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Abstract

XQuery is not only useful to query XML in databases, but also to applications that must process

XML documents as files or streams. These applications suffer from the limitations of current main-

memory XQuery processors which break for rather small documents. In this paper we propose tech-

niques, based on a notion of projection for XML, which can be used to drastically reduce memory

requirements in XQuery processors. The main contribution of the paper is a static analysis technique

that can identify at compile time which parts of the input document are needed to answer an arbitrary

XQuery. We present a loading algorithm that takes the resulting information to build aprojected docu-

ment, which is smaller than the original document, and on which the query yields the same result. We

implemented projection in the Galax XQuery processor. Our experiments show that projection reduces

memory requirements by a factor of 20 on average, and is effective for a wide variety of queries. In

addition, projection results in some speedup during query evaluation.

1 Introduction

After several years of development by the World Wide Web Consortium, XQuery [36] is becoming more

stable and starts being implemented and used. Although originally designed to query XML databases [27,

38, 6], XQuery is now being considered as a viable alternative in the context of many other XML applica-

tions, such as streaming [35], information integration [14, 22], services [12], full text querying [3, 16], the

Semantic Web [2, 26, 24], or simply to process the growing number of XML files generated from various

data sources. Main-memory XQuery processors [15, 17, 25, 28] are often the primary choice for those

applications that do not wish or cannot afford to build secondary storage indexes or load a database before

starting query processing.

However, existing main-memory XQuery implementations break for rather small documents. Table 1

shows the largest document that we were able to process with four popular XQuery implementations and two

XSLT implementations, on an IBM T3 laptop with 256Mb of RAM1. Memory limitations are problematic as

larger XML documents are becoming more common. Only half of the systems we tried, including the more

mature XSLT implementations, were able to process the XML version of the EDICT English-Japanese

1Those tests were run using the first query of the XMark [31] benchmark, which is a simple lookup query. The XSLT imple-

mentations were tested using a simple XSLT translation of the original XQuery.
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XQuery Processors Maximum Document Size

QuiP [25] 7 Mb

Kweelt [28] 17 Mb

IPSI-XQ [15] 27 Mb

Galax [17] 33 Mb

XSLT Processors Maximum Document Size

Saxon [30] 50 Mb

Xalan [33] 75 Mb

Table 1: XML processors maximum document size

dictionary2 (about 28Mb), and none of them were able to process the XML version of DBLP3 (about

145Mb). This is due in part to the significant overhead imposed by XML data models [4, 13], which have

been reported in [20, 32], but more importantly to the fact that implementations load the complete document

in memory before processing it. In this paper, we propose techniques based on a notion of projection for

XML documents to address current memory limitations in main-memory XQuery processors.

We define the projection of an XML document by the set of paths, within the document tree, which

specify the nodes to keep in aprojected document. Our approach relies on the following simple idea: for

a given query, a projected document, smaller than the original document, and on which the query yields

the same result, can be created. The main technical challenge is to be able to identify at compile-time the

paths which are required to evaluate a given query. This requires a static analysis of the paths used within

a given XQuery expression, and is difficult because of both syntactic and semantics aspects of the XQuery

language.

Syntactic sugar. XQuery often offers several ways to write the same operation. Navigation steps can be

written with either the XPath abbreviated or unabbreviated syntax [34], composition of steps can be written

with the XPath notation (/ and // ) or by composingfor loops with navigation steps, predicates can be

written with the XPath notation ([..] ) or using awhere clause, etc.

Variables. The analysis must be able to remember which paths were used to compute the content of each

variable, in order to apply navigation steps on variables correctly.

Composability. XQuery expressions can be composed arbitrarily, which means navigation can occur within

any sub-expression or be applied to a previously computed result. The analysis has to identify on which

part of the document a particular step applies. For instance, if a new element is constructed, further nav-

igation does not apply to the input document and must not be taken into account. Moreover, only certain

sub-expressions contribute to the result, while other sub-expressions (such as predicates) do not. Hence

navigation steps must be applied selectively to a subset of the paths previously computed.

2http://www.csse.monash.edu.au/ ˜ jwb/j jmdict.html
3http://dblp.uni-trier.de/xml
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The main contribution of the paper is a static inference algorithm which addresses these problems and

computes the paths needed by an arbitrary XQuery expression at compile time. More specifically, the paper

makes the following contributions:

• We define a notion of projection suitable for XML documents, based on paths within the document

tree.

• We develop a static analysis algorithm for XQuery, which computes the set of paths used during the

evaluation of a given expression. This algorithm is shown to be correct, i.e., a query yields the same

result when evaluated on the projected document for the inferred paths, as on the original document.

• We present a loading algorithm which, given a set of projection paths, builds the projected document

suitable for query processing. This algorithm works for both XML files and XML streams.

• We show how projection techniques can be integrated with minimal effort in a standard XQuery

processing architecture.

• We present detailed experiments that demonstrate the effectiveness of the static analysis, and study

the impact of projection on execution time.

We implemented the projection technique as part of the Galax [17] XQuery engine. Using projection,

we were able to run more than half of the XMark [31] queries over a 1-Gigabyte document using an IBM

T23 laptop with 256 Megabytes of memory, and all queries on a 100Mb document, increasing the maximal

document size for every query by at least a factor of 5. To the best of our knowledge, this is the first

XQuery implementation to support querying over such large XML files without the need for secondary

storage indices. Our projection implementation can be downloaded from the Web or tried on-line at:

http://db.bell-labs.com/galax/optimization/

The rest of the paper is organized as follows. Section 2 describes the architecture of a main-memory

XQuery processor and how projection impacts on that architecture. The notion of XML projection is intro-

duced in Section 3. Section 4 gives the static path analysis algorithm for XQuery, and Section 5 describes

the loading algorithm. Section 6 contains the experimental evaluation for our projection techniques. We

review the related work in Section 7, and conclude the paper with some future work in Section 8.

2 Processing XQuery in Main-Memory

Before describing the projection technique, we first show how it fits in a typical main-memory XQuery

processor. We use the Galax system [17] as an illustration. We believe our projection technique can be

applied to any other main-memory XQuery implementation in a similar way.

Architecture. Figure 1(a) shows the Galax processing architecture in the absence of projection. On the one

hand, the XQuery expression is parsed to an abstract syntax tree. On the other hand, the input document is
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Figure 1: XQuery processing architecture

parsed in a streamed fashion using SAX [29], then loaded in memory as an XML data model instance. In

the case of a streaming processor, the document is parsed directly from the network instead of a local file.

Finally, the query is applied on the data model instance to yield a result.

Document Memory Memory as percentage

Size (text) Usage of Document Size

500Kb 2.2Mb 392 %

10Mb 38.9Mb 341 %

20Mb 77.9Mb 339 %

50Mb 192.4Mb 339 %

Table 2: Document size in Galax: file vs. memory

The role of the data model. The need for building a data model in memory before query processing is

due, to a large extent, to the complexity of evaluating languages such as XSLT and XQuery. Processing

XML only as a stream without building a data model instance is an active area of research [1, 9], but such

approaches only consider fragments of XPath, and cannot deal with most XQuery expressions. Indeed,

many XQuery expressions (joins, type operations such astypeswitch , operations on document order,

backward XPath axis, function calls, let expressions, namespaces, sorting, etc.) require to materialize part(s)

of the document. This is typically done using one of the existing XML data models [4, 13], which provide

information necessary for query processing such as node identity, type annotations resulting from validation,

namespace nodes, pointers to parent nodes, etc.

The complexity of XML data models accentuate the problems related to memory management in

XQuery implementations. Benchmarks [20, 32] show that the size of a DOM representation in memory

is typically 4-5 times larger than the original file. Some techniques can be used to build a more compact

representation. For instance, Galax uses a simple hash-table to compress the tag names used in the docu-

ment instead of duplicating them. Still, Table 2 shows that the data model representation in Galax is still

3-4 times larger than the original file. Rather than trying to improve further the data model representation,

we focus on avoiding to build a complete data model instance in the first place. Our projection approach is
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independent from the data model implementation and is expected to result in memory gains regardless of

the underlying data model.

Architecture with projection. An advantage of the projection technique is that it can be integrated in a

main-memory XQuery processor with minimal effort. Figure 1(b) shows how the modified architecture with

projection works: after the query is parsed, it is analyzed to produce a set of projection paths. The result of

this analysis is sent to the data model loader which uses it to build a “projected” data model instance which

contains only the nodes specified by the projection paths.

3 XML Projection

We now define projection over an XML document, and introduce some notations for the projection paths.

3.1 Example

We illustrate projection using a simple example. Consider the first query of the XMark benchmark [31],

which returns the name of the person withid attribute"person0" .

XMark Query 1

for $b in /site/people/person[@id="person0"]

return $b/name

XMark queries are expressed against a document containing information about auctions, including bid-

ders, bids, items with their descriptions organized by categories, and their location organized by region, etc.

A fraction of the XMark document is shown on Figure 2. This is likely that some of the information in the

document is not required to answer any particular query. In the case of XMark Query 1 only theperson

elements with theirid attribute andname children are actually needed. The corresponding subset of the

original document is indicated in bold on Figure 2.

We use simple path expressions, that we call theprojection paths, to describe the corresponding subset

of the original document. For XMark Query 1, we only need two projection paths:

/site/people/person/@id

/site/people/person/name #

The ’#’ notation is used to indicate that the name elements’ subtrees, which are part of the query result,

should be kept. The result of applying the projection paths to a given document is called theprojected

document. Our projection approach is based on the following observations:

• The projected document tends to be much smaller than the original document. For XMark Query 1,

it is less than 2% of the original document.

• The query on the projected document yields the same result as if run on the original document.
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<site>

<regions>...</regions>

<categories>...</categories>

<catgraph>...</catgraph>

<people>

...

<person id=”person120”>

<name>Wagar Bougaut</name>

<emailaddress>mailto:Bougaut@wgt.edu</emailaddress>

</person>

<person id=”person121”>

<name>Waheed Rando</name>

<emailaddress>mailto:Rando@pitt.edu</emailaddress>

<address>

<street>32 Mallela St</street>

<city>Tucson</city>

<country>United States</country>

<zipcode>37</zipcode>

</address>

<creditcard>7486 5185 1962 7735</creditcard>

<profile income=”59224.09”>

<education>Other</education>

<business>Yes</business>

<age>35</age>

</profile>

</person>

...

Figure 2: The XMark auction document.

It is clear that different sets of projection paths will result in different projected documents. A query will

only give a correct result on the projected document if it preserves the information needed to evaluate the

query. The algorithm in Section 4 is such that it preserves the information needed to evaluate the given

query.

3.2 XML Data Model

We use a simple XML tree data model. We assume the existence of two infinite sets,String of string values,

andQNameof qualified names [7]. In addition,Sequence(S) stands for the set of all ordered sequences

composed with elements of the setS.

Definition 3.1: [XML Document] A XML documentis a 5-tuple(N, tag, child, attr, root), where:

• N is a set of nodes;

6



• tag is a function mapping nodes to their labels or text content, i.e., fromN to QName∪ String;

• child is a function mapping nodes to their children, i.e., fromN to Sequence(N);

• attr is a partial function from nodes and attribute name to a sequence of atomic values, i.e., from

N ×QName to Sequence(String);

• root is a special element ofN called the root of the tree.

3.3 Projection Paths

We define projection paths using a simple fragment of XPath [34], which contains forward4 navigation but

not predicates. A projection path is made of a sequence of steps composed by ’/ ’. Each step contains an

axis and a node test. Projection paths are described by the following grammar and have the same semantics

as in XPath 2.0 [34].

SimplePath ::= Axis NodeTest

| SimplePath / Axis NodeTest

Axis ::= child::

| self::

| descendant::

| descendant-or-self::

| attribute::

NodeTest ::= ((NCName | * ): )?(NCName | * )

| node()

| text()

Definition 3.2: [Projection Path] A projection path always starts from the root of the document5, and

contains a simple path expression followed by an optional ’#’ flag.

Path ::= / SimplePath #?

The ’#’ flag indicates whether the descendants of the nodes returned by the path expression should be

kept in the projected document. The ’#’ flag is merely a convenience, as the relevant paths could always be

enumerated.
4Note that we do not currently support theparent axis, but rewriting techniques such as those presented in [23] should apply.
5For simplicity, the presentation assumes there is only one document.
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3.4 Projected Document

Projection is an operation that takes a document and a set of projection paths as input and returns a projected

document. To define projection, we need the following operation:PathNodes(P,D) returns the set of

nodes in the documentD that result from the evaluation of the pathP on D. Projection is then defined as

follows:

Definition 3.3: [Projection] Given an input documentD, and a set of projection paths(ProjPath1, ..., P rojPathn).

The projected documentD′ is a 5-tuple(N ′, tag′, child′, attr′, root′) such that:

1. N ′ ⊂ N ;

2. n ∈ N ′ if:

• ∃k : PathNodes(ProjPathk,D) = n,

• or ∃n1 : n1 ∈ N ′ andn1 ∈ child(n),

• or ∃n2, k : PathNodes(ProjPathk,D) = n2 andn2 ∈ ancestor(n) andprojPathk has the

flag #.

3. tag′, child′, attr′ are the restrictions oftag,child, andattr to N ′;

4. root′ = root.

4 Static Path Analysis

We now present the path analysis algorithm, which computes a set of projection paths from an arbitrary

XQuery expression. In Section 4.1, we illustrate some of the problems involved in the development of the

algorithm through some examples, and introduce some basic notations. Section 4.2 gives the main algo-

rithm. Section 4.3 states the correctness theorem for the algorithm. It turns out the algorithm in Section 4.2

is not optimal for an important class of path expressions, in Section 4.4 we propose an optimization of the

main algorithm which addresses that issue.

4.1 Analyzing an XQuery Expression

Analyzing an arbitrary XQuery expression is not a simple task. In particular, the algorithm must be robust

under the syntactic variations supported by XQuery, and must deal with variables and XQuery composabil-

ity.
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4.1.1 XQuery Syntax and the XQuery Core

XQuery often offers several ways to write the same operation. For instance, the following two XQuery

expressions are equivalent to the XMark Query 1 given in Section 3.1, but are constructed in very different

ways.

Query 1 (a)

for $b in /site/people/person

where $b/@id="person0"

return $b/name

Query 1 (b)

for . in / return

for . in child::site return

for . in child::people return

for . in child::person return

if ((some $id in (attribute::id) satisfies

typeswitch ($id)

case $n as node return data($n)

default $d return $d) = "person0")

then child::name

else ()

Query 1(a) is identical to the original XMark Query 1, except that the condition predicate has been

expressed with awhere clause. Query 1(b) seems more complex, but it is the same query, in which some

implicit XPath operations have been replaced by explicit XQuery expressions. Path navigation is done step

by step, using XPath unabbreviated syntax (child:: ), and binding the current node (. ) explicitly in a

for expression. Thewhere clause has been replaced by a conditional (if..then..else ). Finally, a

typeswitch is used to extract the attribute value.

The path analysis algorithm has to be robust under XQuery syntactic variations. To address this problem,

the analysis is performed after the query has beennormalizedin the XQuery core [37]. The XQuery core

is a subset of XQuery in which all implicit operations are made explicit. In fact, Query 1 (b) above is very

similar to the normalized version of XMark Query 1. An additional advantage is that the paths analysis only

has to be defined on the XQuery core instead of the whole language.

Notations. The following grammar gives the XQuery core expressions used in the rest of the paper.
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V ar ::= $QName

Expr ::= Literal

| ()

| Expr, Expr

| /

| $V ar

| for $ V ar in Expr return Expr

| let $ V ar := Expr return Expr

| AxisNodeTest

| if ( Expr) then Expr else Expr

| typeswitch ( Expr) Cases

| Expr (= | >) Expr

| Expr sortby ( SortList)

| cast as Datatype ( Expr)

| (element | attribute) (QName | {Expr}) {Expr}
| document {Expr}
| text {String}
| QName (Expr?)

Cases ::= default return Expr

| case Type return Expr Cases

SortList ::= Expr (ascending | descending) (, SortList)?

This grammar contains: literal values (e.g., strings, integers), the empty sequence (() ), sequence con-

struction, the root path (/ ), variables,for and let expressions, XPath steps, conditionals, typeswitch,

comparisons,sort by , casting, element and attribute constructors, and function calls. This grammar is

sufficient [37] to capture all of XPath 1.0 plus XQuery FLWR expressions. We use this grammar to illustrate

the technical problems involved in the development of the algorithm.

4.1.2 Variables and Environments

XQuery supports variables which can be bound using, for instance,let or for expressions. Once a

variable is bound, it can be used in a subexpression. During the static analysis, we need to be able to

retrieve the set of projection paths that correspond to a given variable, in order to apply further navigation

steps. For example, consider the query:

for $x in /site/people

return $x/person/name

During the analysis, we need to remember that the variable$x has been bound to nodes resulting from

the evaluation of the path/site/people .
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To address this problem, we use environments which store bindings between variable and their corre-

sponding projection paths. We will see in Section 4.2 how the environment is maintained for each expres-

sion.

Notations. We write

Paths = Env(V ar)

if V ar is mapped toPaths in the environmentEnv. And we write

Env′ = Env + (V ar ⇒ Paths)

to construct an environmentEnv′ with a new binding for variableV ar to the projection pathsPaths.

For example, the following creates a new environment in which the variable$x is bound to the one

projection path ’/site/people ’.

Env′ = Env + ($x ⇒ {/site/people })

4.1.3 XQuery Composability

XQuery expressions can be composed arbitrarily. To address that problem, the analysis algorithm operates

in a bottom up fashion: the set of projection paths for a given expression is computed from those of its

subexpressions. The analysis must carefully examine the semantics of each kind of XQuery expression for

the algorithm to work, as illustrated by the following example. Consider the query:

(if (true())

then /site/people/person

else /site/open_auctions/open_auction)/@id

This query can be analyzed from its sub-expression:

• true() does not require any node from the tree;

• the then clause requires nodes reachable from the path:/site/people/person

• theelse clause requires nodes reachable from the path:/site/open auctions/open auction

Therefore, the conditional requires the set of two paths:

{ /site/people/person ,

/site/open auctions/open auction }

The conditional is itself a subexpression of the path expression ((if ...)/@id ). The path step can be

applied to the previous result, giving us the following two paths:

{ /site/people/person/@id ,

/site/open auctions/open auction/@id }
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A superficial analysis might conclude that the last navigation step should apply to all paths computed for its

input expression. Unfortunately, this does not work in the case wheresome paths are used in the condition,

since the corresponding nodes are not actually returned as a result. For instance consider the following

variation of the previous query:

(if (count(/site/regions/*) = 3)

then /site/people/person

else /site/open_auctions/open_auction)/@id

By applying the same reasoning as before, we would end up with the following paths:

{ /site/region/@id ,

/site/people/person/@id ,

/site/open auctions/open auction/@id }

However, the path expression/@id is never applied to the path/site/region/* , the resulting path may

not even exist. Nevertheless, the path/site/regions/* is indeed necessary to answer the query, but the

last step@id should not be applied to it.

As a consequence, the algorithm must differentiate paths that are only used during the query, on which

no further navigation step will apply, from paths returned by the query. Paths describing nodes which are

returned by the query are calledreturnedpaths. Paths describing nodes which are necessary to compute an

intermediate result but are not actually returned as result are calledusedpaths.

For the above expression, the set of returned paths is:

{ /site/people/person/@id ,

/site/open auctions/open auction/@id }

and the set of used path is:

{ /site/region/* }

Notations. We are now ready to introduce the main judgment used during the path analysis. The judgment:

Env ` Expr ⇒ Paths1 using Paths2

holds iff, under the environmentEnv, the expressionExpr returns the set of pathsPaths1, and uses the set

of pathsPaths2. Whether this judgment holds or not is defined through the path analysis algorithm itself.

4.2 Paths Analysis Algorithm

We now give the path analysis rules, starting with the simpler expressions. The algorithm is written using

the inference rule notation familiar to the fields of programming languages and program analysis [21, 37].
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4.2.1 Literal values

Literal values do not require any path.

Env ` Literal ⇒ {} using {}

The fact that there is nothing written above the inference rule indicates that this judgment is always true

(it does not have any precondition).

4.2.2 Sequences

The empty sequence does not require any path.

Env ` () ⇒ {} using {}

Projection paths are propagated in a sequence.

Env ` Expr1 ⇒ Paths1 using UPaths1

Env ` Expr2 ⇒ Paths2 using UPaths2

Env ` Expr1, Expr2 ⇒ Paths1 ∪ Paths2 using UPaths1 ∪ UPaths2

The two judgments above the rule are preconditions for the judgment below the rule to hold. Com-

puting the projection paths for a sequence of two expressions is done based on the result of computing the

projection paths for those two sub-expressions.

4.2.3 Root path

Computing the root expressions requires to keep the root path. The root expression is always the entry point

for the query and for the paths analysis.

Env ` / ⇒ {/ } using {}

4.2.4 Conditionals

Projection paths in the clauses of a conditional expression are propagated. The paths required to compute

the condition are added to the final set of used paths.

Env ` Expr0 ⇒ Paths0 using UPaths0

Env ` Expr1 ⇒ Paths1 using UPaths1

Env ` Expr2 ⇒ Paths2 using UPaths2

Env ` if ( Expr0) then Expr1 else Expr2

⇒ Paths1 ∪ Paths2 using Paths0 ∪ UPath0 ∪ UPaths1 ∪ UPaths2
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4.2.5 Comparisons

Comparisons are interesting in that they never return nodes, but a literal (boolean). Therefore, the paths

needed for the comparison will not be further modified and are placed in the set of used paths.

Env ` Expr1 ⇒ Paths1 using UPaths1

Env ` Expr2 ⇒ Paths2 using UPaths2

Env ` Expr1 = Expr2 ⇒ {} using Paths1 ∪ Paths2 ∪ UPaths1 ∪ UPaths2

4.2.6 Variables

The algorithm returns the set of paths to which the variable is bound in the environment, as discussed in

Section 4.1.3.

Paths = Env(V ar)

Env ` V ar ⇒ Paths using {}

4.2.7 for and let expressions

for andlet expressions are binding new variables in the environment.

Env ` Expr1 ⇒ Paths1 using UPaths1

Env′ = Env + (V ar ⇒ Paths1)

Env′ ` Expr2 ⇒ Paths2 using UPaths2

Env ` for $ V ar in Expr1 return Expr2

⇒ Paths2 using Paths1 ∪ UPaths1 ∪ UPaths2

There are two important things to note here. First, the environment is extended with a binding of the

variable used in the expression, and passed to the evaluation ofExpr2, in order to compute the right set of

paths. Then, the returned paths forExpr1 will not be extended any further, unless the variable is used, in

which case they will be accessed through the variable, thus these paths are kept as used paths of thefor

expression.

A similar rule applies tolet .

Env ` Expr1 ⇒ Paths1 using UPaths1

Env′ = Env + (V ar ⇒ Paths1)

Env′ ` Expr2 ⇒ Paths2 using UPaths2

Env ` let $ V ar := Expr1 return Expr2 ⇒ Paths2 using UPaths1 ∪ UPaths2

4.2.8 XPath steps

XPath steps are the most important operation for the path analysis since they actually modify the projection

paths. XPath steps are processed by first retrieving the projection paths for the context node (. ) from the

environment, then applying the XPath step to each of the retrieved paths.
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Paths = Env(. )

Paths = {Path1, ..., Pathn}
Env ` Axis NodeTest

⇒ {Path1/ Axis NodeTest, ..., Pathn/ Axis NodeTest} using {}

Paths analysis exploits the fact that expressions are normalized into the XQuery core. For instance, the

path expression:/site/people is normalized as a combination offor expressions and path steps:

for . in (for . in / return child::site)

return child::people

We illustrate the path analysis on this expression step by step. The algorithm starts from the sub-

expression ’/ ’ (matchingExpr1 for the innerfor loop). The name of the inference rule applied is indicated

in the prefix.

(ROOT) Env ` / ⇒ {/ } using {}
(FOR)1 Env′ = Env + (. ⇒ / )

(STEP)1 Env′ ` site ⇒ {/site } using {}
(FOR)1 Env ` for . in / ... ⇒ {/site } using {/ }
(FOR)2 Env′′ = Env + (. ⇒ /site )

(STEP)2 Env′′ ` people ⇒ {/site/people } using {}
(FOR)2 Env ` for . in (for ... ⇒ {/site/people }

using {/ , /site }

Note that intermediate paths are bound to the current node (. ) and retrieved to apply the next XPath

step. The resulting set of paths is:

{ / , /site , /site/people }

Note that the path analysis keeps all intermediate paths, which can result in the construction of some

unnecessary nodes in the projected document. For instance, in the above example, allsite elements are

kept by the projection although we only need thesite elements which havepeople elements as children to

evaluate the query. This is an unwanted side effect of normalization, as all paths expressions are decomposed

in for loops, resulting in intermediate paths being saved in the set of used paths. We will see in Section 4.4

how to optimize the inference rule forfor to remove those unwanted intermediate paths.

4.2.9 Typeswitch

Typeswitch, although a complex XQuery operation, is not particularly difficult to analyze. Its inference rule

is very similar to the one for conditional, except that it needs to handle multiple branches.
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Env ` Expr0 ⇒ Paths0 using UPaths0

Env ` Expr1 ⇒ Paths1 using UPaths1

...

Env ` Exprn ⇒ Pathsn using UPathsn

Env ` typeswitch ( Expr0)

case Type1 return Expr1

...

default return Exprn

⇒ Paths1 ∪ ... ∪ Pathsn using Paths0 ∪ UPath0 ∪ ... ∪ UPathsn

4.2.10 Sort by

Sort by only returns the expression that is sorted. Expressions used for sorting are not used further in the

query and therefore are returned as used paths.

Env ` Expr0 ⇒ Paths0 using UPaths0

Env′ = Env + (. ⇒ Paths1)

Env′ ` Expr1 ⇒ Paths1 using UPaths1

...

Env′ ` Exprn ⇒ Pathsn using UPathsn

Env ` ( Expr0) sort by

(ascending |descending) Expr1

...

(ascending |descending) Exprn

⇒ Paths0 using UPaths0 ∪ Paths1 ∪ ... ∪ Pathsn ∪ UPaths1 ∪ ... ∪ UPathsn

4.2.11 Casting

The casting rule is straightforward: the expression being casted is evaluated.

Env ` Expr1 ⇒ Paths1 using UPaths1

Env ` cast as Type Expr1 ⇒ Paths1 using UPaths1

4.2.12 Constructors

Constructors always yield a set of empty return paths. As a result, the rest of the analysis always ignore

paths applied to a constructed node, since these nodes are created by the query and are not part of the

original document. However, in order to keep all information the query may need, the paths returned by the

expression used to construct a node must contain the whole subtree.

Env ` Expr1 ⇒ Paths1 using UPaths1

Env ` (element |attribute) QName Expr1 ⇒ {} using Paths1# ∪ UPaths1
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Env ` Expr1 ⇒ Paths1 using UPaths1

Env ` (document) Expr1 ⇒ {} using Paths1# ∪ UPaths1

Env ` (text) String ⇒ {} using {}

4.2.13 Functions

We performed a case by case analysis of built-in functions. Depending on the type of function, the analysis

might keep all the function expression paths as used paths, or return some of them. For example, the

functioncount returns a literal, so the paths involved in the evaluation of the function are returned as used

paths. In contrast, theunion function returns the nodes resulting from the evaluation of the function, the

return paths resulting from the evaluation of the function are then kept as return paths.

Currently, we do not provide user-defined functions analysis as the function itself should be analyzed.

For non-recursive functions, we chose the conservative approach and return the function’s return paths with

their subtrees, and keep the function used paths as used paths.

4.2.14 Wrapping up

Finally, after the set of projection paths has been computed, a# marker must be added at the end of each

returned paths, as they corresponds to the actual result of the query.

4.3 Correctness

An essential property of the algorithm is that evaluating the query on the projected document obtained

using the paths resulting from the inference must yield the same result than on the original document. The

algorithm described in Section 4.2 verifies the following theorem.

Theorem 1 [Correctness]LetD be an XML document andExpr be an XQuery expression. LetPaths be

the result of the static path analysis forExpr, i.e.,` Expr ⇒ Paths. LetD′ be the projected document of

D for the pathsPaths. Then the evaluation ofExpr onD and the evaluation ofExpr onD′ are the same.

A proof for the correctness theorem can be constructed by induction on the inference rules for each

expressions.

To prove the correctness theorem we need the following results:

Lemma 1: [Return Paths] Applying thereturn pathsfrom the static path analysis ofExpr on a document

D will return a projected documentD′′, which contains all nodes that are part of the answer of the evaluation

of Expr overD.

Proof. [Return Paths] This lemma can be proven by induction over each expression.
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• Literal values: Literal values never return any nodes, thus the set of nodes returned by a literal is

included in the empty set.

• Root: The evaluation of theRootexpression returns the node that is the root of the document, i.e.,

root() , which is the node that can be accessed when applying the return path to the document.

• Sequences:Sequences return the union of the nodes of their sub-sequences. Assuming the sub-

sequences return paths are correct, then the path analysis rule for sequences will producereturn paths

that contain all nodes that are part of the answer for the sequence expression.

• Conditionals: Conditionals return either the nodes that can be reached from thethen or theelse

expressions. If the set of nodes returned by each expression is included in their return paths, then

their union is included in the union of thethen andelse return paths.

• Comparison: Comparisons return Boolean variables, thus no node are returned by these expression

• for and let expressions:for and let return the nodes that can be accessed from theirreturn clause

expression. If the set of nodes returned by thereturn expression is included in its return paths, then

it is included in thefor (or let ) expression return paths.

• Typeswitch: Typeswitches are very similar to conditionals; they return nodes that can be reached

from thecase anddefault expressions.

• Sort by: A Sort by expression only returns the expression that is sorted. If this expression is evaluated

correctly, then the sort by is evaluated correctly.

• Casting: Casting is straightforward: it returns the nodes from the expression being cast. If this

expression is evaluated correctly, then the casting expression is evaluated correctly.

• Constructors: Constructors build completely new nodes. Any further operations are applied on these

new nodes; thus constructors do not return any node from the original document.

The last two expressions (Variables and XPath steps) also return the correct set of return paths as ex-

plained in the following result.

Lemma 2: [Variables] The set of paths associated to a variable allows to reach all nodes that the variable

can iterate on.

Proof. [Variables] Only two expression can associate a set of paths to a variable:for and let . These

expression associate the set ofreturn paths of the expression in theirin (for) or := (let) clause. The

variable is only instanciated with the nodes that are returned from the expression it is associated with. As

we saw above, the set of return paths of an expression contains all nodes that are returned by the expression,

thus the variable is associated to the correct set of paths.
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This result on variables allows to prove that the last XQuery Core expression:XPath Axis returns the

correct result. XPath Axis applies a path on all nodes associated to the. variable. Since we showed that

variables to paths mapping are correct, then the XPath Axis expression yields the correct set ofreturn paths.

Proof. [Correctness]The correctness theorem states that for an XQuery expressionExpr, the result of the

evaluation ofExpr over a documentD is the same as the result of the evaluation ofExpr overD′, where

D′ is the projected document resulted from applying the projection pathsPaths of Expr onD. For this to

be correct,D′ must contain all the nodes inD that are needed to evaluate the XQueryExpr.

We proved that the nodes necessary to evaluate any given sub-expression are contained in the projected

document based on the paths for that sub-expression. To prove that the final projection is correct we need

to prove that all paths needed by an expression’s sub-expressions are present in the expression projection

paths:

Lemma 3: [Monotonicity] The projection paths computed forExpr include all projection paths computed

by the projection analysis of the sub-expression ofExpr.

Proof. [Monotonicity] Trivial by induction: each inference rule propagates the return paths and used paths

of its sub-expression either to its own return paths or used paths. The final projection paths contain both the

return paths and the used paths of an expression.

4.4 Optimized Inference Rules

4.4.1 Principle

In this section, we show how to optimize the inference rule of thefor expression. First we need to un-

derstand in which case the original rule computes some unwanted intermediate paths. Recall that in the

inference rule for thefor expression, the set of paths returned by thein subexpression is kept as used

paths. This is required only when thefor is applied to certain kinds of sub-expressions during iteration.

Distinguishing which sub-expressions can be optimized depend on a whether the expression in thereturn

clause yields an observable result when the input is the empty sequence.

For example, consider the following two queries:

for $x in //person

return <add>{ $x/address }</add>

for $x in //person return $x/address

and assume that some persons have addresses and others do not. In the first query, the persons who do

not have an address will still be “visible” in the result as an emptyadd element. In that case, we should

then keep the following projection paths:

{ //person ,

{ //person/address }
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However, the second query does not return anything for persons which do not have an address. For such

a query the projection paths could simply be:

{ //person/address }

The distinction between these two queries is rather subtle. In essence, the reason the second case can be

optimized is that when the return clause returns the empty sequence, this does not appear in the final result

since sequences are flattened in XQuery.

4.4.2 Revised Inference Rules

We now give the revised inference rules, taking the optimization into account. Our analysis performs in a

bottom-up fashion. Thus, each expression, when evaluated, should identify the variables that would evaluate

to the empty sequence in that expression, were the variable to itself be the empty sequence. For this we

define the optimization variables as:

OptimV ars ::= $V ar*

| AllV ariables

| EmptyV ars

WhenOptimVars is equal toAllVariables , the expression can always be optimized, when it is

equal toEmptyVars , the expression can never be optimized.OptimVars otherwise contains a list of

variables for which the expression can be optimized.

We define the following operations ofOptimVars :

• Intersection: intersection withEmptyVars is alwaysEmptyVars , intersection ofOptimVars

with AllVariables is OptimVars .

• Union: union withAllVariables is alwaysAllVariables , intersection ofOptimVars with

EmptyVars is OptimVars .

• Remove: removes a variable $V ar from OptimVars

• Member: checks whether a variable $V ar is in OptimVars (all variables are inAllVariables )

Notations. The main judgment used during the optimized path analysis is:

Env ` Expr ⇒ Paths1 using Paths2 with OV ars

holds iff, under the environmentEnv, the expressionExpr returns the set of pathsPaths1, uses the set of

pathsPaths2, and evaluates to the empty sequences when any of the variables inOV ars is binded to the

empty sequence. Whether this judgment holds or not is defined through the path analysis algorithm itself.
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The optimized inference rules are then:

Literal values

Env ` Literal ⇒ {} using {} with {}

Sequences

Env ` () ⇒ {} using {} with AllVariables

Optimization variables are intersected to evaluate a sequence: the sequence will only evaluate to the

empty sequence if both sub-expressions evaluate to the empty sequence.

Env ` Expr1 ⇒ Paths1 using UPaths1 with OV ars1

Env ` Expr2 ⇒ Paths2 using UPaths2 with OV ars2

Env ` Expr1, Expr2 ⇒ Paths1 ∪ Paths2 using UPaths1 ∪ UPaths2 with Intersection (OV ars1, Ovars2)

Root path

Env ` / ⇒ {/ } using {} with {}

Conditionals

In conditionals, an empty variable evaluates to the empty sequence if it results in both thethen and the

else expressions evaluating to the empty sequence.

Env ` Expr0 ⇒ Paths0 using UPaths0 with OV ars0

Env ` Expr1 ⇒ Paths1 using UPaths1 with OV ars1

Env ` Expr2 ⇒ Paths2 using UPaths2 with OV ars2

Env ` if ( Expr0) then Expr1 else Expr2

⇒ Paths1 ∪ Paths2 using Paths0 ∪ UPath0 ∪ UPaths1 ∪ UPaths2 with Intersection (OV ars1, Ovars2)

Comparisons

Comparisons cannot be optimized, they never evaluate to the empty sequence.

Env ` Expr1 ⇒ Paths1 using UPaths1 with OV ars1

Env ` Expr2 ⇒ Paths2 using UPaths2 with OV ars2

Env ` Expr1 = Expr2 ⇒ {} using Paths1 ∪ Paths2 ∪ UPaths1 ∪ UPaths2 with EmptyVars

Variables

A variable can be optimized with itself.

Paths = Env(V ar)

Env ` V ar ⇒ Paths using {} with V ar

for expressions
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The for expression may compute unwanted paths. The optimization step was added specifically to

take care of this problem. Thus, this expressions is the core of the optimization.

Two different judgement correspond to thefor expression depending whether or not the expression

can be optimized.

The for expression can be optimized ifExpr2 always evaluate to the empty sequence when thefor

variable evaluates to the empty sequence, which happens when $V ar is part ofExpr2’s OptimV ars. In

such a case, the return paths ofExpr1 can be omitted as they will appear through a call to the variable if

needed:

Env ` Expr1 ⇒ Paths1 using UPaths1 with OV ars1

Env′ = Env + (V ar ⇒ Paths1)

Env′ ` Expr2 ⇒ Paths2 using UPaths2 with OV ars2

Member($Var, OV ars2)

OV ars3 = Remove($Var, OV ars2)

Env ` for $ V ar in Expr1 return Expr2

⇒ Paths2 using UPaths1 ∪ UPaths2 with Union (OV ars1, OV ars3)

When thefor expression cannot be optimized the rule is as before:

Env ` Expr1 ⇒ Paths1 using UPaths1 with OV ars1

Env′ = Env + (V ar ⇒ Paths1)

Env′ ` Expr2 ⇒ Paths2 using UPaths2 with OV ars2

Not Member ($Var, OV ars2)

Env ` for $ V ar in Expr1 return Expr2

⇒ Paths2 using Paths1 ∪ UPaths1 ∪ UPaths2 with Union (OV ars1, OV ars2

let expressions

The let expression binds a variable. The variable needs to be removed from theOptimV ars as it will

not be binded above the let expression:

Env ` Expr1 ⇒ Paths1 using UPaths1 with OV ars1

Env′ = Env + (V ar ⇒ Paths1)

Env′ ` Expr2 ⇒ Paths2 using UPaths2 with OV ars2

OV ars3 = Remove($Var, OV ars2)

Env ` let $ V ar := Expr1 return Expr2 ⇒ Paths2 using UPaths1 ∪ UPaths2 with OV ars3

XPath steps

XPath steps applied on the empty sequence yield the empty sequence. Since XPath steps are applied

on the context node (. ), if the corresponding variable is empty, the the XPath step evaluates to the empty

sequence.
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Paths = Env(. )

Paths = {Path1, ..., Pathn}
Env ` Axis NodeTest

⇒ {Path1/ Axis NodeTest, ..., Pathn/ Axis NodeTest} using {} with .

Typeswitch

Typeswitch can be optimized if all their return expressions evaluates to the empty sequence.

Env ` Expr0 ⇒ Paths0 using UPaths0 with OV ars0

Env ` Expr1 ⇒ Paths1 using UPaths1 with OV ars1

...

Env ` Exprn ⇒ Pathsn using UPathsn with OV arsn

Env ` typeswitch ( Expr0)

case Type1 return Expr1

...

default return Exprn

⇒ Paths1 ∪ ... ∪ Pathsn using Paths0 ∪ UPath0 ∪ ... ∪ UPathsn with Intersection (OV ars1, ..., OV arsn)

Sort by

Sort bys can be optimized if their return expression evaluates to the empty sequence.

Env ` Expr0 ⇒ Paths0 using UPaths0 with OV ars0

Env′ = Env + (. ⇒ Paths1)

Env′ ` Expr1 ⇒ Paths1 using UPaths1 with OV ars1

...

Env′ ` Exprn ⇒ Pathsn using UPathsn with OV arsn

Env ` ( Expr0) sort by

(ascending |descending) Expr1

...

(ascending |descending) Exprn

⇒ Paths0 using UPaths0 ∪ Paths1 ∪ ... ∪ Pathsn ∪ UPaths1 ∪ ... ∪ UPathsn with OV ars0

Casting

Env ` Expr1 ⇒ Paths1 using UPaths1 with OV ars1

Env ` cast as Type Expr1 ⇒ Paths1 using UPaths1 with OV ars1

Constructors

Constructed nodes can never be optimized as they never return the empty sequence: even if the expres-

sion used in the constructor evaluates to empty, a node will be created.

Env ` Expr1 ⇒ Paths1 using UPaths1 with OV ars1

Env ` (element |attribute) QName Expr1 ⇒ {} using Paths1# ∪ UPaths1 with EmptyVars
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Env ` Expr1 ⇒ Paths1 using UPaths1 with OV ars1

Env ` (document) Expr1 ⇒ {} using Paths1# ∪ UPaths1 with EmptyVars

Env ` (text) String ⇒ {} using {} with EmptyVars

Functions

In the absence of more detailed analysis, functions are never optimized. TheirOptimVars are then

always equal toEmptyvars .

5 Loading Algorithm

This section describes the loading algorithm used to create a projected document from an original XML

document and a set of projection paths. The original document is parsed using a SAX API [29]. For this

discussion, we only consider the following SAX events:

SAXEvent ::= Characters (String)

| OpeningTag (QName)

| ClosingTag

The loading algorithm operates in a left-deep recursive fashion. It takes a set of projection paths as input

and operates on a stream of SAX events returned by the parser. As the SAX events are being processed,

the algorithm maintains a set of paths to apply to the current XML document node. For each node, the

algorithm decides on one of four actions to apply:

• Skip the node and its subtree (Skip );

• Keep the node and its subtree (KeepSubtree );

• Keep the node without its subtree (Keep);

• Keep processing the paths (Move).

The loading algorithm is illustrated on Figure 3 for a set two projection paths:/a/b/c# and/a/d , over the

following document fragment:

<a>

<g><b></b></g>

<b>

<c><f></f></c>

</b>

<d><e></e></d>

<b></b>

<c></c>

<a>
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The loading algorithm processes one SAX event at a time, and maintains a set of current paths, corre-

sponding to the parts of the original projection paths that apply to the current node. Note that nodes are

only loaded (if needed) when theirClosingTag tokens are encountered, i.e., after all of their children have

been processed. In the first step shown on Figure 3, the processed token isOpeningTag(a) (or <a>). The

loading algorithm’s current node is<a>, which is the first node for both projection paths. Given this and the

projection paths information, the algorithm only needs to load descendants of the current node<a> that can

be accessed through thecurrent paths: /b/c# and/d . The loading algorithm then recursively processes the

stream, loading children before their parents. When a projection path is verified, the corresponding node

is loaded (with its subtree in case the # flag is present). On Figure 3, the node<c> that is a descendant of

/a/b is loaded with its subtree<f></f> as specified by the projection path/a/b/c# . In contrast, the node

<e> is not kept in the projected document. When a node does not verify a projection path, its entire subtree

is skipped, i.e., the loading algorithm ignores the corresponding SAX tokens until corresponding closing

tag is encountered (e.g., node<g> on Figure 3).

Projection Paths
/a/b/c#
/a/d

<a>

<a>

</d><d></b>

<b>

Current Paths Loaded Nodes

</g></b><b><g>

Skip

/b/c#
/d

/c#

c

f

</b><b>

</e><e>

Skip

/b/c#
/d

c

f

b d

</a>
/a/b/c#
/a/d

c

f

b d

a

<c> </c>

Skip

<f> </f>

Keep Subtree

<c> </c>

Figure 3: Loading algorithm

Dealing with thedescendant axis significantly complicates the loading algorithm, since it might

result in one projection path spawning into two new projection paths when moving down the tree. For

example, consider the paths expression//a , which is expanded as/descendant-or-self::node()/a .

Assuming the current node is an elementb, both the path/a , since we might have a nodea that is a child of

b (self:: ), and the original path/descendant-or-self::node()/a can lead to nodes verifying the

path expression. For this reason, the set of current paths the algorithm maintains can become larger during

the loading process.

6 Experimental Evaluation

Experiments were run on a modified version of Galax [17] in which we implemented projection. We per-

formed several kinds of experiments which were selected to evaluate the following aspects of projection:

Correctness:We used Galax regression tests to check that the implementation of our projection algorithm
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Configuration CPU Cache size RAM

A 1GHz 256Kb 256Mb

B 550MHz 512Kb 768Mb

C 1.4GHz 256Kb 2Gb

Table 3: Hardware configurations

does preserve the semantics of the query. (Section 6.1.)

Effectiveness: Projection is effective for a large family of queries. We evaluate the relative size of the

projected document using using the XMark [31] benchmark, as well as queries over the XML version of

DBLP. (Section 6.2.)

Maximal document size: As expected, projection allows to process queries on much larger documents

than was previously possible (Section 6.3.)

Processing time: Measures of the evaluation time before and after projection show that projection also

improves run-time performances. (Section 6.4.)

In order to understand the effect of projection on different hardware configurations, we used three

different machines with varying CPU speed and RAM size. The first configuration (A) is a modern IBM

laptop with 256M memory and a 1GHz CPU. The second configuration (B) is a desktop PC with more

memory but a slower CPU. Finally, configuration (C) is a high-end server with a large 2Gb memory and a

fast CPU. All three machines were running RedHat Linux. Configurations (A), (B) and (C) are summarized

on Table 3

6.1 Correctness

Before evaluating the performance of the projection technique, we used Galax infrastructure for regression

tests to check that the implementation of our projection algorithm is indeed working correctly. Galax

regression tests are composed of a large number of queries, each with its corresponding expected result

according to the XQuery semantics. A simple perl script runs all queries using the Galax interpretor, and

verifies that the actual result returned by the interpretor matches the expected result. The set of tests contains

more than 1000 queries which include simple atomic tests, the set of XQuery use cases, and queries from

additional sources including queries from the XMark benchmark. We run those regression tests using Galax

without projection, with projection, and with optimized projection to confirm that projection preserves the

original semantics of each query. The regression tests and the corresponding scripts come with the Galax

code itself and can be downloaded at [17].
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6.2 Effectiveness

A second set of experiments was conducted to evaluate the actual reduction of memory usage for a various

queries. We present experiments on all the XMark benchmark queries, and on queries over a real document,

namely the XML version of the DBLP database6.

6.2.1 XMark Queries

The XMark benchmark [31] contains of a broad range of queries, including simple lookups, joins, aggrega-

tions, queries with long path traversals, and publishing queries. XMark queries run over a single document

about auctions. XMark comes with a document generator that can create auction documents of any size and

can be downloaded from the XMark Web site7.

For this experiment, we generated documents of varying sizes (from 500Kb to 2Gb) and run the 20

XMark queries on documents of increasing size for the three configurations. We then compared the size of

the projected document against the size of the original document: as expected projection results in similar

relative improvement for all sizes. Figures in the rest of the section report on the evaluation of all XMark

Queries on a 50Mb document over Configuration C (Table 3).

Projected document size in file:Figure 4 shows the size of the projected documents as a percentage of

the size of the original document. We report results for both versions of the projection. The projected

document is less than 5% of the size of the document for most of the queries. On Query 19,Projection

only reduces the size of the document by 40%, and it has no effects for Queries 6, 7, and 14. In contrast,

Optimized Projectionresults in projected documents of at most 5% of the document for all queries but

Query 14 (33%). The reason for this difference is that Queries 6, 7, 14 and 19 evaluate descendant-or-self()

(//) path expressions for which projection without optimization performs poorly. Query 14 is a special case

since it selects a large fragment of the original auction document. Obviously projection cannot perform as

well for this kind of query.

Projected document size in memory:Figure 5 shows the memory used by the query processor for the

projected document as a percentage of the memory used. Memory usage for the projected document is con-

sistent with the relative size of the projected documents on file. Projected documents tend to use relatively

slightly more memory than their size, due to some overhead in the XML data model representation.

6.2.2 DBLP Queries

The DBLP document contains a bibliography of over 325,000 publications. Its size stored as text is 144Mb.

The schema of the DBLP document is very simple and result in shallow trees, therefore we could not

evaluate complicated queries, such as queries with descendant axis, on it. We considered two queries. The

6http://dblp.uni-trier.de/xml/
7http://monetdb.cwi.nl/xml/downloads.html
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Figure 4: Projected documents size as a percentage of the size of the original documents
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Figure 5: Projected document memory usage

first query asks for the titles of the books written by Jim Gray. This query is very selective in terms of the

projection, as only 0.25% of the publications in the document are books.

DBLP Query 1

for $a in $dblp/dblp/book

where $a/author/text()="Jim Gray"

return $a/title/text()

The second query asks for the titles of the journal articles written by Jim Gray. This query is not as

selective in terms of the projection, as 35% of the publications in the document are journal articles.

DBLP Query 2

for $a in $dblp/dblp/articles

where $a/author/text()="Jim Gray"

return $a/title/text()

We run the two DBLP queries on Configuration C (see Table 3). We were not able to load the complete

document in memory without projection. Therefore, we report only on the memory needed for DBLP

Queries 1 and 2 in Table 4 forProjectionandOptimized Projection.
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Query Projection Optimized Projection

DBLP Query 1 0.85Mb 0.76Mb

DBLP Query 2 97Mb 84Mb

Table 4: Projection on a real data XML document.

Configuration A B C

Query 3 NoProj 33Mb 220Mb 520Mb

OptimProj 1Gb 1.5Gb 1.5Gb

Query 14 NoProj 20Mb 20Mb 20Mb

OptimProj 100Mb 100Mb 100Mb

Query 15 NoProj 33Mb 220Mb 520Mb

OptimProj 1Gb 2Gb 2Gb

Table 5: Document size limits for three XMark Queries with or without projection

6.3 Maximal Document Size

The main objective of projection is to overcome the strong memory limitations that were reported in the

introduction. We compare the size of the largest document we were able to process without projection, and

with optimized projection on our three hardware configurations.

Table 5 gives for three XMark queries (3, 14 and 15) the size of the largest document for which we

could evaluate the query, with or without optimized projection. We selected these three query as they result

in different decreases in the document size (Figure 4), from 82% (Query 14) to 99.9% (Query 15). We see

that our projection approach makes it possible to evaluate queries on significantly larger documents (up to

30 times larger for Query 15) than without any projection.

6.4 Processing Time

Finally, we study the impact of projection on processing time. We now show that: (a) projection does not

have a significant impact on parsing and loading time, and (b) it reduces, sometimes significantly, query

evaluation time.

Parsing and Loading time: Figure 6 shows the impact of path analysis for projection on the parsing and

loading time of the query (path analysis time included). For most queries, the path analysis does not slow

down document loading, but actually speeds it up. This might look surprising, but can be explained by

the fact that less nodes have to be created in the document data model. However, for queries that contain

descendant-or-self() axis, loading is more expensive withProjection, due to the more complex computation

required during loading. The queries for whichProjectionresult in high loading times are actually the ones
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Figure 6: Parsing and loading time, in seconds
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Figure 7: Query execution time, in seconds

for which Projectiondoes not perform well in terms of memory reduction. For these queries, loading with

Optimized Projectionis still a little more expensive than without any projection, but it is much faster than

with Projection, and results in decreased memory usage.

Query Execution time: Figure 7 shows the impact of projection on query execution time. Projection actu-

ally speeds up query processing. The reason is that query evaluation has less unnecessary nodes to process

since those have been discarded in advance by the loader. Some XMark queries are very expensive to eval-

uate, because of expensive join operations. For these queries, while projection still speed up processing,

query processing time is dominated by the cost of the join. Note that for query 14, the reason why the

optimized projection seem more expensive is only because the query fails without projection, therefore the

figures for query execution show up as zero.

As a conclusion, we see thatOptimized Projectionresults in significant savings in memory usage (more

than 95% for all queries but one), and does not increase document parsing and loading time significantly.

In fact, for most queries, parsing and loading are actually faster whenOptimized Projectionis applied.

Additionally, Optimized Projectionresults in lower query execution times for all XMark queries.
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7 Related Work

Projection operations have been proposed in previous algebras for XML and for semistructured data. The

TAX tree algebra for XML [18] includes a projection operator, which differs from ours in that it supports

omitting intermediate nodes while we require to keep all nodes from the root of the document, and it

only support simple wilcards* while we support all XPath node tests. The SAL algebra [5] has a quite

different projection operation based on regular-expressions. Both work focus on the expressiveness of the

projection operation, while our notion of projection is simpler but designed to support an efficient physical

implementation on XML files and streams.

Our loading algorithm has some similarity with work on filtering XML documents [1, 9]. However, they

focus on processing efficiently subsets of XPath without building intermediate data structures, while we

support the construction of a data model instance that can be used to process arbitrary XQuery expressions.

Finally, we have studied the impact of projection in isolation from other optimization techniques. How-

ever, we believe work on XML indexes [11, 19] and XML joins [8, 10] could be used in conjunction with

projection.

8 Conclusion

In this paper, we have presented projection techniques that can be used to support main-memory XQuery

evaluation over large XML documents. The main contribution of the paper is a path analysis technique that

infers the set of paths used for an arbitrary XQuery expression. Our experiments show that this technique

can be used to evaluate queries on files up to two Gigabyte even on machines with limited memory. Our

implementation is fully functional and available for download on the Web at [17]. As future work, we plan

to work on a tighter integration between the query evaluation and the loading, which are currently done in

separate steps, and investigate methods to quantify the precision of our projection algorithm compared to

the optimal projection. Finally, we believe the techniques presented here should be integrated with other

forms of optimization, including XML join algorithms and query rewritings.

Acknowledgments. We want to thank Sihem Amer-Yahia, Irini Fundulaki, and the Database Group at

Columbia University for their feedback on earlier versions of the paper.
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