths
of its sub-expression either to its own return paths or used paths. The final projection paths contain both the
return paths and the used paths of an expression.

4.4 Optimized Inference Rules
4.4.1 Principle

In this section, we show how to optimize the inference rule offtte expression. First we need to un-
derstand in which case the original rule computes some unwanted intermediate paths. Recall that in the
inference rule for thdor expression, the set of paths returned by ithesubexpression is kept as used
paths. This is required only when tf@r is applied to certain kinds of sub-expressions during iteration.
Distinguishing which sub-expressions can be optimized depend on a whether the expressioetimrihe

clause yields an observable result when the input is the empty sequence.
For example, consider the following two queries:

for $x in //person

return <add>{ $x/address }</add>

for $x in //person return $x/address

and assume that some persons have addresses and others do not. In the first query, the persons who do
not have an address will still be “visible” in the result as an engutg element. In that case, we should
then keep the following projection paths:

{ /lperson
{ [llperson/address }

19

However, the second query does not return anything for persons which do not have an address. For such
a query the projection paths could simply be:

{ [llperson/address }

The distinction between these two queries is rather subtle. In essence, the reason the second case can be
optimized is that when the return clause returns the empty sequence, this does not appear in the final result
since sequences are flattened in XQuery.

4.4.2 Revised Inference Rules

We now give the revised inference rules, taking the optimization into account. Our analysis performs in a
bottom-up fashion. Thus, each expression, when evaluated, should identify the variables that would evaluate
to the empty sequence in that expression, were the variable to itself be the empty sequence. For this we
define the optimization variables as:

OptimVars == $Var*
| AllVariables
| EmptyVars
WhenOptimVars is equal toAllVariables , the expression can always be optimized, when it is

equal toEmptyVars , the expression can never be optimizé€dptimVars otherwise contains a list of
variables for which the expression can be optimized.
We define the following operations @fptimVars :

e Intersection: intersection witkmptyVars is alwaysEmptyVars , intersection ofOptimVars
with AllVariables is OptimVars .

e Union: union withAllVariables is alwaysAllVariables , intersection oOptimVars with
EmptyVars is OptimVars .

e Remove: removes a variabl®&r from OptimVars

e Member: checks whether a variabl&&r is in OptimVars (all variables are irAllVariables)
Notations. The main judgment used during the optimized path analysis is:

Envt Expr = Paths; using Pathsy with OVars

holds iff, under the environmeritnuv, the expressiotxpr returns the set of pathBaths,, uses the set of
pathsPathss, and evaluates to the empty sequences when any of the varialildsdns is binded to the
empty sequence. Whether this judgment holds or not is defined through the path analysis algorithm itself.

20

The optimized inference rules are then:
Literal values

Env b Literal = {} using {} with {}

Sequences

EnvE () ={} using {} with AllVariables

Optimization variables are intersected to evaluate a sequence: the sequence will only evaluate to the
empty sequence if both sub-expressions evaluate to the empty sequence.

Envt Expry = Paths; using UPaths; with OVars;
Envt Expro = Pathse using UPathsy with OVarssy

Envt Expry, FExpro = Paths; U Pathss using U Paths; UUPathsy with Intersection (OVarsy, Ovarss)

Root path

Envt/!l = {l} using {} with {}

Conditionals
In conditionals, an empty variable evaluates to the empty sequence if it results in btiterthend the
else expressions evaluating to the empty sequence.

Envt Exprg = Pathsy using UPathsy with OVarsg
Envt Expry = Paths; using UPaths; with OVars,
Envt Expro = Pathss using UPathsy with OVarss

Envtif (Exzprg) then FEzxzpr; else FEaxprg
= Pathsy U Pathss using Pathsy U U Pathg U U Paths; U U Pathss with Intersection (OVarsy, Ovarss)

Comparisons
Comparisons cannot be optimized, they never evaluate to the empty sequence.

Envt Expri = Paths; using UPaths, with OVars,
Env 't Expro = Pathsy using UPathss with OVarss

Envt Expr; = Expro = {} using Pathsy U Pathss U U Paths, UU Pathsy with EmptyVars

Variables
A variable can be optimized with itself.

Paths = Env(Var)

EnvtF Var = Paths using {} with Var

for expressions

21

Thefor expression may compute unwanted paths. The optimization step was added specifically to
take care of this problem. Thus, this expressions is the core of the optimization.

Two different judgement correspond to tfee expression depending whether or not the expression
can be optimized.

Thefor expression can be optimizedifzpr, always evaluate to the empty sequence wherfdahe
variable evaluates to the empty sequence, which happens Wwheni$ part of Expry’'s OptimVars. In
such a case, the return pathsiatpr; can be omitted as they will appear through a call to the variable if
needed:

Env 't Expry = Paths; using UPaths; with OVars,
Env' = Env+ (Var = Paths;)
Env' - Expro = Pathss using UPathsy with OVarss
Member($Var, OVarssy)
OVars; = Remove($Var, OV arss)

Envkfor $ Var in Expr; return Exprsg
= Pathss using UPaths; UUPathse with Union (OVarsy, OVarss)

When thefor expression cannot be optimized the rule is as before:

Envt Expri = Paths; using UPaths, with OVars,
Env' = Env+ (Var = Pathsy)
Env' = Exprg = Pathsy using UPathss with OVarss
Not Member ($Var, OVarss)

Envkfor $ Var in Exzpr; return Exprsg
= Pathss using Paths; UU Paths; U U Pathse with Union (OVars;,OVarss

let expressions
The let expression binds a variable. The variable needs to be removed frampttheV ars as it will
not be binded above the let expression:

Envt Expri = Paths; using UPaths, with OVars,
Env' = Env+ (Var = Pathsy)
Env' = Exprg = Pathsy using UPathss with OVarss
OVars; = Remove($Var, OV arss)

Envtlet $ Var := Expr; return Expro = Pathss using UPaths; UU Pathss with OVarss

XPath steps

XPath steps applied on the empty sequence yield the empty sequence. Since XPath steps are applied
on the context node §, if the corresponding variable is empty, the the XPath step evaluates to the empty
sequence.

22

Paths = Env(.)
Paths = {Path,, ..., Path, }
Env = Axis NodeTest
= {Pathy/ Axis NodeTest,..., Path,! Axis NodeTest} using {} with .

Typeswitch
Typeswitch can be optimized if all their return expressions evaluates to the empty sequence.

Env b Exprg = Pathsy using U Pathsg with OVarsg
Env b Expry = Paths; using UPaths; with OVars,

Env v Expr, = Paths, using UPaths, with OVars,

Env - typeswitch (Exprg)
case Type; return Expry

default return Expr,
= Pathsy U...U Paths,, using PathsyUUPathg U ...U U Paths,, with Intersection (OVarsy,...,OVars,)

Sort by
Sort bys can be optimized if their return expression evaluates to the empty sequence.

EnvtF Exprg = Pathsy using UPathsy with OVarsg
Env' = Env + (. = Paths)
Env' - Expry = Pathsy using UPaths; with OVars;

Env' v Expr, = Paths, using UPaths, with OVars,

Env b (Exprg) sort by
(ascending |descending) Exprq

(ascending |descending) Expr,
= Pathsy using UPathsyU Pathsi U ...U Paths, UUPaths, U ... UU Paths, with OVarsg

Casting

Envt Expri = Paths; using UPaths, with OVars,

Envtcast as Type FExpry = Paths; using UPaths; with OVars,

Constructors
Constructed nodes can never be optimized as they never return the empty sequence: even if the expres-
sion used in the constructor evaluates to empty, a node will be created.

Envt Expri = Paths; using UPaths, with OVars,

Env F (element |attribute) QName FExpry = {} using Pathsi# UUPaths; with EmptyVars

23

Env 't Expry = Paths; using UPaths; with OVars,

EnvF (document) Exzpr; = {} using Pathsi# U U Paths; with EmptyVars

Env b (text) String = {} using {} with EmptyVars

Functions
In the absence of more detailed analysis, functions are never optimized. Qpte@mVars are then
always equal tEmptyvars .

5 Loading Algorithm

This section describes the loading algorithm used to create a projected document from an original XML
document and a set of projection paths. The original document is parsed using a SAX API [29]. For this
discussion, we only consider the following SAX events:

SAXEvent == Characters (String)
| OpeningTag (QName)
| ClosingTag

The loading algorithm operates in a left-deep recursive fashion. It takes a set of projection paths as input
and operates on a stream of SAX events returned by the parser. As the SAX events are being processed,
the algorithm maintains a set of paths to apply to the current XML document node. For each node, the
algorithm decides on one of four actions to apply:

e Skip the node and its subtregkfp);
e Keep the node and its subtree€pSubtree);
e Keep the node without its subtreieeep);

e Keep processing the pathddve).

The loading algorithm is illustrated on Figure 3 for a set two projection pafisc# and/a/d , over the
following document fragment:

<a>
<g></g>

<c><f></f></c>

<d><e></e></d>

<c></c>

<a>

24

The loading algorithm processes one SAX event at a time, and maintains a set of current paths, corre-
sponding to the parts of the original projection paths that apply to the current node. Note that nodes are
only loaded (if needed) when thelfosingTag tokens are encountered, i.e., after all of their children have
been processed. In the first step shown on Figure 3, the processed tGipemiisgTag(a) (or <a>). The
loading algorithm’s current node &>, which is the first node for both projection paths. Given this and the
projection paths information, the algorithm only needs to load descendants of the curreréndlat can
be accessed through tberrent paths/b/c# and/d . The loading algorithm then recursively processes the
stream, loading children before their parents. When a projection path is verified, the corresponding node
is loaded (with its subtree in case the # flag is present). On Figure 3, the<nedbat is a descendant of
/a/b is loaded with its subtreef></f> as specified by the projection pattib/c# . In contrast, the node
<e> is not kept in the projected document. When a node does not verify a projection path, its entire subtree
is skipped, i.e., the loading algorithm ignores the corresponding SAX tokens until corresponding closing

tag is encountered (e.g., nodg> on Figure 3).

Current Paths Loaded Nodes

Projection Paths
lalblc#
lald

Iblc#

— [<a>| <g> | | | <lg>[— d
* Skip ¢
|
— <> < | <& | << [— e f
Keep Subtree * ‘b d
— [<lo> | <d>] <e> [<le> [<ld> | — e |
Skip f a
/N
— [| <lb>] <c> | <fe> [<ra> | — fajbrest v
Skip * c
|
f

Figure 3: Loading algorithm

Dealing with thedescendant axis significantly complicates the loading algorithm, since it might
result in one projection path spawning into two new projection paths when moving down the tree. For
example, consider the paths expresgian, which is expanded ddescendant-or-self::node()/a
Assuming the current node is an elemignboth the patha , since we might have a nodethat is a child of
b (self::), and the original patfdescendant-or-self::node()/a can lead to nodes verifying the
path expression. For this reason, the set of current paths the algorithm maintains can become larger during

the loading process.

6 Experimental Evaluation

Experiments were run on a modified version of Galax [17] in which we implemented projection. We per-
formed several kinds of experiments which were selected to evaluate the following aspects of projection:

Correctness: We used Galax regression tests to check that the implementation of our projection algorithm

25

Configuration| CPU Cache sizg RAM
A 1GHz 256Kb | 256Mb
B 550MHz | 512Kb | 768Mb
C 1.4GHz | 256Kb 2Gb

Table 3: Hardware configurations

does preserve the semantics of the query. (Section 6.1.)

Effectiveness: Projection is effective for a large family of queries. We evaluate the relative size of the
projected document using using the XMark [31] benchmark, as well as queries over the XML version of
DBLP. (Section 6.2.)

Maximal document size: As expected, projection allows to process queries on much larger documents
than was previously possible (Section 6.3.)

Processing time: Measures of the evaluation time before and after projection show that projection also
improves run-time performances. (Section 6.4.)

In order to understand the effect of projection on different hardware configurations, we used three
different machines with varying CPU speed and RAM size. The first configuration (A) is a modern IBM
laptop with 256M memory and a 1GHz CPU. The second configuration (B) is a desktop PC with more
memory but a slower CPU. Finally, configuration (C) is a high-end server with a large 2Gb memory and a
fast CPU. All three machines were running RedHat Linux. Configurations (A), (B) and (C) are summarized
on Table 3

6.1 Correctness

Before evaluating the performance of the projection technique, we used Galax infrastructure for regression
tests to check that the implementation of our projection algorithm is indeed working correctly. Galax
regression tests are composed of a large humber of queries, each with its corresponding expected result
according to the XQuery semantics. A simple perl script runs all queries using the Galax interpretor, and
verifies that the actual result returned by the interpretor matches the expected result. The set of tests contains
more than 1000 queries which include simple atomic tests, the set of XQuery use cases, and queries from
additional sources including queries from the XMark benchmark. We run those regression tests using Galax
without projection, with projection, and with optimized projection to confirm that projection preserves the
original semantics of each query. The regression tests and the corresponding scripts come with the Galax
code itself and can be downloaded at [17].

26

6.2 Effectiveness

A second set of experiments was conducted to evaluate the actual reduction of memory usage for a various
gueries. We present experiments on all the XMark benchmark queries, and on queries over a real document,
namely the XML version of the DBLP datab&se

6.2.1 XMark Queries

The XMark benchmark [31] contains of a broad range of queries, including simple lookups, joins, aggrega-
tions, queries with long path traversals, and publishing queries. XMark queries run over a single document
about auctions. XMark comes with a document generator that can create auction documents of any size and
can be downloaded from the XMark Web dite

For this experiment, we generated documents of varying sizes (from 500Kb to 2Gb) and run the 20
XMark queries on documents of increasing size for the three configurations. We then compared the size of
the projected document against the size of the original document: as expected projection results in similar
relative improvement for all sizes. Figures in the rest of the section report on the evaluation of all XMark
Queries on a 50Mb document over Configuration C (Table 3).

Projected document size in file:Figure 4 shows the size of the projected documents as a percentage of
the size of the original document. We report results for both versions of the projection. The projected
document is less than 5% of the size of the document for most of the queries. On Quénpj&8tion

only reduces the size of the document by 40%, and it has no effects for Queries 6, 7, and 14. In contrast,
Optimized Projectiorresults in projected documents of at most 5% of the document for all queries but
Query 14 (33%). The reason for this difference is that Queries 6, 7, 14 and 19 evaluate descendant-or-self()
(/)) path expressions for which projection without optimization performs poorly. Query 14 is a special case
since it selects a large fragment of the original auction document. Obviously projection cannot perform as
well for this kind of query.

Projected document size in memory:Figure 5 shows the memory used by the query processor for the
projected document as a percentage of the memory used. Memory usage for the projected document is con-
sistent with the relative size of the projected documents on file. Projected documents tend to use relatively
slightly more memory than their size, due to some overhead in the XML data model representation.

6.2.2 DBLP Queries

The DBLP document contains a bibliography of over 325,000 publications. Its size stored as text is 144Mb.
The schema of the DBLP document is very simple and result in shallow trees, therefore we could not
evaluate complicated queries, such as queries with descendant axis, on it. We considered two queries. The

Shttp://dblp.uni-trier.de/xml/
"http://monetdb.cwi.nl/xml/downloads.html

27

100% 100% 100%| || 33% 60%

=
)
]

mProjection

@Optimized
Projection

o B N ® A O O N ® ©

Size as percentage of the size of the original document

100% 100% 100%| || 18% 40%

oProjection

mOptimized
L1 ||| Projection

original document

Memory usage as percentage of memory used for the

Figure 5: Projected document memory usage

first query asks for the titles of the books written by Jim Gray. This query is very selective in terms of the
projection, as only 0.25% of the publications in the document are books.

DBLP Query 1

for $a in $dblp/dblp/book
where $a/author/text()="Jim Gray"
return $aftitle/text()

The second query asks for the titles of the journal articles written by Jim Gray. This query is not as
selective in terms of the projection, as 35% of the publications in the document are journal articles.
DBLP Query 2

for $a in $dblp/dblp/articles
where $a/author/text()="Jim Gray"
return $aftitle/text()

We run the two DBLP queries on Configuration C (see Table 3). We were not able to load the complete
document in memory without projection. Therefore, we report only on the memory needed for DBLP
Queries 1 and 2 in Table 4 fé&rojectionandOptimized Projection

28

Query Projection | Optimized Projection

DBLP Query 1| 0.85Mb 0.76Mb
DBLP Query 2| 97Mb 84Mb

Table 4: Projection on a real data XML document.

Configuration A B C

Query 3| NoProj | 33Mb | 220Mb | 520Mb
OptimProj| 1Gb | 1.5Gb | 1.5Gb
Query 14| NoProj 20Mb | 20Mb | 20Mb
OptimProj | 100Mb | 100Mb | 100Mb
Query 15| NoProj | 33Mb | 220Mb | 520Mb
OptimProj| 1Gb 2Gb 2Gb

Table 5: Document size limits for three XMark Queries with or without projection

6.3 Maximal Document Size

The main objective of projection is to overcome the strong memory limitations that were reported in the
introduction. We compare the size of the largest document we were able to process without projection, and
with optimized projection on our three hardware configurations.

Table 5 gives for three XMark queries (3, 14 and 15) the size of the largest document for which we
could evaluate the query, with or without optimized projection. We selected these three query as they result
in different decreases in the document size (Figure 4), from 82% (Query 14) to 99.9% (Query 15). We see
that our projection approach makes it possible to evaluate queries on significantly larger documents (up to
30 times larger for Query 15) than without any projection.

6.4 Processing Time

Finally, we study the impact of projection on processing time. We now show that: (a) projection does not
have a significant impact on parsing and loading time, and (b) it reduces, sometimes significantly, query
evaluation time.

Parsing and Loading time: Figure 6 shows the impact of path analysis for projection on the parsing and
loading time of the query (path analysis time included). For most queries, the path analysis does not slow
down document loading, but actually speeds it up. This might look surprising, but can be explained by
the fact that less nodes have to be created in the document data model. However, for queries that contain
descendant-or-self() axis, loading is more expensive Riitliection due to the more complex computation
required during loading. The queries for whielojectionresult in high loading times are actually the ones

29

120

100 —

80 — ONo
Projection

mProjection

@Optimized
40 L Projection

Parsing+Loading time (in seconds)

=
:

%
2

Q%

p(/

Figure 6: Parsing and loading time, in seconds

7000

6000 —

o
S
3
S
1

ONo
Projection

mProjection

N
5]
3
S
T

m Optimized
Projection

Total Query Execution Time (in seconds)
w
8
8
8
I

Figure 7: Query execution time, in seconds

for which Projectiondoes not perform well in terms of memory reduction. For these queries, loading with
Optimized Projectioris still a little more expensive than without any projection, but it is much faster than
with Projection and results in decreased memory usage.

Query Execution time: Figure 7 shows the impact of projection on query execution time. Projection actu-
ally speeds up query processing. The reason is that query evaluation has less unnecessary nodes to process
since those have been discarded in advance by the loader. Some XMark queries are very expensive to eval-
uate, because of expensive join operations. For these queries, while projection still speed up processing,
query processing time is dominated by the cost of the join. Note that for query 14, the reason why the
optimized projection seem more expensive is only because the query fails without projection, therefore the
figures for query execution show up as zero.

As a conclusion, we see th@ptimized Projectiomesults in significant savings in memory usage (more
than 95% for all queries but one), and does not increase document parsing and loading time significantly.
In fact, for most queries, parsing and loading are actually faster v@pimized Projectioris applied.
Additionally, Optimized Projectiomesults in lower query execution times for all XMark queries.

30

7 Related Work

Projection operations have been proposed in previous algebras for XML and for semistructured data. The
TAX tree algebra for XML [18] includes a projection operator, which differs from ours in that it supports
omitting intermediate nodes while we require to keep all nodes from the root of the document, and it
only support simple wilcard$ while we support all XPath node tests. The SAL algebra [5] has a quite
different projection operation based on regular-expressions. Both work focus on the expressiveness of the
projection operation, while our notion of projection is simpler but designed to support an efficient physical
implementation on XML files and streams.

Our loading algorithm has some similarity with work on filtering XML documents [1, 9]. However, they
focus on processing efficiently subsets of XPath without building intermediate data structures, while we
support the construction of a data model instance that can be used to process arbitrary XQuery expressions.

Finally, we have studied the impact of projection in isolation from other optimization techniques. How-
ever, we believe work on XML indexes [11, 19] and XML joins [8, 10] could be used in conjunction with
projection.

8 Conclusion

In this paper, we have presented projection techniques that can be used to support main-memory XQuery
evaluation over large XML documents. The main contribution of the paper is a path analysis technique that
infers the set of paths used for an arbitrary XQuery expression. Our experiments show that this technique
can be used to evaluate queries on files up to two Gigabyte even on machines with limited memory. Our
implementation is fully functional and available for download on the Web at [17]. As future work, we plan

to work on a tighter integration between the query evaluation and the loading, which are currently done in
separate steps, and investigate methods to quantify the precision of our projection algorithm compared to
the optimal projection. Finally, we believe the techniques presented here should be integrated with other
forms of optimization, including XML join algorithms and query rewritings.

Acknowledgments. We want to thank Sihem Amer-Yahia, Irini Fundulaki, and the Database Group at
Columbia University for their feedback on earlier versions of the paper.

References

[1] M. Ahmet and M. Franklin. Efficient filtering of XML documents for selective dissemination of information. In
Proceedings of International Conference on Very Large Databases (V,[ADBY.

[2] B. Amann, C. Beeri, |. Fundulaki, and M. Scholl. Querying XML sources using an ontology-based mediator. In
Proceedings of International Conference on Cooperative Information Systems (Cpagl&) 429-448, Irvine,
California, Oct. 2002.

31

3]
[4]

[5]

[6]

[7]
(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. Amer-Yahia and P. Case. XQuery and XPath full-text use cases. W3C Working Draft, Feb. 2003.

V. Apparao, S. Byrne, M. Champion, S. Isaacs, |. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson,
and L. Wood. Document object model (DOM) level 1 specification. W3C Recommendation, Oct. 1998.

C. Beeriand Y. Tzaban. SAL: An algebrar for semistructured data and XMInternational Workshop on the
Web and Databases (WebDB’9®hiladelphia, Pennsylvania, June 1999.

P. Bohannon, J. Freire, P. Roy, and J. 8om. From XML schema to relations: A cost-based approach to XML
storage. IfProceedings of IEEE International Conference on Data Engineering (ICRE&)2.

T. Bray, D. Hollander, and A. Layman. Namespaces in XML. W3C Recommendation, Jan. 1999.

N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins: Optimal XML pattern matchindgerdceedings
of ACM Conference on Management of Data (SIGMIDP2.

C. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of XML documents with XPath expres-
sions. InProceedings of IEEE International Conference on Data Engineering (ICR&E)2.

S. Chien, Z. Vagena, D. Zhang, V. Tsotras, and C. Zaniolo. Efficient structural joins on indexed xml documents.
In Proceedings of International Conference on Very Large Databases (\V/IHaBY Kong, China, Aug. 2002.

C. Chun, J. Min, and K. Shim. Apex: An adaptative path index for XML data.Pioceedings of ACM
Conference on Management of Data (SIGMOZDO01.

D. K. Daniela Florescu, Andreas @thiagen. XL: an XML programming language for web service specification
and composition. IfProceedings of International World Wide Web Conferepeges 65—-76, May 2002.

XQuery 1.0 and XPath 2.0 data model. W3C Working Draft, Nov. 2002.
Enosys softwarehttp://www.enosys.com/

P. Fankhauser, T. Groh, and S. Overhage. Xquery by the book: The ipsi xquery demonstriarebdings of
the International Conference on Extending Database TechnpRiif2.

XQEngine.http://www.fatdog.com/

Galax: An implementation of xquery.
http://db.bell-labs.com/galax/optimization/

H. Jagadish, L. Lakshmanan, D. Srivastava, and K. Thompson. TAX: A tree algebra for XMArodeedings
of International Workshop on Database Programming Languageel.

R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth. Covering indexes for branching path queries. In
Proceedings of ACM Conference on Management of Data (SIGMZIDP.

C. Minoux. Kweelt backend, July 2001.
http://cheops.cis.upenn.edu/

~ sahuguet/PUB/X98/cyril _minoux.ps.gz
J. C. Mitchell. Foundations for Programming Languaged|T Press, 1996.

Nimble technologyhttp://imww.nimble.com/

32

[23] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forwardIlnlRroceedings of Workshop on
XML-Based Data Management (XMLDM) at EDBT 20DRICS 2490, Prague, Mar. 2002. Springer-Verlag.

[24] P. F. Patel-Schneider and J. ®am. The Yin/Yang web: XML syntax and RDF semantics.Ploceedings of
International World Wide Web Conferengages 443-453, May 2002.

[25] Quip. developer.softwareag.com/tamino/quip
[26] J. Robie. The syntactic web: Syntax and semantics on the wetMLi2001, Orlando, Florida, Dec. 2001.

[27] M. Rys. State-of-the-art XML support in RDBMS: Microsoft SQL Server’s XML featur@&lletin of the
Technical Committee on Data Engineerjizg(2):3-11, June 2001.

[28] A. Sahuguet, L. Dupont, and T.-L. Nguyen. Kweelt.
http://kweelt.sourceforge.net/

[29] Simple API for XML. http://www.saxproject.org/
[30] Saxon.http://saxon.sourceforge.net/

[31] A. Schmidt, F. Waas, M. Kersten, M. Carey, |. Manolescu, and R. Busse. XMark: A benchmark for XML data
management. liProceedings of International Conference on Very Large Databases (Vyi2ges 974-985,
Hong Kong, China, Aug. 2002ttp://monetdb.cwi.nl/xml/

[32] I. Sosnoski Software Solutions. Java XML models benchmavky.sosnoski.com/opensrc/xmlbench
[33] Xalan. http://xml.apache.org/xalan-j/

[34] XPath 2.0. W3C Working Draft, Nov. 2002.

[35] XQRL, Inc. http://mww.xqrl.com/

[36] XQuery 1.0: An XML query language. W3C Working Draft, Nov. 2002.

[37] XQuery 1.0 and XPath 2.0 formal semantics. W3C Working Draft, Nov. 2002.

[38] Oracle XQuery prototype: Querying XML the XQuery waitp://technet.oracle.com/tech/xml/xmidb

33

