
Serving Datacube Tuples from Main Memory

Kenneth A. Ross∗

Columbia University
kar@cs.columbia.edu

Kazi A. Zaman
Columbia University

zkazi@cs.columbia.edu

Abstract

Existing datacube precompuatation schemes materialize
selected datacube tuples on disk, choosing the most ben-
eficial cuboids (i.e., combinations of dimensions) to mate-
rialize given a space limit. However, in the context of a
data-warehouse receiving frequent “append” updates to the
database, the cost of keeping these disk-resident cuboids
up-to-date can be high. In this paper, we propose a main
memory based framework which provides rapid response
to queries and requires considerably less maintenance cost
than a disk based scheme in an append-only environment.
For a given datacube query, we first look among a set of
previously materialized tuples for a direct answer. If not
found, we use a hash based scheme reminiscent of partial
match retrieval to rapidly compute the answer to the query
from the finest-level data stored in a special in-memory
data structure. Our approach is limited to the important
class of applications in which the finest granularity tuples
of the datacube fit in main memory. We present analytical
and experimental results demonstrating the benefits of our
approach.

1 Introduction

Datacube queries compute aggregates over database re-
lations at a variety of granularities, and they constitute an
important class of decision support queries. The databases
may represent business data (such as sales data), medical
data (such as patient treatments) or scientific data (such as
large sets of experimental measurements).

An example of a typical datacube is: Broken down by
latitude, longitude, solar-altitude and day, find the maxi-
mum cloud coverage, including subtotals across each di-
mension. This implies that in addition to computing the
maximum cloud coverage over all the data, we would have

∗This research was supported by a David and Lucile Packard Founda-
tion Fellowship in Science and Engineering, by an NSF Young Investigator
Award, by NSF grant number IIS-98-12014, and by NSF CISE award
CDA-9625374.

also have to compute the maximum cloud-coverage over
all latitudes, all longitudes, all latitude and longitude pairs
etc. Since we have 4 dimensions there are24 granularities
at with we would have to compute subtotals. For ease of
representation, the granularities that are aggregated over are
replaced by ALL’s in the result tuple. If we are computing
the maximum cloud coverage over each latitude irrespective
of longitude, solar-altitude or day, we are computing tuples
of the form (latitude ,ALL,ALL,ALL, t) wheret is the
computed aggregate.

Most OLAP systems precompute some or all of these
aggregates to answer queries as quickly as possible. To
answer all possible queries over the datacube, we could
materialize the entire datacube and store it on disk. The
tradeoff is that the datacube may be substantially larger than
the base data and may require more space than available.
This is especially true for large sparse datasets. In [7], a
greedy algorithm is proposed which attempts to maximize
the benefit of the set of aggregates picked. In a subse-
quent paper [5] techniques for the selection of indices in
conjunction with the aggregates were presented. In [15]
algorithms with faster running times but which achieve the
same performance as [7] are developed.

These previously mentioned schemes materialize data
cube tuples on disk and do not exploit the available main
memory. Rapidly decreasing main memory prices have lead
to workstations with over a gigabyte of RAM. The Asimolar
Report on database research [3] states:

Within ten years, it will be common to have a terabyte
of main memory serving as a buffer pool for a hundred-
terabyte database. All but the largest database tables will
be resident in main memory.

Under the circumstances today, even if we can fit the
base table in main memory, we probably will not be able
to fit all the tuples of the data cube. In this paper we
develop a framework which enables us to efficiently answer
queries under these circumstances by materializing a sub-
set of data cube tuples and storing them in memory. An
important benefit of utilizing main memory is that we can
provide answers to queries rapidly without having to go to
disk. Users are likely to require answers to their queries

which are accurate up-to-the-minute. An advantage of our
approach is that we do not have to update a large number of
previously materialized tuples on disk whenever new tuples
are available. We can, instead, efficiently update our in-
memory data structures and provide the user with useful
running aggregates.

The previous work cited has focussed on selecting dat-
acube tuples for materialization at the cuboid level (we
refer to the set of aggregates at a particular granularity as
a cuboid). This means that either all the tuples of a cuboid
are selected for materialization or none at all. In our
framework we can materialize any number of tuples from
any cuboid - our unit of materialization is a tuple. This
enables us to efficiently answer queries which require aslice
of a cuboid.

We use a two-level materialization scheme. Our level-1
store contains datacube tuples. Since we cannot expect to
materialize all datacube tuples, we store only “high value”
tuples in the level-1 store. We analyze what constitutes a
“high value” tuple, and demonstrate that tuples with many
ALLs and tuples with high query probabilities are good
candidates for materialization.

Our level-2 store contains all tuples at the finest granu-
larity. We store the data in a structure that allows a form of
partial match query to answer queries without scanning the
entire finest granularity dataset. We interrogate the level-
2 store only if we find no match in the level-1 store. Our
data structures enable fast incremental updates in response
to new data, thus allowing the datacube server to supply up-
to-date results.

We show how to optimize space between the level-1
and level-2 stores, and how to prioritize tuples for mate-
rialization in the level-1 store. Our experimental results
show that if the available amount of memory is very small,
priority is given to the level-2 store. Once we have an
adequate amount of memory the level-2 store tends towards
its natural size. The experimental results indicate that for
skewed data the choice of a tuple as the unit of material-
ization is a good one. Our experimental results show that
additional memory of a few megabytes enables us to reduce
the response time to 2-4 ms for a typical example, which
is considerably less than the time required to compute the
tuple from the finest level data (194 ms) or to recover a
materialized tuple from disk.

We believe that serving datacube tuples from RAM is
feasible now for a variety of applications. Further, as main
memories increase in size, our techniques will be applicable
for more and more applications.

2 Notation, Terminology and Cost Models

The computation of a data cube query withd CUBE BY
attributes (B1, B2 . . .Bd) involves computing the aggre-

gates over a relation at2d granularities where each granular-
ity is one of the the possible2d subsets of ourd CUBE BY
attributes. Attributes that are not present in such a subset
are replaced by a special valueALL in the datacube re-
sult. We refer to each of these granularities as acuboid
and we use the notationQ(~Bi) to denote the cuboid at
granularity ~Bi. We assume that the aggregate function(s)
to be computed aredistributive or algebraic [4]. (For
simplicity of presentation, we will describe the computation
for a single distributive aggregate function; the extension to
multiple aggregate functions is straightforward. In practice,
one would probably compute several aggregates, such as
sum, count, min, max and sum-of-squares, and derive other
aggregates from these.)

For convenience, a table of symbols is provided in Ap-
pendix A.

2.1 Queries

For now, a “datacube query” (or just “query”) is a re-
quest for a single tuple that may be in the datacube. The
user specifies values for some of the attributes, and ALLs
for the remaining attributes. The answer to the query is
the datacube tuple with that combination of attribute val-
ues/ALLs.1 We will consider more general notions of query
later in Section 4.1.

There are a number of assumptions we could make about
the distribution of queries over the data cube. Queries could
select all the tuples from a particular cuboid or alternatively
we could haveslice queries[5] that select a particular tuple
from a cuboid. Let theith each cuboid in the datacube
have probabilitypi of being queried where for ad attribute

dataset
∑2d

i=1 pi = 1.
We take the most general model of query probability

distribution, namely that thejth tuple in cuboidi has a
probability ti,j of being queried, where

∑
j ti,j = pi.

Our only restriction is that theseti,j probabilities can be
calculated either during or immediately after the datacube
computation itself, before any queries are actually posed.

Several kinds of query distribution can be justified as
reasonable. Both [7, 15] make the assumption that each
cuboid has the same probability of being queried, i.e., the
pi values are equal. For eachi, the ti,j values would also
be equal. We call this probability model theuniform cuboid
distribution.

A second kind of query distribution would assume query
probabilities are proportional to a tuple’scount. We define
the countof a datacube tuple to be the number of tuples
from the base relationRwhich would need to be aggregated

1If the particular combination of attributes in the query does not corre-
spond to an actual datacube tuple, then we can either return a special flag
indicating “no tuple,” or return a tuple with default aggregate values (e.g.,
0 for a count aggregate).

to compute the aggregate associated with the tuple. For
example, the count of the tuple< ALL,ALL, . . . , ALL >
would be|R|, the number of tuples in the base relationR.
(For any cuboid in the datacube, the sum of counts of tuples
in it will be equal to |R|.) We call this thecount based
distribution.

The motivation for a count based distribution is that users
might be most interested in values of tuples for which the
most data is available. If an example attributestatetakes
the value of one of the50 states of the USA, queries will be
more likely to specify those states which have substantial
amounts of data rather than ones for which little information
is available. More detailed motivation for a count based
distribution is provided in Appendix B.

A third kind of distribution would be to specify a pre-
cise weighted query workload. Based on the workload,
appropriate probabilities can be assigned to each tuple in the
datacube at materialization time. We call this aworkload-
baseddistribution. Note that, unlike the other distributions
considered so far, a workload-based probability distribution
might give nonzero query probability to tuples that are not
in the datacube. For example, the workload might contain a
query like “Give the total sales in Idaho of green BMW cars,
irrespective of month sold,” even when there are no actual
sales of green BMWs in Idaho. Further, as we shall see, it
may still be beneficial to explicitly store a tuple indicating
this fact in the level-1 store, rather than requiring a search
of the level-2 store to answer this query.

A special kind of workload-based distribution is one
composed of full granularities. Afull granularity is a
collection of equiprobable queries at a granularity of the
datacube where all the non-ALL attributes range over all
values from the appropriate domain. We call this afull-
granularitydistribution. This distribution is different from a
uniform cuboid distribution that assigns equal probabilities
to datacube tuples at a granularity; there may be fewer
tuples in the cuboid than queries in the corresponding full
granularity.

For example, a full granularity such as “For each car
in domainC of cars, and for each state in domainS of
states, give the total sales of that car in that state” defines
a workload of|C| · |S| equiprobable queries. If a particular
car was not sold in some state, then the uniform cuboid
distribution would have fewer than|C| · |S| queries. Full
granularity workloads are likely to be common, because
they correspond to filling multidimensional grids that are
frequently used in data analysis.

Each of these three distributions satisfies the condition
that “probabilities can be calculated either during or im-
mediately after the datacube computation itself, before any
queries are actually posed.” In the case of the count-based
distribution, we can compute the count aggregate within the
datacube computation. On the other hand, a query distri-

bution that becomes apparent only over time as queries are
posed does not satisfy our condition. We need to know tuple
probabilities in order to properly configure our system.2

In what follows, we shall abuse terminology slightly
by talking about query tuples “in the datacube” or “in a
particular cuboid.” For workload-based distributions, we
must interpret these statements as including queries at the
appropriate granularity that may not actually be in the dat-
acube itself.

2.2 Cost Model

In [7], the cost model is a linear cost model where the
cost of answering a queryQ is the number of rows which
need to be read in order to answer the query. This cost
model is simplistic and does not take into account whether
we have materialized the aggregate in memory or on disk.
If the aggregate is to be computed from the base relation
on disk, the number of disk I/O’s will depend upon which
attributes the relation has been clustered. In [5] the same
cost model is used for indices too. A more appropriate
cost model is to express the cost of answering a query in
terms of the number of memory accesses and the number of
disk I/O’s required. Since our framework does not involve
accessing disk, our analysis will be in terms of number of
memory accesses required.

Another assumption made in earlier work is that the
cost of answering a query on a cuboid which has not been
materialized is equal to the cost of scanning the base table,
i.e the number of rows in the table. This assumption will
not be true if (as we shall do in this paper) we organize the
base data in such a way that we can treat each query for
a non materialized tuple as a partial match retrieval query
against the base data and a subsequent aggregation of the
result tuples.

3 The Tuple Serving Framework

3.1 Problem Description

Our setting of the problem is as follows. Given main
memoryM , and a base relation R, how can we appropri-
ately utilize memory to minimize the average cost of execut-
ing a query over thed dimensional datacubeD constructed
over R according to a defined cost model while simulta-
neously providing update performance at worstO(log|R|).
Our problem addresses the selection of tuples to materialize,
the definition of appropriate data structures, and the opti-
mization of the system’s configuration.

2If the query distribution is unknown, then our framework could be
used with the level-1 store being a cache of previously asked queries.
Dynamic configuration of such a system is beyond the scope of this paper.

The problem is relatively simple for smaller values of
d with moderate attribute cardinalities. In this case we
can store ad dimensional array in memory where each
dimension takes each possible value (including ALL) of the
corresponding attribute. This solution does not scale with
larger values ofd and high attribute cardinalities since the
size of the array will become prohibitively large.

3.2 Overall Approach

The overall approach is to exploit the following key
points which hold for sparse skewed data.

• We store the finest granularity cuboid, since it cannot
be computed from other cuboids. One should use a
data structure that allows the computation of coarser
granularity cuboids without a complete scan of the
finest-granularity data.

• The coarsest granularity cuboids (i.e., those with many
ALLs) are the most expensive to compute from the
base data. On the other hand, the space needed to ex-
plicitly store these datacube tuples is relatively small.

• Skewed datasets and/or query probability distribu-
tions produce cuboids where the tuple probabilities are
skewed. In such situations it is beneficial to selectively
materialize high probability tuples.

We have a two tier framework (Figure 1) for handling
this problem. We consider a tuple to be a< K,V > pair
whereK is a composite key constructed from thed attribute
values andV is the value to be aggregated. The tuples in the
level-1 store may be from any cuboid in the data cube. The
level-1 store is represented as a hash table. Given a query
q, we first check if the result tuple has been materialized in
the level-1 store by hashing on the composite key specified
in q. If not, we can compute it from the finest cuboid tuples
in the level-2 store.

Our level-2 store shown in Figure 1 is similar to that
used for partial match retrieval. We have an array ofn slots
in memory. A set of functionshi, i = 1, . . . , d together map
each possible tuple to one of these slots. Each finest level
tuple is represented as an element in a linked list whose head
pointer is in the slot array.

Note that tuples in the level-1 store can have ALLs as
attribute values, while tuples in the level-2 store cannot.

When a query is answered using the level-2 store, we
want to examine just a fraction of the slots. If the query has
all its attributes specified we would like to be able to look
in exactly one slot. If some of the attributes in the query
are not specified, we would like to use the known attribute
values to limit the set of slots we need to search. Note that
the number of slots is likely to be many orders of magnitude

MAIN MEMORY

QUERY q
Tuples in linked lists

Slot Directory

cuboid
Level−2 Store: finest granularity

Level−1 Store
 (Hash Table)

Selected Coarse
Tuples

Figure 1. Framework for answering queries

smaller than the product of the cardinalities of the attribute
domains.

Suppose that we have space for a slot array with up to
T entries. (We’ll see how to chooseT later.) Then the 1-
dimensional slot array can be visualized as ad-dimensional
array S with array bounds ofb1, . . . , bd in each of thed
dimensions, as long as the productb1b2 · · · bd ≤ T .

We constructd domain mappingsh1, . . . , hd, where
hi maps values in the domain of attributei into the
range 1, . . . , bi. A tuple (v1, . . . , vd, x) with attribute
values vi and aggregate valuex maps to the slot
S[h1(v1)][h2(v2)]...[hd(vd)] . This tuple is placed in
the list whose head pointer is stored in that entry of the
slot array. All finest-granularity tuples are placed in the
appropriate list.

Consider a query that specifies all but two of the at-
tributes (suppose the first two attributes are ALLs in the
query). To answer this query we need to examine onlyb1b2
lists. On average, that means we can ignore1/(b3 · · · bd) of
the finest-level data, a significant improvement over a full
scan.

There are a number of design issues to be addressed
before this framework can be implemented. We haven’t
yet specified how thebi values are chosen, nor how thehi
functions are constructed. We also haven’t yet shown how
to deriveT , the preferred size of the slot array, nor how to
choose the tuples for the level-1 store. Each of these issues
will be addressed in the following sections.

3.3 Optimizing the Level-1 Store

If there is sufficient space, one could conceivably store
all of the datacube in the level-1 store. Given sufficient

memory, we would do just that. However, we expect that
we won’t have sufficient memory to store the complete
datacube since the datacube is orders of magnitude bigger
than the original dataset given sufficiently large attribute
cardinalities and a sufficiently large number of dimensions.

Our intuition suggests two guidelines for choosing tuples
for the level-1 store. The first guideline says “Materialize
tuples with the most ALLs first.” The reasoning behind this
guideline is that (a) the size of these cuboids will be smaller
than the size of cuboids with fewer ALLs, so we get better
space utilization, and (b) queries with more ALLs are more
expensive in the level-2 store: if we can satisfy these queries
in the level-1 store, then we won’t need to interrogate the
level-2 store.

The second guideline says “Materialize tuples with the
highest probabilities first.” The main reason for this guide-
line is that those tuples are more likely to be queried accord-
ing to our cost model.

The two guidelines are often compatible, since datacube
tuples with more ALLs will (in several query distribution
models) tend to have higher probabilities. However, we do
need to prioritize them in order to determine whether or not
to materialize a high-probability tuple with fewer ALLs in
favor of a low-probability tuple with more ALLs. We shall
address this issue in Section 3.5.

We notice that if a tuple is in the level-1 store, it is
very likely (or necessary for the count-based distribution
described in Appendix B) that all coarser tuples are in the
level-1 store. Thus, it doesn’t pay to try to aggregate tuples
in the level-1 store in response to a query. This is borne out
by experiments described in Section 5.

3.4 Optimizing the Level-2 Store

Our level-2 store hasT slots. Given a partial match query
where some attributes are unspecified, we can efficiently
reference the slot addresses which have to be checked by
using an appropriate number of nested for-loops. Within the
for loops, we traverse the list and accumulate all tuples that
match the query. Note that thehi functions map attributes
to a smaller domain, so there may be nonmatching tuples in
the list.

Example 3.1: Consider a query on an 8-dimensional
dataset in which the first two dimensions are ALLs, and
the other six are specified. Using the terminology of
Section 3.2, suppose the specified attributesv3, . . . , v8 are
mapped toy3 , . . . , y8 via h3, . . . , h8 respectively. Letb1
andb2 be b1 andb2. Then the query can be answered ac-
cording to the pseudo-code in Figure 2 that assumes arrays
start at index 1. We have a total ofb1b2 lists to traverse.2

Choosing thebi Values

We now address the question of how to choose thebi val-
ues. At one extreme, we could give high values to some
attributes and low values to others. At the other extreme,
we could try to balance allbi values among the various
attributes. Which is more appropriate?

An answer to this question appears to require a weighted
average of the cost of all queries that reach the level-2 store.
However, this weighted sum has a special form that makes it
amenable to analysis. All terms in the sum include a product
of some of thebis. Considerb1 andb2. The terms fall into
four categories: those that include bothb1 and b2, those
that include neither, those that include justb1, and those
that include justb2. In the case that queries on all cuboids
are equiprobable (e.g., the uniform cuboid distribution or
the count based distribution) there is symmetry among all
thebis. By symmetry, there is a one-to-one correspondence
between terms including justb1 and terms including justb2.
Thus the overall weighted sum has the form

b1b2X1 + (b1 + b2)X2 +X3

for some expressionsX1, X2 and X3. If the product
b1b2 · · · bd is fixed, butb1 andb2 are allowed to vary subject
to that constraint, which configuration minimizes the ex-
pression above? The only term that actually changes is the
middle term(b1 + b2)X2. On the real numbers, this term is
minimized (subject tob1b2 remaining fixed) whenb1 = b2.
If b1 6= b2 then we can reduce the term by bringingb1 andb2
closer together. Since the choice ofb1 andb2 was arbitrary,
we can apply the same reasoning to all of thebi values.

Thus we should aim to distribute thebi values in a
balanced fashion, withbi ≈ T 1/d. If an attribute cardinality
is actually less than this computedbi, then we can use the
attribute cardinality and adjust the otherbj values upwards.

The intuition behind the choice of balancedbi values is
the following: Suppose we were to start with a balanced set
of bis, and then doubledb1 while halvingb2. Then queries
depending onb2 would take twice as long, while queries
depending onb1 would take half as long. Adding up the
cost of queries that depend on exactly one ofb1 andb2 we
get a cost equal to(2 + 1/2)/2 = 1.25 times the original
cost, while the other queries do not change in cost.

In the general case, where queries on all cuboids are not
equiprobable, the optimal set ofbis is obtained by solving
a nonlinear integer programming problem. Because of
the intractability of finding an optimal solution, heuristic
approximations will usually have to suffice.

Choosing powers of 2 for thebi’s might lead to hash
functions that are quicker to compute using bitwise oper-
ations. However, rounding up/down to powers of 2 makes
the hashing less balanced among the attributes, which con-
tributes indirectly to overall performance by requiring more

initialize(total); /* for sum, would be "total=0" */
for (x1=1; x1<=b1; x1++) {

for (x2=1; x2<=b2; x2++) {
for each tuple in the list starting at S[x1][x2][y3]...[y8] {

if the tuple matches the query
accumulate(total,aggregate-value);

/* for sum, would be "total += aggregate-value" */
}

}
}

Figure 2. Psuedo-code for computing tuples from the level-2 store

tuples to be scanned in the level-2 store. Further, for most
queries the hashing cost will be small compared to the
scanning/aggregation cost in the level-2 store.

Choosing thehi Functions

The properties desirable for thehi functions are that
they should uniformly distribute tuples among the range
1, . . . , bi as much as possible. By distributing tuples close to
uniformly, we avoid the problem of having some very long
lists and many empty lists in the slot array: the empty lists
would hardly be used by queries, and the long lists would
be traversed by many independent queries, leading to poor
performance. Like any hash function, there is a limit to how
good a jobhi can do in the presence of skew. If some value
of attributei occurs fifty percent of the time, then the image
of that attribute underhi must occur at least fifty percent of
the time.

We can be a little more informed than an ordinary hash
function, because we can precompute the single-attribute
distributions in advance, and adjust thehi functions accord-
ingly. Consider a domain of sizeN for attributei, with
N ≥ bi and letf1, . . . , fN be the frequencies of each of
theN attribute values. We wish to partition the domain into
subsetsS1, . . . , Sbi such that eachSj is of roughly the same
cardinality, and so that

∑
x∈Sj fx is as balanced as possible.

By choosingSjs of the same cardinality, we reduce the
number of bits needed to distinguish members of eachSj .
By balancing the frequencies, we make the mapping into the
slot array more uniform. An exact solution to this subprob-
lem is beyond the scope of this paper. A useful heuristic
is to allocate domain elements to setsSj in decreasing
frequency order, putting a domain element in the set with
lowest total frequency, stopping when the cardinality ofSj
is larger thatN/bi.

Somebi values may be slightly higher than others: some
will equal bT 1/dc and others will equaldT 1/de. We can
analyze each of the attributes to see which would benefit the
most (in terms of spreading the data more uniformly) and

choose those attributes as recipients of the higherbi values.
Once the mappings to setsSj has been determined, our hash
functions can be implemented by storing each (domain-
value,j) pair (for a domain value mapping toSj) itself in
a hash table or sorted array.

Optimizing the Size of the Slot Array

It seems that there should be a natural size for the slot
array. A slot array that was too big would give poor time
performance because too many (mostly empty) slots would
need to be checked. A slot array that was too small would
give poor time performance because most lists would be
very long, with few actual matches, and time would be
wasted traversing the lists.

Thus we seek the time-optimal slot array size. Since
queries with the most ALLs will dominate the average cost,
we can approximate the overall time-optimum by optimiz-
ing the slot array size for queries at the first level not sub-
stantially present in the level-1 store; call this the “critical
level”. Letk denote the number of ALLs at the critical level.
In the following analysis, we assume a perfectly balanced
distribution ofbi values, and a uniform distribution of tuples
among lists.

If T is the slot array size, then we will examineT k/d

slots for a critical-level query. Thus the overall cost is equal
to

T k/d(s+ nl/T)

wheren is the number of finest granularity tuples,s is the
cost of a slot access, andl is the cost of a list element access.
This function is minimized when

T =
nl(d− k)

ks

So, for example, ifk = d/2, andl = s, we would expect
a number of slots equal to the number of finest-granularity
tuples.

So far we haven’t considered any limitations on memory
availability. As we’ll see in Section 3.5 we will probably

settle for a slot array size smaller than the time-optimal size
when the memory budget is limited. We may not have
sufficient memory for a time-optimal choice. Further, it
may be more beneficial to spend memory on the level-1
store than to spend it on reaching the time-optimal slot array
size.

3.5 Space Issues and Tradeoffs

We will clearly have a limited space budget, and so we
need to specify how to allocate that space among the level-1
and level-2 stores.

List Representation in the Level-2 Store

The list representation can be made compact by observing
that we don’t need to store complete key information in
the list nodes. We already have partial information about
the key based on the slot that the list emanates from. For
attributei, if gi is the maximum number of elements that
map to a single element viahi, then we need to store a
number in the range1, . . . , gi for attributei. Thus we need
to store a number in the range1, . . . , g1g2 · · · gd in each list
element. Each list element also needs a pointer to the next
list element.3

Given the sizep of a pointer in bits, we can estimate
the total size of the lists in the level-2 store asn(p +
log(g1g2 · · · gd)) bits. To make the matching more ef-
ficient within a list, using bit operations typically found
in machine instruction sets, we could specify separate bit
ranges for each attribute. In that case the space needed is
n(p+ dlog(g1)e+ . . .+ dlog(gd)e)

Assuming that the finest-granularity data fits in memory,
this amount is smaller than the available memory. The
remaining memory is used for the level-1 store and the slot
array in the level-2 store.

Space in the Level-2 Slot Array

Consider a datacube tuplet from cuboidi with ki ALLs.
The cost of looking in the level-2 store fort is T ki/d(s +
nl/T). Thus the average cost of a lookup to the level-2 store
is given by

A =
∑

t not in level-1 store; all cuboidsi
ti,jT

ki/d(s+nl/T)

whereti,j is the probability thatt is queried. Suppose we
keep a running sum of theti,j values ofunmaterialized
tuples at each value ofi in the level-1 store, and denote

3One could optimize the list so that a node contains more than one
element, saving some space for pointers, but we do not pursue such
optimizations here.

the sum asCi for i = 1, . . . , 2d. Then the equation above
reduces to

A =
2d∑
i=1

CiT
ki/d(s+ nl/T).

The derivative ofA with respect toT is given by

A′ =
2d∑
i=1

Ci(kisT ki/d−1 − nl(d− ki)T ki/d−2)/d.

We will use these expressions to evaluate the tradeoff be-
tween the level-1 and level-2 stores below.

Space in the Level-1 Store

Suppose that we’ve computed the datacube, and are try-
ing to decide which tuples to place in the level-1 store.
Materializing a tuplet from cuboidi with ki ALLs and a
probability ofti,j will benefit us by an amount equal to

Bt = ti,jT
ki/d(s+ nl/T).

This amount corresponds to the expected reduction in cost
of searching the level-2 store.

Thus we should materialize datacube tuples in strictly
decreasing order of theirBt values. Observe that the for-
mula forBt is exponential inki while linear in ti,j . We
would materialize a levelk−1 tuple in preference to a level
k tuple only if the probability of the levelk − 1 tuple was
(roughly) a factor ofT 1/d higher than that of the levelk
tuple. As a result, our materialization pattern will likely
include a good coverage of the top levels of the cube, with
much more scattered coverage of the remainder of the cube.

The Tradeoff Equation

We can measure the cost of storing one level-1 tuple as the
product of the tuple size by a hash fudge factor (typically
1.2). Let’s suppose that the storage cost per tuple at level-1
is given byq. The storage cost of one slot in the level-2
store is equal to the slot size. Let’s denote the slot size byz.

We have some memory left over after accounting for the
lists, and we need to decide how to balance these needs
among level-1 storage (materializing additional tuples) and
level-2 storage (increasing the sizeT of the slot array). Our
approach is to give a unit of memory to the piece of storage
the “needs” it the most. We measure the need of the level-2
store as−A′/z. We measure the need of the level-1 store
asBt/q wheret is the next tuple in line to be materialized.
Which of these quantities is greater determines which store
will be allocated the next unit of storage.

After such an allocation, the parameters change, andBt
andA′ need to be recalculated. We continue this process

until we have exhausted all of the available memory. (In
practice, we could save computation by allocating memory
in batches, rather than one unit at a time.)

3.6 Computing the Materialized Tuples

We can use a datacube computation algorithm [1, 4, 13,
17], to materialize datacube tuples on disk. In this cube
computation, we compute both the original aggregate as
well as any additional aggregates (such as the count) needed
to compute the tuple probabilities. We materialize the cube
on disk ind files, one for each number of ALLs. An external
sort is performed on each of these files to sort them into
decreasing probability order.

The finest-granularity file gives usn, the total number of
finest-granularity tuples, which we need in order to config-
ure the stores appropriately. We can also calculate the num-
ber of distinct values of each attribute, and their frequencies
from the tuples withd − 1 ALL’s. This information will
help us choose thebi values and construct thehi functions.

We then treat each of thed files as a sorted run to be
“merged” according to the formula forBt (Section 3.5).
Tuples are read and inserted into the level-1 store until all of
the memory is accounted for. (We could use an extendible
hashing technique such as linear hashing [9] to avoid having
to rebuild the hash table as more tuples are read.)

In the case of workload-based distributions, we need to
also consider the probabilities of tuples at each granularity
that arenot in the datacube result. In general, we would
have to explicitly list all possible combinations of attributes
that yielded a nonzero probability, and consider them for
materialization in the level-1 store. However, for full gran-
ularity distributions, there is a particularly efficient solution
that does not require the storage of nonexistent tuples.

Recall that in a full granularity distribution, all combi-
nations of non-ALL attributes at a particular granularity are
equally likely. As a result, once one tuple at that granularity
is chosen for materialization, all of the remaining tuples
at that granularity must be next in line for materialization,
according to our formula forBt. Thus, given sufficient
space to materialize the whole granularity, the complete
cuboid will be materialized. Rather than explicitly mate-
rializing the nonexistent tuples, we can simply switch on
a bit indicating that the granularity has beencompletely
stored in the level-1 store. Thus, if the bit is on and a
query to that granularity finds no match in the level-1 store,
we can immediately conclude that the tuple doesn’t exist,
without consulting the level-2 store. The overhead (2d bits)
is negligible.

At this point we have derived a value forT , the slot array
size.

We allocate the slot array of sizeT , derive corresponding
balancedbi values, and construct thehi functions. Finally,

we read in the finest granularity data and store it in the level-
2 store.

3.7 Maintaining Materialized Tuples

In our framework, we may have new data being fre-
quently appended to the existing data. In such a situation,
we have to update or add a tuple to our level-2 store as well
as update any materialized tuples in the level-1 store.

If the tuplet has a matching tuple in the level-2 store, we
update its value. Otherwise we add this tuple to the level-2
store. Note that a new tuple will map to exactly one slot, so
we traverse just one list on an update.

In general, we may need to check2d slots in the level-1
store for all possible tuples that might need to be updated.
For a count based distribution, however, if a tuplet is
materialized in the level-1 store, any generalization [14]
(the tuple formed by replacing one or more attribute values
byALL’s) of the tuple has at least as high a count and more
ALL attributes, and so must also be present in the level-1
store. When a tuplet is added, the first tuple we update
is the tuple withALL in every attribute position. We then
search for generalizations of the tuple on a level by level
basis starting from the level of the cuboid where all but one
attribute isALL. If a tuple is not found, we know that
no specialization of this tuple would also be found. This
breadth first traversal of the cube allows us to cut down on
the2d possible cube updates.

Another potential optimization of the update process
involves keeping a bit for each cuboid indicating whether
there is at least one tuple from that cuboid in the level-1
store. One can then cheaply exclude from the2d cuboids
any cuboid that has no tuples materialized. (We shall
see experimentally that this optimization improves update
times.)

If the number of appended tuples is large we may need
to periodically rebuild our data structures for one of several
reasons:

1. There is no space remaining in memory.

2. The underlying data distribution and hence the best
choice ofhi has changed.

3. The number of slots may no longer be ideal since the
average number of tuples in a slot becomes too large.

4. New domain values appear for some attributes.

We would not expect this reorganization to take place
very often, since the base data contributing to the stored
datacube is probably orders of magnitude larger than the
size increments accumulated over a short period. To plan
for future updates we could allow some spare memory for
new records, and preallocate some extra attribute domain
space for yet-unseen attribute values.

4 Extensions

4.1 Range Queries

We can extend our framework to efficiently answer range
queries. A range query specifies bounds on attribute values
rather than specifying anALL. The simplistic way of
answering a range query would be to treat a range query
as the equivalent query withALL’s over the level-2 store,
and then check if each matching tuple falls within the range.
Essentially we arepulling upthe selection.

We adopt a more sophisticated approach where we con-
struct thehi functions such that they preserve the domain
ordering on the attributes. In other words, ifx andy were
values in the domain of attributei such thatx < y in the do-
main ordering, then it must be the case thathi(x) ≤ hi(y).
Then to answer a query in the level-2 store for attribute
i betweenx and y, we need only check offsets between
hi(x) andhi(y) in theith index of the slot array. Our hash
functionhi now performs a special kind of hashing known
as range-partitioning.

Example 4.1: Consider a modification of Example 3.1 in
which the second attribute is used in a range constraint
instead of as an ALL. Suppose that we wish to compute
the aggregate for values of the second attribute betweenv2

andv′2. Let low2 equalh2(v2) andhigh2 equalh2(v′2).
Then the query would be answered using the pseudo-code
in Figure 3 (using the same terminology as Example 3.1).
We traverseb1∗(high2 - low2 + 1) lists.2

The cost of such an approach is that the besthi func-
tions obtainable under the ordering constraint may be less
uniform than an unconstrained choice.

A similar technique could be used in the level-1 store if
we use a hash function that is similar to the composition of
thehis in the level-2 store. We would need to be certain
that all tuples in the query’s domain (i.e., with the right
number of ALLs) actually appear in the level-1 store. Thus,
to support range queries, we have an extra incentive to
materializeall tuples in a datacube level, rather than leaving
out some tuples with very small counts.

4.2 Hierarchies

In real life we frequently have hierarchies on attributes.
For example, in a dataset on the American National Bas-
ketball Association the teams fall into a natural hierarchy
(Figure 4). In general, the hierarchy may not be a balanced
tree.

One branch of this hierarchy would beKnicks ,
Atlantic Division , Eastern Conference
specifying the team name, division and conference.

Western ConferenceEastern Conference

Atlantic Central Pacific Midwest

Knicks Nets Heat

Figure 4. A partial hierarchy for the NBA

While one user may be interested in calculating the total
points scored at the division level, another might be inter-
ested in the same statistic at the conference level. In our
base data, we would only be storing the information about
the team; it would be a waste of space to store the division
and conference since these are dependent upon the team.

We can adapt our scheme to handle hierarchies by mir-
roring the structure of the hierarchy in our domain ordering.
We order our domain lexicographically from higher levels
in the hierarchy down to the bottom level in the hierarchy.
In the example above, we order the teams according to
(conference,division,team). Queries on the hierarchy now
correspond to range queries, which we would handle as in
Section 4.1.

5 Experimental Results

We experiment with an 8 dimensional subset of cloud
coverage data [6] which has 1015367 base tuples. The total
number of datacube tuples is 102745662. Each tuple can
be represented by 64 bits for the CUBE BY attributes and
32 bits for the aggregate. The finest-granularity data would
occupy 12 megabytes, while the full datacube would occupy
1.2 gigabytes.

We also carry out experiments on a uniform dataset. This
uniform dataset has the same dimensionality and number of
tuples as the cloud coverage data. The cardinality of the
attributes are fixed to be the same as those of the cloud data.
This enables us to compare results across both datasets.
Though the base data contains 1015367 tuples, the datacube
itself is larger and consists of 195206797 tuples.

We have implemented the algorithms presented here in
C and the experiments were carried out on a 300 MHz Sun
Ultra-2 running Solaris5.6. The implementation consists
of three distinct modules. The first module analyzes the
dataset and computes the optimal size of the level-1 and
level-2 stores. The second module chooses the hash func-
tions and bucket sizes for each of the attributes. The third
module is the core of the system where any datacube query
is answered using the level-1 or the level-2 store. The
timing measurements are computed by measuring the total

initialize(total); /* for sum, would be "total=0" */
for (x1=1; x1<=b1; x1++) {

for (x2=low2; x2<=high2; x2++) {
for each tuple in the list starting at S[x1][x2][y3]...[y8] {

if the tuple matches the query
accumulate(total,aggregate-value);

/* for sum, would be "total += aggregate-value" */
}

}
}

Figure 3. Psuedo-code for Range Queries

execution time taken for a set of queries and averaging over
the size of the set. In the following graphs the horizontal
axis shows the number of megabytes available beyond the
space needed for the finest-granularity data.

Example 5.1: Consider the cloud coverage dataset. Fig-
ure 5 shows various measures of the performance of our
algorithm for a range of available memories. Figure 5(a)
shows the chosen size of the slot array in megabytes. Fig-
ure 5(b) shows the space required for the level-1 store in
megabytes. Figure 5(c) shows the overall query cost to
the level-2 store. (The cost of checking the level-1 store
is negligible.) Figure 5(d) shows the number of tuples from
each level in the cube that are resident in the level-1 store.
Figure 5(e) shows the percentage of tuples of each level in
the cube (the number of tuples from a level present in the
level-1 store divided by the total number of tuples present
in that level in the complete cube) resident in the level-1
store. Figure 5(f) shows the average update cost of a tuple
for two different strategies. The first strategy checks for
each of the2d generalizations of a tuple in the level-1 store
while the second strategy only looks for generalizations for
which at least one tuple has been materialized (as described
in Section 3.7). The queries are generated according to the
count based distribution.

These results show that as we increase memory there is
a rapid increase in the number of slots which subsequently
tapers off. The graph is flat in some places because there
is no distinct integer solution which corresponds to the
predicted slot array size. In contrast the number of tuples
in the level-1 store increases linearly with memory. There
is initially a rapid decrease in query cost. As we increase
the amount of memory available the decrease becomes less
rapid. The initial gain is very sharp since we are first
materializing the very expensive tuples with a high number
of ALL’s. Figure 5(d) shows that we do not proceed strictly
in a level by level fashion while populating the level-1
store. Figure 5(e) illustrates the impact of materializing the
high count tuples; the normalized counts of tuples stabilize
quicker than the number of tuples in the previous figure.

Figure 5(f) shows that checking the bit for cuboids with no
materialized tuples allows us the save greatly on the update
cost when the size of the level-1 store is small.2

Example 5.2: Consider the uniform dataset with a count
based query distribution. Figure 6 shows various measures
of the performance of our algorithm for a range of available
memories. Figure 6(a) shows the chosen size of the slot
array in megabytes. Figure 6(b) shows the space required
for the level-1 store in megabytes. Figure 6(c) shows the
overall query cost to the level-2 store. Figure 6(d) shows
the number of tuples from each level in the cube that are
resident in the level-1 store. Figure 6(e) shows the percent-
age of tuples from each level in the cube that are resident
in the level-1 store. Figure 6(f) shows the average update
cost of a tuple for two different different strategies outlined
earlier.

The results for the slot array size, number of tuples in
the level-1 store and the expected query cost are similar
to those of the cloud dataset. As indicated in Figure 6(d)
and Figure 6(e), for uniform datasets, we materialize tuples
from one level only after materializing a considerable frac-
tion of the earlier levels. Each level has a distinct starting
point on the X axis (we do not reach the starting points
for some of the levels) unlike the cloud coverage dataset
where we materialize the high benefit tuples from each of
the level at the beginning. For uniform data we tend to
materialize whole cuboids (since all tuples in a cuboid have
counts close to each other) which is reflected in the fact
that the curves are less smooth. Figure 6(f) shows that the
difference between strategies is significant even when the
size of the level-1 store is large. This is because even with
a large level-1 store many cuboids are still untouched.2

Some interesting features of our results are the tradeoffs
between the slot array size and that of the level-1 store.
Initially a slight increase in the slot array size causes a great
reduction in the partial match cost (the average number
of list elements is greatly reduced), with large amounts
of memory the slot-array tends to its natural size. The

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

S
iz

e
of

 S
lo

t A
rr

ay
 in

 M
B

Total Additional Memory Used in MB

"slot_array_size"

0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
iz

e
in

 le
ve

l-1
 s

to
re

 in
 M

B

Additional Memory Used in MB

"tuples_level_1"

(a) (b)

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

in
 m

ill
is

ec
on

ds

Additional Memory Used in MB

"query_cost"

0

200000

400000

600000

800000

1e+06

1.2e+06

0 10 20 30 40 50 60 70 80

N
um

be
r

of
 tu

pl
es

 in
 le

ve
l_

1
st

or
e

Additional Memory Used in MB

"8_tuples"
"7_tuples"
"6_tuples"
"5_tuples"
"4_tuples"

(c) (d)

0

20

40

60

80

100

0 20 40 60 80 100 120

P
er

ce
nt

ag
e

of
 tu

pl
es

 p
er

 le
ve

l i
n

le
ve

l_
1

st
or

e

Additional Memory Used in MB

"8_level"
"7_level"
"6_level"
"5_level"
"4_level"

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

A
ve

ra
ge

 U
pd

at
e

C
os

t i
n

m
ill

is
ec

on
ds

Additional Memory Used in MB

"cuboid_info"
"independent"

(e) (f)

Figure 5. Experimental results for Example 5.1.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

S
iz

e
of

 S
lo

t A
rr

ay
 in

 M
B

Total Additional Memory Used in MB

"slot_array_size"

0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
iz

e
in

 le
ve

l-1
 s

to
re

 in
 M

B

Additional Memory Used in MB

"tuples_level_1"

(a) (b)

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

in
 m

ill
is

ec
on

ds

Additional Memory Used in MB

"query_cost"

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 10 20 30 40 50 60 70 80

N
um

be
r

of
 tu

pl
es

 in
 le

ve
l_

1
st

or
e

Additional Memory Used in MB

"8_tuples"
"7_tuples"
"6_tuples"
"5_tuples"

(c) (d)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

P
er

ce
nt

ag
e

of
 tu

pl
es

 p
er

 le
ve

l i
n

le
ve

l_
1

st
or

e

Additional Memory Used in MB

"8_level"
"7_level"
"6_level"
"5_level"

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

A
ve

ra
ge

 U
pd

at
e

C
os

t i
n

m
ill

is
ec

on
ds

Additional Memory Used in MB

"cuboid_info"
"independent"

(e) (f)

Figure 6. Experimental results for Example 5.2.

difference between the uniform and real world data in terms
of probability distribution within a level illustrates that for
non-uniform datasets it is profitable to choose the tuple over
the cuboid as the unit of materialization.

Example 5.3: We now experiment with the cloud cover-
age dataset according to the uniform cuboid query model.
The graphs corresponding to this experiment are shown in
Figure 7. The sizes of the level-2 store and the level-1
vary in a similar fashion to the graphs of the high count
query model. The main distinction lies in the composition
of tuples materialized in the level-1 store. Since each
tuple in a cuboid has the same benefit, the effective unit
of materialization becomes a cuboid rather than a tuple.
In the graphs of Figure 7 we see that all the tuples with
7 ALLS are materialized rapidly while no tuples with 4
ALLS are materialized across the entire range of additional
memory shown. This levelwise progression is characteristic
of this query model. We see that the update cost difference
between strategies is even more pronounced than in the
uniform dataset case.2

In Figure 8 we show the number of buckets assigned to
each attribute of the cloud dataset for a estimated level-
2 size of90000 slots. The solution which assigns86400
slots tries to balance thebi values, but uses some additional
heuristics. For example, any attribute that has a single value
occurring more than fifty percent of the time is assigned just
two buckets.

Once thebi values for each of the functions have been
assigned we use the methods described in Section 3.4 to
compute the hash functions themselves. The images of each
attribute value for attribute number1 in the cloud data set
are shown in Figure 9. The above techniques are used for
computing thebi’s andhi’s in all the previously described
experiments.

We see that for all the examples, with just tens of
megabytes of additional memory, our response time is be-
tween 2 and 4 ms. The time taken to compute a tuple
by scanning an array containing the finest granularity data
would have been 194 ms. Compared with a disk based
approach, our techniques provide query performance faster
than a disk lookup on a conventional disk with latencies of
at least 10 ms per access.

While we clearly beat disk-based systems for single
datacube tuple queries, we may not beat a disk-based ma-
terialization for some queries returning sets of tuples. For
example, consider a dataset with three dimensions, namely
state, year, and model, for a car sales database. A query
such as “Find total sales for each combination of year and
model in New York” would be particularly efficient in a
disk-based system if the data were clustered lexicographi-
cally by (state,year,model). The answers would reside on
a small number of disk pages, so the I/O cost could be

Attribute Number Cardinality Buckets Assigned
1 30 6
2 8 4
3 152 5
4 352 5
5 7037 6
6 101 2
7 10 2
8 179 6

Figure 8. Number of buckets assigned per
attribute

Attribute Value Hash Image
1, 10, 11, 23, 29 1
5, 6, 16, 17, 26 2
7, 8, 9, 15, 18 3

12, 19, 24, 27, 28 4
2, 13, 14, 21, 25 5
3, 4, 20, 22, 30 6

Figure 9. Hash function for attribute 1

amortized over many tuples. Our approach, on the other
hand, would pay a computation cost for each answer tuple,
which could add up to more than the I/O cost.

Despite the scenario above, we still expect to beat disk-
based materializations for most queries returning sets of
tuples. If the query above had instead been “Find total sales
for each combination of state and year for Taurus cars,”
then the clustering by (state,year,model) would not help,
and many more disk pages would need to be accessed. In
the absence of redundancy,4 there can be just one physical
ogranization. That organization will benefit some queries,
but many queries will still require essentially random I/O.

6 Related Work

Most related work [7, 15] has focussed on the problem
of materializing cuboids on disk with a constraint on the
amount of disk space available. In [8] the problem of
efficiently storing and querying the materialized tuples is
addressed by usingcubetrees. An alternative to materialized
datacubes called small materialized aggregates (SMA) is
introduced in [10].

In [5], views and indices are chosen to be materialized
in terms of a set of queriesQ. The algorithms introduced
operate upon a data structure called a query view graph

4Redundancy is not a good option, because of the size of the datacube
and the number of copies needed to cover all attribute prefixes.

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

S
iz

e
of

 S
lo

t A
rr

ay
 in

 M
B

Total Additional Memory Used in MB

"slot_array_size"

0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
iz

e
in

 le
ve

l-1
 s

to
re

 in
 M

B

Additional Memory Used in MB

"tuples_level_1"

(a) (b)

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

in
 m

ill
is

ec
on

ds

Additional Memory Used in MB

"query_cost"

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 20 40 60 80 100 120

N
um

be
r

of
 tu

pl
es

 in
 le

ve
l_

1
st

or
e

Additional Memory Used in MB

"8_tuples"
"7_tuples"
"6_tuples"
"5_tuples"

(c) (d)

0

20

40

60

80

100

0 20 40 60 80 100 120

P
er

ce
nt

ag
e

of
 tu

pl
es

 p
er

 le
ve

l i
n

le
ve

l_
1

st
or

e

Additional Memory Used in MB

"8_level"
"7_level"
"6_level"
"5_level"

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

A
ve

ra
ge

 U
pd

at
e

C
os

t i
n

m
ill

is
ec

on
ds

Additional Memory Used in MB

"cuboid_info"
"independent"

(e) (f)

Figure 7. Experimental results for Example 5.3.

which contains nodes corresponding to each query as well
as each possible view. Note that the total number of possible
queries over a datacube is even larger than the datacube
itself. Hence, data structures like a query view graph are
not scalable for a large set of queries.

There are a number of different datacube computation
algorithms. The array-based algorithm proposed by Gray
et al. [4] is essentially a main memory algorithm, where
all the tuples of the finest level of the datacube are kept in
memory as ak dimensional array, wherek is the number
of CUBE BYattributes. Zhou et al. [17] have proposed
an array based algorithm that computes the datacube us-
ing array-chunking techniques. By managing the order in
which chunks are processed, substantially less of the result
array needs to be kept in memory at any one time than with
the algorithm of Gray et al. The PIPESORT algorithm [1]
tries to optimize the overall computation of a datacube by
providing a set of paths which cover the search lattice and
then executing each path in turn. This algorithm makes
use of cost estimates of the various ways to compute each
cuboid to determine which parent cuboid will actually be
used to compute the tuples. The OVERLAP algorithm [1]
tries to minimize the number of disk accesses by overlap-
ping the computation of the cuboids, by making use of
the partially matching sort orders to reduce the number
of sorting steps performed.Partitioned-Cube and
Memory-Cube [13] are efficient algorithms for computing
datacubes which work particularly well for sparse data. The
computation of datacube views using wavelets is examined
in [16]. Work on a histogram based approach to answer data
cube queries is described in [11]. This approach provides
approximate and not exact answers to queries.

Most typical partial match retrieval schemes [2, 12] are
hash based. In these schemes each attribute in a record maps
to a bitstring and the we obtain a signature by concatenating
the bitstrings. Each record is mapped into a bucket based on
its signature. A partial match query is processed by produc-
ing the bitstrings for the specified attributes. Based on these
bitstrings we can compute a set of candidate signatures by
filling in the unspecified bits in all possible ways. We check
the buckets corresponding to each candidate signature for
matching records. These schemes optimize the number of
bits assigned to the bitstring of an attribute based on the
probability of that attribute being specified in a query. Our
technique is more efficient than partitioning by bits since
we are not limited tobi values being powers of 2.

Our work is distinctive in that we focus on making
appropriate use of available main memory. Our unit of
materialization is a tuple rather than cuboid, a decision
that is appropriate when dealing with skewed rather than
uniformly distributed data. We also investigate how to best
organize the finest granularity cuboid tuples to best answer
queries which require an unmaterialized datacube tuple as

the answer.

7 Conclusions

We have introduced a main memory based framework
for answering datacube queries efficiently. We exploit the
fact that while the entire datacube is much larger than
available memory, there is often enough space for the finest
granularity cuboid. By materializing a well chosen set of
tuples in memory, it is possible to compute any datacube
tuple efficiently without having to go to disk. Apart from the
reduced time for processing queries this also requires con-
siderably less maintenance cost than a disk based scheme
in an append-only environment. Our experimental results
show query performance in the 2-4 ms range for a typical
example. Future work will consider how to deal with situa-
tions where the finest granularity data doesn’t fit in memory.

References

[1] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta,
J. Naughton, R. Ramakrishnan, and S. Sarawagi. On the
computation of multidimensional aggregates. InProceed-
ings of the 22nd International Conference on Very Large
Databases, Mumbai,India, 1996.

[2] A. Aho and J. Ullman. Optimal partial-match retrieval where
fields are independently specified.ACM Transactions on
Database Systems, 4(2):168–179, 1979.

[3] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin,
H. Garcia-Molina, J. Gray, J. Held, J. Hellerstein, H. V.
Jagadish, M. Lesk, D. Maier, J. Naughton, H. Pirahesh,
M. Stonebraker, and J. Ullman. The Asilomar report on
database research.ACM Sigmod Record, 27(4), 1998.

[4] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Riechart, M. Vekatrao, F. Pellow, and H. Pirahesh. Data
Cube: A relational aggregation operator generalizing group-
by, cross-tab and sub-total.Data Mining and Knowledge
Discovery, 1(1), 1998.

[5] H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman.
Index selection for OLAP. InProceedings of the 13th ICDE.
IEEE Computer Society, 1997.

[6] C. J. Hahn, S. G. Warren, and J. London. Edited
synoptic cloud reports from ships and land stations
over the globe, 1982-1991. Available from
http://cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html, 1994.

[7] V. Harinarayan, A. Rajaraman, and J. Ullman. Implement-
ing data cubes efficiently. InProceedings of the 1996
ACM SIGMOD Conference on Management of Data, Mon-
treal,Canada, 1996. Association for Computing Machinery.

[8] Y. Kotidis and N. Roussopoulos. An alternative storage or-
ganization for ROLAP aggregate views based on cubetrees.
In Proceedings of the 1998 ACM SIGMOD Conference on
Management of Data, Washington, Seattle, 1998. Associa-
tion for Computing Machinery.

[9] W. Litwin. Linear hashing: a new tool for file and table ad-
dressing. InProceedings of the 6th International Conference
on Very Large Databases, 1980.

[10] G. Moerkotte. Small materialized aggregates: A light weight
index structure for data warehousing. InProceedings of
the 24th International Conference on Very Large Databases,
New York, August 1998.

[11] V. Poosala and V. Ganti. Fast approxiamte answers to
aggregate queries on a data cube. In11th International Con-
ference on Scientific and Statistical Database Management,
pages 24–33. IEEE Computer Society, 1999.

[12] K. Ramamohanrao, J. Lloyd, and J. Thom. Partial-match
retrieval using hashing and descriptors.ACM Transactions
on Database Systems, 8(4):552–576, 1983.

[13] K. Ross and D. Srivastava. Fast computation of sparse dat-
acubes. InProceedings of the 23rd International Conference
on Very Large Databases, Athens,Greece, 1997.

[14] K. Ross and K. Zaman. Optimizing selections over data
cubes. Technical Report CUCS-011-98, Department of
Computer Science, Columbia University, USA, December
1998.

[15] A. Shukla, P. Deshpande, and J. Naughton. Materialized
view selection for multidimensional datasets. InProceed-
ings of the 24th International Conference on Very Large
Databases, New York, August 1998.

[16] J. Smith, C. Li, V. Castelli, and A. Jhingran. Dynamic
assembly of views in data cubes. InSeventeenth ACM
Symposium on Principles of Database Systems, 1998.

[17] Y. Zhou, P. Deshpande, and J. Naughton. An array-based
algorithm for simultaneous multidimensional aggregates. In
Proceedings of the 1997 ACM SIGMOD Conference on
Management of Data, pages 159–170, Tucson, Arizona,
May 1997. Association for Computing Machinery.

A Table of Symbols

Number of dimensions d
Number of slots in the level-2 store T

Number of tuples in the finest granularity cuboidn
Cost of examining a slot s

Cost of examining a tuple in a linked list l
Benefit of materializing tuplet Bt

Average cost of a lookup to the level-2 store A
Size of a tuple q
Size of a slot z

Count of a tuplet ct
Pointer Size p

B Motivating a Count Based Model

In [7] the assumption is made that choosing a set of
datacube tuples to materialize is equivalent to deciding
which cuboids to materialize. This assumption is not always
justified, particularly in the case where the data does not
follow a uniform distribution but is skewed and we are
considering the universe of slice queries over the datacube.

Example B.1: Consider a 9 dimensional subset of cloud
coverage data taken from [6]. We contrast the behavior
of this dataset with a uniform synthetic dataset having the
same cardinality and the same attribute cardinalities as the
cloud coverage data.

In Figure 10 we examine how the number of base tuples
contributing to a datacube tuple vary. We also see how the
number of datacube tuples vary for each level of the lattice.
We notice that for sparse datasets like this one the size of
the datacube is larger for the uniformly generated synthetic
dataset (46536156 tuples to 28171031). This is expected
since skew in the dataset leads to a smaller number of
distinct tuples. If the density of the datacube (the ratio of the
number of distinct tuples to the product of the cardinalities
of the attributes) is greater than 1, we would expect the size
of the datacubes to be the approximately the same.

We observe that in both cases the majority of the dat-
acube tuples have counts less than 5. For the cloud data
only 3.63 percent of the datacube tuples have a count greater
than 5. This implies that even if the cost of an aggregation
is expensive, for the majority of the tuples the cost of
computation is heavily dominated by I/O costs.

A key difference is how thecountsof tuples in a cuboid
are distributed. If the base data is uniformly distributed
there will be a low variance in the counts of tuples in the
cuboid. For both random and skewed data the variance of
the counts in a cuboid are low at the lower levels of the cube
(cuboids with a larger number of attributes). The reason
for this is that since the data is sparse most tuples in the
cube have a count of 1. At the higher levels of the datacube
the skewed data exhibits greater variance in the counts of a
cuboid than uniform data.

We defineccount as the percentage of tuples in a cuboid
with a count greater than a threshold. For uniform data
distribution we see that there are relatively few cuboids
whereccount lies between 10 and 90 percent. In this case it
is a reasonable approximation to treat the whole cuboid as
a single unit.

However, this is not the case for the cloud data. Here
we have a large number of cuboids where the percentage
of tuples exceeding the threshold lies between 10 and 90.
This implies that by treating a cuboid as a single unit we
are giving the same treatment to tuples with widely varying
counts. This is the motivation for choosing a model with
different probabilities for tuples within the same cuboid.

Uniformly distributed data:
Threshold ccount < 10 10 < ccount < 90 ccount > 90

1 341 80 90
2 384 45 82
5 415 25 71
10 436 13 62

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 2 4 6 8 10

nu
m

be
r

of
 d

at
ac

ub
e

ou
tp

ut
 tu

pl
es

Threshold

Number of datacube tuples whose count > Threshold

"cloud-data-counts"
"uniform-data-counts"

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

0 1 2 3 4 5 6 7 8 9

nu
m

be
r

of
 d

at
ac

ub
e

ou
tp

ut
 tu

pl
es

Level of datacube

Variation in datacube level sizes

"cloud-data"
"uniform-data"

Figure 10. Counts of datacube tuples and size of datacube levels

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1 2 3 4 5 6 7 8 9

tu
pl

e
co

un
t

level

"cloud-total"
"cloud-highcount"

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1 2 3 4 5 6 7 8 9

tu
pl

e
co

un
t

level

"uniform-data-total"
"uniform-data-highcount"

Figure 11. Total number of tuples and number of tuples with a count exceeding a threshold count of
5 per level for both skewed and uniform data

Cloud data:

Threshold ccount < 10 10 < ccount < 90 ccount > 90
1 101 376 34
2 199 284 28
5 287 207 17
10 354 144 13

2

