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Abstract

We study the worst case complexity of computing ε-approximations of
volumes of d-dimensional regions g([0, 1]d), by sampling the function g.
Here, g is an s times continuously differentiable injection from [0, 1]d to R

d ,
where we assume that s ≥ 1. Since the problem can be solved exactly when
d = 1, we concentrate our attention on the case d ≥ 2. This problem is a
special case of the surface integration problem studied in [12]. Let c be the
cost of one function evaluation. The results of [12] might suggest that the ε-
complexity of volume calculation should be proportional to c(1/ε)d/s when
s ≥ 2. However, using integration by parts to reduce the dimension, we show
that if s ≥ 2, then the complexity is proportional to c(1/ε)(d−1)/s. Next, we
consider the case s = 1, which is the minimal smoothness for which our vol-
ume problem is well-defined. We show that when s = 1, an ε-approximation
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can be computed with cost proportional to at most c(1/ε)(d−1)d/2. Since a
lower bound proportional to c(1/ε)d−1 holds when s = 1, it follows that the
complexity in the minimal smoothness case is proportional to c(1/ε) when
d = 2, and that there is a gap between the lower and upper bounds when
d ≥ 3.

1 Introduction

The approximation of volumes is an important computational problem. There are
several different approaches in the literature. One approach is to assume that we
have complete information about the region. For example, [1] discusses the com-
plexity of computing volumes of d-dimensional closed, orientable polyhedra P in
the worst case setting using the real number model. If ∂ P has been triangulated
into a set T of (d − 1)-simplices, then the volume of P can be calculated with
cost roughly proportional to 1

3 d|T |. Noting that |T | � d often holds, they show
that the cost is proportional to 2.6d 2, assuming that ∂ P can be traversed by moving
between (d − 1)-simplices sharing a common (d − 2)-face.

Exact volume calculation has also been studied in the Turing model of compu-
tation. Khachiyan [8] proved that calculating the volumes of polytopes is NP-hard.
For more powerful negative results in this directions, see the references in [7].

Another area of active research is the approximation of volumes of convex sets
in the real number model, see [7] for a review. In this case, we use only partial
information, often given by membership tests. That is, we can check whether a
given point belongs to a convex set. Sometimes, this information is strengthened
by requiring the knowledge of a separating hyperplane when the point does not
belong to the convex set. Usually, randomized algorithms are considered. One
result along these lines is given by [7]. They show that the volume can be ap-
proximated with relative error at most ε with probability at least 1 − η, with cost
O(d5/ε2(ln 1/ε)3(ln 1/η) ln5 d).

Another approach to approximating the volume of a region is to replace it by a
simpler region. A typical technique is to use a piecewise polynomial approximation
of a region’s boundary, and then to use exact formulas to calculate the volume of
the approximating region. This approach also uses the real number model. See [2]
for an example, as well as for references to the relevant literature.

We now explain our approach to this problem. We study the worst case com-
plexity of calculating volumes of regions in the real number model. Here, our
regions are of the form g(I d), where g belongs to a given class of functions de-
fined over I d = [0, 1]d . Only partial information, given by finitely many values
of g, is available. This kind of information is different from membership tests,
since it only delivers points belonging to the region. It is also more general than
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boundary information, since it can include points inside the region.
In this paper, we will consider classes G s of s times continuously differen-

tiable injections of I d . Hence, we are approximating volumes of regions g(I d),
where g ∈ Gs . Such regions are diffeomorphic images of the unit cube I d . Since
the cube I d has corners, this means that the region g(I d) will not have a globally
smooth boundary. In particular, this means that the d-dimensional Euclidean unit
ball Bd does not belong to Gs . The complexity of calculating volumes of diffeo-
morphic images of Bd is an open problem, which we hope to handle in the future.

The volume of g(I d) is equal to the integral of the Jacobian determinant of g
over I d . We want to use this characterization as our point of departure. Since the
Jacobian determinant is well-defined iff s ≥ 1, we shall restrict our attention in this
paper to the case s ≥ 1.

For the univariate case d = 1, the volume problem is trivial, and can be solved
exactly using two evaluations of g; moreover, we prove that two evaluations are
necessary.

Therefore, we concentrate our attention on the case d ≥ 2. This problem is a
special case of the surface integration studied in [12]. This paper supplies upper
bounds for the volume problem only for the case s ≥ 2. These upper bounds
are of the order c(1/ε)d/s, where c is the cost of one function evaluation. Our
initial expectation was that these bounds would be sharp; however, our intuition
was wrong. Since the Jacobian determinant can be expressed in a divergence form,
see [5, Chapter 4, Theorem 3.2], we can use integration by parts to reduce the
dimension. This yields an upper bound proportional to c(1/ε)(d−1)/s, still assuming
that s ≥ 2. Is this upper bound sharp? Indeed, it is. We show that for any s ≥ 1,
the volume problem is no easier than the (d −1)-dimesional problem of integrating
s times continuously differentiable functions defined over I d−1. The latter problem
is known to have complexity of order c(1/ε)(d−1)/s, see [3] as well as [9] and [11].
Hence, the complexity of the volume problem is also of order c(1/ε)(d−1)/s when
s ≥ 2.

Let us now consider the remaining case s = 1, that is, the functions g determin-
ing our regions are only continuously differentiable. The Jacobian of g is merely
continuous. Since the complexity of integrating continuous functions is infinite,
see [3], [9] and [11], it was unclear whether this volume problem could be solved
with finite complexity.

We have only partial results for this case s = 1. The good news is that the
complexity is finite for any d , and is at most of the order c(1/ε)(d−1)d/2. The bad
news is that we know that this upper bound is sharp only for the case d = 2, for
which we see that the complexity is of the order c(1/ε). When d ≥ 3, there is a
gap between the lower and upper bounds, which we have been unable to bridge.

We briefly review the contents of this paper. In Section 2, we present the formal
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definition of the volume problem. In Section 3, we present the easy univariate case.
Section 4 is the major part of this paper, dealing with the multivariate case. We first
present a lower bound for the case s ≥ 1. Next, we present an upper bound for
the case s ≥ 2, using an algorithm based on the surface integration algorithm
of [12]. The final subsection deals with the case s = 1. We present and analyze an
algorithm for this case. This algorithm is substantially different than that for the
smoother case s ≥ 2, and is defined by induction on d .

2 Problem formulation

Before describing the problem to be solved, we first recall the definition of the
volume of a region; see [6, pg. 334 ff.] for further discussion. We let I = [0, 1]
denote the unit interval, so that I d = [0, 1]d . Let d be a given positive integer. For
a C1 injection g : I d → R

d , the set

g(I d) = { g(x) : x ∈ I d }

is a d-dimensional region whose volume we want to approximate by sampling the
function g. Using the standard change of variables formula, the volume of g(I d) is

vol g(I d) =

∫

I d
|(det ∇g)(x)| dx, (2.1)

with the gradient ∇g : I d → R
d×d being defined as1

[(∇g)(x)]i, j = (∂ j gi)(x) for i, j ∈ {1, . . . , d} and x ∈ I d .

We now describe the problem to be solved. Let G be a class of C 1 injections
having domain I d and codomain R

d . We want to approximate the volume operator
defined by

S(g) = vol g(I d) ∀ g ∈ G.

Note that S is a nonlinear functional.
We compute an approximation U(g) to S(g) by using information

N(g) =
[

gi1(x
(1)), . . . , gin (x

(n))
]

(2.2)

where
x ( j) =

(

x ( j)
1 , . . . , x ( j)

d

)

(1 ≤ j ≤ n)

1Here, ∂ j denotes the partial derivative in the j th coordinate direction and gi is the i th component
of g.
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and
i1, . . . , in ∈ {1, . . . , d}.

We also allow adaption. That is, the number n = n(g) of evaluations, as well as
the sample points x (1), . . . , x (n), may depend on the previously-computed function
values of g; for details, see, e.g., [10, Chapter 2]. We let

card N = sup
g∈G

n(g)

denote the cardinality of the information N .

Remark. Note that the permissible information is given by evaluating g1, . . . , gd at
points in I d . One could also allow the evaluation of partial derivatives of the gi , as
well. We restrict ourselves to function values alone, as this makes the exposition
much simpler. However, it is easy to see that the results of this paper also hold if
arbitrary partial derivative evaluations are allowed.

Our approximation U is given by

U(g) = φ
(

N(g)
)

(2.3)

for some mapping φ : N(G) → R. The worst case error of an approximation is
defined to be

e(U) = sup
g∈G

|S(g) − U(g)|.

The cost of computing U(g) is defined as cost U(g), which is the weighted
sum of the total number of function values of g1, . . . , dd , as well as the number of
arithmetic operations and comparisons needed to obtain U(g). More precisely, we
assume that for any i ∈ {1, . . . , d}, the evaluation of gi costs c. The cost of each
arithmetic operation is taken as 1. For U of the form (2.3), we have

cost U(g) = c n + ñ,

where ñ is the total number of arithmetic operations and comparisons needed to
compute U(g), given N(g). Here c ≥ 1, and usually it is realistic to assume that
c � 1; see once more [10, Chapter 2] or [11, Chapter 2] for details. Then

cost U = sup
g∈G

cost U(g)

is the worst case cost of U .
We may judge the quality of an approximation U using information of given

cardinality by comparing its error to the minimal error possible among all approx-
imations using information of the same cardinality. For fixed n, the nth minimal
error

e(n) = inf{ e(U) : U of the form (2.3) with card N ≤ n }
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is the minimal error among all approximations using any information of cardinal-
ity at most n. Clearly, {e(n)} is a nonincreasing sequence. Moreover, e(n) makes
sense even when n = 0; indeed, e(0) is minimal error among all “constant” ap-
proximations, i.e., those using no evaluations of g.

Along with minimal-error approximations using a given number n of informa-
tion evaluations, we also wish to obtain ε-approximations at minimal cost for any
ε ≥ 0. The ε-complexity of volume computation is the minimal cost of computing
an ε-approximation, i.e.,

comp(ε) = inf{ cost U : U such that e(U) ≤ ε }.

An approximation Uε for which2

e(Uε) ≤ ε and cost Uε � comp(ε) as ε → 0,

is said to be (asymptotically) optimal.

Remark. The error e(U), the nth minimal error e(n), and the ε-complexity also
depend on the class G of problem elements. Where necessary, we shall show
this dependence explicitly, by writing, e.g., e(n; G) for e(n) and comp(ε; G) for
comp(ε).

The purpose of this paper is to find sharp estimates of the nth minimal error
and the ε-complexity of volume calculation, as well as optimal algorithms.

We will chose a specific class Gs = Gs;d,m,M as our class G of problem el-
ements. This class will consist of all functions g : I d → R

d that are s times
continuously differentiable and satisfy

‖g‖C s (I d ;Rd) ≤ M

and
inf

x∈I d
|(det ∇g)(x)| > m.

Here s is a fixed positive integer and, for any positive integer l , the norm ‖·‖C s (I d ;Rl)

is given by3

‖g‖C s(I d ;Rl) = max
|α|≤s

max
1≤i≤l

‖Dαgi‖,

with ‖·‖ in the right-hand side of the line above denoting the max norm. Moreover,
the parameters m and M satisfy

0 ≤ m < 1 ≤ M.

2We use 4, <, and � in this paper to respectively denote O-, �-, and 2-relations.
3We use the standard notation for multi-indices and for Sobolev spaces, norms, and semi-

norms, see (e.g.) [4]. In particular, for an integer multi-index α = [α1, α2, . . . , αd ], we have
Dα = ∂ |α|/(∂α1 x1 · · · ∂αd xd ).
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In particular, note that the identity mapping x 7→ x belongs to G s .
Our estimates will be sharp only in terms of the power of ε−1, with constants

depending on s, d , m, and M .
In what follows, it will be useful to introduce an auxiliary solution operator

Sd : G → R, defined as

Sd(g) =

∫

I d
(det ∇g)(x) dx .

Thus, Sd(g) is the signed volume of g(I d). Concepts such as nth minimal error and
ε-complexity for S are defined just as they were for the volume problem; where
necessary, we shall indicate this notationally. Note that we pay special attention to
how the signed volume depends on dimension; this is because we will be using a
reduction of dimension to attain our approximations to Sd .

It is easy to see that by the definition of the class G s , we have

S(g) = |Sd(g)| ∀ g ∈ Gs .

That is,
Sd(g) = ±S(g) ∀ g ∈ Gs .

with the choice of using a plus or a minus sign being determined with one evalua-
tion of (det ∇g)(x). It is easy to check that

e(n; S, Gs) = e(n; Sd, Gs) ∀ n ≥ 0

and that

comp(ε; S, Gs) = comp(ε; Sd, Gs) + O(1) as ε → 0.

Thus the complexity of the volume and signed volume problems is essentially the
same.

3 The case d = 1

We now show that the univariate case d = 1 is trivial. It can be solved exactly
using two evaluations of g. However, if fewer than two evaluations are used, the
problem cannot be solved exactly.

Theorem 3.1. Let d = 1.

1. The nth minimal error e(n; S, Gs) is positive for n = 0 and n = 1.

7



2. For n ≥ 2, the nth minimal error e(n; S, G s) is zero, and the approxima-
tion U given by

U(g) = |g(1) − g(0)| ∀ g ∈ Gs (3.1)

is optimal and has zero error.

Proof. First, consider the cases n = 0 and n = 1. Since e(0) ≥ e(1), it suffices to
show that

e(1; S, Gs) ≥ 1
2(M − m) > 0. (3.2)

To this end, let N be information of cardinality at most one. Define g(x) = Mx
and write N(g) = [g(x (1))]. Choose m ∈ (m, 1). Let g̃(x) = mx + (M − m)x (1).
Then g, g̃ ∈ Gs , with N(g̃) = N(g). Then

S(g) − S(g̃) = M − m.

From [10, pg. 45], we know that

e(1; S) ≥ inf
x (1)∈I d

1
2 |S(g) − S(g̃)| = 1

2(M − m).

Since m may be chosen arbitrarily close to m, we see that (3.2) holds, as claimed.
To prove the result for n ≥ 2, it suffices to show that the approximation (3.1)

has zero error. To see this, let g ∈ G s . Then g′ is a continuous function that never
vanishes, and so either g ′ > 0 in I , which holds if g(1) > g(0), or g ′ < 0 in I ,
which holds if g(1) < g(0). In the former case, we have

S(g) =

∫ 1

0
|g′(x)| dx =

∫ 1

0
g′(x) dx = g(1) − g(0),

and in the latter case, we have

S(g) =

∫ 1

0
|g′(x)| dx =

∫ 1

0
−g′(x) dx = g(0) − g(1).

Hence in either case, we have

S(g) = |g(1) − g(0)| = U(g),

and so the approximation given by (3.1) is optimal and has zero error.
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4 The case d ≥ 2

In this section, we consider the multivariate case d ≥ 2. We first establish a lower
bound.

Theorem 4.1. For d ≥ 2, the nth minimal error satisfies

e(n; S) <

(

1

n

)s/(d−1)

.

Proof. Let N be information of cardinality at most n. Choose m ∈ (m, 1). Define
the function g ∈ C s(I d; R

d) as

g(x) = [x1, . . . , xd−1,
1
2(1 + m)xd ] ∀ x ∈ I d .

Since m < 1 ≤ M , we find
‖g‖C s (I d ;Rd) ≤ M

and
(det ∇g)(x) = 1

2(1 + m) > m.

Hence g ∈ Gs , and
S(g) = 1

2(1 + m).

As in (2.2), we write

N(g) = [gi1(x
(1)), . . . , gi` (x

(`))],

where ` ≤ n. Note that `, as well as the selection of the points x (1), . . . , x (`), may
be determined adaptively. Let us write

y( j) = (x ( j)
1 , . . . , x ( j)

d−1) for 1 ≤ j ≤ `.

From [3], see also [9], we can find a function w : I d−1 → R satisfying

w(y(1)) = · · · = w(y(`)) = 0,

‖w‖C s(I d−1;R) = 1,
∫

I d−1
w(x1, . . . , xd−1) dx1 . . . dxd−1 <

(

1

`

)s/(d−1)

≥

(

1

n

)s/(d−1)

.

(4.1)

Let
z(x) = xd w(x1, . . . , xd−1).

Since ‖z‖C s(I d ;R) = ‖w‖C s(I d−1;R), we have

‖z‖C s(I d ;R) = 1
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and
z(x (1)) = · · · = z(x (`)) = 0.

Let

g̃(x) = [x1, . . . , xd−1,
1
2(1 + m)xd + 1

2(1 − m)z(x)] ∀ x ∈ I d .

Then
‖g̃‖C s(I d ;Rd) ≤ 1 < M,

and
(det ∇ g̃)(x) = 1

2(1 + m) + 1
2(1 − m)(∂d z)(x)

≥ 1
2(1 + m) − 1

2(1 − m)‖z‖C s(I d ;R)

= 1
2(1 + m) − 1

2(1 − m) = m > m.

Hence g̃ ∈ Gs , and N(g̃) = N(g). Once again using [10, pg. 45], along with (4.1),
we see that

2 e(N) ≥ S(g̃) − S(g) = 1
2(1 − m)

∫

I d
(∂d z)(x) dx

= 1
2(1 − m)

∫

I d−1
[z(x1, . . . , xd−1, 1) − z(x1, . . . , xd−1, 0)] dx1 . . . dxd−1

= 1
2(1 − m)

∫

I d−1
w(x1, . . . , xd−1) dx1 . . . dxd−1 <

(

1

n

)s/(d−1)

.

Since N is arbitrary information of cardinality at most n, the desired result now
follows.

We now turn to establishing upper bounds. Before doing this, we establish a
more convenient form for the solution operator Sd . To do this, we also need another
auxiliary operator S̃d , defined as

S̃d( f, w) =

∫

I d
f (x)(det ∇w)(x) dx (4.2)

for f ∈ C1(I d; R) and w ∈ C1(I d; R
d). For g ∈ C1(I d; R

d), j ∈ {1, . . . , d}, and
a ∈ [0, 1], define the mappings g1, j,a : I d−1 → R and g j,a : I d−1 → R

d−1 as

g1, j,a(x) = g1
(

x [ j,a]) ∀ x ∈ I d−1

and
g j,a(x) =

[

g2(x
[ j,a]), . . . , gd(x

[ j,a])
]

, ∀ x ∈ I d−1,

where
x [ j,a] = [x1, . . . , x j−1, a, x j+1, . . . , xd ].
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Note that
‖g1, j,a‖C1(I d−1;Rd−1) ≤ ‖g‖C1(I d ;Rd ) (4.3)

and
‖g j,a‖C1(I d−1;Rd−1) ≤ ‖g‖C1(I d ;Rd). (4.4)

We have the following

Lemma 4.1. If g ∈ C1(I d; R
d), then

Sd(g) =

d
∑

j=1

(−1) j+1
[

S̃d−1(g1, j,1, g j,1) − S̃d−1(g1, j,0, g j,0)
]

.

Proof. Suppose first that g ∈ C s(I d; R
d), where s ≥ 2. Then [5, Chapter 4,

Theorem 3.2] states that we can write det ∇g in divergence form as

(det ∇g)(x) =

d
∑

j=1

(−1) j+1∂ j

(

g1, j,x j (x)(det ∇g j,x j )(x)
)

∀ x ∈ I d−1. (4.5)

Integrating by parts, we see that the lemma holds for s ≥ 2.
Now suppose that g ∈ C1(I d; R

d). We use a density argument to show that
the lemma holds for this case. Indeed, for any δ > 0 and any index i ∈ {1, . . . , d},
we can find a function pi,δ ∈ C2(I d; R) such that ‖gi − pi,δ‖C1(I d ;R) ≤ δ. Let
pδ = [p1,δ, . . . , pd,δ]. Since pδ ∈ C2(I d; R

d), we have

Sd(pδ) =

d
∑

j=1

(−1) j+1
[

S̃d−1
(

(pδ)1, j,1, (pδ) j,1
)

− S̃d−1
(

(pδ)1, j,0, (pδ) j,0
)

]

Now let δ tend to zero. Since Sd and S̃d−1 are continuous, we now see that the
lemma holds when s = 1.

The essence of Lemma 4.1 is that the d-dimensional signed volume problem is
equal to the sum of 2d instances of (d −1)-dimensional integrals of the form (4.2).
These latter integrals are similar to (but simpler than) the integrals

∫

I d−1
f
(

w(x)
)

(det ∇w)(x) dx

studied in [12]. We can apply the analysis of [12] to handle such problems in the
case s ≥ 2.

Hence, we shall consider two separate cases.
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4.1 The case d ≥ 2 and s ≥ 2

Let g ∈ Gs . Our approximation Un(g) to Sd(g) will have the form

Ud,n(g) =

d
∑

j=1

(−1) j+1
(

Ud−1,n; j,1(g) − Ud−1,n; j,0(g)
)

, (4.6)

where Ud−1,n; j,a(g) is an approximation of S̃d−1(g1, j,a, g j,a) for any a ∈ {0, 1} and
any j ∈ {1, . . . , d}. From Lemma 4.1 and (4.6), it follows that

Sd(g) − Ud,n(g) =

d
∑

j=1

(−1) j+1
[(

S̃d−1(g1, j,1, g j,1) − Ud−1,n; j,1(g)
)

−

(

S̃d−1(g1, j,0, g j,0) − Ud−1,n; j,0(g)
)]

. (4.7)

We briefly describe the approximation Ud−1,n; j,a that appears in (4.6). Define µ =

max{s − 1, 2}. Let Q be a uniform decomposition of the face x j = a of I d , with
a meshsize proportional to n−1/(d−1). Next, we let S be a globally Cµ−1 tensor
product spline space of degree µ corresponding to Q. For g ∈ G s , let g ∈ S be an
appropriately-chosen quasi-interpolant of g that can be computed using n function
values of g. Then we take Ud−1,n; j,a(g) = S̃d−1(g1, j,a, g j,a). For more details,
see [12].

Lemma 4.2. If s ≥ 2, then the approximation Ud,n defined by (4.6) satisfies

cost Ud,n 4 c n

and

e(Ud,n; Sd) 4

(

1

n

)s/(d−1)

.

Proof. Let j ∈ {1, . . . , d} and a ∈ {0, 1}. Using a straightforward adaption of the
techniques of [12], which required that s ≥ 2, along with the bounds (4.3)–(4.4),
we find that

cost Ud−1,n; j,a 4 c n

and

sup
g∈Gs

|S̃d−1(g1, j,a, g j,a) − Ud−1,n; j,a(g)| 4

(

1

n

)s/(d−1)

.

The lemma follows immediately from these bounds and from (4.7).

Combining Theorem 4.1 with Lemma 4.2, and recalling the comments at the
end of Section 2, we have the main result of this section:
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Theorem 4.2. If d ≥ 2 and s ≥ 2, then

e(n; S) �

(

1

n

)s/(d−1)

and

comp(ε; S) � c
(

1

ε

)(d−1)/s

.

Moreover, let Un be given by Lemma 4.2. Then the approximation |Un| of the
volume operator S, with n � (1/ε)(d−1)/s, is optimal.

4.2 The case d ≥ 2 and s = 1

The minimal-smoothness case s = 1 must be handled more delicately than the
preceding case s ≥ 2. For a meshsize h = 1/m, with m a positive integer, we
shall let Ud,h and Ũd,h denote approximations to Sd and S̃d , respectively. These
approximations will be defined by induction on d .

We first handle the case d = 1, defining

U1,h(g) = g(1) − g(0) (4.8)

and

Ũ1,h( f, w) = h
m−1
∑

i=0

f (ih)
[

w
(

(i + 1)h
)

− w(ih)
]

.

Note that
cost U1,h = 2 c +1

and

cost Ũ1,h � c
1

h
.

Clearly
S1(g) = U1,h(g) (4.9)

and

S̃1,h( f, w) − Ũ1,h( f, w) =

m−1
∑

i=0

∫ (i+1)h

ih
[ f (x) − f (ih)]w′(x) dx

=

m−1
∑

i=0

f ′(ξi,h)h
∫ (i+1)h

ih
w′(x) dx

where ξi,h ∈
(

ih, (i + 1)h
)

for i ∈ {0, . . . , m − 1}. From this we conclude that

|S̃1( f, w) − Ũ1,h( f, w)| ≤ h‖ f ‖C1(I ;R)‖w‖C1(I ;R). (4.10)
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For d ≥ 2, we will use induction on d to define Ud,h and Ũd,h. First, we need
to express Sd and S̃d in terms of Sd−1 and S̃d−1. For Sd , this has already been estab-
lished in Lemma 4.1. Hence, we focus our attention on S̃d . Since the w appearing
in S̃d( f, w) is only a C1-function, we see that det ∇w is merely continuous, and
cannot be approximated to within an arbitrary error by using finitely many samples
of w. Our only hope is to reduce the dimension in S̃d . As we know, this could be
done if f were a constant. Since this is not the case, we shall approximate f by a
piecewise constant function over small subcubes of I d , and then use Lemma 4.1 to
reduce the dimension.

More precisely, let

Kα,h = { h(α + t) : t ∈ I d }

be a subcube, with α ∈ Mh = {0, . . . , m − 1}d , where h = 1/m. Then

S̃d( f, w) =
∑

α∈Mh

∫

Kα,h

f (x)(det ∇w)(x) dx .

Let

eh( f, w) = S̃d( f, w) −
∑

α∈Mh

f (hα)

∫

Kα,h

(det ∇w)(x) dx .

Since
|(det ∇w)(x)| 4 ‖w‖d

C1(I d ;Rd)
∀ x ∈ I d,

it is easy to see that

|eh( f, w)| 4 h‖ f ‖C1(I d )‖w‖d
C1(I d )

. (4.11)

Define

wα,h(t) =
w

(

h(α + t)
)

− w(hα)

h
∀ t ∈ I d . (4.12)

Then the chain rule yields

‖wα,h‖C1(I d ;Rd) ≤ ‖w‖C1(I d ;Rd ) ∀α ∈ Mh (4.13)

and a change of variables x = h(α + t) yields
∫

Kα,h

(det ∇w)(x) dx = hd
∫

Kα,h

(det ∇wα,h)(t) dt = hd Sd(wα,h).

Hence
S̃d( f, w) = hd

∑

α∈Mh

f (hα)Sd(wα,h) + eh( f, w). (4.14)

14



From Lemma 4.1 and (4.14), we see how to reduce the dimension d . These
formulas also suggest that for d ≥ 2, we should define Ud,h as

Ud(g) =

d
∑

j=1

(−1) j+1
[

Ũd−1(g1, j,1, g j,1) − Ũd−1(g1, j,0, g j,0)

]

(4.15)

and Ũd,h as
Ũd( f, w) = hd

∑

α∈Mh

f (hα)Ud,h(wα,h). (4.16)

We then have the following

Lemma 4.3. 1. For f ∈ C1(I d; R) and w ∈ C1(I d; R
d), we have

cost Ũd,h 4 c
(

1

h

)d(d+1)/2

and
|S̃d( f, w) − Ũd,h( f, w)| 4 h · ‖ f ‖C1(I d ;R)‖w‖d

C1(I d ;Rd)
.

2. For g ∈ C1(I d; R
d), we have

cost Ud,h 4 c
(

1

h

)(d−1)d/2

and
|Sd(g) − Ud,h(g)| 4 h · ‖g‖d

C1(I d ;Rd)
.

Proof. The proof is by induction on d . For d = 1, the result follows from (4.9)
and (4.10). So, we proceed to the case d ≥ 2.

Let us first estimate the costs of Ud,h and Ũd,h. We estimate the cost of Ud,h

from (4.15). Note that the evaluation of wα,h requires at most two evaluations of w

and two arithmetic operations. Thus we have

cost Ud,h ≤ 2d cost Ũd−1,h + d 4

(

1

h

)d−1

cost Ud−1,h + c
(

1

h

)d

.

By induction, we obtain

cost Ud,h 4 c
(

1

h

)(d−2)(d−1)/2+(d−1)

= c
(

1

h

)(d−1)d/2

,

Similarly, we get from (4.16) that

cost Ũd,h 4

(

1

h

)d

cost Ud,h + c
(

1

h

)d

4 c
(

1

h

)(d−1)d/2+d)

= c
(

1

h

)d(d+1)/2

,
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as required.
It only remains to estimate the errors of Ud,h and Ũd,h for d ≥ 2. From

Lemma 4.1 and (4.15), we have

Sd(g) − Ud(g) =

d
∑

j=1

(−1) j+1
([

S̃d−1(g1, j,1, g j,1) − Ũd−1(g1, j,1, g j,1)
]

−
[

S̃d−1(g1, j,0, g j,0) − Ũd−1(g1, j,0, g j,0)
])

. (4.17)

Using the induction hypothesis, we obtain

|Sd(g) − Ud,h(g)| 4 h
d

∑

j=1

(

‖g1, j,1‖C1(I d−1;Rd−1)‖g j,1‖
d−1
C1(I d−1;Rd−1)

+

‖g1, j,0‖C1(I d−1;Rd−1)‖g j,0‖
d−1
C1(I d−1;Rd−1)

)

.

From (4.3), (4.4), and this inequality, we get

|Sd(g) − Ud,h(g)| 4 h‖g‖d
C1(I d ;Rd)

, (4.18)

as claimed. Similarly, (4.14) and (4.16) yield

S̃d( f, w) − Ũd( f, w) = hd
∑

α∈Mh

f (hα)[Sd(wα,h) − Ud,h(wα,h)] + eh( f, w).

From (4.11) and (4.18) with g replaced by wα,h , we obtain

|S̃d( f, w) − Ũd( f, w)| 4 hd‖ f ‖C1(I d ;R)

∑

α∈Mh

h‖wα,h‖
d
C1(I d ;Rd)

.

Using (4.13), we finally obtain

|S̃d( f, w) − Ũd( f, w)| 4 hd+1‖ f ‖C1(I d ;R) ·
1

hd
‖w‖d

C1(I d ;Rd )

= h‖ f ‖C1(I d ;R)‖w‖d
C1(I d ;Rd)

,

as required to complete the proof of the Lemma.

Observe that for d = 2, Lemma 4.3 tells us that cost Ud,1/n 4 c n and that
e(Ud,1/n) 4 1/n. By Theorem 4.1, these are optimal. For d ≥ 3, there is no
such match between the lower bounds of Theorem 4.1 and the upper bounds of
Lemma 4.3. We only know that cost Ud,h 4 c n and e(Ud,h) 4 (1/n)2/((d−1)d) when
h = (1/n)2/((d−1)d). Recalling the comments at the end of Section 2, and using
Theorem 4.1 with Lemmas 4.2 and 4.3, we have the main result of this section:
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Theorem 4.3. Let s = 1 and d ≥ 2.

1. If d = 2, then

e(n; S) �
1

n

and

comp(ε; S) � c
1

ε
.

Moreover, let Ud,h be given by Lemma 4.3. Then the approximation |Ud,h| of
the volume operator S, with h � ε, is optimal.

2. If d ≥ 3, then

(

1

n

)1/(d−1)

4 e(n; S) 4

(

1

n

)2/((d−1)d)

and
(

1

ε

)d−1

4 comp(ε; S) 4 c
(

1

ε

)d(d−1)/2

.

Moreover, let Ud,h be given by Lemma 4.3. Then these two upper bounds are
attained by the approximations |Ud,h|, with h = (1/n)2/((d−1)d) and h � ε,
respectively.

Note that we only know that the result of Theorem 4.3 is optimal when d = 2.
Determining tight bounds on the complexity of volume calculation for s = 1 is an
open question for the case d ≥ 3.
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