
mSLP - Mesh-enhanced Service Location Protocol�

Weibin ZhaoandHenning Schulzrinne
Department of Computer Science

Columbia University, New York, NY 10027
fzwb, hgsg@cs.columbia.edu

Abstract

The Service Location Protocol (SLP) is a proposed stan-
dard from IETF. It provides a flexible and scalable service
discovery framework in IP network, and it can work with
or without a directory service. This paper presents mSLP
- Mesh-enhanced Service Location Protocol. mSLP pro-
poses to use a fully meshed peering Directory Agent (DA)
architecture. Peer DAs exchange service registration infor-
mation, and keep the same consistent data for the shared
scopes. mSLP provides a reliable directory service for an
SLP system. It also greatly simplifies SLP service regis-
tration leading to a thin-client Service Agent (SA) imple-
mentation. mSLP is backward compatible with SLPv2, and
incremental deployment is supported.

Keywords: Service Discovery, Service Location Proto-
col, User Agent, Service Agent, Directory Agent, Fully
Meshed Peer Relationship, Reliability, Scalability

1 Introduction

As computing continues to move towards a network-centric
model, there is an increasing need to find and make use of
the available services, devices, and applications in a variety
of networking environments in order to properly complete
specified tasks. For example, the mobile technology pro-
vides much convenience for a traveling user, it relies upon
the support from automated service discovery. As a result,
several service discovery protocols are emerging from net-
work computing field to address this issue.

The Service Location Protocol (SLP) [4] from IETF is
designed to perform service discovery in IP network. Jini
[7] from Sun Microsystems is tailored specifically to Java
platform. The Universal Plug and Play (UPnP) [9] from
Microsoft proposes to use SSDP (Simple Service Discov-
ery Protocol) [2] for service discovery, and it addresses the
issue of automatic configuration such as the assignment of
IP addresses and DNS names. The Salutation Consortium
[8] has announced an open architecture for service discov-
ery. The Bluetooth SIG [5] presents its own SDP (Service

�Supported by DARPA MarketNet project.

Discovery Protocol) optimized for the highly dynamic na-
ture of wireless communication using radio link. The In-
frared Data Association (IrDA) [6] also offers its unique
service discovery protocol.

Although different service discovery protocols have dif-
ferent features, they use two basic models. In the directory-
centric model, there is a centralized directory service which
maintains dynamic information about available network
services, devices and applications. Each device, service
and application must discover this directory service first
in order to register with it or use it to look up the infor-
mation about other devices, services and applications. In
the peer-to-peer model, no centralized directory service is
needed. Devices, services and applications negotiate one-
on-one with each other, announcing their presence, adver-
tising their own capabilities, and finding devices, services
or applications that meet their needs. This model fits per-
fectly in an ad hoc peer-to-peer networking environment.
Jini adopts the directory-centric model with a lookup ser-
vice while IrDA uses the peer-to-peer model. SLP and
UPnP support both models.

No matter what model is used, the underlying principles
for service discovery are same. First, an entity (device, ser-
vice or application) needs to announce its presence to oth-
ers. This can be done by registering with a directory ser-
vice, by regularly advertising through a special channel or
address, or by listening to a special channel or address and
issuing a reply when there is a request. Second, the service
discovery is performed by looking up a directory service,
by sending a discovery request to a special channel or ad-
dress, or by listening to a special channel or address for
others announcements.

Most service discovery protocols utilize multicast (or
broadcast) which is needed at least in the initial discovery
stage such as discovering a lookup service. In some cases,
information is needed if none of above mechanisms exists.

Among the current available service discovery protocols,
SLP is a proposed standard from IETF. It has received wide
industry support. For example, Sun Microsystems has built
SLP into its Solaris 2.8 operating system; Novell supports
SLP in its NetWare product. SLP can work with or without
a directory service. The directory service is introduced for
performance and scalability considerations, and it is pro-
vided by Directory Agents (DAs). However, SLP does not

1

define how DAs should coordinate with each other when
multiple DAs exist.

This paper presents mSLP - Mesh-enhanced Service Lo-
cation Protocol, which enhances SLP with an interaction
scheme for DAs. It proposes that if DAs are needed in an
SLP system, a fully meshed peering DA architecture should
be used, i.e., more than one DA should be present for each
scope, and they should maintain a fully meshed peer re-
lationship. Peer DAs exchange service registration infor-
mation, and keep the same consistent data for the shared
scopes. mSLP provides a reliable directory service for an
SLP system. It also greatly simplifies SLP service registra-
tion leading to a thin-client Service Agent (SA) implemen-
tation. Thus, the scalability of an SLP system can also be
enhanced. Moreover, mSLP is entirely backward compat-
ible with the SLP specification defined in RFC 2608, and
incremental deployment is supported.

The rest of this paper is organized as follows: first, we
provide some background information about SLP in Sec-
tion 2, then we describe the design of mSLP in Section 3,
covering design considerations, peer relationship manage-
ment and message forwarding control. We show an mSLP
system example in Section 4, and discuss the implementa-
tion in Section 5. We list related work in Section 6, and
conclude in Section 7.

2 SLP Overview

Defined in Request for Comments (RFC) 2608, SLP pro-
vides a flexible and scalable framework for service discov-
ery in IP network. Using SLP, a networked service (device,
or application) can easily find all available service types,
the locations (URLs) where a specific service is provided,
and service descriptions. To understand how SLP works,
we first review several important concepts SLP used to de-
scribe and manage networked services.

Service Location Service locations in SLP are given by
URLs, which can be any URL conforming to URI
standard [1] such as “http://www.srvloc.org”, or can
be of the service: scheme defined in [3] such as “ser-
vice:lpr://mandolin.cs.columbia.edu”.

Service Type Each service in SLP has a service type. For
example, the service type of “http://www.srvloc.org”
is “http” (web service); the service type of “ser-
vice:lpr://mandolin.cs.columbia.edu” is “service:lpr”
(printing service). All services in SLP are categorized
by their service types.

Service Description Besides service location and service
type, each service in SLP has many other properties
which can be described by a set of attribute/value
pairs. These properties include service capability and
configuration parameters. For example, we may spec-
ify “resolution = 1200 dpi” for a printer service.

Application

UA

Service

SA

DA
SrvTypeRqst/SrvRqst/AttrRqst

SrvTypeRply/SrvRply/AttrRply

SrvTypeRply/SrvRply/AttrRply

SrvTypeRqst/SrvRqst/AttrRqst

SrvAck

SrvReg/SrvDeReg

Figure 1: SLP System Architecture

Service ScopeEach service in SLP has one or more ser-
vice scopes which specify its service range. The ser-
vice scope is a logical concept in SLP used to arrange
services into groups. A scope could indicate a geo-
graphic location (such as “London”), a administrative
group (such as “Law School”), or other category (such
as “Emergency”). Service scope provides further scal-
ability for SLP in large systems.

Service Lifetime Each service registration has a validity
period given by its service lifetime (such as 12 hours).
A registration needs to be refreshed before its life-
time has expired, otherwise the registration will be re-
moved from the directory service.

There are three different entities in an SLP system: User
Agents (UAs), Service Agents (SAs), and Directory Agents
(DAs). Figure 1 illustrates their relationship.

User Agents (UAs) A UA initiates service discovery on
behalf of one or more applications. It sends queries
to all SAs via multicast or to a DA via unicast if
there is such DA supporting the query scope. A UA
uses three different types of SLP messages to dis-
cover the desired services. First, it issues a service
type request (SrvTypeRqst) message to get a list
of all available service types in a service type reply
(SrvTypeRply) message. Second, it issues an at-
tribute request (AttrRqst) message to get a list of
all attributes for a given service type in an attribute
reply (AttrRply) message. Third, it issues a ser-
vice request (SrvRqst) message with an attribute
predicate specifying the characteristics of the desired
service to get a list of URLs giving the locations of
matched services in a service reply (SrvRply) mes-
sage. Starting from the desired service type, and a set
of attributes describing the service, SLP resolves the
service addresses (URLs) for the user.

Service Agents (SAs)An SA works on behalf of one or
more services. It responds directly to UA queries. If
DAs exist, it registers the services with DAs using ser-
vice registration (SrvReg) messages. SLP supports
incremental service registration in which an SA can

2

DAUA/SA(1) Unicast DAAdvert

Multicast SrvRqst

DAUA/SA
Multicast DAAdvert

(2)

Figure 2: DA Discovery: (1) Active (2) Passive

UA Unicast SrvRply

Multicast SrvRqst

SA
Unicast SrvRply

Multicast SrvRqst

Unicast SrvRply

Multicast SrvRqst

SA

SA

Figure 3: Small SLP System without DAs

update attribute values or add new attributes to a pre-
viously registered service. The new attributes replace
the old values, but do not affect the attributes which
were included previously and are not present in the up-
date. Thus, aSrvReg message can be a fresh service
registration or an update to a previous registration. An
SA can also deregister the services with DAs using
service deregistration (SrvDeReg) messages before
the registered services become expired.

Directory Agents (DAs) A DA serves as a centralized in-
formation repository in an SLP system. It accepts
SA registrations and answers UA queries. DA sup-
port is optional in an SLP system; it is introduced
for performance and scalability considerations. DAs
can be discovered (Figure 2) in two ways: active or
passive. In SLP, each DA periodically sends unso-
licited DA advertisement (DAAdvert) messages to
the administratively scoped SLP multicast [10] ad-
dress (239.255.255.253). All UAs, SAs and DAs
listen to this address to discover the existing DAs.
This is known as passive DA discovery. UAs and
SAs can also perform active DA discovery by issu-
ing a multicast DA discovery service request message
(SrvRqst with a service type of “service:directory-
agent”) to above address. DAs answer each DA dis-
covery request with a unicast DA advertisement mes-
sage.

Whether DAs exist or not, an SLP system can pro-
vide the same service discovery functionality. However,
it works a little bit differently.

� In a small SLP system without DAs (Figure 3), UAs
directly send service request (SrvRqst) messages to

UA DA

SA

SA
Unicast SrvRply

Unicast SrvAck

Unicast SrvReg

Unicast SrvReg

Unicast SrvAck

Unicast SrvRqst

Figure 4: Medium SLP System with DAs

CU Scope

DA UA
SA

SA

DA UA
SA

SA

NYU Scope

Figure 5: Large SLP System with Multiple Scoped DAs

all SAs via multicast, and SAs respond with unicast
service reply (SrvRply) messages.

� Since it is not very efficient for a UA to query all SAs
via multicast every time it does service discovery, in a
medium-sized SLP system (Figure 4), DAs are intro-
duced to provide a centralized directory service. SAs
register services with DAs, and UAs look up service
information from DAs. All service registrations from
SAs and service queries from UAs are sent to DAs via
unicast.

� In a large SLP system (Figure 5), DAs are arranged
into different scopes. For example, services from
Columbia University and NYU are assigned to dif-
ferent scopes served by different DAs. This ensures
further scalability of SLP.

We can see that SLP achieves scalability by using DAs
and service scopes. However, the centralized directory ser-
vice provided by DAs presents a single failure point in an
SLP system. To ensure reliability, multiple DAs are needed
for each service scope. When multiple DAs are present,
how should they interact with each other? This is an open
issue in SLPv2 (SLP version 2).

3 Design of mSLP

mSLP enhances SLP with an interaction scheme for DAs
to provide a reliable directory service. It proposes that if
DAs are needed in an SLP system, a fully meshed peer-
ing DA architecture should be used, i.e., more than one DA

3

DA2/UA/SA[attr = mesh−enhanced]

Multicast DAAdvert
DA1

Figure 6: Mesh-enhanced DA Advertisement

should be present for each scope, and they maintain a fully
meshed peer relationship. Peer DAs exchange their data
for the shared scopes when they set up a peer relationship,
and continue to exchange new service registration informa-
tion during the entire peering period. As a result, peer DAs
maintain the same consistent data for the shared scopes.
Our design uses the following terminology:

Peer DAs If two DAs have one or more scopes in common
within one administrative domain, they are peers. Peer
DAs coordinate with each other and store the same
consistent data for the shared scopes.

Peering TCP Connection - a persistent TCP connection
kept by a pair of peer DAs for the entire peering pe-
riod. It provides a reliable communication channel for
the peer DAs to exchange messages. Therefore, a DA
implementation is not burdened by managing message
retransmissions. Its closing can be an indication of the
termination of the peer relationship.

Mesh-enhanced DA - a DA who maintains a fully meshed
peering DA architecture with other DAs in an mSLP
system. It carries the “mesh-enhanced” attribute in its
DAAdvert messages (Figure 6) to distinguish itself
from non-mesh-enhanced DAs.

Mesh-aware SA - an SA who understands the “mesh-
enhanced” attribute in aDAAdvert message and uses
the mesh-enhanced DA capabilityaccordingly.

In the next three subsections, we first describe our design
considerations for mSLP, then we discuss two important
issues: how to manage the peer relationship and how to
control message forwarding among peer DAs.

3.1 Design Considerations

Reliability : The fully meshed peering DA architecture pro-
vides a reliable directory service for an SLP system. It
achieves maximum robustness by ensuring that no single
failure point exists in the system. All service registrations
are kept by at least two DAs. If one DA is down, at least
one other peer DA can continue to provide the service in-
formation for the scope. More importantly, the peering DA
architecture enables a DA to recover from crash with much
less effort since a rebooted DA can get the existing data
from its peering DA set.

The fully meshed peering DA architecture is built on top
of a set of fully meshed peering TCP connections. We

choose to use this set of fully meshed peering TCP connec-
tions mainly because it greatly facilitates message forward-
ing control. Any service registration information received
by a DA only needs one-hop forwarding to reach all other
DAs in the peering DA set. Since adding too many DAs
to a peering DA set does not help a lot with the reliability,
and it increases the maintenance overhead, we anticipate
a small number of DAs for each service scope, and 2-4 is
the recommended value. There is no need to have sepa-
rate DA for each scope. A DA can serve multiple scopes,
and a peering TCP connection is used for all shared scopes
between each pair of peer DAs.

Scalability: The SLPv2 specification requires that SAs
register with all existing DAs and re-register when new
DAs are discovered, or old DAs are found to have rebooted.
This places a substantial burden on an SA implementation.
With mSLP, this requirement on SAs can be greatly simpli-
fied, i.e., a mesh-aware SA only needs to register with one
mesh-enhanced DA in the registration scope, and the regis-
tration information will be propagated automatically within
the meshed DA set. With mesh-enhanced DAs and simpli-
fied SAs, the overall system scalability can be enhanced.

Compatibility : mSLP is fully backward compatible
with SLPv2. It does not introduce any new protocol ele-
ments. mSLP only defines several new attributes for the
DAAdvert message and a new SLP extension (“mesh-
forwarding extension”).

As we have described in Section 2, each DA periodi-
cally multicasts unsolicitedDAAdvert messages, which
enable a DA to be discovered by UAs, SAs and other DAs.
A DA can put new attributes in itsDAAdvert messages
to signify the information for DA coordination. Thus, by
properly setting the attributes inDAAdvert messages and
properly handling these attributes at the other party, peer
DAs can interact with each other to provide the desired
functionality.

The DA coordination is added as an enhancement to a
DA, its original functions are not affected. Moreover, the
changes are almost transparent to UAs and SAs. UAs can
be kept unchanged. SAs can be greatly simplified if they
use the DA mesh-forwarding capability for their service
registrations. To do this, a mesh-aware SA needs to ex-
plicitly specify its mesh-forwarding request by using the
mesh-forwarding extension (see Section 3.3 for detail).

Deployment: mSLP supports incremental deployment
of mesh-enhanced DAs. A mesh-enhanced DA can set
up peer relationships with both mesh-enhanced DAs and
non-mesh-enhanced DAs. In the latter case, the mes-
sage forwarding only goes in uni-direction from the mesh-
enhanced DA to a non-mesh-enhanced DA. When mesh-
enhanced DAs coexist with non-mesh-enhanced DAs in
a system, a mesh-aware SA should take care of newly
found non-mesh-enhanced DAs and rebooted non-mesh-
enhanced DAs since these non-mesh-enhanced DAs can
not get existing data from other DAs. Therefore, uniformly
mesh-enhanced DAs can provide a much easier job for
mesh-aware SAs.

4

DA1
DAAdvert (TCP)

DA2[attr = peering−connection−indication]

Figure 7: Peering Connection Indication

DA1 DA2

DAAdvert (TCP)
[attr = data−copy−request]

(data of shared scopes)
SrvReg (TCP)

Figure 8: Dumping Data

3.2 Peer Relationship Management

A peer relationship has three stages: setting up, keeping,
and tearing down. In mSLP, a mesh-enhanced DA main-
tains a peer list. It adds an entry to the list whenever it
discovers a new peer, and removes an entry when it finds
the corresponding peer is down. Each entry in this peer
list should include peer URL, shared scopes, boot times-
tamp, and peering TCP connection ID. The boot timestamp
is used to identify a rebooted peer. The peering TCP con-
nection is used for message forwarding.

When a mesh-enhanced DA learns about a new peer, it
creates a peering TCP connection to the peer (at port 427) if
such connection does not yet exist. Then it sends aDAAd-
vert message with the “peering-connection-indication”
attribute through this channel to notify the peer that this is a
peering TCP connection (Figure 7). Thus, the peer can also
use this channel to send messages in opposite direction.

After the peering TCP connection is established or iden-
tified, peer DAs begin to forward new service registration
information to each other via this channel. At the same
time, a mesh-enhanced DA should decide whether it needs
to download the data from its new peers. For example,
when a newly booted DA joins a peering DA set of three
DAs, it needs to get a copy of the existing registration data
from any one of these three DAs (the choice can be made
randomly), but not from all of them which incurs a lot of
redundant transmissions. To do this, it sends aDAAd-
vert message with the “data-copy-request” attribute to
the chosen peer (Figure 8). On the other end, when a mesh-
enhanced DA receives the “data-copy-request” in aDAAd-
vert message, it dumps all the data of the shared scopes
to the requesting DA. Each data record is sent as aSrvReg
message, with a re-calculated new lifetime (= old lifetime
� elapsed time). After exchanging the data in both direc-
tions, peer DAs have the same consistent data for the shared
scopes.

According to SLPv2, a DA could close a TCP connec-
tion if it has been idle for too long. To keep a peering TCP
connection alive, a mesh-enhanced DA sends aDAAdvert
message with the “keepalive” attribute (Figure 9) to the

DA1 DA2
[attr = keepalive]

DAAdvert (TCP)

Figure 9: DA Keepalive

peer if no other messages have been sent via the channel
for a long period (predefined).

A mesh-enhanced DA should tear down a peer relation-
ship when it finds that the peer has closed the peering TCP
connection; when it receives a multicastDAAdvert mes-
sage from the peer with a DA stateless boot timestamp set
to 0 meaning the peer is going to shutdown; or when it
has not received any message from the peer via the peer-
ing channel for a long period (predefined). In the last case,
there may be a network partition and peer DA states get
inconsistent. To tear down a peer relationship, a DA stops
forwarding any service registration information to this peer,
closes peering TCP connection with this peer, and removes
this peer from its peer list.

3.3 Message Forwarding Control

During the peering period, peer DAs forward new ser-
vice registration information from SAs to each other. We
define a new SLP extension - “mesh-forwarding exten-
sion” for the message forwarding purpose. This exten-
sion is always six bytes long: five-byte extension header
and one-byte extension data denoted as “Action” field.
The “Action” field is used to specify forwarding actions:
TO BE FORWARDED marks the message needs to be for-
warded; HASBEEN FORWARDED means the message
has already been forwarded, and there is no need to be for-
warded again. The message forwarding rules are as fol-
lows:

1. Explicit Forwarding : A message is forwarded only
when it explicitely requests to be forwarded. A mesh-
aware SA needs to attach the mesh-forwarding extension
to aSrvReg or SrvDeReg message and set the “Action”
field to TO BE FORWARDED if it wants the message to
be forwarded by a mesh-enhanced DA. This is for the com-
patibility with SLPv2, where SAs need to register with all
existing DAs. To avoid unnecessary forwarding, the ex-
plicit forwarding rule is used.

2. One-hop Forwarding: A SrvReg or SrvDeReg
message is forwarded only once by a mesh-enhanced DA
to all its peers in the registration scope. Before forward-
ing a message, a mesh-enhanced DA sets the “Action” field
to HAS BEEN FORWARDED. In this way, a forwarded
message will never be forwarded again. Since the peering
DA set is in a fully connected mesh, one-hop forwarding is
enough to ensure that the service registration information
from an SA can reach all peer DAs. Figure 10 shows how
a service registration message is forwarded.

3. Handling SrvAck : A DA always replies with a ser-

5

DA1 DA2SA
SrvReg / SrvDeRegSrvReg / SrvDeReg

SrvAck SrvAck

(HAS_BEEN_FORWARDED)(TO_BE_FORWARDED)

Figure 10: Forwarding Registration

vice acknowledgment (SrvAck) message when it receives
a SrvReg or SrvDeReg message. So a mesh-enhanced
DA should processSrvAck messages from other DAs.

4 Example

Let’s go through an example to see how mSLP works.
Considering that we want to deploy an mSLP system in
Columbia University main campus, and we would like to
assign the services in Law School (L-School), Business
School (B-School) and Engineering School (E-School) to
three different scopes. Instead of using a separate DA for
each school, mSLP uses three DAs in a fully meshed peer-
ing architecture. Each DA serves two scopes and each
school is served by two DAs (Figure 11). For example,
DA1 serves both B-School and E-School, and L-School is
served by DA2 and DA3.

We can run this example on four computers: one for the
UA/SA, and three for the DAs. Each machine can host only
one DA since a DA needs to bind to the SLP reserved port
427. An mSLP system can be in one of the three stages:

1. Normal stage: This is a stable stage featuring au-
tomatic registration information distribution. Assume that
the mesh-aware SA does service registrations with the
mesh-forwarding extension, say it registers services in B-
School with DA1, services in E-School with DA2, and ser-
vices in L-School with DA3, then this mSLP system will
distribute the service registration information automatically
among peer DAs for the shared scopes. Now let the UA
query service information in L-School with DA2, it will
get the same data as what the SA has registered with DA3.

2. Under partial DA crash: This is an unstable stage
needs to be taken care of. Assume one of the three DAs
crashes, say DA1 (we can simulate its crash by removing
its network connection and then turning it off), this mSLP
system can still function well unless more DAs crash. Al-
though the data of B-School and E-School are not available
from DA1, they can be retrieved from DA3 and DA2, re-
spectively.

3. Recovery from crash: When a crashed DA comes
up, say DA1 (we reconnect DA1 machine to the network
and reboot it), it sets up peer relationship with other DAs
again. Since now DA1 carries a new boot timestamp, DA2
and DA3 knows that it is rebooted and coordinates with
it. DA1 retrieves B-School data from DA3 and E-School
data from DA2, then this peering DA set is back to normal.
Thanks to the fully meshed peering DA architecture, the
recovery of DA1 from crash is done automatically through

DA1

DA2 DA3
(Law, Busi.)(Engi., Law)

UA / SA
(Busi., Engi., Law)

(Busi., Engi.)

Peering Connection

Peering ConnectionPeering Connection

Figure 11: an mSLP System Example

DA coordination, no SA involvement is needed.

5 Implementation

We have done a prototype implementation of mSLP. It is
available at http://www.cs.columbia.edu/˜zwb/project/slp.
A little more effort is needed for an mSLP DA implemen-
tation which requires a peer relationship management and
service registration forwarding control. However, an mSLP
SA implementation is greatly simplified since it no longer
needs to implement the complicated algorithm to register
with all existing DAs and to re-register when new DAs are
discovered, or old DAs are found to have rebooted. So the
overall implementation cost of mSLP is about the same as
SLPv2 if it is not reduced.

6 Related Work

Our early work on mSLP was presented as an Internet Draft
in “Interaction of SLP Directory Agents for Reliability and
Scalability” [14]. The fully meshed peer relationship is
used in IBGP [13]. Redundancy is a basic method to ensure
reliability, the DNS [11, 12] primary and secondary server
architecture is a good example of this.

7 Conclusion

In this paper we presented mSLP - Mesh-enhanced Service
Location Protocol. It enhances SLP with a fully meshed
peering DA architecture. mSLP can provide a reliable di-
rectory service for an SLP system. It can also greatly sim-
plify service registration which can lead to a thin-client SA
implementation. mSLP is fully compatible with SLPv2,
and it supports incremental deployment.

A further extension to the interaction of mSLP DAs is to
forward UA queries besides SA registrations. It works as
follows: When a mesh-enhanced DA receives a UA query
which is not in its scope, it forwards the query to another
DA which supports the scope. This can simplify UA im-
plementation since UAs do not need to keep track of DA

6

scopes. A UA can send its queries to any mesh-enhanced
DA. However, this adds much complexity to the mesh-
enhanced DA implementation. First, a mesh-enhanced DA
needs to keep track of all DAs of all scopes, not only the
DAs that share some scopes with it. Second, a mesh-
enhanced DA needs to forward the query to another DA,
and it also needs to forward the reply from another DA back
to the UA. mSLP does not include this extension mainly
due to its complexity. However, for a thin-client UA imple-
mentation, it might deserve further considerations.

Acknowledgments: Erik Guttman provided valuable
comments and suggestions for our work on mSLP.

References

[1] T. Berners-Lee, R. Fielding, and L. Masinter. Uni-
form resource identifiers (URI): generic syntax. Re-
quest for Comments 2396, Internet Engineering Task
Force, August 1998.

[2] Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Al-
bright. Simple service discovery Protocol/1.0 op-
erationg without an arbiter. Internet Draft, Internet
Engineering Task Force, November 1999. Work in
progress.

[3] E. Guttman, C. Perkins, and J. Kempf. Service tem-
plates and service: Schemes. Request for Comments
2609, Internet Engineering Task Force, June 1999.

[4] E. Guttman, C. Perkins, J. Veizades, and M. Day. Ser-
vice location protocol, version 2. Request for Com-
ments 2608, Internet Engineering Task Force, June
1999.

[5] Bluetooth home page. http://www.bluetooth.com/.

[6] IrDA home page. http://www.irda.org/.

[7] Jini home page. http://www.sun.com/jini/.

[8] Salutation home page. http://www.salutation.org/.

[9] UPnP home page. http://www.upnp.com/.

[10] D. Meyer. Administratively scoped IP multicast. Re-
quest for Comments 2365, Internet Engineering Task
Force, July 1998.

[11] P. V. Mockapetris. Domain names - concepts and fa-
cilities. Request for Comments 1034, Internet Engi-
neering Task Force, November 1987.

[12] P. V. Mockapetris. Domain names - implementation
and specification. Request for Comments 1035, Inter-
net Engineering Task Force, November 1987.

[13] Y. Rekhter and T. Li. A border gateway protocol 4
(BGP-4). Request for Comments 1771, Internet En-
gineering Task Force, March 1995.

[14] W. Zhao and H. Schulzrinne. Interaction of SLP di-
rectory agents for reliability and scalability. Internet
Draft, Internet Engineering Task Force, April 2000.
Work in progress.

7

