
Improving Database Performance on Simultaneous

Multithreading Processors

Jingren Zhou
Microsoft Research

jrzhou@microsoft.com

John Cieslewicz
Columbia University

johnc@cs.columbia.edu

Kenneth A. Ross
Columbia University

kar@cs.columbia.edu

Mihir Shah
Columbia University

ms2064@cs.columbia.edu

Abstract

Tech Report CUCS-017-05

Simultaneous multithreading (SMT) allows
multiple threads to supply instructions to the
instruction pipeline of a superscalar processor.
Because threads share processor resources, an
SMT system is inherently different from a
multiprocessor system and, therefore, utilizing
multiple threads on an SMT processor creates
new challenges for database implementers.

We investigate three thread-based techniques
to exploit SMT architectures on memory-
resident data. First, we consider running
independent operations in separate threads,
a technique applied to conventional multi-
processor systems. Second, we describe a
novel implementation strategy in which indi-
vidual operators are implemented in a multi-
threaded fashion. Finally, we introduce a new
data-structure called a work-ahead set that al-
lows us to use one of the threads to aggres-
sively preload data into the cache for use by
the other thread.

We evaluate each method with respect to its
performance, implementation complexity, and
other measures. We also provide guidance re-
garding when and how to best utilize the var-
ious threading techniques. Our experimental
results show that by taking advantage of SMT
technology we achieve a 30% to 70% improve-
ment in throughput over single threaded im-
plementations on in-memory database opera-
tions.

1 Introduction

Simultaneous multithreading (SMT) improves CPU
performance by supporting thread-level parallelism on
a single superscalar processor [24]. An SMT processor
pretends to be multiple logical processors. From the
perspective of applications running on an SMT sys-
tem, there appear to be multiple processors. Multiple

threads may issue instructions on each cycle and si-
multaneously share processor resources. The resulting
higher instruction throughput and program speedup
are beneficial for a variety of workloads, including web
servers and multimedia applications.

SMT technology has been incorporated into CPU
designs by most CPU vendors. Intel’s version of SMT,
called “Hyper-Threading Technology,” has been com-
mercially available since 2002 [18]. SMT is supported
in Intel’s Xeon and Pentium 4 processors, in IBM’s
latest POWER5 processors [12], and in Sun Microsys-
tems’ forthcoming processors [22].

An SMT system is different from a shared-memory
multiprocessor system because the different threads
share many of the execution resources, including the
memory bus and caches. Thus the performance of an
SMT system is intrinsically lower than that of a system
with two physical CPUs. (Threads that compete with
each other for a shared resource may even show a de-

crease in performance relative to a single thread [14].)
On the other hand, an SMT system performs better
than a single-threaded processor because it can do
some work in parallel, and because it can be doing
useful work even when one of the threads is blocked
waiting for a cache miss to be resolved.

Cache misses are an increasingly important issue
because advances in the speed of commodity CPUs
far outpace advances in memory latency. Main mem-
ory access is a performance bottleneck for many com-
puter applications, including database systems [1, 5].
In response to the growing memory latency problem,
the database community has explored a variety of
techniques to perform database operations in a cache-
conscious way [20, 21, 8, 15, 4, 9, 28, 7, 29].

In this paper, we investigate three thread-based
techniques to exploit SMT architectures for databases
operating on memory-resident data. In all three
cases, we force the operating system to schedule two
threads on different logical processors; this scheduling
is straightforward in modern operating systems.

The simplest option is to think of logical processors
as real physical processors and treat an SMT system as
a multiprocessor system. Independent operations are

performed by separate threads and are scheduled to
different logical processors in parallel. This approach
requires minimal code changes for database systems
that already run on multiprocessors. However, such
an approach ignores the sharing of resources between
the logical processors. Complex operations running
simultaneously may interfere, leading to a less-than-
ideal utilization of the processor.

The second approach we consider is to implement
each database operator in a multi-threaded fashion.
The workload is partitioned and processed by differ-
ent threads that cooperatively share input and out-
put data in the cache. While this option requires
re-implementing database operations, partitioning the
workload is relatively easy to implement in a way that
minimizes synchronization between the two threads.
The main challenge of this approach is deciding how
to partition the workload, and how to merge the re-
sults from different threads.

We also propose a new, general thread-based
preloading technique for SMT processors. We utilize
one thread, the helper thread to perform aggressive
data preloading. The main computation is executed in
the other thread, which we call the main thread. The
helper thread works ahead of the main thread, trigger-
ing memory accesses for data elements that will soon
be needed in the main thread. For reasons discussed
in Section 2.3, the helper thread performs an explicit
load instruction, and not a prefetch instruction.

If the preloading happens in an optimal manner,
the main thread will almost always find the requested
data in the cache and experience a higher cache hit
rate. The data preloading performed by the helper
thread can be overlapped with the CPU computation
done by the main thread. The helper thread suffers
most of the memory latency, while the main thread is
free to work on the real computation.

Several aspects of simultaneous multithreading
make the design of this two-thread solution challeng-
ing.

1. Communication between the threads is expensive.

In particular, if two threads access the same cache
line, and at least one of these accesses is a write,
then the hardware needs to do additional work to
ensure the consistent and correct execution of the
two threads. On an Intel machine, such conflict-
ing accesses trigger a “Memory Order Machine
Clear” (MOMC) event that can be relatively time-
consuming. As a result, we wish to design the
threads in such a way that (a) direct synchroniza-
tion is avoided, and (b) when the two threads do
communicate, they do not access common cache
lines at the same time.

2. The speed of the helper thread is hard to predict.

The helper thread may be slower or faster than
the main thread, and the relative speed of the

two threads may depend on run-time factors that
are difficult to measure. As a result, we must im-
plement the main thread in such a way that it
does not depend on the helper thread for correct-
ness. The main thread should not block for the
helper thread, and it should make progress even
if the helper thread has not prefetched a mem-
ory reference. Further, we should implement the
helper thread in a way that is robust with respect
to speed, so that it does not need to adjust its
behavior depending on the relative thread speed.

3. Boundary conditions must be checked. If the
helper thread gets too far ahead, it may pollute
the cache by loading so much data that other
preloaded data is evicted from the cache before
it is utilized by the main thread. Conversely, if
the main thread catches up to the helper thread
and we do not change the behavior of the helper
thread, then the helper thread provides no benefit
as it is no longer ahead of the main thread. Fur-
ther, the helper thread may even slow down the
main thread for the reasons mentioned in item 1
above, since the two threads may be operating on
common data elements.

4. The helper thread must be simple. Because both
threads issue instructions to the same pipeline,
a complex helper thread may compete with the
main thread for computation units, and slow
down the execution of the main thread.

We define a data structure called the work-ahead
set that is shared between the main thread and the
helper thread. The main thread is responsible for
inserting soon-to-be-needed memory references (to-
gether with a small amount of state information) into
the work-ahead set. The helper thread accesses the
work-ahead set and loads the referenced data into the
cache. Since the helper thread exclusively performs
read-only operations, the main thread is guaranteed
to achieve the correct result, regardless of the status
of the helper thread. This design separates the work of
data preloading from the work of CPU computation.

To benefit from the work-ahead set, the main thread
does need to be implemented to access the data in
stages. For example, in a hash join one would sepa-
rate the probe of the hash table and the construction
of the resulting output tuple(s) into different stages [7].
The main thread submits the address m of the probed
hash bucket to the work-ahead set, but does not imme-
diately try to access the probed bucket. Instead, it pro-
ceeds with other work, such as computing hash func-
tions, submitting additional probes, and/or accessing
“older” hash buckets. At a later time, the main thread
removes the entry for m from the work-ahead set, and
continues work on the contents of the hash bucket.
The order of work is determined by the order in which

memory accesses are submitted to and retrieved from
the work-ahead set.

A staged implementation may be more involved
than a direct implementation. We argue that the
additional code complexity is moderate, and worth
the investment when there are measurable benefits.
Restructuring of data accesses to reduce the impact
of latency bottlenecks is a commonly used technique;
double-buffering is one example. Database query op-
erators tend to do similar, relatively simple operations
on large numbers of records. As a result, they can
be pipelined relatively easily with a small amount of
state per pipeline stage. If every record goes through
the same number of stages then the original record or-
der can also be preserved, although order preservation
is not required for many database operations.

We apply our proposed techniques to several data-
intensive database operations, such as may be used for
decision support queries, and experimentally compare
the performance. We study the performance of CSB+

tree index traversal and hash join operations for each
of our proposed methods. In addition, we provide a
detailed analysis of factors affecting the performance
of the work-ahead set.

The rest of this paper is organized as follows. In
Section 2, we provide an overview of SMT technology
as well as survey related work in both the compiler and
database research communities. Section 3 presents a
new technique to exploit thread-level parallelism by
partitioning work. Section 4 presents the work-ahead

set, our general technique for aggressive data preload-
ing on SMT processors. The database operations used
to evaluate our approach are described in Section 5.
We then present our experimental results in Section 6
and conclude in Section 7.

2 Related Work

2.1 Simultaneous Multithreading Technology

Lo, et al. simulate an SMT processor with mul-
tiple hardware contexts using traces from database
workloads [16] and show that SMT can be useful for
databases. They do not, however, consider ways of
reimplementing database operations.

Our implementation and experimental study uses
Intel’s Hyper-Threading technology on a Pentium 4
machine. Details of Intel’s Hyper-Threading Technol-
ogy can be found in [18, 3].

An important issue for programming on a Hyper-
Threading system is cache coherence. Similar to
a conventional parallel system, which must ensure
data consistency across multiple caches, a Hyper-
Threading system must ensure data consistency across
the pipeline. For example, when one thread modifies
a shared variable, the cache line becomes “dirty” and
must be written out to RAM before the other logical
processor accesses it. The hardware needs to make

sure the correct memory order is maintained. Due to
potential out-of-order execution, modified shared vari-
ables can lead to accessing memory in an incorrect
order. If that happens, the entire pipeline of the ma-
chine has to be cleared. Excessive pipeline flushing
can be a significant overhead and may outweigh any
potential gain from parallelism. In a Pentium 4 proces-
sor, these pipeline flushing events are called “Memory
Order Machine Clear” (MOMC) events.

It is important to share a minimum amount of in-
formation between logical processors and reduce any
false sharing, in which different threads modify differ-
ent variables that reside on the same cache line.

2.2 Speculative Precomputation

Recently, several thread-based prefetching paradigms
have been proposed. “Speculative Precomputation”
targets a small set of static delinquent loads that in-
cur the most cache miss penalties [10, 27, 26, 14]. A
post-pass binary adaptation tool is used to analyze
an existing application binary and identify the depen-
dent instruction slice leading to each delinquent load.
Helper threads are created to speculatively precom-
pute the load address and perform the data load. Fi-
nally, an augmented new application binary is formed
by attaching the helper threads to the original binary.
Hardware-based speculative precomputation has also
been explored [19, 23].

What distinguishes our work-ahead set tech-
nique from speculative precomputation is that helper
threads in speculative precomputation execute a sub-

set of the original program. We, in contrast, do not
require helper threads to have the same access pattern
as the original program. In speculative precomputa-
tion, the subset of the program executed by helper
threads skips the expensive computation and only in-
cludes delinquent loads. However, if the original pro-
gram does not have any expensive computation, both
the main thread and the helper thread execute the
same program (instructions). Also, if the original pro-
gram has a high degree of data dependency and future
memory references depend on current computation,
naive speculative precomputation would not work.

2.3 Software Prefetching

Modern processors also provide prefetch and cacheabil-
ity instructions. Prefetch instructions allow a program
to request that data be brought into the cache with-
out blocking. One would typically execute prefetch in-
structions prior to the actual use of the data. Several
software prefetching techniques have been proposed for
database systems, including prefetching B+-Trees [8],
fractal prefetching B+-Trees [9], and prefetching hash
join [7]. These techniques require manual computa-
tion of prefetching scheduling distance and manual in-
sertion of explicit prefetch instructions into the code.

The process is cumbersome and hard to tune. Fur-
thermore, on commercially available processors such
as the Pentium 4, prefetch instructions are not guar-
anteed to actually perform the data prefetch. Under
various conditions, such as when prefetching would in-
cur a TLB miss, prefetch instructions are dropped [13].
Prefetch instructions are not completely free in terms
of bus cycles, machine cycles, and resources. Excessive
usage of prefetch instructions can also worsen applica-
tion performance [13].

Our work-ahead set technique employs preloading
rather than prefetching. The data is guaranteed to be
loaded into the cache, even if a TLB miss occurs.

2.4 Staged Execution

Our work-ahead set technique requires implement-
ing an operator in a staged fashion. Harizopoulos
et al. [11] show that staged operators can improve
pipeline behavior for OLTP workloads. Their work
does not focus on SMT processors.

We restructure the hash join to use staged mem-
ory accesses in a manner similar to the techniques de-
scribed in [7]. However, [7] evaluates the performance
of hash join on a simulated architecture in which
prefetch instructions are never dropped and large num-
bers of simultaneous outstanding memory requests are
allowed. In contrast, our implementation achieves sig-
nificant performance improvements on a real commod-
ity CPU that does not conform to the simulation as-
sumptions of [7].

2.5 Cache Conscious Index Structures

Recent studies have shown that cache-conscious in-
dexes such as CSS-Trees [20] and CSB+-Trees [21] out-
perform conventional main memory indexes such as
B+-Tress. By eliminating all (or most) of the child
pointers from an index node, one can increase the
fanout of the tree. Multidimensional cache-conscious
indexes such as CR-Trees [15] use compression tech-
niques to pack more entries into a node. These tech-
niques effectively reduce the tree height and improve
the cache behavior of the index. Bohannon et al. re-
duce cache misses by storing partial key information in
the index [4]. Zhou and Ross propose buffering mem-
ory accesses to index structures to avoid cache thrash-
ing between accesses for bulk access patterns [28].

Unlike most of these methods, the techniques pro-
posed in this paper do not attempt to reduce the total
number of cache misses. Instead, they try to distribute
the misses among the threads so that the cache miss
latency can be overlapped with other work.

Chen, et al. show improvements in simulated in-
dex performance by using prefetch instructions in the
traversal code [8, 9]. As for the discussion of hash join
in Section 2.3, this technique could be implemented
by preloading data in the helper thread. One does

not need to make assumptions about whether software
prefetch instructions can be dropped.

3 Multithreading By Partitioning

Running one operation at a time on an SMT proces-
sor might be beneficial in terms of data and instruc-
tion cache performance. In order to take advantage of
two logical threads, we implement each operator in a
two-threaded1 fashion. One thread processes the even
tuples on the (probe) input stream, and the other pro-
cesses the odd tuples. Because access to the input is
read-only, there is no performance degradation when
they read the same cache lines. Similarly, read-only
access to a shared hash table or index does not cause
contention. An addition benefit of this kind of ap-
proach is that both threads use the same instructions,
meaning that there is less contention for the instruc-
tion cache.

The difficulty with a bi-threaded implementation is
handling the output. If the two threads were to write
to a single output stream, they would frequently expe-
rience write-write contention on common cache lines.
This contention is expensive and negates any potential
benefits of multithreading. Instead, we implement the
two threads with separate output buffers, so that they
can write to disjoint locations in memory.

The use of two output buffers changes the data for-
mat, and places extra burden on subsequent operators
to merge the data. Further, this kind of implemen-
tation no longer preserves the order of input records,
and cannot be used if the order must be maintained.
Thus, it is not totally fair to compare the performance
of such an operation with one that uses a standard
data format. Nevertheless, we will measure the per-
formance with the understanding that there may be
additional costs not captured by those measures.

4 The Work-ahead Set

A work-ahead set is created for communication be-
tween the main thread and the helper thread. The
work-ahead set is a collection of pairs (p, s), where p
is a memory address and s is state information rep-
resenting the state of the main thread’s computation
for the data at that memory location. The size of the
work-ahead set is the number of pointers it contains.
The main thread has one method, post, to manipulate
the work-ahead set. The helper thread has a single
method read for accessing the work-ahead set.

Because the work-ahead set needs to be particularly
efficient and simple, we implement it as a fixed-length
circular array. The main thread posts a memory ad-
dress to the work-ahead set when it anticipates ac-
cessing data at that memory location. This address,
together with state information for the main thread,

1We also tried implementing operators using more than two
threads, but those implementations did not perform as well.

Main
Thread

Helper
Thread

Work-Ahead Set

Figure 1: Work-Ahead Set

is written to the next slot of the array. If that slot
already contained data, that data is returned to the
main thread by the post operation. The returned data
can then be used by the main thread to continue pro-
cessing. Thus, the main thread cycles through the
work-ahead set in a round-robin fashion. At the end
of the computation, the main thread may need to post
dummy values to the work-ahead set in order to re-
trieve the remaining entries.

During the period between a data item’s posting to
the work-ahead set and its retrieval by a subsequent
post operation, we desire (but do not require) that the
helper thread loads the data at the given memory lo-
cation into the cache. The helper thread has its own
offset into the array and accesses the array in sequen-
tial fashion without explicitly coordinating with the
main thread. The helper thread may proceed in the
same direction as the main thread (“forward”), or in
the opposite direction from the main thread (“back-
ward”); we will compare these two alternatives later.

The helper thread executes a read on the work-
ahead set to get the next address to be loaded. In prac-
tice, we implement the load in C using something like
“temp += *((int*)p);” rather than using assembly
language. The value of temp is unimportant; the state-
ment forces the cache line at address p to be loaded.
Note that the helper thread does not need to know any-
thing about the meaning (or data type) of the memory
reference. After loading the data, the helper offset is
moved to the next entry of the array. The operation
of the work-ahead set is illustrated in Figure 1.

If the helper thread runs faster than the main
thread, the helper thread may load the same data mul-
tiple times, potentially wasting resources. Thus we
implement a spin-loop wait mechanism in the helper
thread. The helper thread keeps a local copy of the
last entry processed in each slot of the work-ahead set.
If the entry read is different from the local copy, the
helper thread executes a load on the memory address
as before. We put the helper thread into a spin-loop
checking the current entry of the work-ahead set, until
a different entry, written by the main thread, is found.
We will experimentally evaluate the costs and benefits
of spin-loop waiting.

The design of the work-ahead set and helper thread
is generic, and can be used in combination with any

database operation. This is a key advantage. If each
operation needed its own helper thread that had some
special knowledge about its memory access behavior,
then the implementation would be much more com-
plex. The helper thread operates without any special
need for tuning to a particular workload.

There are four main configuration parameters that
will affect the performance of the system. They are
whether to put multiple pointers into each entry of
the work-ahead set, the size of the work-ahead set,
whether the helper thread moves forward or backward,
and whether the helper thread performs a spin-loop
wait when it sees the same memory address a second
time in a given slot. We discuss these choices below,
and evaluate them experimentally in Section 6.

4.1 Entry Structure

Our discussion so far has assumed that an entry in the
work-ahead set is a pointer plus some state. However,
there are cases where one might need multiple memory
references to execute an operation. The most obvious
case is when a data type is longer than a cache line.
For a second example, consider a C instruction like
*p = *q + *r;. One statement needs three memory
references for execution, and may, in the worst case,
generate three cache misses.

It is possible to divide such a statement into three
stages, in which p, q, and r are preloaded by the helper
thread one by one. However, by the time the operation
is executed in the main thread, a relatively long time
has passed since the first elements were preloaded, and
they may have since been evicted from the cache. We
observed such an effect experimentally.

As an alternative, one could alter the structure of
an entry of the work-ahead set to allow three point-
ers plus state. The helper thread would then preload
three memory references at a time. The work-ahead
set would have a factor of three fewer entries than the
single-pointer version in order to cover the same frac-
tion of the cache in a single loop of the array. When the
main thread retrieves that entry from the work-ahead
set, it can expect that all three memory locations have
been touched by the helper thread.

When the number of references per stage is constant
throughout the operation, this approach is adequate.
However, if one stage needs n1 references, and another
needs n2 6= n1, the work-ahead set needs some way to
balance them. (It is also possible that two entries in a
single stage require different numbers of references.) In
this case, entries with different numbers of references
are present at the same time in the work-ahead set.

Suppose that an operator has a minimum number
m of references per stage, and a maximum number M .
The number of entries in the work-ahead set is deter-
mined by dividing the fraction of the cache we intend
to address by m. That way, even if all entries refer to
only m addresses, we can use the available cache mem-

ory. Each entry in the work-ahead set has M slots for
memory references. If k < M of the slots are actu-
ally used, then the remaining slots are padded with
a single valid address to a dummy cache line that is
never touched by the main thread. The helper thread
always preloads all M slots. Although this might seem
to be extra work, the helper thread does not have to
perform /conditional tests and suffer branch mispre-
diction penalties. Further, since the dummy cache line
will be accessed often, it will almost always yield an
L1 cache hit, and generate little overhead in the helper
thread.

To maintain constant usage of cache memory, we
keep track of the total number N of valid pointers in
the work-ahead set. N is incrementally maintained by
the post method each time entries are added to or re-
moved from the work-ahead set. Suppose our memory
threshold is t cache lines.2 If N ≥ t, then we should
not admit new work from the main thread, even if
there is an available slot in the work-ahead set. In this
case, we fill an available slot with (M copies of) the
dummy cache line address, and null state information.

4.2 The Size of the Work-Ahead Set

If the work-ahead set is too small, then the perfor-
mance may suffer for two reasons. First, there may
not be enough time for the helper thread to load the
requested cache line between when the main thread
posts the memory reference and when it retrieves that
reference. Second, when the work-ahead set is small,
the probability that the main thread and the helper
thread are accessing the same cache line within the
work-ahead set itself becomes high. As discussed pre-
viously, this kind of access will lead to a relatively high
number of expensive MOMC events.

If the work-ahead set is too large, then the loads
performed by the helper thread may evict still-useful
data from the cache. This effect will reduce the bene-
fits of preloading, and could lead to more cache misses
than a single-threaded implementation. For this rea-
son, the expected amount of preloaded data for the
entire work-ahead set should be smaller than the L2
cache size. Since the main thread may have older
cache-resident data that is still being used, and in or-
der to avoid conflict misses, the threshold should be
lower, such as one quarter of the cache size.

An additional advantage of the work-ahead set is
that it allows global coordination of the use of the
data cache. By sizing the work-ahead set for each ac-
tive operator appropriately, one can ensure that the
total active memory is smaller than the cache capac-
ity. In this way, we can avoid cache interference both
between operators in a single plan, and between oper-
ators in concurrently executing queries. Without such

2We consider t to be the appropriate measure of the “size”
of the work-ahead set, since it represents the number of valid
pointers in the work-ahead set.

control, it is possible for concurrently executing op-
erators to expel each others’ cache lines, leading to
thrashing behavior between the operators’ scheduled
time-slices.

4.3 Forwards Versus Backwards

Forward processing by the helper thread seems intu-
itive: the helper thread “paves the way” for the main
thread. However, there are some pathological behav-
iors that can arise with forward processing.

First, suppose that the helper thread is faster than
the main thread. The helper thread eventually suc-
ceeds at preloading the entire work-ahead set, and
catches up to the main thread. At this point, the
helper thread and the main thread are accessing the
same slot in the work-ahead set, and will suffer MOMC
events as a result. If the helper thread goes into a
spin-loop, it will do so for a short time, until the
main thread advances one entry. The helper thread
will wake up, make progress of one entry, and then go
back to spin-looping. For all of this time, the helper
thread and main thread are almost certainly access-
ing the same cache line, and will therefore encounter
a kind of MOMC thrashing.

If the helper thread does not spin-loop, then the
situation may not be quite as bad, since the helper
thread may eventually overtake the main thread and
be accessing different cache lines in the work-ahead set.
Nevertheless, the overtaking period itself may domi-
nate, because the MOMC events generated will slow
it down dramatically.

If the helper thread is slower than the main thread,
then the main thread will eventually catch up to the
helper thread. The threads will then interfere in a sim-
ilar way as before. What is more, the main thread may
be faster than the helper thread because it gets cache
hits rather than cache misses. Once the main thread
catches up to the helper thread, it will begin to expe-
rience cache misses and slow down. As a result, the
main thread and helper thread may find themselves
operating pathologically in lock-step.

Backward processing may seem less intuitive than
forward processing, because data needed in the far
future is preloaded before data needed in the near
future. Nevertheless, the pathological behaviors de-
scribed above are avoided.

We can mathematically model the difference be-
tween forward and backward processing. Suppose that
the speed of the main thread (measured in cache lines
per second) is m without MOMC interference, but m′

with MOMC interference. Let the corresponding num-
bers be h and h′ for the helper thread. Suppose that
the size of the work-ahead set is d cache lines. A
straightforward analysis shows that the net speed of
the main thread when the helper thread is running

forwards is

sf =

(

m′

h′ − m′
+

m(d − 1)

h − m

)

/

(

1

h′ − m′
+

(d − 1)

h − m

)

while the net speed running backwards is

sb =

(

m′

h′ + m′
+

m(d − 1)

h + m

)

/

(

1

h′ + m′
+

(d − 1)

h + m

)

.

If h′ is close to m′, which is likely when the MOMC

event cost is dominant, then the m′

h′−m′
term in sf is

large, and drives sf close to m′. In the backwards case,
however, there is no such “catastrophic cancellation”
since the corresponding term in sb adds h′ and m′.

Note that the helper thread does not know h′ or m′,
unless it decides to devote extra cycles to measuring
the relative rates of progress. These rates may change
over time. As a result, the safest choice is to preload
backwards, because we do not even need to check h′

and m′, and since the performance of the main thread
for large d is typically close to m.

4.4 Spin-Loop Waiting

When the helper thread is in a spin-loop wait, it uses
fewer resources that it would if it continued preload-
ing data that was already memory-resident. Thus we
might expect less interference with the main thread in
terms of competition for CPU resources. On the other
hand, as we have discussed in Section 4.3 above, com-
bining a spin-loop wait with forward preloading could
cause more MOMC thrashing than would be experi-
enced without the spin-loop wait.

One could augment the spin-loop wait with a call
to a sleep function so that the helper thread checks
the slot in the work-ahead set less often, thus using
fewer resources. However, the amount of time to sleep
would be a parameter that would need to be tuned,
and the benefits of even a well-tuned choice would be
relatively small. Further, a sleep function suspends a
thread until the operating system chooses to resched-
ule it, which could be excessively disruptive. Our im-
plementation of efficient spin-loop waiting uses a dif-
ferent technique that is described in Section 6.

When there are multiple pointers per work-ahead
set entry, the spin-loop checks only the first pointer.
As discussed in Section 4.1, slots may be filled with
a dummy cache line address. We prevent the helper
thread from spin-looping on this dummy address.

5 Workload

We evaluate the three thread-based approaches by ap-
plying them to three database query operations: join
using a join index, index traversal, and hash join. Due
to space limitations, the join-index experiments are
not described here; their results were similar to those
for the other operations.

Transforming a database operation into stages is
relatively straightforward. When one memory loca-
tion is only available after retrieving an earlier memory
location, the two memory references naturally belong
to separate stages. For the reasons described in Sec-
tion 4.1, it is a good idea to preload all available data
needed by a stage, rather than dividing the work up
into additional stages. For database operations, the
simplicity of the computation per record means that
the number of memory references needed per stage is
often one. When it is more than one, the number of
references is almost always bounded by a small con-
stant corresponding to the number of inputs/outputs
of an operator.

5.1 Index Traversal

Searching over tree indexes requires repetitively
searching internal nodes from the root to the leaf
nodes. Within each internal node, one must perform
some computation to determine which child node to
traverse. The next memory reference, i.e., the child
node address, cannot be determined until that com-
putation is finished.

Figure 2: An In-Memory CSB+-Tree

Figure 2 shows an in-memory CSB+-Tree [21]. Each
index node has a size of one cacheline. The work-
ahead set in this case contains entries of a search key
(the state) and the memory reference to the next child
node to be traversed. During index traversal, the
main thread performs the computation within an in-
dex node, posts the child reference into the work-ahead
set, and resumes a previously registered request from
the set. Each stage corresponds to processing one in-
dex node. If the current request is finished, the main
thread begins to process a new probe into the index.

We consider two kinds of probe streams for the in-
dex. A clustered probe stream is a contiguous sequence
of (key,RID) pairs. An unclustered probe stream is a
sequence of RIDs, where the key must be obtained by
dereferencing the RID, and the RIDs are in random
order. We expect these two kinds of probe streams to
have different memory access patterns.

5.2 Hash Join

Figure 3 shows an in-memory hash table. It contains
an array of hash buckets. Each bucket is composed of
a pointer to a list of hash cells. A hash cell represents
a build tuple hashed to the bucket. It contains the
tuple pointer and a fixed-length hash code computed

Hash
Bucket
Array

Hash Cell List

Figure 3: An In-Memory Hash Table

from the join key, which serves as a filter for the actual
key comparison.

The probe stream for the hash join is a sequence of
RIDs, and the hash key is obtained by dereferencing
the RID. A clustered probe stream is one where the
RIDs appear in physical memory order. An unclus-
tered probe stream has RIDs in random order.

Similar to [7], we break a probe operation into 4
phases. Each phase performs some computation and
issues memory references for the next phase. Phase
1 computes the hash bucket number for every tuple
and issues the memory reference for the target bucket.
Phase 2 visits the hash bucket and issues the memory
reference for a hash cell. Phase 3 visits the hash cell,
and compares the hashed key. Depending on the com-
parison of hashed keys, it may also issue the memory
reference for the matching build tuple. Finally, phase
4 visits the matching build tuple, compares the keys,
and produces the output tuple. Stages 3 and 4 repeat
until the list of hash cells is exhausted.

Each slot in the work-ahead set contains a hashed
key of a probe tuple, a phase number, and memory
references. In phase 3, we also need a pointer to the
current position in the list of hash cells. During execu-
tion, the main thread finishes one phase for one probe
tuple at a time. Then, the main thread posts to the
work-ahead set and resumes on the entity the work-
ahead set returned. If a probe is finished, the main
thread continues with the next probe tuple.

6 Experimental Evaluation

We implemented all algorithms on a Pentium 4 ma-
chine enabled with Hyper-Threading technology. Ta-
ble 1 lists the specifications of our experimental sys-
tem. We use Calibrator [17] to measure the L1, L2
and TLB miss latency. We are unable to measure the
latency for MOMC events directly. When an MOMC
event happens, the “dirty” cache line must be written
out to memory and updated for each processor sharing
the bus [13]. We observe that the latency is close to
the L2 miss latency, roughly 200 to 300 cycles.

Modern machines have hardware performance coun-
ters that measure statistics without any loss in per-
formance. We used Intel’s VTune Performance Tool
to measure the hardware counters during our exper-
iments. We measured many potential sources of la-
tency, including L1 and L2 cache misses, branch mis-

CPU Pentium 4 3.4 GHz
with Hyper-Threading

OS Windows XP Pro (SP 2)
Main-memory size 2 GB DDR

L1, L2 data cache size 8 KB, 512 KB
L1, L2 data cacheline size 64 bytes, 128 bytes

TLB entries 64
L1 data miss latency 18 cycles

L2 miss latency 276 cycles
TLB miss latency 53 cycles

C Compiler Visual C++ .NET 2003
(maximum optimization)

Table 1: System Specifications

predictions, TLB misses, MOMC events, etc. For the
operations studied in this paper, only the L2 cache
misses and the MOMC events were significant contrib-
utors to the overall time. For that reason, we omit the
other measurements from the experimental results.

In the case of the work-ahead set and bi-threaded
operators, thread synchronization is implemented us-
ing shared variables. To avoid race conditions, we
could use synchronization primitives, such as locks,
mutexes, or semaphores. However, the overhead of im-
plementing mutual exclusion of shared variables typ-
ically outweighs the benefit of using a helper thread
to hide cache misses [14], as we also observed. Inter-
estingly, in both techniques we do not have to ensure
mutual exclusion. The work-ahead set helper thread
only reads shared variables, so there is no write-write
hazard, and if the helper thread goes wrong, i.e., loads
the wrong data, the correctness of the main thread
is not affected. The bi-threaded implementation in-
dependently processes partitioned input, sharing only
read-only data structures so, again, there is no conflict
among the threads.

Spin-Loop waiting, as described for the work-ahead
set, can be especially wasteful because the logical pro-
cessors share execution resources. In particular, a tight
loop that checks one variable until it changes can fill
the execution units with spurious work. Pentium 4
processors provide a low latency instruction, PAUSE,
designed to combat this kind of behavior [13, 2]. When
a thread executes a PAUSE, it releases hardware re-
sources to the other thread for a period of time that
corresponds roughly to how long it would take for a
variable to be changed by an external thread. Our
implementation of spin-loop waiting uses the PAUSE
instruction.

Because the work-ahead set requires a staged op-
erator implementation, for completeness we also pro-
vide performance information for the staged opera-
tors without a helper thread. The base-line algo-
rithms used for calculating performance improvement
are non-staged, single-threaded implementations. We
also compare the different threading techniques’ rela-
tive performances.

0

1

2

3

4

5

6

7

8

9

32 64 128 256 512 1024 2048

Work-ahead Set Size

E
la

p
s
e
d

 T
im

e
 (

s
e
c
o

n
d

s
)

Baseline Forward(no spin-loop)

Backward(no spin-loop) Forward(spin-loop)

Backward(spin-loop)

0

0.5

1

1.5

2

2.5

3

32 64 128 256 512 1024 2048

Work-ahead Set Size

M
O

M
C

 E
v
e
n

ts
 P

e
r

P
ro

b
e

Forward(no spin-loop) Backward(no spin-loop)

Forward(spin-loop) Backward(spin-loop)

0

5

10

15

20

25

30

35

40

Base 32 64 128 256 512 1024 2048

Work-ahead Set Size

L
2

 C
a

c
h

e
 M

is
s

e
s

 (
x

1
M

)

Main Thread Helper Thread

(a) Execution Time (b) Interference (c) Cache Miss Distribution

Figure 4: CSB+ Tree Workload for the Work-ahead Set

6.1 A Closer Look at the Work-ahead Set

In this section, we analyze a work-ahead set enabled
index traversal using a CSB+ tree, in order to under-
stand the helper thread parameters, and to measure
the cache behavior. (The results for hash joins are
similar, and can be found in Appendix A.2.)

We evaluate the CSB+-Tree in the context of an
index nested loop join, where the index is probed once
for each outer relation record. The result of the join is
a set of pairs of outer RID and inner RID of matching
tuples, where an RID is just an in-memory pointer.

We implement an in-memory CSB+-tree using a 32-
bit floating-point key, and 32-bit pointers. The CSB+-
tree has a node size of one L2 cache line (128 bytes in
a Pentium 4); an index node is able to contain up to
30 keys, while a leaf node is able to contain up to 14
key-RID pairs. The tree indexes 10 million keys. The
index is bulk-loaded and nodes are up to 75% full.
The index is probed using 10 million (key,RID) pairs
from a (hypothetical) outer table. The probe stream is
clustered, and the probe keys are randomly generated.

We consider five different scenarios: a single-
threaded implementation, simple forward preloading
with no spin-loop, simple backward preloading with no
spin-loop, forward preloading with spin-loop and back-
ward preloading with spin-loop. For each preloading
scenario, we also vary the work-ahead set size.

Figure 4(a) shows the execution time with different
work-ahead set sizes. Backward preloading scenarios
run faster than the original program, up to 33% faster
in the spin-looping case. Backward preloading is faster
than forward preloading. Spin-loop waiting improves
the performance of backward preloading, but not for-
ward preloading.

The average number of MOMC events per probe
is shown in Figure 4(b). The main thread has
more computation to do than the helper thread, so
the helper thread runs faster, leading to more poten-
tial interference in the work-ahead set. As predicted,
forward preloading experiences more MOMC events
than backward preloading. Using spin-loop waiting
for forward preloading increases the number of MOMC
events significantly.

In this experiment, backward preloading has the

least interference and therefore is faster than forward
preloading. The difference in interference between
the two scenarios explains the big performance dif-
ference. The interference effect decreases with larger
work-ahead set sizes because the average distance be-
tween the two threads is larger and there is a smaller
likelihood that the two threads are operating on the
same cache line. In the rest of this paper, we use back-
ward preloading with spin-wait when using a work-
ahead set.

Figure 4(c) shows the distribution of cache miss
penalties for the backward preloading scenario with
spin-looping. The other methods had similar distribu-
tions of cache misses. The helper thread absorbs most
of the cache misses, up to 97%. The cache miss re-
duction in the main thread is the reason for the 33%
performance improvement. We have generally been
successful at transferring cache misses from the main
thread to the helper thread without increasing the to-
tal number of cache missses. The absence of an in-
crease in cache misses is a consequence of our design,
in which the work-ahead set structure itself occupies
just a small fraction of the L2 cache.

When a work-ahead set is larger than 1024, the to-
tal number of cache misses increases as more conflict
cache misses occur. Such increase is sharper for for-
ward preloading than for backward preloading. This
is because in forward preloading, the helper thread al-
ways follows the main thread resulting in a greater
average distance between the main thread and a re-
cently preloaded memory reference than with back-
ward preloading. Preloading with a large work-ahead
set is more likely to incur conflict cache misses with
other preloaded memory references.

Figure 5 compares work-ahead set performance of
clustered probes with that of unclustered probes. We
only show the performance of backward preloading
with spin-wait; other scenarios have similar perfor-
mance curves and are omitted. Random probes are
generally more expensive than sequential probes and
provide a more realistic workload. Using a work-ahead
set results in a 41% speedup for unclustered probes.
This improvement is even larger than for sequential
probes, primarily because there are more cache misses

in the unclustered case.

0

1

2

3

4

5

6

7

8

9

32 64 128 256 512 1024 2048

Work-ahead Set Size

E
la

p
s

e
d

 T
im

e
 (

s
e

c
o

n
d

s
)

Clustered, Baseline Clustered, Backward(spin-loop)

Unclustered, Baseline Unclustered, Backward(spin-loop)

Figure 5: Clustered and Unclustered Probes

As we described in Section 4.2, the performance
of preloading is poor when the work-ahead set size
is too small, which we see experimentally to be 64
references. The high number of expensive MOMC
events outweighs any cache improvement. All preload-
ing methods start to deteriorate due to the increasing
effect of cache pollution once the size is larger than
1024 references, which is about one quarter of the L2
cache size. As long as the size of a work-ahead set
is in the range between 64 and 1024, the backward
preloading performance (with spin-looping) is good,
and relatively insensitive to the work-ahead set size.
Thus, our preloading solution is robust. One would
size the workahead set at the low end of this range,
say 128 entries, so that more cache capacity is avail-
able for other purposes. In what follows, experiments
using the work-ahead set will employ a size of 128.

6.2 Threading Performance

Now we compare all three threading techniques when
applied to a CSB+ tree traversal and an in-memory
hash join, with unclustered probes in both cases.

The hash join operator joins two tables, each con-
taining 2 million 64-byte records. The hash join pro-
duces a table of 128-byte output records. The join keys
are 32-bit integers, which are randomly assigned values
in the range from 1 to 2 million. An in-memory hash
table is pre-built over one table. The probe stream is
unclustered. We use join keys from the probe records
to probe the in-memory hash table and generate join
results. (When we varied the record size, the rela-
tive performance of the various methods was similar
to what is shown below.)

In these experiments One Thread and Two Threads
refer to non-staged implementations running either
alone or in parallel. Two Threads means that the
same operator is being run in each thread, but each
operator has its own input and output data. We also
provide similar labels for the staged implementations.
Bithreaded refers to operators, both staged and un-
staged, that partition their input and process it in an
interleaved fashion as described in Section 3. Finally,
Work-ahead Set is a staged operator with a helper

thread performing explicit preloading. In some graphs,
data for the work-ahead set’s main and helper thread
are separated to demonstrate their different roles in
performance improvement.

We find that all three threading techniques result
in substantial increases in the throughput of both an
in-memory hash join and a CSB+ tree traversal. As
Figure 6(b) shows, in-memory hash join throughput,
when compared with a single threaded implementa-
tion, increased by up to 48%, 50%, and 55% for inde-
pendent parallel hash joins, a bi-threaded hash join,
and a work-ahead set enabled hash join, respectively.
CSB+ performance, Figure 6(a), is comparable, with
improvements in throughput of up to 69%, for a bi-
threaded CSB+ tree traversal, and 68%, for the work-
ahead set enabled implementation.

The key benefit of these threading techniques is
exploiting thread level parallelism to efficiently over-
lap blocking cache misses with useful computation.
Whereas in a single threaded implementation, a stall
caused by a cache miss results in wasted time, having
multiple threads available to perform useful computa-
tion on the processor’s functional units improves over-
all throughput. Figures 7(a) and (b) show the number
of cache misses suffered by each thread, which we find
to be the most important source of performance dif-
ference among the threading techniques.

Ideally, one would expect independent, parallel hash
join or CSB+ tree traversal operators to exhibit the
same number of cache misses per thread as the respec-
tive single threaded version.3 The parallel operators,
however, suffer elevated cache-misses per thread be-
cause they are not designed to be cooperative: there
is cross-thread cache pollution. Even with more cache
misses, performance improves because the two threads
keep the processor more active by overlapping cache
misses with computation.

A bi-threaded implementation processes the same
amount of data as a single threaded version and there-
fore suffers almost exactly the same number of cache
misses. Though the two threads share input, this
does not reduce overall cache misses, since one of the
threads must suffer the cache miss required to bring
input data into the cache. The important difference is
that the bi-threaded operator distributes these cache-
misses over the two threads and benefits by overlap-
ping a cache miss in one thread with computation in
the other. Additionally, our bi-threaded implemen-
tation processes the input in an interleaved manner,
an inherently cooperative design choice that allows a
thread to benefit if the other thread’s cache miss loads
needed input data into the cache.

We find that the work-ahead set outperforms naive
independent, parallel operators, in terms of through-

3Note that in the case of independent parallel operators,
twice as much work is processed as in the single threaded im-
plementation so a per thread comparison is appropriate.

0

0.5

1

1.5

2

2.5

O
ne

Thr
ea

d

Tw
o

Thr
ea

ds

Sta
ge

d,
 O

ne
Thr

ea
d

Sta
ge

d,
 T

w
o

Thr
ea

ds

Bith
re

ad
ed

Sta
ge

d,
 B

ith
re

ad
ed

W
or

k-
ah

ea
d

se
t

T
h

ro
u

g
h

p
u

t
(x

1
M

 T
u

p
le

s
/S

e
c

o
n

d
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

O
ne

Thr
ea

d

Tw
o

Thr
ea

ds

Sta
ge

d,
 O

ne
Thr

ea
d

Sta
ge

d,
 T

w
o

Thr
ea

ds

Bith
re

ad
ed

Sta
ge

d,
 B

ith
re

ad
ed

W
or

k-
ah

ea
d

Set

T
h

ro
u

g
h

p
u

t
(x

1
M

 T
u

p
le

s
/S

e
c

o
n

d
)

(a) CSB+ Tree Traversal (b) In-memory Hash Join

Figure 6: Throughput Using Different Threading Techniques

0

10

20

30

40

50

60

O
ne

Thr
ea

d

Tw
o

Thr
ea

ds

Sta
ge

d,
 O

ne
Thr

ea
d

Sta
ge

d,
 T

w
o

Thr
ea

ds

Bith
re

ad
ed

Sta
ge

d,
 B

ith
re

ad
ed

W
or

k-
ah

ea
d

Set
 M

ai
n

W
or

k-
ah

ea
d

Set
 H

el
pe

r

L
2

 C
a

c
h

e
 M

is
s

e
s

 P
e

r
T

h
re

a
d

 (
x

1
M

)

0

5

10

15

20

25

O
ne

Thr
ea

d

Tw
o

Thr
ea

ds

Sta
ge

d,
 O

ne
Thr

ea
d

Sta
ge

d,
 T

w
o

Thr
ea

ds

Bith
re

ad
ed

Sta
ge

d,
 B

ith
re

ad
ed

W
or

k-
ah

ea
d

Set
 M

ai
n

W
or

k-
ah

ea
d

Set
 H

el
pe

r

L
2

 C
a

c
h

e
 M

is
s

e
s

 P
e

r
T

h
re

a
d

 (
x

1
M

)

(a) CSB+ Tree Traversal (b) In-memory Hash Join

Figure 7: L2 Cache Misses Using Different Threading Techniques

put, by up to 10% for a CSB+ tree index traversal, and
up to 4.3% for an in-memory hash join. The work-
ahead set achieves its performance improvement by
emphasizing the overlapping of cache misses with use-
ful computation. In Figure 7(a), the work-ahead set
helper thread suffers almost as many cache misses as
either thread of the parallel operator implementations,
but the key difference is that these misses leave the
main thread free to work almost exclusively on useful
computation.

6.3 Different Operators in Parallel

As described earlier, a naive use of an SMT processor
is to treat it as a multiprocessor system, running inde-
pendent parallel operations. So far, our two-threaded
experiments have always been executing the same op-
erator on each thread. To examine what happens when
different threads run different operators, we execute a
hash join and csb+ tree index traversal in parallel. We
ran one operator in each thread, stopping the experi-
ment when the first operator finished. As a result, each
logical processor always had an instruction stream to
process and was never unused. We note the number of
records processed by each of the two threads.

We then compare the measured throughput with se-
quential single-threaded, bithreaded, and work-ahead
set implementations of the hash join and CSB+ tree
index traversal operators, processing the same amount
of data for each operator.

Figure 8 shows the results of these experiments. All

0

0.5

1

1.5

2

2.5

Sequential,
Single Thread

Parallel
Operators

Sequential, Bi-
threaded
Operators

Sequential,
Work-ahead

Set Operators

T
h

ro
u

g
h

p
u

t
(

x
 1

M
 T

u
p

le
s

/S
e

c
o

n
d

)

Figure 8: Heterogeneous operator throughput

threading techniques improve throughput performance
relative to a single-threaded sequential implementa-
tion. Throughput for bithreading and work-ahead
set implementations exceed naive parallelism by 26%
and 29%, respectively. The gain was primarily due
to reduced conflicts in the L2 Cache. More complex
parallel operators whose instruction footprint exceeds
the instruction cache may also suffer further perfor-
mance loss due to contention for the instruction cache.
Bithreaded and work-ahead set enabled operators are
less susceptible to this problem. Bithreaded operators
share most instructions, and work-ahead set helper
threads are designed to be small and to not conflict
with the operator’s primary code.

6.4 Columnwise Record Layout

The previous experiments focussed on row based
record storage. This configuration features limited

0

0.5

1

1.5

2

2.5

Single Thread Two Threads Bithreaded Work-ahead
Set

T
h

ro
u

g
h

p
u

t
(x

1
M

 T
u

p
le

s
/S

e
c

o
n

d
)

Figure 9: Columnwise Throughput

spatial and temporal locality, particularly in the probe
table. This kind of configuration stands to gain the
most from the work-ahead set concept because a cache
miss rarely benefits more than one data access. In
this section we present the opposite configuration: an
in-memory hash join implementation with columnwise
record storage and a clustered probe stream that in-
cludes all records in the table.

Our columnwise implementation stores each at-
tribute of a table in separate in-memory arrays where
the kth record’s attributes are found at index k of each
array. Additionally, the probes are clustered, so sub-
sequent probes benefit from a previous probe’s cache
miss. This hash join operator joins two tables with
integer attributes and its output includes the join key
attribute as well as two integers from each table. To
assemble the output record, the work ahead set is ex-
panded to hold up to five data pointers per entry as
described in Section 4.1.

The throughput of the columnwise hashjoin is not
directly comparable to the previous row based exper-
iments, but we provide a similar comparison among
the threading techniques described in this paper. As
Figure 9 shows, thread level parallelism and the work-
ahead set yield similar, modest throughput improve-
ments for the columnwise configuration. In this kind
of scenario, the single-threaded application benefits
from two related phenomena. Because the data has
good spatial locality, there will be fewer cache misses
incurred per record. Further, because access to the
columns is sequential, hardware prefetching will be
able to hide the latency of some cache misses.

Bithreading performs particularly well because it
exploits the good record locality and sequential ac-
cess, which likely triggers hardware prefetching. Un-
like naive parallelism, it does not compete for data
cache space with other threads.

7 Conclusion

The relative strengths and weaknesses of the three pro-
posed strategies for SMT processors are summarized
in Table 2. Bi-threading has good performance in both
row-wise and column-wise layouts, but it changes the
data format and does not preserve record order. The
work-ahead set performs better than naive parallelism,
uses the standard data format, and allows for better

global coordination of cache usage. Naive parallelism
is the easiest to implement, but gives only modest per-
formance improvements.

Because the work-ahead set is advantageous to data
dependent work loads, such as those explored in this
paper, hardware implementers should consider provid-
ing a work-ahead set type feature in hardware. Work
along these lines has been proposed by Chappel et.
al. in [6] with respect to creating subordinate mi-
crothreads in hardware to perform operations such as
prefetching and cache management, without interfer-
ing with main computation threads.

We performed additional experiments that are in-
cluded in this appendix. In order to pin down the over-
head of using a work-ahead set, we implemented a ver-
sion of backward preloading for the join index case in
which the helper thread accessed the join index explic-
itly. This avoids the overhead of copying the memory
references. Further, since the main thread does not
write to the join index, there may be fewer MOMC
events. On the other hand, the helper thread needs
to periodically check whether it has passed the main
thread, which introduces additional MOMC events.
Surprisingly, this “direct” implementation performed
slightly worse that our work-ahead set implementa-
tion. We attribute the difference to the difficulty of
tuning the various parameters of the direct implemen-
tation.

There is a chance that multiple references in the
work-ahead set may fall into the same cache line,
meaning that the helper thread may unnecessarily load
a cacheline more than once. One could design a helper
thread that is able to check for duplicate cache line ref-
erences and perform loading just once. However, this
extra computation in the helper thread may compete
with the main thread for shared computation units and
slow down the execution of the main thread. Further,
the cost of loading the cache line the second and sub-
sequent times is low, since it will correspond to a cache
hit. We verified experimentally that such extra “intel-
ligence” in the helper thread worsened performance.

A Supplementary Experiments

We also implemented a single-threaded staged ver-
sion of the join index example that, instead of post-
ing to the work-ahead set, executes appropriate soft-
ware prefetch instructions available in the Pentium 4
instruction set. This version of the code, see Figure 10,
performed no better than code without such prefetch
instructions, leading us to conclude that most of the
prefetch instructions were dropped.

A.1 Using a Join Index

A join index [25] is a sequence of pairs of tuple pointers
representing the pairs of tuples that join according to
a known join condition. A join index may be stored in

Parallel Bi-threaded Work-Ahead Set

Implementation Effort Small Moderate Moderate
Change in Data Format No Yes No
Change in Data Order No Yes No (if all data goes through the

same number of stages)
Performance Improvement (row-wise) Moderate High High
Performance Improvement (column-wise) Moderate High Moderate
Control of cache resources No No Yes

Table 2: Strengths and Weaknesses of the Proposed Techniques

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

32 64 128 256 512 1024 2048

Workahead Set Size

E
la

p
s
e
d

 T
im

e
 (

s
e
c
o

n
d

s
)

No Prefetching Backward(spin-loop) Using Prefetch Instr

Figure 10: Join Index Using Prefetch Instructions

order to speed up join queries or it may be generated
as it is needed.

Composing output tuples using a join index usu-
ally has bad cache behavior because the tuple pointers
in the index point to “random” physical memory ad-
dresses in the two input relations. By using a helper
thread to preload the input (and output) cache lines
posted by the main thread, the main thread will more
often find data already in the cache. As a result, the
main thread will make faster progress.

We consider two variants of the join index. In the
“inner” variant, the join index has one stage with three
memory references: one for each input table and one
for the output result. In the “outer” variant, we allow
null values for the second pointer in the join index, as if
the join index represents a left outer join. This variant
is interesting because some entries in the work-ahead
set will need two memory references, while some will
need three.

A.1.1 Join Index Experiments

We join two tables using a join index. Each table is
populated with 2 million 64-byte records. For the “in-
ner” join experiment, the join index is precomputed
and contains 1 million pairs of randomly generated
record identifiers from the two tables. We perform a
join of these 1 million pairs using the join index and
copy every pair of matching records to a result record.
Each result record is 128 bytes and fits in a 128-byte
L2 cache line4.

4Similar to Section 6.2, we conducted experiments with var-
ied record size, but found the results to be similar to what is
shown below.

For the “outer” join experiment, we simulate the
case of a left outer join. We have the same table con-
figuration except that some fraction of right pointers in
the join index are null pointers, indicating the record
from the left table joins no records from the right ta-
ble. In that case, we only copy the record from the left
table to the result record.

We consider five different scenarios: a single-
threaded implementation, simple forward preloading
with no spin-loop, simple backward preloading with no
spin-loop, forward preloading with spin-loop and back-
ward preloading with spin-loop. For each preloading
scenario, we also vary the work-ahead set size.

Figure 11(a) shows the execution time for the inner
join with different work-ahead set sizes. Both forward
and backward preloading run faster than the original
program when the size is smaller than 1024 cache lines.
Up to 22% of the original execution time is saved.
Backward preloading is slightly faster than forward
preloading. When the work-ahead set size is too large,
the performance of preloading scenarios degrades due
to cache pollution effects.

Figure 11(b) shows the effect of interference be-
tween the two threads. In both graphs we see little dif-
ference between spin-looping and not spin-looping for
backward preloading. For this experiment, the main
thread does relatively little computation, and catches
up to the helper thread. As a result, the helper thread
hardly ever spin-loops. The overall impact of interfer-
ence on performance is relatively small.

Figure 12 shows the distribution of cache miss
penalties for the backward preloading scenario with
spin-looping. The other methods had similar distribu-
tions of cache misses. The helper thread absorbs most
of the cache misses, up to 75%. The cache miss re-
duction in the main thread is the reason for the 22%
performance improvement.

For the left outer join experiment, we precompute
the join index in which 20% of join pairs contain a
null pointer. As described in Section 4.1, each entry
of the work-ahead set contains up to 3 references. The
main thread can post 2 or 3 references to an entry,
depending on whether the right join pointer is null
or not. The initial number of the entries is chosen
as the work-ahead set size divided by 2. The main
thread dynamically decides if there is space to post
new references.

Figure 13 shows the execution time. For each sce-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

32 64 128 256 512 1024 2048

Work-ahead Set Size

E
la

p
s

e
d

 T
im

e
 (

s
e

c
o

n
d

s
)

No Prefetching Forward(no spin-loop)

Backward(no spin-loop) Forward(spin-loop)

Backward(spin-loop)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024 2048

Work-ahead Set Size

M
O

M
C

 E
v

e
n

ts
 P

e
r

J
o

in

Forward(no spin-loop) Backward(no spin-loop)

Forward(spin-loop) Backward(spin-loop)

(a) Execution Time (b) Interference

Figure 11: Preloading a Join Index

0

0.1

0.2

0.3

0.4

0.5

0.6

Base 32 64 128 256 512 1024 2048

Work-ahead Set Size

C
a
c
h

e
 M

is
s
 P

e
n

a
lt

y
 (

s
e
c
o

n
d

s
)

Main Thread Helper Thread

Figure 12: Distribution of Cache Miss Penalties for
Backward Preloading a Join Index (Spin-wait)

0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512 1024 2048

Work-ahead Set Size

E
la

p
s

e
d

 T
im

e
 (

s
e

c
o

n
d

s
)

No Prefetching Forward(no spin-loop)

Backward(no spin-loop) Forward(spin-loop)

Backward(spin-loop)

Figure 13: Preloading an Outer-Join Index

nario, we vary the work-ahead set sizes. The perfor-
mance improvement is similar to that of the inner join
experiment. Up to 22% of the CPU time is saved by
preloading. We also try different percentages of null
pointers and have similar improvements. The analy-
sis of cache miss distribution and interference is also
similar to the inner join experiment.

A.2 Hash Join Experiments

The hash join operator joins two tables, each contain-
ing 2 million 64-byte records. The hash join produces
a table of 128-byte output records. The join keys are
32-bit integers, which are randomly assigned values in
the range from 1 to 2 million. An in-memory hash ta-
ble is pre-built over one table. We use join keys from
the other table to probe the in-memory hash table and
generate join results.

Figure 14(a) shows the execution times with differ-
ent work-ahead set sizes. Both preloading methods
run faster than the original program and up to 34% of
execution time of the original program can be saved
by backward preloading. Backward preloading is also
faster than forward preloading.

Figure 14(b) compares the effect of interference be-
tween the two preloading scenarios. Similar to the case
of preloading a CSB+ tree, backward preloading has
the least cache interference and is therefore faster than
forward preloading. Forward preloading with a spin-
loop performs very poorly because it guarantees the
pathological case described for forward preloading in
Section 4.3.

Figure 15 shows the distribution of cache miss
penalty for backwards preloading with spin-looping.
(Again, the graphs for the other variants were sim-
ilar.) As in Section 6.1, the helper thread picks up
a significant number of the cache misses. The main
thread suffers as few as 25% of the total cache misses,
which again explains the performance benefit.

References

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
DBMSs on a modern processor: Where does time go? In
Proceedings of VLDB Conference, 1999.

[2] A. Binstock and R. Gerber. Programming with Multi-
threaded Software for Intel IA-32 Processors. Intel Press,
2004.

[3] D. Boggs, A. Baktha, J. Hawkins, D. T. Marr, J. A. Miller,
P. Roussel, R. Singhal, B. Toll, and K. Venkatraman. The
microarchitecture of the intel pentium 4 processor on 90nm
technology. Intel Technology Journal, 8(1):7–19, 2004.

[4] P. Bohannon, P. McIlroy, and R. Rastogi. Main-memory
index structures with fixed-size partial keys. In Proceedings
of SIGMOD Conference, 2001.

[5] P. A. Boncz, S. Manegold, and M. L. Kersten. Database
architecture optimized for the new bottleneck: Memory ac-
cess. In Proceedings of VLDB Conference, 1999.

[6] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt.
Simultaneous subordinate microthreading (ssmt). In Pro-
ceedings of the 26th Annual ISCA Conference, 1999.

[7] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Improving hash join performance through prefetching. In
Proceedings of ICDE Conference, 2004.

0

0.5

1

1.5

2

2.5

3

32 64 128 256 512 1024 2048

Work-ahead Set Size

E
la

p
s

e
d

 T
im

e
 (

s
e

c
o

n
d

s
)

No Prefetching Forward(no spin-loop)

Backward(no spin-loop) Forward(spin-loop)

Backward(spin-loop)

0

0.5

1

1.5

2

2.5

32 64 128 256 512 1024 2048

Work-ahead Set Size

M
O

M
C

 E
v

e
n

ts
 P

e
r

P
ro

b
e

Forward(no spin-loop) Backward(no spin-loop)

Forward(spin-loop) Backward(spin-loop)

(a) Execution Time (b) Interference

Figure 14: Preloading Hash Join
[8] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving

index performance through prefetching. In Proceedings of
SIGMOD Conference, 2001.

[9] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin.
Fractal prefetching B+-trees: Optimizing both cache and
disk performance. In Proceedings of SIGMOD Conference,
2002.

[10] J. D. Collins, H. Wang, D. M. Tullsen, C. J. Hughes, Y. fong
Lee, D. Lavery, and J. P. Shen. Speculative precomputa-
tion: Long-range prefetching of delinquent loads. In Pro-
ceedings of ISCA Conference, 2001.

[11] S. Harizopoulos and A. Ailamaki. STEPS towards cache-
resident transaction processing. In Proceedings of VLDB
Conference, 2004.

[12] IBM. IBM POWER Architecture. Available via
http://www.ibm.com/technology/power/.

[13] Intel Corporation. IA-32 intel architecture optimization
reference manual. Available via http://developer.intel.com.

[14] D. Kim, S. S. wei Liao, P. H. Wang, J. del Cuvillo, X. Tian,
X. Zou, H. Wang, D. Yeung, M. Girkar, and J. P. Shen.
Physical experimentation with prefetching helper threads
on intels hyper-threaded processors. In Proceedings of In-
ternational Symposium on Code Generation and Optimiza-
tion, 2004.

[15] K. Kim, S. K. Cha, and K. Kwon. Optimizing multidimen-
sional index trees for main memory access. In Proceedings
of SIGMOD Conference, 2001.

[16] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo,
H. M. Levy, and S. S. Parekh. An analysis of database
workload performance on simultaneous multithreaded pro-
cessors. In Proceedings of ISCA Conference, 1998.

[17] S. Manegold. The calibrator (v0.9e), a cache-memory
and tlb calibration tool. http://homepages.cwi.nl/ mane-
gold/Calibrator/.

[18] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty,
J. A. Miller, and M. Upton. Hyper-threading technology
architecture and microarchitecture. Intel Technology Jour-
nal, 6(1):4–15, 2002.

[19] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runa-
head execution: An alternative to very large instruction
windows for out-of-order processors. In Proceedings of the
The Ninth International Symposium on High-Performance
Computer Architecture (HPCA’03), page 129. IEEE Com-
puter Society, 2003.

[20] J. Rao and K. A. Ross. Cache conscious indexing for
decision-support in main memory. In Proceedings of VLDB
Conference, 1999.

[21] J. Rao and K. A. Ross. Making B+ trees cache conscious
in main memory. In Proceedings of SIGMOD Conference,
2000.

[22] Sun Microsystems Inc. Ultrasparc processors. Available
via http://www.sun.com/processors/index.html.

[23] K. Sundaramoorthy, Z. Purser, and E. Rotenburg. Slip-
stream processors: improving both performance and fault
tolerance. In Proceedings of the Ninth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 257–268. ACM Press,
2000.

[24] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simulta-
neous multithreading: Maximizing on-chip parallelism. In
Proceedings of ISCA Conference, 1995.

[25] P. Valduriez. Join indices. ACM Transactions on Database
Systems, 12(2):218–246, 1987.

[26] H. Wang, P. H. Wang, R. D. Weldon, S. M. Ettinger,
H. Saito, M. Girkar, S. S. wei Liao, and J. P. Shen. Specu-
lative precompuation: Exploring the use of multithreading
for latency. Intel Technology Journal, 6(1):22–35, 2002.

[27] P. H. Wang, H. Wang, J. D. Collins, E. Grochowski, R. M.
Kling, and J. P. Shen. Memory latency-tolerance ap-
proaches for itanium processors: Out-of-order execution
vs.speculative precomputation. In Proceedings of Interna-
tional Symposium on High-Performance Computer Archi-
tecture, 2002.

[28] J. Zhou and K. A. Ross. Buffering accesses to memory-
resident index structures. In Proceedings of VLDB Con-
ference, 2003.

[29] J. Zhou and K. A. Ross. Buffering database operations for
enhanced instruction cache performance. In Proceedings of
SIGMOD Conference, 2004.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Base 32 64 128 256 512 1024 2048

Work-ahead Set Size

C
a
c
h

e
 M

is
s
 P

e
n

a
lt

y
 (

s
e
c
o

n
d

s
)

Main Thread Helper Thread

Figure 15: Distribution of Cache Miss Penalties

