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Abstract

Essentially all computer graphics rendering assumes that the reflectance and texture of surfaces is a static phe-
nomenon. Yet, there is an abundance of materials in nature whose appearance varies dramatically with time, such
as cracking paint, growing grass, or ripening banana skins. In this paper, we take a significant step towards ad-
dressing this problem, investigating a new class of time-varying textures. We make three contributions. First, we
describe the carefully controlled acquisition of datasets of a variety of natural processes including the growth of
grass, the accumulation of snow, and the oxidation of copper. Second, we show how to adapt quilting-based meth-
ods to time-varying texture synthesis, addressing the important challenges of maintaining temporal coherence,
efficient synthesis on large time-varying datasets, and reducing visual artifacts specific to time-varying textures.
Finally, we show how simple procedural techniques can be used to control the evolution of the results, such as
allowing for a faster growth of grass in well lit (as opposed to shadowed) areas.

1. Introduction

A great deal of work in texture analysis and synthesis has
been presented in both computer graphics and computer vi-
sion in recent years. However, texture has usually been con-
sidered static—the surface itself remains constant through
time. Many real-world textures are of interest, however, ex-
pressly because of the way their appearance changes or
evolves with time. Consider the fracture of mud drying in
a riverbed, the growth of grass on a hillside, or the formation
of oxides on copper. Each of these natural processes forms a
pattern over time, often producing striking effects.

The modeling of these processes, and more generally
pattern formation in nature is a difficult problem, that
has long been studied in biology, physics and mathemat-
ics (see [Mei92, CH93, Ada03] for reviews). While some
significant progress has been made, it is generally recog-
nized [Bal99] that the real world is far too complex to be
described by a limited set of mathematical tools.

In this paper, we avoid the inherent difficulties in math-
ematical modeling by developing an example-based ap-
proach. We use time-lapse images to capture the complex-
ity in a range of real world processes, including biological
growth and decay, breakdowns such as stress fracture, accu-
mulation of particles, and state changes such as oxidation.
We then synthesize larger spatial patterns of these processes
using a new time-varying texture synthesis algorithm (for
example, see figure 1). Our specific contributions are:

Database of time-varying textures: This paper presents an
initial dataset of time-varying textures (some of which are
shown in figure 2), which can be a useful resource for fu-
ture efforts. Capturing the time variation of appearance is
a difficult problem, since many phenomena such as grass
growth occur over fairly long timescales, making acquisition
challenging. Furthermore, to be usable for texture synthesis,
the acquisition must be carried out in a carefully controlled

manner, preserving parameters such as lighting and humid-
ity over the entire duration. This is an ongoing effort, and the
entire database, which is the first such data on time-varying
appearance, will made available upon publication.

Time-varying texture synthesis algorithm: Synthesizing
textures that vary across time is a challenging problem be-
cause the appearance can evolve and change completely. In
this paper, we take an important first step, showing how to
adapt quilting-based methods for static textures to synthesize
time-varying textures. We do so by addressing three impor-
tant challenges. First, a synthesis technique must preserve
the temporal coherence or continuity in the original data—
we cannot simply synthesize each frame separately. Second,
dealing with large time-varying datasets requires significant
computation, making efficiency a concern. Finally, we must
address temporal visual artifacts (such as cracks in paint ap-
pearing at the same time in various parts of the synthesized
texture if we paste the same block from the input image in
various locations). We solve these problems to develop a
simple synthesis algorithm that works well for a wide class
of time-varying textures.

Controllable time-varying texture synthesis: In many
real-world situations, the time evolution will be different
for different locations in the texture. For instance, grass will
grow faster in well lit areas rather than those in shadow. The
rate at which paint cracks may depend on the curvature of the
surface. These are issues that do not arise for static textures
and have therefore not been addressed in previous work. We
develop a set of simple procedural tools that allows a user to
control the rate of time-variation of different locations on the
texture, allowing for controllable time-varying texture syn-
thesis.
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Figure 1: Sample images of a time sequence with synthesized time-varying textures for cracking paint and growing grass (the input sequences
are found in rows 1 and 2 of figure 2). This paper offers a new capability in computer graphics, of rendering these changes in appearance over

time, that cannot be addressed by current methods for static textures.

2. Previous Work

Our work is related to much of the recent literature in tex-
ture synthesis, motion or dynamic textures, and the study of
pattern formation and weathering in computer graphics.

Texture Synthesis: There is a great deal of recent work
on synthesizing texture by example. One approach is to use
parametric [HB95, PS00] models; these are generally more
useful in characterizing textures for analysis, rather than syn-
thesis. Another approach is to use non-parametric methods,
with a collection of examples from the source image used to
represent the texture. DeBonet [DeB97] generates textures
by sampling from multiscale filter responses. In [EL99], pix-
els are copied directly from the sample texture. [WLOO]
extended this work, using a multiscale approach and vector
quantization for faster processing. Their algorithm was ex-
tended to synthesis on 3D surfaces in [WL01] and [Tur01],
and to synthesis on 3D surfaces with lighting and viewpoint
variation in [TZL*02]. More recently, several algorithms
have synthesized textures by placing entire patches from the
sample image [EFO01, LLX*01, KSE*03]. Patch based meth-
ods have generally demonstrated the best and most efficient
sample-based texture synthesis results to date.

All of these methods have considered static textures. As
discussed in the introduction, the extension to time variation
is challenging, since we must consider temporal coherence,
efficiency and reduction of perceptually distracting temporal
artifacts. One of the main contributions of this paper is to
solve these problems in order to adapt patch-based texture
synthesis algorithms to synthesize time-varying textures.

Motion texture: Work termed as dynamic texture has
been studied in tcomputer graphics and computer vision
[SP96, SSSE00, SDWO01, WZ02]. However there are some
important distinctions between that work and our own. First,
the “texture” in previous work has often been a result of rep-
etition in time, arising from motion in the sequence (e.g.,
fountains or waterfalls within a larger scene, ripples on the
surface of water). In contrast, we look at surfaces that meet
the traditional definition of texture in each frame (i.e., the
texture is stochastically stationary and repeats in space—but
the visual appearance of the texture is changing over time).
Previous work with time-varying texture is perhaps more
aptly referred to as “motion texture.” Furthermore, time rep-
etition is key to the operation of these dynamic texture al-
gorithms, since they are based on motion models or similar-
ity between frames. Our datasets are by definition changing
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Appearance Time-Varying Appearance

BRDF TBRDF

TF (Texture Function)  TTF (Time-Varying Texture Function)
BTF [DVGNK99] TBTF

Table 1: Extension of common appearance concepts such as the
BRDF, textures and light and view varying textures (BTFs) to time-
varying appearance. In this paper, we focus on the time-varying tex-
ture function (TTF).

their appearance completely over time, so there is no notion
of repetition. For this reason, the methods used in previous
work do not apply to the datasets we consider.

Pattern Formation: Some recent work has focused on
physical simulation of the patterns generated by weath-
ering ( [DEWJ*99] and cited references) and corro-
sion [MDGO1]. Earlier work has focused on reaction-
diffusion methods [Tur91, WK91] and L-systems for plant
geometry [PL90]. A common thread in these methods is that
the textures are procedurally generated, through mathemat-
ical equations and simulation. As with any procedural tex-
ture, synthesis is often difficult to control, and achieving a re-
sult that matches a given sample requires a great deal of trial
and error. Our method has the advantage that it is derived
from the sample itself, and so generating a result matching a
desired appearance relies only on obtaining a sample.

3. Time-Varying Appearance

We first formalize the notion of time-varying appearance.
One can imagine extending many common appearance con-
cepts, such as the BRDF, textures, and the Bi-directional
Texture Function (BTF [DVGNK?99]) for light and view
variation, to include an additional time dimension as shown
in table 1. In this paper, we focus on textures, introducing
the Time-varying Texture Function or TTF, assuming light-
ing and viewpoint are fixed. The extension to TBRDFs and
TBTFs remains a rich area of future work.

The TTF concept is a simple extension of static texture,
and we can denote the time-varying texture p as

TTF = p(xvyvt)v (1)

where (x,y) is the spatial location on the surface (or equiva-
lently, the corresponding pixel in the image) and t is the time
(which in previous work has been assumed static).
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Figure 2: Examples from our database of time-varying textures. From top to bottom, grass gowth, cracking paint, copper patination, ripening
banana, and snow accumulation. Images were acquired with controlled lighting conditions at times t apart over a total duration d. Each dataset
contains from 200 to 2500 images taken at intervals ranging from t = 5 sec to t = 10 min, and over a duration ranging from d = 20 min to
d = 7 days. This time-varying appearance database is the first of its kind and represents a valuable resource for future research efforts.

4. TTF Acquisition

The first step in investigating time-varying textures is to ac-
quire datasets representing them—some examples are shown
in figure 2. Acquiring good datasets is a challenging prob-
lem for several reasons. First, many of the natural processes
we consider occur over a considerable duration (several days
for grass growth and ripening of banana skin). Second, it is
difficult to control conditions such as the lighting over this
duration, which is essential to obtain good data for texture
synthesis. Given the considerable difficulty in acquiring cal-
ibrated time-varying data, we believe this database to be an
important contribution; we will extend it to more natural pro-
cesses and make it available upon publication.

Images of our acquisition for several of the textures is
shown in figure 3. We acquire images using time-lapse
photography, recording photographs at given time intervals.
These time intervals ranged from five seconds (paint dry-
ing and cracking, snow accumulating on slate) to between
1 and 10 minutes (grass growth, oxidating copper, ripening
banana), and the durations over which the images were cap-
tured ranged from twenty minutes (snow) to several days
(grass and banana). In all, we obtained between 200 and
2500 images for each time-varying process.

Since the definition for TTFs has the lighting and view-
ing angles fixed, the acquisition system must have controlled
viewing conditions over time. We used a fixed camera and
fixed incandescent light sources, while the camera shutter
was controlled automatically. Two separate configurations
were used, depending on the time scale of variation. For pro-
cesses that happen over a longer period of time (e.g. several
days, as with grass growth), a Nikon CoolPix 990 digital
camera was used with camera control via the USB port on
a personal computer. The shutter could be triggered up to
every 30 seconds, with an accuracy of plus or minus a few
seconds. For faster processes that happen over a few minutes
up to a few hours (e.g snowfall), a Nikon D1 digital camera
was used with camera control via a PocketWizard MultiMax
transceiver remote triggering device. The shutter could be
triggered as fast as every second with very high accuracy.

The illumination must also be carefully controlled to
maintain consistency across the entire dataset. For processes
that happen on a short time scale (e.g., snow falling, where
only natural light is used), the lighting is assumed to be
approximately constant. For longer acquisitions (e.g., grass
growth), however, we controlled the lighting by enclosing
the sample and camera in a light-tight aluminum box with
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Figure 3: Images of acquisition for (from left to right) growing grass, drying and cracking paint, patinating copper, and ripening banana.

one or more fixed incandescent bulbs (for most acquisitions,
two 60W bulbs) for illumination.

Many of the samples also required a somewhat special-
ized set-up to achieve the desired time-varying texture ef-
fect. In some cases, this is straightforward. For instance, for
the snow dataset, we simply positioned a camera above a
slate tile during a snowstorm. The slate was cleared of all
snow before acquisition, and images were acquired every
few seconds as the snow accumulated. For the ripening ba-
nana dataset, we used several bananas placed in a light-tight
aluminium box and allowed to ripen over approximately
one week. Two fixed incandescent bulbs were the only light
sources in the box. Below, we discuss in somewhat more de-
tail, the setup for the first three examples in figure 2.

Grass Growth: Achieving grass growth proved difficult in
the enclosed environment of the light tight box. Therefore,
we used Cosmic Kittycat grass, a fast growing grass com-
monly available at pet stores, that is packaged in its own soil.
After a three day germination period, where the seeds were
kept in a dark, moist location, the grass began to grow. It was
then placed in the light tight box, and the grass grew rather
quickly. The box lid was left slightly open and covered with
blackout fabric for ventilation. Two fixed incandescent bulbs
provided the only lighting.

Weathered Paint: We used a pine board with DecoArt
weathered wood cracking medium and red acrylic paint. The
weathering medium was applied to the board and allowed to
dry for 20 to 30 minutes. The paint was then applied and the
dataset acquired in open air with two fixed incandescent light
sources. The size of cracks could be controlled by changing
the thickness of the weathering medium or the paint.

Copper Oxidation: We used a piece of copper sheeting
with Sophisticated Finishes Patina Green Antiquing Solu-
tion. The sample was acquired in open air to speed evapora-
tion time, and blackout fabric was used to keep the light-
ing, provided by two fixed incandescent bulbs, consistent
throughout the acquisition. The liquid patination solution
was applied to the copper and oxidation visibly began im-
mediately. As the chemical evaporated, the patina formed.

Note that all of our acquisitions are assumed independent
of geometry, and are acquired on planar surfaces or as close
to planar as possible in the case of the banana, for example.
Although non-planarity and geometric deformations do lead
to movement of surface points in the image, we consider this
effect to be relatively small—however, it may lead to some
degradation in the visual quality of our final results.

5. TTF Synthesis

Many algorithms for synthesizing textures in both 2D and
3D have been introduced in recent years, as discussed in

P

Section 2. In general, the most successful algorithms have
relied on copying pixels or patches directly from the sam-
ple image and finding best fit boundaries between them. It
would therefore be ideal to find a simple adaptation of these
approaches to synthesize time-varying textures. This would
also enable the many recent extensions and improvements to
texture synthesis to also apply immediately to TTFs.

However, one cannot directly apply previous methods to
TTF synthesis. The problem is difficult because the texture
can evolve, completely changing its appearance over time.
There are three main challenges we address in this work.
First, we must preserve the temporal coherence and grad-
ual time variation in the original input sequence—something
which static texture synthesis methods do not address. Sec-
ond, we must address efficiency concerns given that we may
be dealing with hundreds to thousands of times more data
than for static texture synthesis. Third, we must alleviate vi-
sual artifacts from temporal and spatial repetitions that can
arise with time-varying texture synthesis, but are not present
for static algorithms. In this section, we develop a simple al-
gorithm that solves these problems, and enables image quilt-
ing [EFO01] to be adapted to time-varying textures.

5.1. Preserving Temporal Coherence

Perhaps the most basic approach is to quilt each frame in-
dependently. As shown in figure 4b, while each individual
frame looks reasonable, their time sequence does not exhibit
any kind of temporal coherence, leading to considerable ran-
domness and flickering as shown in the video.

There are several possible ways to address this for time-
varying textures. Instead of standard quilting, which quilts
blocks that have a small spatial extent, but are fixed in time,
we could consider quilting regions that are one pixel wide
in space, but vary over time. In general, one might imag-
ine quilting arbitrary spatiotemporal regions. In practice, we
have found it very important to preserve the entire time vari-
ation of the original input block to maintain temporal co-
herence. Hence, we choose to quilt blocks that have a small
spatial extent as in the original algorithm, but extend over the
entire time sequence (figure 4c). We have found this simple
approach suitable for a wide variety of time-varying textures.

Consider the input time-varying texture p(x,y,t). The in-
ner loop of the quilting algorithm involves a comparison
phase, which determines which block should be chosen to
be pasted in the current location. For static textures, we can
form an error metric as

E =3 (py(x.Y) = Po(x:¥))%, 2
Xy

where we are comparing small blocks p, and p,. To extend

2 Yale University / Time-Vz



Sebastian Enrique 1, Melissa Koudelka 2, Peter Belhumeur 1, Julie Dorsey 2, Shree Nayar  and Ravi Ramamoorthi 1* Columbia University

Frame 139

Frame 238

(a) Original
(zoomed 2x)

(b) Quilting each
frame separately

(¢) Quilting the entire
time sequence

Frame 239

time

Frame 479

Figure 4: Preserving temporal coherence in TTF synthesis. In (a) we show the original input data (zoomed in by a factor of 2). In (b), we
synthesize each frame separately using standard image quilting, which loses temporal coherence (note the large difference in closeups for
adjacent frames). In (c), we quilt over the entire time sequence, comparing and copying the full time sequence for source blocks. This approach

preserves temporal coherence much better.

this idea to the entire time sequence, we instead use
ETTF = ZZ(pl(X7y7t) - pz(xvy7t))2' (3)
Xy

When we paste a block into the synthesized texture, we
paste the same spatial block for the entire time sequence,
preserving the original time variation. In our approach, we
also use the same seam to join blocks across the entire time
sequence (thus also ensuring temporal coherence of these
seams), with the best seam or cut location chosen based on
consideration of all the frames. In effect, instead of quilting
small square blocks with spatial but no temporal extent, we
quilt cuboids with a small spatial extent as before, but whose
temporal extent is the entire original sequence.

5.2. Efficient Time-Varying Synthesis

The inner loop comparison in equation 3 is linear in the
temporal extent (number of frames in the time sequence).
Thus, if we have acquired one thousand frames, TTF syn-
thesis will be one thousand times slower than synthesizing a
single static texture. Furthermore, the memory requirements
will also grow linearly with the number of frames. In this
subsection, we develop an optimization using singular-value
decomposition to compress the original dataset and speed up
the comparisons. This approach is inspired by recent work
on optimizing static 2D texture synthesis [ZG04], and tech-
niques to compress lighting and viewpoint variation for bidi-
rectional texture functions, such as 3D textons [LMO01]. We
use a linear SVD method applied to the very different prob-
lem of representing variation with time, to speed up the com-
parison phase of the algorithm. It should be emphasized that
this compression only optimizes the comparisons in equa-
tion 3. The final output always copies blocks directly from
the original input without compression.

Since textures are by definition repetitive in space, we
believe that there exists a low dimensional basis for time-
varying pixels. To compute this basis, we collect the time-
varying texture data p(x,y,t) for all m original pixel loca-
tions (x,y) and all n frames (labeled with time t) into a large

m x n matrix (a typical size would be 65536 x 500),

p(X17y17t1) p(Xlaylvtz) p(X17y17tn)
T | PGaYat)  p(XaYath) P(Xz:Y2:tn)
mxn e e e
P(Xm,Ym;ty)  P(Xm,Ym,ty) P(Xm, Ym, tn)
4)
The singular value decomposition of T is then performed,
Tm><n ~ Umxkzkxkvrtlxkv (5)

where the columns of U and V hold the first k eigenvec-
tors or singular vectors spatially and along the time axes re-
spectively. This decomposition can be done separately for
each color channel for RGB images, or we can simply con-
sider using 3m pixel values. Comparison of pixels in inten-
sity space in equation 3 for each pixel is simply replaced by
comparison in time-varying pixel coefficient space, i.e. com-
paring the corresponding rows of U, after weighting each
column by the magnitude of the singular values in . The
major benefit is that each row of U has only k entries, in-
stead of the n frames in the original input.

Figure 5 (left) shows a plot of the reconstruction error us-
ing a certain number of eigenvalues. For most of the textures,
a rank 15 approximation has an error of under 1%, and we
obtain a speedup by one to two orders of magnitude relative
to using the full time sequence. For the grass dataset, the
error falls off more slowly. This is because there is consider-
able visual change over the length of the sequence, with the
grass growing and elongating. Nevertheless, 15 eigenvalues
still are accurate with only a 5% error. We also show the re-
construction and error using a different number of singular
values in figure 5 (right) for the snow dataset, again demon-
strating that a low rank approximation is accurate, and suit-
able for the comparisons in texture synthesis.

In terms of a computational and memory savings, the
complexity is now linear in the number of eigenvectors Kk,
instead of the number of frames in the original input se-
quence. Since we use 15 eigenvectors instead of the hun-

2 Yale University / Time-Va
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Figure 5: Speedups of one to two orders of magnitude can be obtained by compressing the original dataset using SVD. Left: Graphs showing
percentage RMS error in representing the various time-varying textures using a certain number of eigenvalues. Right: Comparison of recon-
structions with different ranks on the snow accumulation dataset. The magnified difference images are shown in the bottom row. While the
visual error in using a rank 1 approximation is clear, the approximation rapidly converges to the true image, with little perceptible difference

in a rank 15 approximation.

Frame 85

Frame 149

(a) Original

(c) Smaller square
blocks

ozl b

Frame 204

Frame 255
. T

time

Figure 6: Time-varying effects such as growing and elongating of grass can be addressed by setting an elongated rectangular block size for
texture synthesis. (a) is the original data, (b) is using elongated 320 x 64 rectangular blocks, and (c) is using smaller 64 x 64 standard square
blocks. Because the grass grows upward, the elongated blocks perform better, particularly for later frames (204 and especially 255).

dreds to thousands of original frames, we obtain a speedup
of one to two orders of magnitude. Note that we use the SVD
only for comparisons, to increase efficiency, but copy the ac-
tual image data from the original time-varying texture, so
there is no loss in sharpness or fidelity of the output.

5.3. Reducing Visual Artifacts

So far, we have devloped an efficient algorithm for time-
varying texture synthesis that preserves temporal coherence.
Good results can be obtained for most examples using this
approach (see figure 4 for instance). However, in some cases,
the nature of time-varying textures leads to specific visual
artifacts not usually found in static texture synthesis. In this
subsection, we will describe some of these issues, showing
how some simple approaches to setting parameters and opti-
mizing the algorithm can improve visual quality.

Setting block size—Elongated rectangular blocks: In
standard quilting-based methods, one uses small square
blocks to paste as patches, with the block size set based on
the feature size of the texture. For time-varying textures, this
feature size can change over time, such as when grass grows,

with the blades elongating. An example is shown in figure 6.
If we use 64 x 64 square blocks, as in figure 6¢, good re-
sults are obtained for early frames (85 and 149). However,
for later frames (204 and especially 255), as the grass grows
longer, the tiling because of the blocks is fairly obvious. On
the other hand, simply using elongated rectangular blocks
of size 320 x 64, as in figure 6b, allows us to synthesize an
effective texture over a much longer sequence.

Reducing repetitions—Jittering time sequence: In the
basic algorithm, the entire time sequence of each patch is
copied from the original data. Since the same patch will
be placed at various parts of the image, any event in that
patch (such as a crack appearing) will happen simultane-
ously throughout the image, which can be distracting and
repetitious. Note that this is a time-related repetition (the
same event happens in different places at the same time),
that is not an issue for static texture synthesis.

We address this problem by creating some randomness
in the time sequence for different instances of a patch in the
synthesized texture. We do this by jittering the way the patch
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Frame 13

Frame 7

(c) Time sequence jittered and low-pass filtered

Frame 75
(b) (©)

Blue region close-up

Pasted from frame #

0 s 10 15 20 25
Synthesized frame #

Green region graph (first 26 frames)

Figure 7: The effects of some repetitions in time-varying textures can be reduced by using jittering and filtering low-frequency gradients. The
top row (a) shows some early frames and a later frame from the original cracking paint sequence. Below that (b), we show the basic algorithm.
In this case, there are two issues, causing the final repeated texture pattern on the right. First, the time sequence is the same for the same original
block pasted at different locations in the texture (green closeups and graph at the bottom right). Second, the original paint has a low-frequency
spatial gradient with a slight color shift from left to right, that restricts the choice of blocks for matching and the quality of the results (blue
closeup). The lower row (c) shows a modified algorithm where the time sequence is jittered (see the green closeups now and the graph on the
right) and a low-pass filter is applied before texture synthesis to better match the colors (blue closeup). The synthesized time-varying texture
now more faithfully represents the original, without the repetitions observable in the basic algorithm.

is copied from the original image. That is, instead of frame
100 coming exactly from frame 100 of the original, it may
come from frame 97 or 103. To implement this,

pY™(x,y,t) = p™9(x Y, f (1)), (6)

where the block from (x’,y’) in the original is pasted into the
synthesized texture as usual, but we also copy the sample
from a new time locationt’ = f(t).

The interesting issue is how to construct the function f to
allow jittering. Note that there are two properties we want to
maintain. First, the time variation f(t) should be monotoni-
cally non-decreasing. Second, it should not deviate too much
from the original timeline, i.e. || f(t) —t || < & for some user-
specified value of €. A function with these properties can
be constructed using a simple procedural technique with a
random-number generator & (that gives values in the range
[—1,1]). We initially define f(0) = 0. Then, we simply com-
pute for the next frame in the sequence,

ft+1)=f(t)+1+9, 7)

provided this keeps the function within the tolerance. If this
would cause the tolerance to be exceeded, we set = 0. This
approach provides a simple way of randomizing the time se-
quence, as seen in the graph at the bottom right of figure 7.

Filtering low-frequency gradients: In certain cases, the
original material has a low-frequency gradient, such as from
left to right in the paint example. This makes texture synthe-
sis hard, since patches from the right of the original sample
will not fit well with patches from the left, due to the inten-
sity difference, even if their time variations match. This can
lead to two problems, as seen in figure 7 (row b) and the blue
closeup. First, there can be distracting color gradients within
a region of the synthesized texture. Second, because of the

difficulty in finding good matches, the synthesized texture
may exhibit repetitions.

To address this problem, we may low-pass filter the im-
ages (in practice, we choose a representative frame for this
purpose), to obtain the low frequency gradient. The image
can then be normalized with respect to this gradient, and
all texture synthesis operations can be peformed on the nor-
malized image sequence. If desired, the final result for each
frame can then be multiplied by the low-frequency variation
to capture the original spatial gradients.

The effects of jittering and low-pass filtering are shown
to improve the quality of the synthesized paint sequence in
figure 7. The basic algorithm (b) exhibits similar events hap-
pening throughout the texture due to identical patches be-
ing copied (green closeups). The color gradients also lead
to a difficulty in selecting patches for texture synthesis (also
leading to the repetitions in the result on the right), and cre-
ate somewhat distracting small color gradients in the results.
Applying jittering and low-pass filtering largely eliminates
these visual artifacts in row (c).

5.4. Results

We have used our algorithm to synthesize time-varying tex-
tures for several examples in our database, including all
those shown in figure 2. For example, the grass and paint re-
sults were shown in figures 6 and 7 respectively. The banana
skin example was shown earlier in figure 4. Results on the
snow dataset are shown later in figure 9. In all of these cases,
we have been able to generate high quality time-varying tex-
tures. Since these datasets represent a reasonably wide range
of natural processes, we believe that our TTF synthesis al-
gorithm is a simple approach that can capture a fairly broad
class of time-varying appearances for computer graphics.
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Figure 8: A fruit bowl with ripening bananas. The banana skin is a time-varying texture, synthesized using our algorithm. Note also that we
can combine dynamic TTFs with standard static textures for the table top and bowl.

Our algorithm can also be applied with standard texture-
mapping to entire scenes. In addition, TTFs can be combined
with standard static textures. Figure 1 shows applying the
paint TTF to the wall of the house, and the growing grass
TTF to the outside, to give the time-varying appearance of
paint cracking on the wall and grass growing in the garden.
Figure 8 applies the banana TTF to a scene of fruit in a bowl,
showing a realistic example of ripening. These scenes repre-
sent a new capability in computer graphics, of easily creating
images and videos of time-varying scene appearance.

6. Controllable TTF Synthesis

In real-world textures and processes, the rate at which the
process unfolds is a function of many parameters including
the underlying shape, and environmental factors in the scene
such as lighting, temperature, and humidity [ML93, Sti02].
For instance, the rate of grass growth will depend on the
lighting (growth will be faster in well lit rather than shad-
owed regions). Paint may crack faster on curved surfaces.
These issues are usually not relevant to static textures, and
have therefore been unexplored in previous work on texture
synthesis. Furthermore, it is not clear how to obtain these ef-
fects, since our input consists of only a single time-varying
texture sample, and we usually do not know the exact (or
even approximate) dependence on environmental parameters
and spatial locations. In this paper, we address this important
problem by taking a phenomenological approach, develop-
ing a set of procedural tools that are easy to specify and can
be applied to obtain desirable user-controlled effects.

To control the time progression of a TTF, we resample the
data based on some property of the surface or environment.
The desired resample rate is represented by a map M(x,y),
which is a function at each point on the target surface. The
map M indicates a “resample factor”, e.g., M(x,y) =1 in-
dicates a pixel that should progress at the same rate as the
original captured sequence, M(x,y) = 2 at twice the origi-
nal rate, M(x,y) = 0.5 at half the original rate, and so on.
In the examples shown here, the length of the sequence is
determined by the fastest pixel.

For each pixel in each frame of the output sequence, the
source frame from the original sequence, f;(x,y), for that
pixel is computed to implement the resampling:

ft (va) =tx M(va) (8)

where t is the frame number in the output sequence, and
M(x,y) is the resample factor for that particular pixel.

The map M can be a function of any surface or environ-
mental parameter. Ideally, the function would be data-driven,
utilizing multiple datasets that track the rate of change ver-
sus temperature or surface curvature, for example. For the
purpose of demonstration, however, we compute M using
simple phenomenological expressions, that allows for easy
control by the user. Figure 9 shows three examples where
the synthesized TTF is controlled according to an outside
parameter. First (a), the growth rate of grass is controlled by
the intensity of light falling on the surface:

1
M = (5 cos 6)2 9)
where r is the distance to the source and 6 is the angle of the
source to the surface normal at pixel (x,y). The function is
squared to provide a more dramatic falloff.

Next (b), the weathering rate of paint is controlled by
the curvature of the surface. In this example, the curvature
changes in only one dimension, so we can consider the sur-
face as a collection of plane curves, each having the form of
a sigmoid function:

1

y(x) = Trex (10)

The curvature is then computed using:

3 1)

Finally (c), the accumulation of snow on slate is con-
trolled by the user defined map shown, that is simply the sig-
graph logo. M is a grayscale texture map with values ranging
from 0 to 1, which determines the rate at which snow accu-
mulates on the surface. Thus, the falling snow spells out the
siggraph logo over time.

In Figure 10, a soccer ball is composited on grass and its
shadow map is used to control the grass growth TTF. Grass
growth occurs at a slower rate in the shadowed region. An
image of the soccer ball was captured at a viewing angle

2 Yale University / Time-Vz



Sebastian Enrique 1, Melissa Koudelka 2, Peter Belhumeur 1, Julie Dorsey 2, Shree Nayar  and Ravi Ramamoorthi 1* Columbia University

(a) u
-

. 9
ACMSIGGRAPH

)\
o

time

Figure 9: Time-varying textures can be controlled simply using images that correspond to resampling maps (leftmost column) specifying the
rate of evolution for different pixels. The maps are determined phenomenologically based on physical considerations or user input such as (a)
light source intensity, (b) curvature, and (c) manually specified. The brighter regions on the map evolve faster in the time-varying textures.

Figure 10: Our approach provides a number of ways to control time-varying textures to mimic the behavior of the physical world. In this case,
the grass growth TTF is controlled using a shadow map, corresponding to the shadow of the soccer ball.

close to that of the grass acquisition on a solid color back-
ground. The soccer ball and the shadow cast by it onto the
background were extracted from the image and overlayed
on the synthesized grass. The shadow map acts as the map
M for resampling the TTF.

7. Conclusions and Future Work

We have introduced a new class of textures, namely time-
varying texture functions (TTFs), that capture the appear-
ance of surfaces as they evolve over time. This leads to a new
capability for computer graphics rendering, to include the
dynamic evolution of surfaces and scenes, going beyond tra-
ditional notions of static texture. Our contributions include a
newly acquired dataset of time-lapse images for many natu-
ral processes, a texture synthesis algorithm suited to the spe-
cific needs of time-varying textures, and new methods for

controlling the time variation and rate of progression of these
textures based on environmental conditions and user input.

Future work includes further study of the idea of control-
lability. This would include acquiring physically based con-
trollability parameters, i.e., textures as they change depen-
dent on shape or environmental factors. For example, TTFs
could be captured on more complicated geometry, and a 3D
scan completed simultaneously to map the rate of change
to surface normal or curvature. Another example would be
capturing grass growth TTFs, such as that shown in this pa-
per, but with varying soil content, illumination conditions,
water levels, or temperatures. In acquiring the datasets used
in this work, we found that small changes in the environ-
ment or initial conditions would lead to dramatic differences
in the progression and final state of the TTF. Understanding
the source of these changes would certainly be enlightening.
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Finally, as we noted in table 1, the TTF is only one time-
varying appearance representation. We are also interested
in exploring time-varying BRDFs (TBRDFs) and the full
time-varying bi-directional texture function or TBTF, that
includes lighting and view variation as well. We predict that
the study of time-varying appearance properties will be a
subject of significant future interest.
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