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ABSTRACT

Quantum algorithms and complexity for
certain continuous and related discrete

problems

Marek Kwas

The thesis contains an analysis of two computational problems. The first problem

is discrete quantum Boolean summation. This problem is a building block of quantum

algorithms for many continuous problems, such as integration, approximation, differ-

ential equations and path integration. The second problem is continuous multivariate

Feynman-Kac path integration, which is a special case of path integration.

The quantum Boolean summation problem can be solved by the quantum sum-

mation (QS) algorithm of Brassard, Høyer, Mosca and Tapp, which approximates

the arithmetic mean of a Boolean function. We improve the error bound of Brassard

et al. for the worst-probabilistic setting. Our error bound is sharp. We also present

new sharp error bounds in the average-probabilistic and worst-average settings. Our

average-probabilistic error bounds prove the optimality of the QS algorithm for a

certain choice of its parameters. The study of the worst-average error shows that

the QS algorithm is not optimal in this setting; we need to use a certain number of

repetitions to regain its optimality.

The multivariate Feynman-Kac path integration problem for smooth multivariate

functions suffers from the provable curse of dimensionality in the worst-case deter-

ministic setting, i.e., the minimal number of function evaluations needed to compute

an approximation depends exponentially on the number of variables. We show that in

both the randomized and quantum settings the curse of dimensionality is vanquished,



i.e., the minimal number of function evaluations and/or quantum queries required to

compute an approximation depends only polynomially on the reciprocal of the desired

accuracy and has a bound independent of the number of variables. The exponents

of these polynomials are 2 in the randomized setting and 1 in the quantum setting.

These exponents can be lowered at the expense of the dependence on the number of

variables. Hence, the quantum setting yields exponential speedup over the worst-case

deterministic setting, and quadratic speedup over the randomized setting.
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for his invaluable help during the time I spent in the PhD program. I am grateful

to all other members of the IBC and quantum computation groups at the Columbia

University, Professor Joseph F. Traub, Professor Alfred V. Aho, Dr. Anargyros Pa-

pageorgiou, Professor Arthur G. Werschulz, and my fellow colleagues Arvid J. Bessen

and Krysta Svore for their support and numerous research discussions.

I had the privilege of interacting with the members of the worldwide IBC com-

munity during many stimulating meetings. The ideas of Professors Stefan Heinrich,

Erich Novak, Leszek Plaskota, Klaus Ritter and Grzegorz W. Wasilkowski were par-

ticularly inspiring for my research. I also appreciate discussions with Professors Jakob

Creutzig, BolesÃlaw Z. Kacewicz and Shu Tezuka.

This research was supported in part by the National Science Foundation and by

the Defense Advanced Research Agency and Air Force Research Laboratory under

agreement F30602-01-2-0523.

vii



viii



To my mother Maria Kwas.

ix



x



Chapter 1 1

Chapter 1

Introduction

This thesis contains an analysis of two computational problems. One of them, Boolean

summation, is discrete and the other, multivariate Feynman-Kac path integration, is

continuous. As we shall see, they are closely related if we study them in the quan-

tum model of computation. Quantum Boolean summation is a building block of

quantum algorithms for many continuous problems, such as integration, approxima-

tion, differential equations and path integration. The quantum Boolean summation

problem was previously studied in the worst-probabilistic setting. We improve the ex-

isting results and extend the analysis to two more settings—average-probabilistic and

worst-average. This extension is especially important for the analysis of multivariate

Feynman-Kac path integration, in which the concept of randomized queries is used.

The thorough knowledge of quantum Boolean summation properties is necessary to

establish sharp complexity bounds in the quantum setting with randomized queries.

This chapter is organized as follows. Section 1.1 gives an overview of research in

the area of quantum computation for continuous problems. The quantum model of

computation for continuous problems with deterministic and randomized queries is

presented in Section 1.1.1. The main results of this thesis are outlined in Section 1.2.
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1.1 Background

Feynman [12] was the first to suggest computational devices based on the quantum

mechanical principles. He conjectured that the intrinsic difficulties of simulating

quantum phenomena on classical computers might be overcome by using quantum

computational devices. Indeed, the computational intractability of some quantum

phenomena caused by exponential requirements of time and memory in the num-

ber of simulated components makes classical computers useless for simulating such

phenomena.

Deutsch [8] first studied rigorous models of quantum computation. Initially, ad-

vantages of quantum computation over classical computation were shown for some

discrete problems, e.g., the Deutsch and Deutsch-Jozsa problems of distinguishing

between constant and balanced Boolean functions [8, 9] and the Simon problem of

checking Boolean function invariance [43].

Shor and Grover made significant contributions that initiated the explosion of

research in the area of quantum computation. Shor [42] found a quantum algorithm

that solves the problem of factorizing a composite n-bit integer with cost of order

n2 log n log log n, which provided an exponential speedup over the best classical algo-

rithm known. Grover [13] discovered a quantum algorithm that solves the problem of

searching an unstructured database consisting of N elements with cost of order
√
N ,

which yields a quadratic speedup over any classical algorithm.

Novak and Heinrich initiated the study of continuous problems in the quantum

setting in the framework of information-based complexity. Novak [34] studied the

quantum complexity of the multivariate integration problem for Hölder classes and

proved exponential speedup over the worst-case deterministic setting and roughly

quadratic speedup over the randomized setting. Heinrich [15] extended the quantum

computation model to continuous problems and dealt with integration in Lp spaces,

showing results similar to [34]. A selection of continuous problems has been considered

since then. A partial list includes:
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• approximation for Korobov spaces [35],

• approximation for Sobolev spaces [17, 18],

• the eigenvalue problem [1, 22] and the Sturm-Liouville eigenvalue problem [37],

• integration for Sobolev spaces [16, 20, 21],

• ordinary differential equations [23],

• parametric integration [51],

• path integration [48].

The quantum setting gives an exponential speedup over the worst-case deterministic

setting, and a quadratic speedup over the randomized setting for integration over

Sobolev spaces of multivariate functions. The same is true for path integration.

For parametric integration, quantum algorithms turn out to be much faster than

the classical ones for some choices of the problem parameters. However, there is no

improvement for some other choices of these parameters. A similar situation occurs for

approximation of functions. In particular, for Korobov spaces we obtain polynomial

speedups over the known algorithms for the classical settings. For Sobolev spaces the

complexity in the classical and quantum settings is known. For some choices of the

problem parameters we have polynomial speedup; for some other choices there is no

speedup. For ordinary differential equations we again have polynomial speedup.

The power of the quantum setting for the eigenvalue problem and the Sturm-

Liouville eigenvalue problem depends on what kind of quantum queries are permit-

ted. For bit queries, which are used for the other problems mentioned in the previous

paragraph, we have at most polynomial speedups over the classical randomized set-

ting. However, if power queries, see [3, 37, 38], are permitted we have exponential

speedup over even the randomized setting for the eigenvalue problem. We recall that

power queries are used in the phase estimation algorithm. In this thesis we deal with

several variations of bit queries and we do not consider power queries at all.
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1.1.1 Quantum computation model

We now give a brief overview of a simplified quantum model of computation for con-

tinuous problems with deterministic and randomized queries. Bit queries for discrete

problems are also outlined in Section 2.2, see [30]. The model with deterministic

queries for continuous problems is thoroughly described in [15]. Randomized queries

are studied in [52]. We shall use the framework outlined below in the remaining part

of this chapter, as well as in Chapter 3, where we study multivariate Feynman-Kac

path integration.

We start with a general computational problem formulation. For a given class F

of input functions f : D → C we want to approximate the solution operator

S : F → G,

with G being a normed space whose norm is denoted by ‖ · ‖G. We approximate S(f)

by a quantum algorithm as described below.

First, we transform a given input function f ∈ F by using a classical algorithm Ps

with s classical function evaluations and obtain

f̄ = Ps(f) : D → C.

The goal of this first classical step is to prepare an input for actual quantum com-

putation. This can be used, for instance, to achieve variance reduction of the input

function f through approximation, as it is done for multivariate Feynman-Kac path

integration in Section 3.5.3. Afterwards, we use the transformed function f̄ as the

input to a quantum algorithm.

We recall that the main part of a quantum algorithm is a sequence of unitary

operators acting on the space Hk = C2 ⊗ · · · ⊗ C2, which is a tensor product of k

copies of the two dimensional complex Hilbert space C2, i.e.,

Un(f̄) = QnQf̄Qn−1 · · ·Q1Qf̄Q0. (1.1)
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Here, Q0, Q1, . . . , Qn are unitary operators and Qf̄ is a quantum query for f̄ ∈ Ps(F ).

Quantum queries are used to collect information about an input function f̄ and play

a role analogous to the use of function values in the worst case and randomized

settings. In this thesis we use the most commonly studied bit quantum queries in the

deterministic and randomized forms.

For a Boolean function g : {0, 1, . . . , 2k−1 − 1} → {0, 1}, the bit query Qg is

defined as

Qg|j〉|y〉 = |j〉|y ⊕ g(j)〉.

Here, |j〉 ∈ Hk−1 and |y〉 ∈ H1, with ⊕ denoting the addition modulo 2.

For a real function h : [0, 1] → [0, 1] the bit query is constructed by taking the

most significant bits of the function h evaluated at some points tj. More precisely, as

in [15], the bit query Qh is of the form

Qh|j〉|y〉 = |j〉|y ⊕ β(h(τ(j)))〉,

where the number of qubits is now k = m′ + m′′ and |j〉 ∈ Hm′ and |y〉 ∈ Hm′′ with

some functions β : [0, 1] → {0, 1, . . . , 2m′′ − 1} and τ : {0, 1, . . . , 2m′ − 1} → [0, 1].

Hence we compute h at the points tj = τ(j) ∈ [0, 1], and then take β(h(tj)) which is

the m′′ most significant bits of h(tj) . The randomized quantum query Qh = Qh, ω,

defined as in [52], depends on a random element ω ∈ Ω, which indicates that we

compute the values of h at randomized points tj, ω.

Therefore, if we use randomized queries, the unitary operator (1.1) depends on a

random element ω and is of the form

Un,ω(f̄) = QnQf̄ , ω Qn−1 · · ·Q1Qf̄ , ω Q0

with n being the number of randomized queries. As usual, we assume that the initial

state is |0〉 and we compute the final state

|ψf̄〉 = Un(f̄)|0〉 = QnQf̄Qn−1 · · ·Q1Qf̄Q0|0〉
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for deterministic quantum queries, and

|ψf̄ , ω〉 = Un,ω(f̄)|0〉 = QnQf̄ , ωQn−1 · · ·Q1Qf̄ , ωQ0|0〉

for randomized ones. Then we perform a measurement of the final state and obtain

an outcome j ∈ {0, 1, . . . , 2k − 1} with probability

pf̄ (j) = |〈ψf̄ |j〉|2 or pf̄ , ω(j) = |〈ψf̄ , ω|j〉|2.

Knowing the outcome j we compute the final result on a classical computer as φ(j)

and ϕ(j) for some mappings φ, ϕ : {0, 1, . . . , 2k − 1} → G. Thus, the quantum

algorithm An yields

An(f̄ , j) = φ(j) or An,ω(f̄ , j) = ϕ(j).

The most commonly used error criterion for quantum algorithms with determin-

istic queries is the worst-probabilistic error. This is defined for ρ ∈ (1
2
, 1] by

ewor-pro(An, Ps, S, ρ) = sup
f∈F

min
J :µ(J,f)≥ρ

max
j∈J

‖S(f)− An(Ps(f), j)‖G, (1.2)

with µ(J, f) =
∑

j∈J pf̄ (j). We consider here the probabilistic error with respect

to the quantum algorithm outcomes. In words, for a fixed f ∈ F , we take the

maximal error for the best outcomes with probability at least ρ. Then we maximize

the probabilistic errors over all input functions from F . In addition to (1.2), we shall

consider a wider selection of error criteria for quantum algorithms with deterministic

queries in Chapter 2 for the Boolean summation problem.

For quantum algorithms with randomized queries we use the worst-average-average

error criterion

ewor-avg-avg(An, Ps, S) = sup
f∈F

(
E

2k−1∑
j=0

pf̄ , ω(j)‖S(f)− An,ω(Ps(f), j)‖2
G

)1/2

, (1.3)

where E is the expectation over the probability space Ω. For a fixed input function f ∈
F we measure the L2 average error over the probability space Ω and with respect to



1.2. RESEARCH RESULTS 7

the quantum algorithm outcomes. Then we maximize the average errors over all input

functions from F . Observe, that if we neglect the expectation E in (1.3), then the

sum denotes the error of the quantum algorithm with respect to the probability of

all the outcomes, i.e., we consider the error when the algorithm succeeds and when it

fails according to (1.2). This error criterion is a reasonable choice for problems where

the result of an algorithm cannot be verified. Besides, it is a stronger error criterion

than (1.2), and therefore by Chebyshev’s inequality the results obtained for (1.3) can

be extended to (1.2).

As usual we are also interested in the query complexities for the respective error

settings, i.e., the minimal numbers of quantum queries (deterministic or randomized)

and the minimal number of the classical function evaluations that are needed to

guarantee that the error does not exceed ε, i.e.,

nwor-pro(ε, F ) = min{s+ n : ∃Ps ∃An ewor-pro(An, Ps) ≤ ε},
nwor-avg-avg(ε, F ) = min{s+ n : ∃Ps ∃An ewor-avg-avg(An, Ps) ≤ ε}.

The quantum setting with randomized queries is considered in Chapter 3 for the

multivariate Feynman-Kac path integration problem.

1.2 Research results

We now outline the results of this thesis, which are proved in Chapters 2 and 3. The

results of Section 1.2.1 are published in [19, 30]. The results of Section 1.2.2 are

published in [29] and included in [27, 28].

1.2.1 Quantum Boolean summation in various settings

For all the problems mentioned in Section 1.1, except the eigenvalue problems, the

results are based on the quantum Boolean summation (QS) algorithm of Brassard,

Høyer, Mosca and Tapp [4]. The optimality of this algorithm was proved by Nayak
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and Wu [31], using the polynomial method for quantum query lower bounds obtained

by Beals, Buhrman, Cleve, Mosca and de Wolf [2]. Because of the significance of the

QS algorithm for the quantum complexity of continuous problems, it is important to

study this algorithm in greater detail. The performance of a quantum algorithm can

be studied in various error settings, depending on how the input and output of the

algorithms are treated. We may have worst and average behavior with respect to the

input, and probabilistic and average with respect to the output. The QS algorithm

in the worst-probabilistic error setting was studied in [4]. It was shown that its error

is of order 1/M with M queries.

To define the Boolean summation problem in the framework of Section 1.1.1 we

set D = {0, 1, . . . , N − 1} and C = {0, 1}. The class F of input functions is just

the class BN of all Boolean functions defined on an N element set. The solution

operator S computes the mean of a Boolean function

S(f) =
1

N

N−1∑
i=0

f(i) ∀f ∈ F = BN . (1.4)

The QS algorithm of Brassard, Høyer, Mosca and Tapp [4] computes an approxi-

mation to the solution operator S. Information regarding the Boolean function is sup-

plied by quantum queries. Suppose that we useM−1 quantum queries. Obviously, the

only case of interest is when M is much smaller than N . Brassard et al. [4] proved that

the worst-probabilistic error of the QS algorithm is at most π/M+π2/M2, with prob-

ability 8/π2 = 0.81 . . . . Nayak and Wu [31] showed that with probability ρ ∈ (1
2
, 1)

the error of any quantum algorithm that uses no more than M − 1 quantum queries

is bounded from below by the quantity proportional to M−1. Therefore, the QS

algorithm enjoys the smallest possible error modulo a factor multiplying M−1. Since

the QS algorithm has so many applications, as mentioned also in Section 1.1, it is

important to check whether the error estimate of Brassard et al. is sharp and how the

error decreases if we lower the probability ρ = 8/π2 to ρ > 1
2
. It also seems reasonable

to study whether the QS algorithm retains its optimality with different error criteria.
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We recall that the estimate of Brassard et al. corresponds to the worst-probabilistic

setting, which is most frequently used in the study of quantum algorithms. We also

study the average performance of the QS algorithm with respect to a measure on

Boolean functions. This is the average-probabilistic setting. In the worst-average

setting, we study the worst performance with respect to Boolean functions and the

average performance with respect to all outcomes of a quantum algorithm. We add

in passing that the worst-average setting is usually used for the study of the classical

Monte Carlo algorithm. This setting is also used to establish a lower bound for the

quantum summation and integration algorithms that use randomized queries, see [52].

We study error bounds in the worst-probabilistic and average-probabilistic settings

with probabilities ρ ∈ (1/2, 8/π2]. If we want to obtain error bounds with higher

probability, it is known that it is enough to run the QS algorithm a number of times

and take the median as the final result, see e.g., [15].

1.2.1.1 Worst-probabilistic error

The worst-probabilistic error of the QS algorithm is defined according to (1.2)

ewor-pro(QS, ρ) = sup
f∈BN

min
J :µ(J,f)≥ρ

max
j∈J

|S(f)−QS(f, j)|

with S given by (1.4) and ρ ∈ (1/2, 1]. Note that f̄ = f , i.e., we do not use a classical

computer to prepare the input for the QS algorithm.

Our results improve the worst-probabilistic error bound ewor-pro(QS, 8/π2) ≤ π/M

+ π2/M2 of Brassard et al. Namely, the worst-probabilistic error of the QS algo-

rithm ewor-pro(QS, 8/π2) is at most

3

4

π

M
with probability

8

π2
= 0.81 . . . .

Furthermore, the last estimate is sharp when M and N/M are large. Indeed, for

ρ ∈ (1/2, 8/π2], the error of the QS algorithm is at most
(
1− v−1(ρ)

)
π

M
with probability ρ,
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where v−1 is the inverse of the function v(∆) = sin2(π∆)/(π∆)2. We have 1−v−1(ρ) ∈
(1

2
, 3

4
] and it is well approximated by 1

16
π2ρ+ 1

4
. In particular, for the most frequently

considered values of ρ we have

(
1− v−1(1

2
+)

)
π = 1.75 . . . ,

(
1− v−1(3

4
)
)
π = 2.23 . . . ,

(
1− v−1(8/π2)

)
π = 3

4
π = 2.35 . . . .

The detailed analysis is given in Section 2.3.1.

1.2.1.2 Average-probabilistic error

To define the average-probabilistic error of the QS algorithm we need to equip the

input function class BN with a probability measure p. Then for ρ ∈ (1
2
, 1] we define

eavg-pro(QS, ρ,p) =
∑

f∈BN

p(f) min
J :µ(J,f)≥ρ

max
j∈J

|S(f)−QS(f, j)|.

We are then interested in the average error that holds with a certain fixed probabil-

ity ρ.

In the average-probabilistic setting, we shall consider two measures on the set

of Boolean functions. The first measure p1 is uniform on Boolean functions, while

the second measure p2 is uniform on arithmetic means of Boolean functions. These

measures have different properties. Although the mean element of the arithmetic

means is 1
2

for both measures, the first central moment is of order N−1/2 for the first

measure p1, and about 1
4

for the second measure p2. The first central moment is

exactly equal to the error of the constant algorithm that always outputs 1
2
. This

explains why we can obtain the error of order N−1/2 without any quantum queries for

the first measure. This provides the motivation for us to check whether the error of

the QS algorithm enjoys a similar property. Our investigation shows that that this is

indeed the case iff M is divisible by 4. More precisely, the average-probabilistic error
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of the QS algorithm for the measure p1 satisfies

eavg-pro(QS, ρ,p1) =




O(min{M−1, N−1/2}) for M divisible by 4,

O(M−1) for M not divisible by 4.

(1.5)

Moreover, using the lower bounds of [36] when M is divisible by 4, and since we

have eavg-pro(QS, ρ,p1) = Ω(M−1) for M not divisible by 4 and large N/M the esti-

mates (1.5) are essentially sharp.

For the measure p2, the average-probabilistic error of the QS algorithm is of

order M−1 for all M . For both measures, the upper bounds mentioned earlier match

lower bounds that were obtained by Papageorgiou [36]. Hence, the QS algorithm

enjoys minimal error bounds also in the average-probabilistic setting if we choose M

divisible by 4 for the first measure and with no restriction on M for the second

measure.

The detailed analysis is given in Section 2.3.2.

1.2.1.3 Worst-average error

In this setting, we take the worst case performance over all Boolean functions and

the average performance over all outcomes of the QS algorithm, so that

ewor-avg
q (QS) = sup

N>M
sup
f∈BN

(
M−1∑
j=0

pf (j) |S(f)−QS(f, j)|q
)1/q

.

The average performance is measured in the Lq norm, q ∈ [1,∞]. Since we do not

use a classical computer to prepare the input for the QS algorithm we have f̄ =

f and pf̄ (j) = pf (j). This setting is analogous to the randomized (Monte Carlo)

setting used for algorithms on a classical computer. The worst-average setting seems

natural for the analysis of quantum algorithms for the same reasons that motivates the

worst-average-average error criterion of (1.3). The results depend on the choice of q.

Obviously, for larger q, the effect of the average behavior becomes less significant.

In fact, the limiting case, q = ∞, leads to the deterministic case (modulo sets of
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measure zero). Not surprisingly, for q = ∞, the results are negative, i.e., the error is

of constant order.

We shall study error bounds for large M . Without loss of generality we as-

sume N > M , so that if M tends to infinity, then so does N . To make error bounds

independent of N , we take the supremum over N > M in the corresponding defini-

tions of the errors. When we speak about the sharpness of error bounds, we usually

take a large M and select a still larger N and a Boolean function for which the

presented error bound is sharp.

We now indicate our results for q ∈ [1,∞). The worst-average error ewor-avg
q (M)

of the QS algorithm with M quantum queries satisfies:

ewor-avg
q (QS) =





Θ(lnM/M) for q = 1,

Θ(M−1/q) for q ∈ (1,∞).

Comparing with [36], we conclude that these error bounds do not match the com-

plexity lower bounds. We shall consider a slight modification of the QS algorithm to

address this issue.

Quantum Boolean summation with repetitions

The error bounds of the QS algorithm can be improved by the use of repetitions.

Namely, we repeat the QS algorithm 2n+1 times and take the median of the outputs

obtained as the final output. This procedure boosts the success probability of the

approximation at the expense of the number of quantum queries. We show that

with n independent of M and depending linearly on q, we decrease the QS algorithm

error to be of order M−1. Hence, the use of repetitions is particularly essential for

large q, since we change the error bound O(M−1/q) without repetitions to the error

bound O(M−1) with repetitions.

The error bound of order M−1 is optimal. This follows from the use of, for

instance, Chebyshev’s inequality and the fact that the lower bound Ω(M−1) is sharp
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in the worst-probabilistic setting, see [36]. Hence, the QS algorithm with repetitions

is also optimal in the worst-average setting.

The detailed analysis of the QS algorithm in the worst-average setting including

repetitions is given in Section 2.3.3

1.2.1.4 Quantum Boolean summation simulation

Simulating arbitrary quantum algorithms on a classical computer is very difficult due

to the exponential time and memory requirements on the number of qubits. Hence,

such simulations can be run only for input data of moderate size. We designed a mat-

lab procedure simulating the QS algorithm. This simulation computes amplitudes of

the QS algorithm final state depending on the Boolean input function and a desired

accuracy ε. The results of the simulation can be used, for instance, to visualize the

final state distribution. Detailed studies of the QS algorithm show that this task can

be accomplished with cost of order (N/ε) log2(1/ε). Here N stands for the cardinality

of the domain of a Boolean function. We recall that the QS algorithm requires of

order log2N+log2(1/ε) qubits so the memory requirement for the simulation is N/ε.

Thus the cost of our simulation is optimal modulo a logarithmic factor log2(1/ε). The

presence of this factor is due to the use of the Fast Fourier Transform. Since we do

not know any faster algorithm for the discrete Fourier transform, which is a part for

the QS algorithm, this simulation achieves the best possible cost order using existing

computational tools. The details are given in Section 2.4.

1.2.2 Multivariate Feynman-Kac path integration

Path integration is one of the continuous problems that has been studied studied

in the quantum setting. Traub and Woźniakowski [48] studied general path inte-

grals with smooth integrands. We consider a special case of path integrals, namely,

multivariate Feynman-Kac path integrals. These path integrals arise in many prob-

lems of quantum physics, quantum chemistry, and even in financial mathematics. In
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particular, the multivariate Feynman-Kac path integral expresses the solution of the

initial value problem for the diffusion equation. Studies of this problem in the worst-

case deterministic setting are in [29, 39]. We study multivariate Feynman-Kac path

integration in the randomized and quantum settings.

Path integrals are defined as integrals over an infinite dimensional space equipped

with a probability measure. A path integral is called a Wiener integral if the respective

measure is the Wiener measure w on the space C of continuous functions from R+

to Rd. In the case d ≥ 2, we add the term “multivariate”. The multivariate Feynman-

Kac path integral,

z(u, t) =

∫

C
v(x(t) + u) exp

(∫ t

0

V (x(s) + u) ds

)
w(dx), (1.6)

is the solution of the initial value problem for the multivariate diffusion equation

∂z

∂t
(u, t) =

1

2
∆z(u, t) + V (u)z(u, t) for (u, t) ∈ Rd × (0,∞),

z(u, 0) = v(u).

We assume that the input functions, initial value v and potential V belong to a certain

function class F for which the integral (1.6) is well defined.

Many algorithms have been developed for the univariate case, d = 1, and the

Feynman-Kac path integral is the solution of the diffusion equation with one space

variable. Most of these algorithms are randomized. They are obtained as follows.

First, the path integral is approximated by a multivariate integral over Rn, with

large n, and then this integral is approximately computed by using a randomized

algorithm such as Monte Carlo.

A new approach was proposed in [39] for the univariate case d = 1. A deterministic

algorithm based on L2-approximation of v and V was constructed. This approach

was modified and generalized for the multivariate case in [26, 29], and is also the basis

for the randomized and quantum algorithms presented in Chapter 3.

We want to check how much the power of randomization and quantum computa-

tion helps in solving the multivariate Feynman-Kac path integration problem. This
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question has been addressed for general path integrals with smooth integrands in [48],

where it is shown that this problem can be solved on quantum computers exponen-

tially faster than in the worst-case deterministic setting and roughly quadratically

faster than in the randomized setting. One of our questions is how the special form of

the Feynman-Kac path integrals can be exploited and how it can improve the general

results of [48].

1.2.2.1 Worst-case deterministic setting

Although we focus mainly on the quantum and randomized settings, we first formu-

late the computational problem of finding a local approximate solution of the path

integral (3.3) at a given point in the worst-case deterministic setting. Assume that

we have a deterministic algorithm An that uses n function evaluations of v and V .

We define the worst-case deterministic error of the algorithm An as

ewor(An, F ) = sup
v,V ∈F

|zv,V (u, t)− An(v, V )|,

where z(u, t) in the exact solution of the diffusion equation at a given fixed point

(u, t) ∈ Rd × (0,∞).

In [26, 29] we extended the algorithm of [39] to the multivariate case. We pre-

served its original structure, but we used uniform approximation instead of L2-

approximation. This permits the algorithm to be used for arbitrary d, while an

algorithm based on L2-approximation, such as that of [39], can be only used for d = 1.

The cost of computing an ε-approximation is roughly of order ε−α(F ) for a certain pos-

itive α(F ) which depends on a given class F of input functions. The upper bound is

derived from the complexity of uniform approximation for the class F . When F is a

class of r times continuously differentiable d-variate functions, we have α(F ) = d/r.

So in the worst case deterministic setting the problem suffers from the curse of dimen-

sionality. Moreover, this algorithm and the one in [39] require the precomputation of

a large number of coefficients which is quite difficult.
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The (information) complexity of multivariate Feynman-Kac path integration in

the worst-case setting is defined by

nwor(ε, F ) = min{n : ∃An such that ewor(An) ≤ ε}.

The complexity is bounded from below by complexity of multivariate integration, and

from above by complexity of uniform approximation. Furthermore, the algorithm of

[29] is almost optimal for classes F for which the complexities of the multivariate

integration and the uniform approximation are of the same order. This holds, for

instance, for the class F of r times continuously differentiable multivariate functions.

1.2.2.2 Randomized and quantum settings

A randomized algorithm An depends on a random element ω chosen from some proba-

bility space Ω, with n denoting the number of function evaluations. In the randomized

setting, the computed approximation of the exact solution z(u, t) is then a random

variable An(v, V ;ω) that depends on a random element ω ∈ Ω. We measure the error

of the algorithm An with respect to the L2 norm, so that

erand(An) = sup
v,V ∈F

(
E(zv,V (u, t)− An(v, V ;ω))2

)1/2
. (1.7)

We are also interested in estimating the (information) complexity nrand(ε, F ) of mul-

tivariate Feynman-Kac path integration, i.e., the minimal expected number of func-

tions v and V values needed to compute an ε-approximation in the randomized setting,

which is given by

nrand(ε, F ) = min{n : ∃An such that erand(An) ≤ ε}.

We now turn to the quantum setting. We met some technical difficulties dealing

with deterministic (bit) queries, so we left this case as one of the open problems in

Chapter 4. Our results are only established for randomized queries.

We now outline the results obtained. We consider quantum algorithms with ran-

domized queries. The error of a quantum algorithm An is defined analogously to
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Section 1.1.1 as

equant(An, Ps) = sup
v,V ∈F

(
EEq |zv,V (u, t)− An,ω(Ps(v, V ), j;ω)|2)1/2

, (1.8)

where E is the expectation over the probability space Ω, and Eq is the expectation

with respect to the distribution of the quantum algorithm outcomes. We recall that Ps

is a classical algorithm using s function evaluations that prepares the input for the

quantum algorithm, see Section 1.1.1. Similarly to the randomized setting, we also

want to know the minimal number

nquant(ε,H) = min{s+ n : ∃Ps ∃An such that equant(An, Ps) ≤ ε}.

of randomized quantum queries and classical function evaluations, which are needed

to guarantee that the error does not exceed ε.

We present algorithms that compute an ε-approximation, i.e., with the errors

(1.7) and (1.8) at most ε, and provide their cost analyses. These algorithms are

also based on uniform approximation. However, the power of randomization and

quantum computation permits us to improve the worst-case deterministic complexity

bound O(ε−α(F )). The number of function evaluations required by the randomized

algorithm is roughly of order ε−2α(F )/(α(F )+2), and the number of function evaluations

and queries required by the quantum algorithm is roughly of order ε−α(F )/(α(F )+1).

We stress that the exponent of ε−1 in the randomized setting is at most 2, and in the

quantum setting is at most 1.

We also study the complexity of multivariate Feynman-Kac path integration in

the randomized and quantum settings. The complexity is bounded from below by the

complexity of multivariate weighted integration, just as in [39]. The upper bounds

are provided by the costs of the algorithms mentioned above.

For the class F of r times continuously differentiable d-variate functions we have

α(F ) = d/r. In the randomized setting, the complexity is roughly Θ(ε−2/(1+2r/d)); in

the quantum setting it is roughly Θ(ε−1/(1+r/d)). Furthermore, we know algorithms

that use O(ε−2) function values in the randomized setting, and O(ε−1) function values
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in the quantum setting, with the factors in the big O notation independent of the

number of variables d. In both cases, the curse of dimensionality is vanquished. We

thus have exponential speedup over the worst case setting. For d À r, we have

quadratic speedup of the complexity in the quantum setting over the complexity in

the randomized setting. We refer the reader to Chapter 3 for a detailed discussion.
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Chapter 2

Quantum Boolean summation

2.1 Introduction

The quantum summation (QS) algorithm (also known as the amplitude estimation

algorithm) of Brassard, Høyer, Mosca and Tapp [4] computes an approximation to

the arithmetic mean of all values of a Boolean function defined on a set of N = 2n

elements. We denote the class of such functions by BN . Information regarding the

Boolean function is supplied by quantum queries. Quantum queries play a role similar

to that of function evaluations in the classical worst-case and randomized settings.

Suppose that we use M − 1 quantum queries. The only case of interest is when M is

much smaller than N . It was proved in [4] that the error of the QS algorithm is at

most
π

M
+

π2

M2
with probability

8

π2
= 0.81 . . . . (2.1)

Nayak and Wu [31] showed that for any p ∈ (1
2
, 1) the error of any quantum

algorithm that uses no more than M − 1 quantum queries must be proportional

to M−1 with probability p. Therefore, the QS algorithm enjoys the smallest possible

error modulo a factor multiplying M−1.

The minimal error estimate of order M−1 in the quantum setting should be com-

pared to the minimal error estimates in the worst case and randomized settings of
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algorithms using M − 1 function values. It is known, see [34], that in the worst case

setting, the error bound is roughly 1
2
(1 −M/N). This means that, as long as M is

much less than N , the error is almost 1
2
, and is therefore O(M) times larger than

that in the quantum setting. In the randomized setting, the classical Monte Carlo is

almost optimal, and the error bound is roughly 1/(2
√
M), see again [34]. Hence, the

error O(
√
M) larger than that in the quantum setting.

We check whether the estimate (2.1) is sharp and how the error decreases if we

decrease the probability p = 8/π2 to p > 1
2
. We also study the error of the QS algo-

rithm in various settings. The estimate (2.1) corresponds to the worst-probabilistic

setting, which is most frequently used for quantum algorithms. The average perfor-

mance of the QS algorithm with respect to a measure on Boolean functions is studied

in the average-probabilistic setting. In the worst-average setting, we study the worst

performance with respect to Boolean functions and the average performance with

respect to all outcomes of a quantum algorithm. This setting is usually used for the

study of the classical Monte Carlo algorithm. We study error bounds in the worst-

and average-probabilistic settings with probabilities p ∈ (1/2, 8/π2]. If we want to

obtain error bounds with higher probability it is enough to run the QS algorithm a

number of times and take the median as the final result, see e.g., [15, 32].

In the worst-probabilistic setting, we show that (2.1) can be slightly improved.

Namely, the error of the QS algorithm is at most

3

4

π

M
with probability

8

π2
.

Furthermore, for large M and N/M we prove that the last estimate is sharp. In

particular, for p ∈ (1/2, 8/π2] we prove that the error of the QS algorithm is at most

(
1− v−1(p)

)
π

M
with probability p,

where v−1 is the inverse of the function v(∆) = sin2(π∆)/(π∆)2. We have 1−v−1(p) ∈
(1

2
, 3

4
] and it is well approximated by 1

16
π2p+ 1

4
. For the frequently considered values
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of p we have

(
1− v−1(1

2
+)

)
π = 1.75 . . . ,

(
1− v−1(3

4
)
)
π = 2.23 . . . ,

(
1− v−1(8/π2)

)
π = 3

4
π = 2.35 . . . .

In the average-probabilistic setting, we consider two measures on the set of Boolean

functions. The first measure is uniform on Boolean functions, while the second mea-

sure is uniform on arithmetic means of Boolean functions. The results for these two

measures are quite different. The mean element is 1
2

for both measures. However,

the first moment is of order N−1/2 for the first measure, and about 1
4

for the second.

The first moment is exactly equal to the error of the constant algorithm that always

outputs 1
2
, which explains why we can obtain the error of order N−1/2 without any

quantum queries for the first measure. This provides the motivation for us to check

whether the error of the QS algorithm enjoys a similar property. It turns out that this

is indeed the case iff M is divisible by 4. That is, for M divisible by 4, the average-

probabilistic error of the QS algorithm is of order min{M−1, N−1/2}, and if M is not

divisible by 4, then the error is of order M−1. For the second measure, since the first

moment is not small, the average-probabilistic error of the QS algorithm is of order

M−1 for all M . For both measures, the upper bounds presented in this paper match

lower bounds from [36]. Hence, the QS algorithm enjoys minimal error bounds also

in the average-probabilistic setting if we choose M divisible by 4 for the first measure

and with no restriction on M for the second measure.

In the worst-average setting, we take the worst case performance over all Boolean

functions and the average performance over all outcomes of the QS algorithm. The

average performance is measured in the Lq norm, where q ∈ [1,∞]. This setting is

analogous to the randomized (Monte Carlo) setting used for algorithms on a classical

computer. Recall that, for a number of reasons discussed in Section 1.2.1.3, the worst-

average setting is a natural choice for the analysis of quantum algorithms. As we shall

see, the estimates depend on the choice of q. Obviously, for larger q, the effect of the

average behavior becomes less significant. In fact, the limiting case, q = ∞, leads to
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the deterministic case (modulo sets of measure zero). Not surprisingly, the results are

negative for q = ∞. In what follows, we indicate error bounds for large M . Since we

always assume that M < N , this means that for M tending to infinity we also let N

tend to infinity. To make error bounds independent of N , we take the supremum

over N > M in the corresponding definitions of the errors. When we speak about the

sharpness of error bounds, we usually take a large M and select a still larger N and

a Boolean function for which the presented error bound is sharp. The worst-average

error of the QS algorithm with M quantum queries satisfies the following:

• For q = 1, the worst-average error is Θ(lnM/M). Furthermore, the asymptotic

constant is 2/π for M − 2 divisible by 4.

• For q ∈ (1,∞), the worst-average error is Θ
(
M−1/q

)
. Furthermore, the asymp-

totic constant is approximately
( ∫ π

0
sinq−2(x)dx/π

)1/q
for M − 2 divisible by 4

and q close to 1.

• For q = ∞, the worst-average error is constant and equals 1.

The error bounds of the QS algorithm are improved by the use of repetitions.

Namely, we repeat the QS algorithm 2n+1 times and take the median of the outputs

obtained as the final output. This procedure boosts the success probability of the

approximation at the expense of the number of quantum queries. We show that

with n independent of M and depending linearly on q, we decrease the QS algorithm

error to be of order M−1. Hence, the use of repetitions is particularly important for

large q since we change the error bound O(M−1/q) without repetitions to the error

bound O(M−1) with repetitions. The constant in the last big O notation is absolute

and does not depend on q.

The error bound of orderM−1 is optimal. This follows from the use of, for instance,

Chebyshev’s inequality and the fact that the lower bound Ω(M−1) is sharp in the

worst-probabilistic setting, see also [36]. Hence, the QS algorithm with repetitions is

optimal in the worst-average setting.
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We now outline the contents of this chapter. In Section 2.2 we define the QS

algorithm. In Section 2.3 we define precisely the error settings discussed above and

analyze the performance of the QS algorithm in these error settings.

2.2 Quantum summation algorithm

We consider the most basic form of the summation problem, i.e., the summation of

Boolean functions. Let BN denote the set of Boolean functions f : {0, . . . , N − 1} →
{0, 1}. Let

af =
1

N

N−1∑
i=0

f(i)

denote the arithmetic mean of all values of f . Clearly, af ∈ [0, 1].

Problem. For f ∈ BN , compute an ε-approximation āf of the sum af such that

|āf − af | ≤ ε. (2.2)

We are interested in the minimal number of evaluations of the function f that is

needed to compute āf satisfying (2.2). It is known that in the worst case setting, we

need roughly N(1 − ε) evaluations of the function f . In the randomized setting, we

assume that āf is a random variable. We replace (2.2) by the requirement that the

expected value of |āf − af | is at most ε for any function f . It is known, see e.g., [34],

that in the randomized setting we need roughly min{N, ε−1/2} function evaluations.

In the quantum setting, we want to compute a random variable āf such that (2.2)

holds with high probability (greater than 1
2
), either for all Boolean functions or on

the average with respect to a probability measure defined on the set BN . These two

error criteria in the quantum setting will be precisely defined in Section 2.3.

In this section we describe the quantum summation algorithm, which is also called

the quantum amplitude estimation algorithm. This algorithm was discovered by

Brassard, Høyer, Mosca and Tapp [4], and uses Grover’s iterate operator as its basic
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component, see [13]. We use standard notation of quantum computation, see e.g.,

[32].

For simplicity we assume that N = 2n. Let Hn denote the tensor product C2 ⊗
· · · ⊗ C2 of n copies of C2, with C2 the 2-dimensional complex vector space. Unit

vectors from C2 are called one qubit quantum states (or qubits). Let |0〉 and |1〉 be

an orthonormal basis of C2. Then any qubit |ψ〉 can be represented as

|ψ〉 = ψ0|0〉+ ψ1|1〉 with ψk ∈ C and |ψ0|2 + |ψ1|2 = 1.

For j = 0, 1, . . . , N − 1, we have j =
∑n−1

k=0 2n−1−kjk, with jk ∈ {0, 1}. Let

|j〉 =
n−1⊗

k=0

|jk〉.

The set {|j〉 : j = 0, . . . , N − 1} forms an orthonormal basis of Hn and any unit

vector |ψ〉 ∈ Hn can be represented as

|ψ〉 =
N−1∑
j=0

ψj|j〉 with ψj ∈ C and
N−1∑
j=0

|ψj|2 = 1.

Unit vectors from Hn are called n qubit quantum states (or quantum states or just

states, whenever n is clear from the context).

The only transformations that can be performed on quantum states are defined

by certain unitary operators on Hn. We now define the six unitary operators that are

basic components of the summation algorithm. Since unitary operators are linear, it

is enough to define them on the basis states |j〉.

1. Let S0 : Hn → Hn denote the inversion about zero transform

S0|j〉 = (−1)δj,0|j〉,

where δj,0 is the Kronecker delta. Hence, S0|0〉 = −|0〉 and S0|j〉 = |j〉 for

all j 6= 0. This corresponds to the diagonal matrix with one element equal
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to −1, and the rest equal to 1. We claim that the operator S0 can be also

written as the Householder operator

S0 = I − 2|0〉〈0|.

Here, for a state |ψ〉, we let |ψ〉〈ψ| denote the projection onto the space span{|ψ〉}
given by

(|ψ〉〈ψ|) |x〉 = 〈ψ|x〉 |ψ〉,

where 〈ψ|x〉 is the inner product in Hn, 〈ψ|x〉 =
∑N−1

k=0 ψkxk. The matrix form

of the projector |ψ〉〈ψ| in the basis {|j〉} is (ψkψj)
N−1
j,k=0. One can also view

the matrix form of the projector |ψ〉〈ψ| as the matrix product of the N × 1

column vector |ψ〉 and the N × 1 row vector 〈ψ| = |ψ〉†, which is the Hermitian

conjugate of |ψ〉. To prove this claim, note that for any |x〉 =
∑N−1

j=0 xj|j〉 ∈ Hn

we have

〈k|(I − 2|0〉〈0|)|x〉 = 〈k|x〉 − 2〈0|x〉〈k|0〉 =




xk − 2xk = −xk for k = 0,

xk − 0 = xk for k 6= 0.

Hence, I − 2|0〉〈0| = S0, as claimed.

2. Let WN : Hn → Hn denote the Walsh-Hadamard transform

WN |j〉 =
1√
N

n−1⊗

k=0

(|0〉+ (−1)jk |1〉) .

That is, the Walsh-Hadamard transform corresponds to the matrix with entries

〈i|WN |j〉 =
1√
N

n−1∏

k=0

〈ik|
(|0〉+ (−1)jk |1〉)

=
1√
N

n−1∏

k=0

(−1)ikjk =
1√
N

(−1)
Pn−1

k=0 ikjk .
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The matrix (〈i|WN |j〉)N−1
i,j=0 is symmetric. Furthermore,

W 2
N |j〉 =

1√
N
Wn

n−1⊗

k=0

(|0〉+ (−1)jk |1〉)

=
1√
N

n−1⊗

k=0

(
1√
2

(|0〉+ |1〉) +
(−1)jk

√
2

(|0〉 − |1〉)
)

=
1√
N

n−1⊗

k=0

√
2|jk〉 = |j〉.

Thus, W 2
N = I and W−1

N = WN is orthogonal. This means that the operator WN

is symmetric and unitary.

3. For K = 1, 2, . . . , 2n, let FK,n : Hn → Hn denote the quantum Fourier trans-

form

FK,n|j〉 =




K−1/2

∑K−1
k=0 e

2πijk/K |k〉, for j = 0, 1, . . . , K − 1, (i =
√−1)

|j〉 for j = K, . . . , 2n − 1.

Hence, FK,n corresponds to the unitary block-diagonal matrix


 FK 0

0 I


 ,

where FK =
(
K−1/2 e2πijk/k

)K−1

j,k=0
is the matrix of the quantum Fourier trans-

form. For K = 2n = N we have

FN,n|ψ〉 =
N−1∑
j=0

ψjFN,n|j〉 =
1√
N

N−1∑

k=0

(
N−1∑
j=0

ψje
2πijk/N

)
|k〉.

The coefficients of FN,n|ψ〉 in the basis {|j〉} are the quantum Fourier transforms

of the coefficients of the state |ψ〉. Note that WN and FN,n coincide for the

state |0〉, i.e.,

WN |0〉 = FN,n |0〉 =
1√
N

N−1∑
j=0

|j〉.
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4. Let Sf : Hn → Hn denote the quantum query operator

Sf |j〉 = (−1)f(j)|j〉,

This again corresponds to the diagonal matrix with elements ±1 depending

on the values of the Boolean function f . This operator is the only one that

provides information about the Boolean function f . This is analogous to the

concept of an oracle or a black-box which is used in classical computation and

which supplies information about the function f through its values.

The standard definition of the quantum query S̄f is

S̄f : Hn ⊗ C2 → Hn ⊗ C2, S̄f |j〉|i〉 = |j〉|i⊕ f(j)〉,

where ⊕ means addition modulo 2. We can simulate Sf by S̄f if we use an

auxiliary qubit (1/
√

2)(|1〉 − |0〉), namely,

S̄f

(
|j〉|1〉 − |0〉√

2

)
= |j〉|1⊕ f(j)〉 − |f(j)〉√

2

= (−1)f(j)|j〉|1〉 − |0〉√
2

=
(
Sf |j〉

) |1〉 − |0〉√
2

.

5. Let Qf : Hn → Hn denote the Grover operator

Qf = −WN S0W
−1
N Sf .

This is the basic component of Grover’s search algorithm, see [13]. As we shall

see, Qf also plays a major role for the summation algorithm. The eigenvectors

and eigenvalues of Qf will be useful in further considerations. Let

|ψ〉 = WN |0〉 =
1√
N

N−1∑

k=0

|k〉

and |ψ0〉, |ψ1〉 denote the orthogonal projections of |ψ〉 onto the subspaces

span{|j〉 : f(j) = 0} and span{|j〉 : f(j) = 1}, respectively. That is,

|ψj〉 =
1√
N

∑

k: f(k)=j

|k〉 j = 0, 1.
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Then |ψ〉 = |ψ0〉 + |ψ1〉 and 〈ψ0|ψ1〉 = 0. Furthermore, 〈ψj|ψj〉
= N−1

∑
k: f(k)=j 1, for j = 0, 1, so that 〈ψ1|ψ1〉 = a and 〈ψ0|ψ0〉 = 1 − a,

where a = af is the sum we want to approximate.

From [4], we know that

Qf |ψ0〉 = (1− 2a)|ψ0〉+ 2(1− a)|ψ1〉,
Qf |ψ1〉 = −2a|ψ0〉+ (1− 2a)|ψ1〉.

(2.3)

For the sake of completeness, we provide a short proof of (2.3). By the definition

of the operator Sf we have

Sf |ψj〉 = (−1)j|ψj〉, j = 0, 1,

and

WN S0W
−1
N = WN(I − 2|0〉〈0|)W−1

N = I − 2(WN |0〉〈0|WN).

Since 〈0|WN = (WN |0〉)† = (|ψ〉)† = 〈ψ|, we obtain

WN S0W
−1
N |ψj〉 = |ψj〉 − 2(|ψ〉〈ψ|) |ψj〉

= |ψj〉 − 2〈ψ|ψj〉|ψ〉 = |ψj〉 − 2〈ψj|ψj〉|ψ〉.

for j = 0, 1. From this we calculate

Qf |ψj〉 = (−1)1+jWNS0W
−1
N |ψj〉

= (−1)δj,0 (|ψj〉 − 2(δj,1a+ δj,0(1− a))(|ψ0〉+ |ψ1〉)) ,

for j = 0, 1, which is equivalent to (2.3).

Thus, the space span{|ψ0〉, |ψ1〉} is an invariant space of Qf and its eigenvectors

and corresponding eigenvalues can be computed by solving the eigenproblem for

the 2× 2 matrix 
 1− 2a −2a

2(1− a) 1− 2a


 .
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If a ∈ (0, 1), then the eigenvalues of Qf are

λ± = 1− 2a± 2i
√
a(1− a) = e±2iθa , θa = arcsin

√
a,

and the corresponding orthonormalized eigenvectors are

|ψ±〉 =
1√
2

(
± i√

1− a
|ψ0〉+

1√
a
|ψ1〉

)
.

Moreover, it is easy to check that

|ψ〉 =
−i√

2

(
eiθa|ψ+〉 − e−iθa|ψ−〉

)
. (2.4)

If a ∈ {0, 1}, then we have span{|ψ0〉, |ψ1〉} = span{|ψ〉} and |ψ〉 is the eigen-

vector of Qf with eigenvalues ±1, respectively. For a ∈ {0, 1}, we define

|ψ+〉 = i1−a
√

2 |ψ〉 and |ψ−〉 = 0.

Then it is easy to check that (2.4) is valid, and λ± = e±2iθa = (−1)a is an

eigenvalue of Qf for all a ∈ [0, 1].

6. The next unitary transform, called the Grover iterate operator, is defined on the

tensor product of Hm⊗Hn and uses m+n qubits. The number m is related to

the accuracy of the quantum summation algorithm, whereas n is related to the

size of the problem. The Grover iterate operator Λm(Qf ) : Hm⊗Hn → Hm⊗Hn

is defined by

Λm(Qf ) |j〉|y〉 = |j〉Q j
f |y〉 for |j〉|y〉 ∈ Hm ⊗Hn.

Hence, the power of Qf applied to the second component depends on the first

one. Note that j may vary from 0 to 2m − 1. Therefore Λm(Qf ) may use the

powers of Qf up to the (2m − 1)st.

We need one more concept of quantum computation, that of measurement. Sup-

pose s is a positive integer and consider the space Hs. Given the state

|ψ〉 =
2s−1∑

k=0

ψk|k〉 ∈ Hs,
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we cannot, in general, recover all the coefficients ψk. We can only measure the

state |ψ〉 with respect to a finite collection of linear operators {Mj}p
j=0, where the Mj :

Hs → Hs satisfy the completeness relation

p∑
j=0

M †
jMj = I.

After performing the measurement, we obtain the outcome j, and the state |ψ〉 col-

lapses into the state
1√

〈ψ|M †
jMj|ψ〉

Mj|ψ〉;

this occur with probability 〈ψ|M †
jMj|ψ〉. Note that for Mj|ψ〉 = 0 the outcome j

cannot occur with positive probability. Hence, with probability 1 the outcome j

corresponds to Mj|ψ〉 6= 0.

The most important example of such a collection of operators is {|j〉〈j|}2s−1
j=0 .

Then, the measurement of the state |ψ〉 with respect to this collection of operators

gives us the outcome j and the state |ψ〉 collapses into the state

〈j|ψ〉
|〈j|ψ〉| |j〉

with probability |ψj|2, j = 0, 1, . . . , 2s − 1.

Another example is a variation of the previous example and will be used in the

quantum summation algorithm. We now let s = m + n, as for the Grover iterate

operator, and define Mj : Hm ⊗Hn → Hm ⊗Hn by

Mj = |j〉〈j| ⊗ I

for j = 0, 1, . . . , 2m − 1, with I denoting the identity operator on Hn. That is,

(|j〉〈j| ⊗ I) |x〉|y〉 = 〈j|x〉 |j〉|y〉

for |x〉 ∈ Hm and |y〉 ∈ Hn.

Since
∑2m−1

j=0 (|j〉〈j| ⊗ I) |x〉|y〉 = |x〉|y〉 for all basis states |x〉 ofHm and |y〉 ofHn,

the completeness relation is satisfied. Consider now the probability of the outcome j
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for a special state |ψ〉 of the form |ψ〉 = |ψ1〉|ψ2〉 with |ψ1〉 ∈ Hm, |ψ2〉 ∈ Hn, where

〈ψk|ψk〉 = 1 for k = 1, 2. Since |j〉〈j|⊗I is self-adjoint, the outcome j and the collapse

of the state |ψ〉 to the state
〈j|ψ1〉
|〈j|ψ1〉| |j〉|ψ2〉

occur with probability |〈j|ψ1〉|2. Hence, this collection of operators measures the

components of the so-called first register |ψ1〉 of the quantum state |ψ〉.

Following [4], we are ready to describe the quantum summation (QS) algorithm

for solving our problem. The QS algorithm depends on a Boolean function f and

on an integer parameter M that controls the number of quantum queries and the

accuracy of the algorithm. We perform computations in the space Hm ⊗ Hn, with

m = dlog2Me, so we use m + n qubits. As we will see later, the accuracy of the

algorithm is related to the dimension of the space Hm.

Algorithm QS(f , M)

Input state: |0〉|0〉 ∈ Hm ⊗Hn with m = dlog2Me and n = log2N .

Computation:

1. |η1〉 = FM,m ⊗WN |0〉|0〉,

2. |η2〉 = Λm(Qf ) |η1〉,

3. |η3〉 = (F−1
M,m ⊗ I) |η2〉.

Measurement:

Perform the measurement of the state |η3〉 with respect to the collection

{ (|j〉〈j|)⊗ I }2m−1
j=0 . Denote the outcome by j.

Output: āf (j) = sin2
(
πj/M

)
.

We briefly comment on the QS algorithm. The input state is always the same and

does not depend on f . Step 1 computes |η1〉 = (NM)−1/2
∑M−1

j=0

∑N−1
k=0 |j〉|k〉, which
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is the equally weighted superposition of the basis states. Step 2 computes |η2〉 by

using the Grover iterate operator. During this step, we use the successive powers of

the Grover operator Qf ; this is the only step where information about the Boolean

function f is used. We shall see that the QS algorithm uses M − 1 quantum queries.

Step 3 computes |η3〉 by performing the inverse quantum Fourier transform on the

first m qubits, and prepares the system for measurement. After Step 3, we perform

the measurement, obtain the outcome j and compute the output āf (j) on a classical

computer. We stress that the distribution of the outcomes j depends on the Boolean

function f , and this is the only dependence of the output āf (j) on f .

2.3 Performance analysis

In this section we analyze the error of the QS algorithm. As we have seen in Sec-

tion 2.2, the output āf (j) of the QS algorithm is a random value chosen according

to a certain distribution that depends on the input function f . In this sense, the QS

algorithm is a randomized algorithm. Various ways of measuring the performance

of randomized algorithms are commonly used in the analysis of algorithms and com-

putational complexity; these all correspond to various error criteria. In particular,

we consider three error criteria: worst-probabilistic, average-probabilistic and worst-

average.

Worst-probabilistic error

We start with the error criterion that is used in most papers dealing with quantum

computation. We are interested in the worst case error of the QS algorithm that

holds with a given probability p. Here p ∈ [0, 1] and 1 − p measures the probability

of QS algorithm’s failure and usually p is set to be 3
4
. In our analysis, however, we

will allow an arbitrary p ∈ (1/2, 8/π2]. The choice of the upper bound 8/π2 = 0.81 . . .

will be clear from the analysis of the QS algorithm. The QS algorithm outputs āf (j),
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j = 0, 1, . . . ,M − 1, with probability pf (j), which is given in (2.6) of Theorem 2.3.2.

The worst-probabilistic error of QS is formally defined as the smallest error bound

that holds for all Boolean functions with probability at least p, i.e.,

ewor-pro(M, p) = inf

{
α :

∑

j: |af−āf (j)|≤α

pf (j) ≥ p ∀f ∈ BN

}
.

It is easy to see that ewor-pro(M, p) can be rewritten as follows. Let J ⊂ {0, 1, . . . ,M−
1}. For f ∈ BN define the measure of J as

µ(J, f) =
∑
j∈J

pf (j).

Then

ewor-pro(M, p) = max
f∈BN

min
J : µ(J,f)≥p

max
j∈J

|af − āf (j)|. (2.5)

Average-probabilistic error

The worst-probabilistic error ewor-pro(M, p) of the QS algorithm is defined by the

worst performance with respect to Boolean functions. It is also natural to consider

the average performance of the QS algorithm with respect to Boolean functions. Let p

be a probability measure on the set BN , so that each Boolean function f ∈ BN occurs

with probability p(f). Obviously, p(f) ≥ 0 and
∑

f∈BN
p(f) = 1. The average-

probabilistic error is defined by replacing the first max in (2.5) by the expectation,

i.e.,

eavg-pro(M, p) =
∑

f∈BN

p(f) min
J : µ(J,f)≥p

max
j∈J

|af − āf (j)|,

Hence, we are interested in the average error that holds with a certain fixed proba-

bility.

Worst-average error

The worst-average error corresponds to the worst case performance with respect to all

Boolean functions from BN and the average performance with respect to all outcomes.
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This average performance is measured by the expectation in the Lq norm, q ∈ [1,∞],

with respect to the probability measure of all outcomes provided by the QS algorithm.

As mentioned before, we make the worst-average error independent of N by taking

the supremum over N > M . That is, the worst-average error is defined as:

• for q ∈ [1,∞),

ewor-avg
q (M) = sup

N>M
max
f∈BN

(
M−1∑
j=0

pf (j) |af − āf (j)|q
)1/q

,

• for q = ∞,

ewor-avg
∞ (M) = sup

N>M
max
f∈BN

max
j: pf (j)>0

|af − āf (j)|.

It is easy to check that for q = ∞, the QS algorithm behaves badly. Indeed, if M is

odd, we can take f with all values one, and then af = 1, pf (0) = 1/M2 and āf (0) = 0.

Hence ewor-avg
∞ (M) = 1. If M is even, we take f with only one value equal to 1, and

then af = 1/N , pf (M/2) > 0 and āf (M/2) = 1. Hence, |af − āf (M/2)| = 1 − 1/N

and ewor-avg
∞ (M) = 1.

Therefore, in the rest of the chapter, we consider only q ∈ [1,∞). As we shall see,

the cases q > 1 and q = 1 will require different analyses and lead to quite different

results.

2.3.1 Worst-probabilistic error

We begin by citing a theorem from [4] for which we shall propose a number of im-

provements.

Theorem 2.3.1. For any Boolean function f ∈ BN , the QS algorithm uses ex-

actly M − 1 quantum queries and outputs ā that approximates a = af such that

|ā− a| ≤ 2π

M

√
a(1− a) +

π2

M2
≤ π

M
+

π2

M2



2.3. PERFORMANCE ANALYSIS 35

with probability at least 8/π2 = 0.81 . . . . Hence,

∑

j: |āf (j)−af |≤(2π/M)
√

af (1−af )+π2/M2

pf (j) ≥ 8

π2
∀f ∈ BN ,

and, therefore,

ewor-pro

(
M,

8

π2

)
≤ π

M
+

π2

M2
.

Using ideas from the proof of Theorem 2.3.1 from [4] we present the following

theorem and the subsequent corollaries.

Theorem 2.3.2. For any Boolean function f ∈ BN , denote

σa = σaf
=

M

π
arcsin

√
a ∈ [

0, 1
2
M

]
.

1. The QS algorithm uses exactly M − 1 quantum queries, and log2N + dlog2Me
qubits.

2. For j = 0, 1, . . . ,M − 1, the outcome j of the QS algorithm occurs with proba-

bility

pf (j) =
sin2(π(j − σaf

))

2M2 sin2
(
π(j − σaf

)/M
)

(
1 +

sin2
(
π(j − σaf

)/M
)

sin2
(
π(j + σaf

)/M
)
)
. (2.6)

(If sin
(
π(j ± σaf

)/M
)

= 0 we need to apply the limiting value of the formula

above.) For j = M,M + 1, . . . , 2dlog2 Me − 1, the outcome j occurs with proba-

bility 0.

3. If σaf
is an integer, then the QS algorithm outputs the exact value of af with

probability 1. This holds iff af = sin2(kπ/M) for some integer k ∈ [0, 1
2
M ]. In

particular, this holds for af = 0, for af = 1 and even M , and for af = 1
2

and

M divisible by 4.

4. Let x = π(dσae−σa)/M and x = π(σa−bσac)/M . If σaf
is not an integer, then

the QS algorithm outputs the same value ā = āf (dσae) = āf (M − dσae) for the

outcomes dσae and M − dσae such that

|ā−a| =
∣∣∣sin(x)

(
2
√
a(1− a) cos(x) + (1− 2a) sin(x)

)∣∣∣ ≤ π

M

( dσae−σa

)
(2.7)
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with probability

sin2(π(dσae − σa))

M2 sin2 (π(dσae − σa)/M)

(
1 + (1− δdσae,M/2)

sin2 (π(dσae − σa)/M)

sin2 (π(dσae+ σa)/M)

)

≥ sin2
(
π(dσae − σa)

)

π2(dσae − σa)2
= 1− π2

3
(dσae − σa)2 +O

(
(dσae − σa)4

)
, (2.8)

and outputs the same value ā = āf (bσac) = āf ((1 − δbσac,0)M − bσac) for the

outcomes bσac and (1− δbσac,0)M − bσacsuch that

|ā−a| =
∣∣∣sin(x)

(
2
√
a(1− a) cos(x) + (1− 2a) sin(x)

)∣∣∣ ≤ π

M
(σa−bσac) (2.9)

with probability

sin2 (π(σa − bσac))
M2 sin2 (π(σa − bσac)/M)

(
1 + (1− δbσac,0)

sin2 (π(σa − bσac)/M)

sin2 (π(σa + bσac)/M)

)

≥ sin2 (π(σa − bσac))
π2(σa − bσac)2

= 1− π2

3
(σa − bσac)2 +O

(
(σa − bσac)4

)
. (2.10)

Proof. As before, let θa = arcsin
√
a and

|SM(ω)〉 =
1√
M

M−1∑

k=0

e2πiωk|k〉, i =
√−1,

for arbitrary ω ∈ R. Note that

FM,m|j〉 =




|SM(j/M)〉 for j = 0, 1, . . . ,M − 1,

|j〉 for j = M,M + 1, . . . , 2m − 1.

The steps 1–3 of the QS algorithm are equivalent to the application of the opera-

tor (F−1
M,m ⊗ I) Λm(Qf )FM,m ⊗WN to the state |0〉|0〉 ∈ Hm ⊗Hn. Now |η1〉 can be

written as M−1/2
∑M−1

j=0 |j〉|ψ〉, where |ψ〉 = WN |0〉 is given by (2.4). Hence

|η1〉 =
−i√
2M

M−1∑
j=0

|j〉 (eiθa|ψ+〉 − e−iθa|ψ−〉
)
.
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Applying Λm(Qf ) in Step 2 and remembering that Qj
f |ψ±〉 = λj

±|ψ±〉, we obtain

|η2〉 = Λm(Qf ) |η1〉 =
−i√
2M

M−1∑
j=0

|j〉 (e2ijθaeiθa|ψ+〉 − e−2ijθae−iθa|ψ−〉
)

=
−i√

2

(
eiθa|SM(σa/M)〉|ψ+〉 − e−iθa|SM(−σa/M)〉|ψ−〉

)
.

Since j = 0, 1, . . . ,M − 1, the largest power of Qf is M − 1. Hence, we use

exactly M − 1 quantum queries to compute |η2〉. The remaining steps of the QS

algorithm do not use quantum queries. This means that the total number of quantum

queries used by the QS algorithm is M − 1, and obviously we are using n+m qubits.

This proves the first part of Theorem 2.3.2.

Step 3 yields the state

|η3〉 = (F−1
M,m ⊗ I)|η2〉

=
−i√

2

(
eiθaF−1

M,m|SM(σa/M)〉|ψ+〉 − e−iθaF−1
M,m|SM(−σa/M)〉|ψ−〉

)
.

We are ready to analyze the probability of the outcome j of the QS algorithm.

Observe that

|α±〉 := (|j〉〈j| ⊗ I) F−1
M,m|SM(±σa/M)〉|ψ±〉 = 〈j|F−1

M,m|SM(±σa/M)〉 |j〉|ψ±〉

=




〈SM(j/M)|SM(±σa/M)〉 |j〉|ψ±〉 for j = 0, 1, . . . ,M − 1,

0 for j = M,M + 1, . . . , 2m − 1,

and therefore

〈α±|α±〉 =




|〈SM(j/M)|SM(±σa/M)〉|2 〈ψ±|ψ±〉 for j = 0, 1, . . . ,M − 1.

0 for j = M, . . . , 2m − 1.

Observe that for a ∈ (0, 1), we have 〈ψ±|ψ±〉 = 1, whereas for a ∈ {0, 1}, we

have 〈ψ+|ψ+〉 = 2 and 〈ψ−|ψ−〉 = 0.
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For ω1, ω2 ∈ R we have

|〈SM(ω1)|SM(ω2)〉|2 =

∣∣∣∣∣

(
1√
M

M−1∑
j=0

e−2πiω1j〈j|
)(

1√
M

M−1∑
j=0

e2πiω2j|j〉
)∣∣∣∣∣

2

=
1

M2

∣∣∣∣∣
M−1∑
j=0

e−2πi(ω1−ω2)j

∣∣∣∣∣

2

.

If ω1−ω2 is an integer, then the last sum is clearly M , and the whole expression is 1.

If ω1 − ω2 is not an integer, then

1

M

M−1∑
j=0

e−2πi(ω1−ω2)j =
e−2πiM(ω1−ω2) − 1

M(e−2πi(ω1−ω2) − 1)
,

which holds for all ω1, ω2 ∈ R if we take 0/0 as 1. Therefore

∣∣∣∣∣
1

M

M−1∑
j=0

e−2πi(ω1−ω2)j

∣∣∣∣∣

2

=
1− cos(2πM(ω1 − ω2))

M2(1− cos(2π(ω1 − ω2)))
=

sin2(πM(ω1 − ω2))

M2(sin2(π(ω1 − ω2)))
.

Hence

|〈SM(ω1)|SM(ω2)〉|2 =
sin2(Mπ(ω1 − ω2))

M2 sin2(π(ω1 − ω2))
, (2.11)

which holds for all ω1, ω2 ∈ R if we take 0/0 as 1. Applying this we conclude that

〈α±|α±〉 =





sin2(π(j ∓ σa))

M2 sin2(π(j ∓ σa)/M)
〈ψ±|ψ±〉 for j = 0, 1, . . . ,M − 1,

0 for j = M,M + 1, . . . , 2m − 1.

The outcome j occurs after the measurement and the state |η3〉 collapses to the

state

(〈η3|M †
jMj|η3〉)−1Mj|η3〉, where Mj = |j〉〈j| ⊗ I. For j = 0, 1, . . . ,M − 1, we have

Mj|η3〉 = |j〉
(−i√

2

(
eiθa〈SM(j/M)|SM(σa/M)〉 |ψ+〉

− e−iθa〈SM(j/M)|SM(−σa/M)〉 |ψ−〉
))
,

whereas Mj|η3〉 = 0 for j = M,M+1, . . . , 2m−1. Since |ψ+〉 and |ψ−〉 are orthogonal

we have

〈η3|M †
jMj|η3〉 = 1

2
(〈α+|α+〉 + 〈α−|α−〉) .
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We now claim that for any j ∈ {0, 1, . . . ,M−1}, the outcome j occurs with probability

pf (j) =
1

2

(
sin2(π(j − σa))

M2 sin2(π(j − σa)/M)
+

sin2(π(j + σa))

M2 sin2(π(j + σa)/M)

)
. (2.12)

Indeed, for a ∈ (0, 1), we have 〈ψ±|ψ±〉 = 1 and (2.12) follows from the form of

〈α±|α±〉. For a ∈ {0, 1}, we have 〈ψ+|ψ+〉 = 2 and 〈ψ−|ψ−〉 = 0. Since the two terms

in (2.12) are now the same, the formula for 〈α+|α+〉 again yields (2.12).

Since sin2(π(j − σa)) = sin2(π(j + σa)), the last formula is equivalent to (2.6).

Obviously for j = M,M + 1, . . . , 2m − 1, the probability of the outcome j is zero.

This proves the second part of Theorem 2.3.2.

Assume now that σa ∈ Z. If σa = 0 or σa = 1
2
M (if M is even), then the

probability pf (σa) of the outcome σa is 1. For σa = 0 we have a = 0 and the output

is āf (0) = 0. For σa = 1
2
M we have a = 1 and the output is āf (1

2
M) = 1. Hence, in

both cases the QS algorithm outputs the exact value with probability 1.

If σa ∈ Z and σa /∈ {0, 1
2
M}, then the probability of the distinct outcomes σa

and M − σa is 1
2
. These two values of the outcomes yield the same output

sin2 (πσa/M) = sin2 (π(M − σa)/M) = a.

Hence, the QS algorithm outputs the exact value with probability 1. This proves the

third part of Theorem 2.3.2.

We now turn to the case when σa /∈ Z. It is easy to check that the third part

of Theorem 2.3.2 holds for M = 1. Assume then that M ≥ 2, which implies that
⌈

1
2
M

⌉ ≤M − 1. Since σa is not an integer, we have dσae ≥ 1, dσae ≤
⌈

1
2
M

⌉ ≤M − 1

and M−dσae ≤M−1. This means that both dσae and M−dσaemay be the outcomes

of the QS algorithm. Obviously, these two outcomes are different iff dσae 6= 1
2
M .

Similarly, both bσac and (1 − δbσac,0)M − bσac may be also the outcomes. They are

different iff bσac 6= 0.

We show that the outputs for the outcomes dσae and bσac satisfy (2.7) and (2.9)
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with probabilities (2.8) and (2.10), respectively. We focus on the output for the

outcome dσae and its probability. The proof for the outcome bσac is similar.

We estimate the error of the QS algorithm for the output ā = sin2(π dσae /M).

Recall that x = π(dσae − σa)/M . We have

|ā− a| = | sin2(π dσae /M)− sin2(πσa/M)| = | sin(x) sin(x+ 2πσa/M)|
=

∣∣ sin(x)
(

sin(2πσa/M) cos(x) + cos(2πσa/M) sin(x)
)∣∣

≤ π(dσae − σa)/M.

Since sin(2πσa/M) = 2
√
a(1− a) and cos(2πσa/M) = 1−2a, this proves the estimate

of the error of the QS algorithm in the fourth part of Theorem 2.3.2.

We find the probability of the output ā. Since t 7→ sin2(πt/M) is injective for t ∈
[0, 1

2
M ], the output ā occurs only for the outcomes dσae and M−dσae. If dσae = 1

2
M ,

then these two outcomes are the same and ā occurs with probability pf (1
2
M). Due to

(2.12), we have

pf

(
1
2
M

)
=

sin2
(
π(1

2
M − σaf

)
)

M2 sin2
(
π(1

2
M − σaf

)/M
) ,

which agrees with the claim in Theorem 2.3.2.

If dσae 6= 1
2
M , then dσae 6= M − dσae and ā occurs for exactly two distinct out-

comes. The probability of ā is now equal to the sum of the probabilities pf (dσae) +

pf (M − dσae), where pf is given by (2.12). Since both terms are equal, the prob-

ability of ā is 2pf (dσae) which also agrees with the claim in Theorem 2.3.2. Since

sin (π(dσae − σa)/M) ≤ π(dσae − σa)/M we have

sin2(π(dσae − σa))

M2 sin2 (π(dσae − σa)/M)
≥ sin2(π dσae − σa)

π2(dσae − σa)2
.

We finish proving (2.8) by using the standard expansion of the sine. This completes

the proof.

Based on Theorem 2.3.2, we present simplified estimates of the error of the QS

algorithm and of the corresponding probability.
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Corollary 2.3.3. The QS algorithm outputs ā such that

|ā− a| ≤ π

M
max{dσae − σa, σa − bσac} (2.13)

with probability at least

sin2(π(dσae − σa))

M2 sin2 (π(dσae − σa)/M)
+

sin2(π(σa − bσac))
M2 sin2 (π(σa − bσac)/M)

≥ 8

π2
. (2.14)

Proof. It is enough to prove Corollary 2.3.3 if σa is not an integer. The estimate of the

error of the QS algorithm by the maximum of the estimates (2.7) and (2.9) holds with

probability that is the sum of the probabilities (2.8) and (2.10). Moreover, dσae−σa =

1− (σa − bσac). Observe that

g(∆) =
sin2(π∆)

π2∆2
+

sin2(π(1−∆))

π2(1−∆)2

is a lower bound of the left hand side of (2.14) with ∆ = dσae − σa. Since the

function g attains the minimum 8/π2 on the interval [0, 1] for ∆ = 1
2
, see also [4], this

completes the proof.

Corollary 2.3.3 guarantees that the estimate (2.13) holds with high probability.

Unfortunately this estimate does not preserve the continuity of the estimates (2.7)

and (2.9) with respect to dσae − σa and σa− bσac. The continuity of the estimates is

present in the next corollary, at the expense of the probability of the outcome. This

corollary will also play an essential role in the study of the average-probabilistic error

of the QS algorithm.

Corollary 2.3.4. The QS algorithm outputs ā such that

|ā− a| ≤ π

M
min{dσae − σa, σa − bσac} (2.15)

with probability at least

max

{
sin2(π(dσae − σa))

M2 sin2( π
M

(dσae − σa))
,

sin2(π(σa − bσac))
M2 sin2( π

M
(σa − bσac))

}
≥ 4

π2
. (2.16)
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Proof. We may again assume that σa is not an integer. Let us define

w(∆) =
sin2(π∆)

M2 sin2 (π∆/M)
for ∆ ∈ [0, 1].

Then w(dσae − σa) is the probability that (2.7) holds and w(1 − (dσae − σa)) is the

probability that (2.9) holds. For ∆ ∈ [0, 1
2
], note that w(·) is decreasing, and w(1− ·)

is increasing. Therefore

w(∆) ≥ w(1
2
) ≥ w(1−∆) for ∆ ∈ [0, 1

2
].

Suppose that dσae − σa ≤ σa − bσac. Then dσae − σa ≤ 1
2
. In this case (2.15) is

equivalent to (2.7), and holds with probability at least w(dσae−σa), which corresponds

to (2.16). Analogously, if dσae − σa ≥ σa − bσac then dσae − σa ≥ 1
2
. In this case

(2.15) is equivalent to (2.9), and holds with probability at least w(σa − bσac), which

also corresponds to (2.16). Finally, note that

max {w(dσae − σa), w(σa − bσac)}

is minimal for dσae − σa = 1
2

and is equal to

1

M2
sin−2 π

2M
≥ 4

π2
.

Unfortunately, for dσae − σa close to 1
2

the probability of the estimate (2.15) is

too small. However in this case we may use Corollary 2.3.3, which yields an estimate

with high probability.

We now turn to global error estimates, that is, estimates independent of a. The-

orem 2.3.1 of [4] states, in particular, that |ā− a| ≤ π/M + π2/M2 with probability

at least 8/π2. We now improve this estimate by combining the estimates (2.13)

and (2.15).
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Corollary 2.3.5. The QS algorithm outputs ā such that

|ā− a| ≤ 3

4

π

M
(2.17)

with probability at least 8/π2. That is,

ewor-pro

(
M,

8

π2

)
≤ 3

4

π

M
.

Proof. Let us define

h(∆) = max

{
sin2(π∆)

π2∆2
,
sin2(π(1−∆))

π2(1−∆)2

}
. (2.18)

Clearly, h(dσae− σa) is a lower bound on max{w(dσae− σa), w(1− (dσae− σa))} and

therefore h(dσae − σa) is a lower bound of the probability of the output satisfying

(2.15). We consider two cases.

Assume first that ∆ = dσae − σa ∈ [0, 1
4
] ∪ [3

4
, 1]. It is easy to see that then

h(∆) ≥ 8/π2 and the estimate (2.15) yields

|ā− a| ≤ π

M
min{dσae − σa, σa − bσac} ≤ 1

4

π

M

with probability at least 8/π2.

Assume now that dσae − σa ∈ (1
4
, 3

4
). Then we can use the estimate (2.13), which

holds unconditionally with probability at least 8/π2. In this case, we have

|ā− a| ≤ π

M
max{dσae − σa, σa − bσac} ≤ 3

4

π

M
.

These two estimates combined together yield (2.17).

An obvious consequence of Corollary 2.3.5 is that for M large enough we can

compute the value of a exactly by rounding the output.

Corollary 2.3.6. Assume that

M >
3π

2
N.

Then the rounding of the QS algorithm output to the nearest number of the form k/N

yields the exact value of the sum a with probability at least 8/π2.
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The proof of Corollary 2.3.5 may suggest that the constant 3
4

in (2.17) can be

decreased. Furthermore one may want to decrease the constant 3
4

at the expense of

decreasing the probability 8/π2. These points are addressed in the next corollary. We

shall see that the constant 3
4

may be lowered only by decreasing the probability.

Corollary 2.3.7. Define

C(p) = inf

{
C : |āf − af | ≤ C

π

M
∀f ∈ BN with probability at least p

}

and

v(∆) =
sin2(π∆)

π2∆2
for ∆ ∈ [1

4
, 1

2
].

Then

C(p) ≤





1
2

for p ∈ [0, 4/π2),

1− v−1(p) for p ∈ [4/π2, 8/π2],

M/π for p ∈ (8/π2, 1].

(2.19)

Moreover, 1− v−1(p) ∈ [1
2
, 3

4
] and

∣∣∣∣
π2

16
p+

1

4
− (

1− v−1(p)
)∣∣∣∣ ≤ 0.0085 for p ∈ [4/π2, 8/π2]. (2.20)

Proof. For p ∈ [0, 4/π2), Corollary 2.3.7 is a consequence of Corollary 2.3.4. For p ∈
(8/π2, 1], Corollary 2.3.7 trivially holds since |ā − a| ≤ 1 = (M/π)π/M . For the

remaining p’s we use a proof technique similar to that of Corollary 2.3.5.

Let p ∈ [4/π2, 8/π2]. It is easy to check that v is decreasing and, therefore, v−1(p)

is well defined and v−1(p) ∈ [1
4
, 1

2
]. We have to show that the estimate

|ā− a| ≤ (
1− v−1(p)

) π
M

(2.21)

holds with probability at least p. We consider two cases.

Assume first that ∆ = dσae − σa ∈ [0, v−1(p)] ∪ [1 − v−1(p), 1]. Observe that the

function h defined in (2.18) can be rewritten as

h(∆) = max{v(∆), v(1−∆)}.
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It is easy to see that in this case, h(∆) ≥ p, and the estimate (2.15) yields

|ā− a| ≤ π

M
min{∆, 1−∆} ≤ v−1(p)

π

M
≤ (

1− v−1(p)
) π
M

with probability at least p.

Assume now that ∆ = dσae − σa ∈
(
v−1(p), 1 − v−1(p)

)
. Then we can use the

estimate (2.13), which holds unconditionally with probability at least 8/π2 > p. In

this case, we have

|ā− a| ≤ π

M
max{∆, 1−∆} ≤ (

1− v−1(p)
) π
M
.

This proves (2.21).

We found the estimate (2.20) by numerical computations.
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Figure 2.1: The estimate (2.19) of C(p) for p ∈ [0, 8/π2]

From Figure 2.1 we see that the estimate (2.19) is almost linear on the inter-

val [4/π2, 8/π2], which explains why the right hand side of the estimate (2.20) is

small.

We now find a sharp bound on the worst-probabilistic error of the QS algorithm.

We show that for large M and N/M the bound obtained in Corollary 2.3.7 is optimal

for p ∈ (1/2, 8/π2].
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Figure 2.2: The function v on [0, 1]. The two horizontal lines show 4/π2 and 8/π2

levels. The part of the graph between the arrows shows that v is almost linear.

Theorem 2.3.8. For large M and N/M , the worst-probabilistic error of the QS

algorithm is given by

ewor-pro(M, p) =
(
1− v−1(p)

) π
M

(
1 +O(M−1) +O(MN−1)

)
for p ∈ (1

2
, 8

π2 ].

Here, v is as in Corollary 2.3.7, and 1− v−1(p) ≈ 1
16
π2p+ 1

4
by (2.20).

Proof. From Corollary 2.3.7, it is enough to show a lower bound on the error. Define

s1 = sin2

(
π

⌈
1
4
M

⌉

M

)
and s2 = sin2

(
π
(
1 +

⌈
1
4
M

⌉ )

M

)
.

For large M , we have

si = 1
2

+O(M−1)

and

s2 − s1 = sin
( π

M

)
sin

(
π(1 + 2

⌈
1
4
M

⌉
)

M

)
=

(1 +O(M−1))π

M
.

There exist two Boolean functions f1 and f2 with sums a1 = af1 and a2 = af2 such

that

|ai − si| ≤ N−1 for i = 1, 2.
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Since σsi
=

⌈
1
4
M

⌉
+ (i− 1) and the derivative of σa for a = 1

2
is M/π, we have

σa1 =
⌈

1
4
M

⌉
+O(MN−1) and σa2 =

⌈
1
4
M

⌉
+ 1 +O(MN−1).

Obviously, ai = ki/N for some integers ki with k1 < k2. Consider σx/N for x ∈ {k1, k1+

1, . . . , k2}. Then σx/N varies from σa1 for x = k1 to σa2 for x = k2. Since v−1(p) ∈
[1
4
, 1

2
), for a positive and small η (we finally let η go to zero), we can choose x = xη

such that for a∗ = xη/N we have

σa∗ :=
⌈

1
4
M

⌉
+ v−1(p) + η +O(MN−1).

For large N/M , we then have

bσa∗c =
⌈

1
4
M

⌉
, dσa∗e =

⌈
1
4
M

⌉
+ 1

and

σa∗ − bσa∗c = v−1(p) + η + O(M/N), dσa∗e − σa∗ = 1 − v−1(p) − η + O(M/N).

Let ā∗1 denote the output for the outcome dσa∗e, and ā∗2 for bσa∗c.
Due to (2.7) and (2.9), of Theorem 2.3.2 we have

|a∗ − ā∗1| =
π

M

(
1− v−1(p)− η

) (
1 +O(M−1 +MN−1)

)

|a∗ − ā∗2| =
π

M

(
v−1(p) + η

) (
1 +O(M−1 +MN−1)

)
.

Let us write 1 + o(1) for 1 +O(η2 +M−1 +MN−1). The probability of ā∗2 is given by

(2.10) and is now equal to

sin2(π(v−1(p) + η))

(π(v−1(p) + η))2

(
1 + o(1)

)
=

sin2(πv−1(p)) + πη sin(2πv−1(p))

π2v−1(p)2(1 + 2η/v−1(p))

(
1 + o(1)

)
.

Since p = v(v−1(p)) = sin2(πv−1(p))/(πv−1(p))2, the probability of ā∗2 is

p

(
1− 2η

(
1

v−1(p)
− π cot(πv−1(p))

))
(1 + o(1)) .

Since cot(t) < 1/t for t ∈ [1
4
π, 1

2
π], we see that the probability of ā∗2 is slightly less

than p for small η.
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We are ready to find a lower bound on the worst-probabilistic error

ewor-pro(M, p) = max
f∈BN

min
A: µ(A,f)≥p

max
j∈A

|af − āf (j)|

of the QS algorithm. Take the function f that corresponds to a∗. We claim that

the error is minimized if A = {bσa∗c , dσa∗e}. Indeed, bσa∗c must belong to A since

otherwise µ(A, f) ≤ 1−pf (bσa∗c) = 1−p+o(1) < p for p > 1
2
. The probability of bσa∗c

is slightly less than p, and so the set A must also contain some other outcome j.

If j = dσa∗e, then the error bound is roughly (1 − v−1(p) − η)π/M , and the sum

of the probabilities of the outputs for the outcome bσa∗c and dσa∗e is always at

least 8/π2 ≥ p. On the other hand, if dσa∗e does not belong to the set A, then any

other outcome j yields the output sin2(πj/M). Since sin2(π(j+1)/M)−sin2(πj/M) =

sin(π/M) sin(π(2j + 1)/M), the distribution of the outcomes around 1
2

is a mesh

with step size roughly π/M . Hence, if j 6= dσa∗e, the error is at least roughly (1 +

v−1(p))π/M > π(1 − v−1(p))/M . Thus the choice j = dσa∗e minimizes the error

and for η tending to zero, the error is roughly (1− v−1(p))π/M . This completes the

proof.

From these results, it is obvious how to guarantee that the error of the QS algo-

rithm is at most ε with probability at least p. Since |ā− a| ≤ (
1− v−1(p)

)
π/M holds

with probability p, it is enough to take M ≥ (
1−v−1(p)

)
π/ε. By Theorem 2.3.8, this

bound is sharp for small ε and large εN . We have

Corollary 2.3.9. For p ∈ (1
2
, 8

π2 ], the algorithm QS(f, d(1− v−1(p))π/εe) computes ā

with the error ε and probability at least p with
⌈(

1− v−1(p)
)
π/ε

⌉−1 quantum queries.

For small ε and large εN , the estimate of the number of quantum queries is sharp.

2.3.2 Average-probabilistic error

In this section, we study the average performance of the QS algorithm with respect to

some measure on the set BN of all Boolean functions defined on the set {0, . . . , N−1}.
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We consider two such measures. The first measure p1 is uniformly distributed on the

set BN , i.e.,

p1(f) = 2−N ∀f ∈ BN .

The second measure p2 is uniformly distributed on the set of results, i.e.,

p2(f) =
1(

N

k

)
(N + 1)

if af =
k

N
.

We want to estimate average-probabilistic errors

eavg-pro
pi

(M, p) =
∑

f∈BN

pi(f) min
A: µ(A,f)≥p

max
j∈A

|af − af (j)| for i = 1, 2.

For the measures pi, the mean of the random variable af is clearly 1
2
. However,

their first (central) moments are very different. As we shall see, the moment for

the measure p1 is small since it is of order N−1/2, whereas the moment for measure

p2 is roughly 1
4
. Since the first moments are the same as the error of the constant

algorithm āf (j) = 1
2
, we can achieve small error of order N−1/2 for the measure p1

without any quantum queries, while this property does not hold for the measure p2.

We first consider the measure p1. It is natural to ask if the average-probabilistic

error of the QS algorithm features the dependence of N similar to that of the constant

algorithm āf (j) = 1
2
. We shall prove that this is indeed the case iff M is divisible

by 4.

We compute the first moment (the error) of the constant algorithm, which is

N∑

k=0

2−N

(
N

k

) ∣∣∣∣
1

2
− k

N

∣∣∣∣ .

We do this only for odd N , the case of even N being analogous. We have

N∑

k=0

2−N

(
N

k

) ∣∣∣∣
1

2
− k

N

∣∣∣∣ = 2

bN/2c∑

k=0

(
N

k

)(
1

2
− k

N

)
=

bN/2c∑

k=0

(
N

k

)
− 2

bN/2c−1∑

k=0

(
N − 1

k

)

= 2N−1 − 2× 1

2

(
2N−1 −

(
N − 1

(N − 1)/2

))
=

(
N − 1

(N − 1)/2

)
.
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Thus

eavg-pro
p1

(0, 1) =
N∑

k=0

2−N

(
N

k

) ∣∣∣∣
1

2
− k

N

∣∣∣∣ =





2−N

(
N − 1

(N − 1)/2

)
if N is odd,

2−(N+1)

(
N

N/2

)
if N is even.

(2.22)

Using Stirling’s formula

k! =
√

2πk

(
k

e

)k

eθk/12k for some θk ∈ [0, 1] ,

we can estimate any of the binomial quantities in (2.22) by

1√
2π

1√
N − 1

e1/(12(N−1))

proving that

eavg-pro
p1

(0, 1) =
N∑

k=0

2−N

(
N

k

) ∣∣∣∣
1

2
− k

N

∣∣∣∣ ≤
1√
2π

1√
N − 1

e1/(12(N−1))

=
1√
2π

1√
N

(1 + o(1)). (2.23)

We are ready to analyze the average-probabilistic error of the QS algorithm.

Theorem 2.3.10. Assume that M is divisible by 4 and let p ∈ (1/2, 8/π2]. Then

the average-probabilistic error of the QS algorithms with respect to the measure p1

satisfies

eavg-prop1
(M, p) ≤ min

{
3

4

π

M
,

√
3

2π

√
1 +

π2

4M2

1√
N − 1

e1/(12(N−1))

}

≤ 3

4
π(1 + o(1)) min

{
1

M
,

1√
N

}
.

Proof. The estimate eavg-pro
p1

(M, p) ≤ eavg-pro
p1

(M, 8/π2) ≤ ewor-pro
p1

(M, 8/π2) is obvious

and, applying Corollary 2.3.5, we get

eavg-pro
p1

(
M,

8

/
π2

)
≤ 3

4

π

M
.
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As before denote σa = (M/π) arcsin
√
a. Let a = 1

2
+ x. We are interested in the

behavior of σ1/2+x for |x| < 1
2
. Clearly σ1/2 = 1

4
M . Let |x| < 1

2
. By Taylor’s theorem,

we have

σ1/2+x =
M

4
+
M

π

x

2
√

(1− ξx)ξx
for ξx ∈ (1

2
, 1

2
+ x)

and 2
√

(1− ξx)ξx ≥
√

1− 4x2. Assume additionally that

M

π

|x|√
1− 4x2

≤ 1

4
,

which is equivalent to assuming that

|x| ≤ π

(16M2 + 4π2)1/2
.

Since M is divisible by 4, then
⌊
σ1/2+x

⌋
= 1

4
M for x ≥ 0, and

⌈
σ1/2+x

⌉
= 1

4
M

for x ≤ 0. This yields

min
{ ⌈
σ1/2+x

⌉− σ1/2+x, σ1/2+x −
⌊
σ1/2+x

⌋ } ≤ M

π

|x|√
1− 4x2

. (2.24)

We claim that
⌈
σ1/2+x

⌉− σ1/2+x ∈ [0, 1
4
] ∪ [3

4
, 1].

Indeed, for x ≤ 0 we have

⌈
σ1/2+x

⌉− σ1/2+x =
M

π

|x|
2
√

(1− ξx)ξx
∈ [0, 1

4
],

and for x ≥ 0 we have

⌈
σ1/2+x

⌉− σ1/2+x = 1− M

π

|x|
2
√

(1− ξx)ξx
∈ [1− 1

4
, 1] = [3

4
, 1],

as claimed.

Let a = 1
2

+ x. By the proof of Corollary 2.3.5, the error of the QS algorithm

satisfies

|ā− a| ≤ π

M
min

{⌈
σ1/2+x

⌉− σ1/2+x, σ1/2+x −
⌊
σ1/2+x

⌋}

and by (2.24) we have

|ā− a| ≤ |x|√
1− 4x2

.
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We split the sum that defines eavg-pro
p1

(M, 8/π2) into two sums. The first sum is

for f ∈ BN for which a = af = 1
2

+ x with |x| ≤ π/(16M2 + 4π2)1/2 and the second

sum is for f for which a = af = 1
2

+ x with |x| > π/(16M2 + 4π2)1/2. We estimate

the error of the QS algorithm by |x|/√1− 4x2 and by the worst-case error 3π/(4M)

for the first and second sums, respectively. Hence we have

eavg-pro
p1

(
M,

8

π2

)
≤

∑

f : |af−1/2|≤π/(16M2+4π2)1/2

p1(f)
|af − 1

2
|√

1− 4(af − 1
2
)2

+
∑

f : ‖af−1/2|>π/(16M2+4π2)1/2

p1(f)
3

4

π

M
.

Since af = k/N for some integer k ∈ [0, N ], we have

eavg-pro
p1

(
M,

8

π2

)
≤

∑

k: |k/N−1/2|≤π/(16M2+4π2)1/2

2−N

(
N

k

) |k/N − 1
2
|√

1− 4(k/N − 1
2
)2

+
3

4

π

M

∑

k: |k/N−1/2|>π/(16M2+4π2)1/2

2−N

(
N

k

)
.

Since 1− 4(k/N − 1
2
)2 ≥ 1− π2/(4M2) ≥ 3

4
, the first sum can be estimated as

∑

k: |k/N−1/2|≤π/(16M2+4π2)1/2

2−N

(
N

k

) |k/N − 1
2
|√

1− 4(k/N − 1
2
)2

≤ 2√
3

∑

k: |k/N−1/2|≤π/(16M2+4π2)1/2

2−N

(
N

k

) ∣∣∣∣
1

2
− k

N

∣∣∣∣ .

The second sum can be estimated by

3

4

π

M

∑

k: |k/N−1/2|>π/(16M2+4π2)1/2

2−N

(
N

k

)
(16M2 + 4π2)1/2

π

∣∣∣∣
k

N
− 1

2

∣∣∣∣

≤ 3

√
1 +

π2

4M2

∑

k: |k/N−1/2|>π/(16M2+4π2)1/2

2−N

(
N

k

) ∣∣∣∣
k

N
− 1

2

∣∣∣∣ .

Adding the estimates of these two sums, we obtain

eavg-pro
p1

(
M,

8

π2

)
≤ 3

√
1 +

π2

4M2

N∑

k=0

2−N

(
N

k

) ∣∣∣∣
1

2
− k

N

∣∣∣∣ .
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The last sum is given by (2.22) and estimated by (2.23). Hence

eavg-pro
p1

(
M,

8

π2

)
≤

√
3

2π

√
1 +

π2

4M2

1√
N − 1

e1/(12(N−1))

which completes the proof.

In the next theorem we consider the case when M is not divisible by 4.

Theorem 2.3.11. Assume that M > 4 is not divisible by 4, and let p ∈ (1/2, 8/π2].

Then the average-probabilistic error of the QS algorithm with respect to the mea-

sure p1 satisfies

eavg-prop1
(M, p) ≥ π

4M

(
1− 1

M
− 1

β

) (
1− 2 exp

(
− Nπ2

(8βM)2

))
∀β > 1.

Proof. Let M = 4M ′+ τ for τ ∈ {1, 2, 3}. Let σa = (M/π) arcsin
√
a. As in the proof

of Theorem 2.3.10, for |x| < 1
2

we have

σ1/2+x =
M

4
+
M

π

x

2
√

(1− ξx)ξx
for ξx ∈ (1

2
, 1

2
+ x)

and 2
√

(1− ξx)ξx ≥
√

1− 4x2. Assume additionally that

M

π

|x|√
1− 4x2

≤ 1

4β
,

which is equivalent to assuming that

|x| ≤ π

(16M2β2 + 4π2)1/2
. (2.25)

Thus for x satisfying (2.25), we have

σ1/2+x = M ′ +
τ

4
+
M

π

xθ(x)√
1− 4x2

with θ(x) ∈ [0, 1],

and
⌊
σ1/2+x

⌋
= M ′ and

⌈
σ1/2+x

⌉
= M ′ + 1.

From the proof of Corollary 2.3.3 we have µ({⌈σaf

⌉
,
⌊
σaf

⌋}, f) ≥ 8/π2. Since

µ(A, f) ≥ p > 1
2

then either
⌈
σaf

⌉ ∈ A or
⌊
σaf

⌋ ∈ A. We then estimate

eavg-pro
p1

(
M,

8

π2

)
≥

∑

f∈BN

p1(f) min
{∣∣af − āf

( ⌊
σaf

⌋ )∣∣,
∣∣af − āf

( ⌈
σaf

⌉ )∣∣}. (2.26)
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We now estimate the error of the QS algorithm for f ∈ BN such that af = 1
2

+ x

for x satisfying (2.25) and the outcome j =
⌈
σaf

⌉
= M ′ or j =

⌊
σaf

⌋
= M ′ + 1.

Denote the outcome by M ′ + κ for κ ∈ {0, 1}. By Taylor’s theorem we have

sin2

(
M ′ + κ

M
π

)
= sin2

(π
4

+
π

M
(κ− 1

4
τ)

)
=

1

2
+ sin(2ξκ,τ )

π

M
(κ− 1

4
τ).

for ξκ,τ ∈ [1
4
π, 1

4
π + (π/M)(κ − 1

4
τ)]. Since sin(t) ≥ 2t/π for t ∈ [0, π/2], we

have | sin(2ξκ,τ )| ≥ 1 − |4κ − τ |/M . Consider the error for the outcome M ′ + κ

and x satisfying (2.25). Then |x| ≤ π/(4βM) and the error can be estimated by

∣∣∣∣
1

2
+ x− sin2

(
M ′ + κ

M
π

)∣∣∣∣ =
∣∣∣x− sin(2ξκ,τ )

π

M
(κ− 1

4
τ)

∣∣∣

≥ π

M
|κ− 1

4
τ || sin(2ξκ,τ )| − |x| ≥ π

4

|4κ− τ |
M

(
1− |4κ− τ |

M

)
− π

4βM
.

Clearly, |4κ− τ | ∈ {1, 2, 3} and |4κ− τ |/M ∈ [1/M, 3/M ]. Then

|4κ− τ |(1− |4κ− τ |/M)/M ≥ (1− 1/M)/M.

Therefore

∣∣∣∣
1

2
+ x− sin2

(
M ′ + κ

M
π

)∣∣∣∣ ≥
π

M

(
1

4

(
1− 1

M

)
− 1

4β

)
=

π

4M

(
1− 1

M
− 1

β

)
.

Hence, for f such that af = 1
2

+ x with x satisfying (2.25) we have

min
{∣∣af − āf

( ⌊
σaf

⌋ )∣∣,
∣∣af − āf

( ⌈
σaf

⌉ )∣∣} ≥ π

4M

(
1− 1

M
− 1

β

)
. (2.27)

We are now ready to estimate eavg-pro
p1

(M, p). First, by (2.26), we have

eavg-pro
p1

(M, p) ≥
∑

f : |af−1/2|≤(16M2β2+4π2)1/2

p1(f)

×min
{∣∣af − āf

( ⌊
σaf

⌋ )∣∣, ∣∣af − āf

( ⌈
σaf

⌉ )∣∣}.
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This, (2.27), and the Bernstein inequality,
∑

k: |k/N−1/2|>ε 2−N
(

N
k

) ≤ 2e−Nε2/4, yield

eavg-pro
p1

(M, p) ≥
∑

f : |af−1/2|≤π(16M2β2+4π2)1/2

p1(f)
π

4M

(
1− 1

M
− 1

β

)

=
π

4M

(
1− 1

M
− 1

β

) ∑

k: |k/N−1/2|≤π(16M2β2+4π2)1/2

2−N

(
N

k

)

≥ π

4M

(
1− 1

M
− 1

β

)(
1− 2 exp

(
− Nπ2

4(16M2β2 − 4)

))

≥ π

4M

(
1− 1

M
− 1

β

)(
1− 2 exp

(
− Nπ2

(8βM)2

))
,

which completes the proof.

Obviously, in the average-probabilistic setting, we should use the QS algorithm

with M divisible by 4. Then Theorem 2.3.10 states that the error is of order

min{M−1, N−1/2}. Papageorgiou [36] proved that for any quantum algorithm that

uses M quantum queries the error is bounded from below by

cmin{M−1, N−1/2} with probability p ∈ (1/2, 8/π2]. Here, c is a positive number

independent of M and N . Hence, the QS algorithm is optimal also in the average-

probabilistic setting for the measure p1 as long as we use it with M divisible by 4.

We now turn to the measure p2. Clearly, the average-probabilistic error of the QS

algorithm is bounded by its worst-probabilistic error, which is of order M−1 with prob-

ability p ∈ (1/2, 8/π2]. It turns out, again due to a recent result of Papageorgiou [36]

that this bound is the best possible, since any quantum algorithm that uses M quan-

tum queries must have an error proportional at least to M−1. Hence, the factor N−1/2

that is present for the measure p1 does not appear for the measure p2, and the behav-

ior of the QS algorithm is roughly the same in the worst- and average-probabilistic

settings.
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2.3.3 Worst-average error

The QS algorithm uses M − 1 quantum queries. In this section, we restrict our

consideration to the only interesting case, namely, when M is much smaller than N .

We denote

saf
= min

{ ⌈
σaf

⌉− σaf
, σaf

− ⌊
σaf

⌋ }
,

where, as before, σaf
= (M/π) arcsin

√
a. Clearly, saf

∈ [0, 1
2
] and saf

= 0 iff σaf
is an

integer. We shall usually drop the subscript f and denote σa = σaf
, sa = saf

when f

is clear from the context. As in Section 1.2.1.1, let µ(·, f) denote the measure on the

set {0, . . . ,M − 1} of all possible outcomes of the QS algorithm. We also define

AM =

{
sin2

(
πj

M

)
: j = 0, 1, . . . ,M − 1

}

as the set of all possible outputs of the QS algorithm with M − 1 queries. Let

ρf (α) = µ

({
j ∈ {0, 1, . . . ,M − 1} : sin2

(
πj

M

)
= α

}
, f

)
∀α ∈ AM ,

denote the probability of the output α. Note that α = sin2(πj/M) = sin2(π(M −
j)/M). Hence, from (2.6), we clearly see that ρf (α) = pf (j) + pf (M − j) for j 6=
0,M/2.

For q ∈ [1,∞), we first analyze the local average error

eavg
q (f,M) :=

( M−1∑
j=0

pf (j) |af − āf (j)|q
)1/q

=

( ∑
α∈AM

ρf (α)|af − α|q
)1/q

, (2.28)

for a fixed function f ∈ BN .

2.3.3.1 Local average error

The local average error (2.28) for q > 1 is estimated in the following theorem.

Theorem 2.3.12. Let q ∈ (1,∞). Denote a = af . If σa ∈ Z, then eavgq (f,M) = 0.
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If σa /∈ Z, then

∣∣∣∣∣e
avg
q (f,M)q − sin2(πsa)

Mπ

∫ π−πsa/M

πsa/M

sin(x)q−2
∣∣ sin(x+ 2θa)

∣∣q dx
∣∣∣∣∣ ≤

(1 + 2(1− δq,2))
πq−1 sin(πsa)

M q
+

sin2(πsa)

M2

(
2(1− δq,2) + q

∫ π

0

sinq−2(x) dx

)
, (2.29)

with sa = bσac − σa and sa = σa − dσae.1

Proof. If σa ∈ Z then it was shown in Section 2.3.2 that there exists α ∈ AM such

that α = af and ρf (α) = δα,af
for all α ∈ AM . Then eavg

q (f,M) = 0 as claimed.

Assume that σa /∈ Z. Using the closed form of of pf (j) as in (2.6), we rewrite (2.28)

as

(
eavg

q (f,M)
)q

=
M−1∑
j=0

sin2(Mθa)

2M2

(∣∣∣∣ sin

(
π(j − σa)

M

)∣∣∣∣
q−2∣∣∣∣ sin

(
π(j + σa)

M

)∣∣∣∣
q

+

∣∣∣∣ sin

(
π(j + σa)

M

)∣∣∣∣
q−2∣∣∣∣ sin

(
π(j − σa)

M

)∣∣∣∣
q)
.

We have

M−1∑
j=0

∣∣∣∣ sin

(
π(j + σa)

M

)∣∣∣∣
q−2∣∣∣∣ sin

(
π(j − σa)

M

)∣∣∣∣
q

=
M∑

j=1

∣∣∣∣ sin

(
π(M − j + σa)

M

)∣∣∣∣
q−2∣∣∣∣ sin

(
π(M − j − σa)

M

)∣∣∣∣
q

.

Using the π-periodicity of | sinx|, we see that the last sum is equal to

M∑
j=1

∣∣∣∣ sin

(
π(j − σa)

M

)∣∣∣∣
q−2∣∣∣∣ sin

(
π(j + σa)

M

)∣∣∣∣
q

=
M−1∑
j=0

∣∣∣∣ sin

(
π(j − σa)

M

)∣∣∣∣
q−2∣∣∣∣ sin

(
π(j + σa)

M

)∣∣∣∣
q

.

1Note that the last integral is finite. This is obvious for q ≥ 2. For q ∈ (1, 2), the only singularities

are at the boundary points and are of the form xq−2 for x approaching 0. The function xq−2 is

integrable since q > 1.
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Therefore

eavg
q (f,M)q =

sin2(Mθa)

M2
SM,q, (2.30)

with

SM,q =
M−1∑
j=0

∣∣∣∣ sin

(
π(j − σa)

M

)∣∣∣∣
q−2∣∣∣∣ sin

(
π(j + σa)

M

)∣∣∣∣
q

=
M−1∑
j=0

∣∣∣∣ sin

(
πj

M
− θa

)∣∣∣∣
q−2∣∣∣∣ sin

(
πj

M
+ θa

)∣∣∣∣
q

.

We split SM,q as

S ′M,q = SM,q −
∣∣∣∣ sin

(
π bσac
M

− θa

)∣∣∣∣
q−2∣∣∣∣ sin

(
π bσac
M

+ θa

)∣∣∣∣
q

.

Observe that (π/M)S ′M,q is the rectangle formula for approximating the integral
∫

[0,π]\[πbσac/M,πdσae/M ]

∣∣ sin(x− θa)
∣∣q−2∣∣ sin(x+ θa)

∣∣q dx.

The error of the rectangle quadrature for k ∈ N and an absolutely continuous

function f : [a, b] → R whose first derivative belongs to L1([a, b]) satisfies
∣∣∣∣
∫ b

a

f(x) dx− b− a

k

k−1∑
j=0

f

(
a+ j

b− a

k

)∣∣∣∣ ≤
b− a

k

∫ b

a

∣∣f ′(x)
∣∣ dx. (2.31)

Defining h(x) =
∣∣ sin(x−θa)

∣∣q−2∣∣ sin(x+θa)
∣∣q and Da = [0, π]\ [π bσac /M, π dσae /M ]

and using the error formula (2.31) for the subintervals [0, π bσac /M) and (π dσae /M, π],

we get ∣∣∣∣
π

M
S ′M,q −

∫

Da

h(x) dx

∣∣∣∣ ≤
π

M

∫

Da

∣∣h ′(x)
∣∣ dx.

Define H(x) = h(x+θa) =
∣∣ sin(x)

∣∣q−2∣∣ sin(x+2θa)
∣∣q and ∆a = [−θa, π−θa]\[π(bσac−

σa)/M, π(σa − dσae)/M ] . We have
∫

Da

h(x) dx =

∫

∆a

H(x) dx,

∫

Da

|h ′(x)| dx =

∫

∆a

|H ′(x)| dx.

By the π-periodicity of the integrand H we have
∫

∆a

H(x) dx =

∫ −πsa/M

−θa

H(x) dx+

∫ π−θa

πsa/M

H(x) dx

=

∫ π−πsa/M

π−θa

H(x) dx+

∫ π−θa

πsa/M

H(x) dx =

∫ π−πsa/M

πsa/M

H(x) dx.
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Analogously,
∫

∆a

|H ′(x)| dx =

∫ π−πsa/M

πsa/M

|H ′(x)| dx.

For x ∈ [πsa/M, π − πsa/M ] the sine is positive and

|H ′(x)| ≤ |q − 2| sinq−3(x)| cos(x)|+ q sinq−2(x).

It is easy to check that for q 6= 2 we have

∫ π−πsa/M

πsa/M

|q − 2| sinq−3(x)| cos(x)| dx

= |q − 2|
( ∫ π/2

πsa/M

sinq−3(x) d sin(x)−
∫ π−πsa/M

π/2

sinq−3(x) d sin(x)

)

=
|q − 2|
q − 2

(
2− sinq−2

(
πsa

M

)
− sinq−2

(
π − πsa

M

))
.

From this we get

∫ π−πsa/M

πsa/M

|H ′(x)| dx ≤ (1− δq,2)

(
2 + sinq−2

(
πsa

M

)

+ sinq−2

(
πsa

M

))
+ q

∫ π

0

sinq−2(x) dx.

We then finally get

∣∣∣∣∣
π

M
SM,q −

∫ π−πsa/M

πsa/M

H(x) dx

∣∣∣∣∣ ≤
π

M

(
(1− δq,2)

(
2 + sinq−2

(
πsa

M

)

+ sinq−2

(
πsa

M

))
+ sinq−2

(
πsa

M

)
+ q

∫ π

0

sinq−2(x) dx

)
.

Observe also that

sin(πsa) = sin(πsa) = sin(πsa).
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Since sin(x)/[M sin(x/M)] ≤ 1 for x ∈ (0, π], we get

∣∣∣∣∣
π sin(πsa)

M
SM,q − sin(πsa)

∫ π−πsa/M

πsa/M

H(x) dx

∣∣∣∣∣

≤ π(1− δq,2)

(
sinq−1

(
πsa

M

)
+ sinq−1

(
πsa

M

))
+ π sinq−1

(
πsa

M

)

+
π sin(πsa)

M

(
2(1− δq,2) + q

∫ π

0

sinq−2(x) dx

)
.

Using sin(πsa/M) ≤ π/M we obtain

∣∣∣∣∣
π sin(πsa)

M
SM,q − sin(πsa)

∫ π−πsa/M

πsa/M

H(x) dx

∣∣∣∣∣

≤ (1 + 2(1− δq,2))
πq

M q−1
+
π sin(πsa)

M

(
2(1− δq,2) + q

∫ π

0

sinq−2(x) dx

)
.

Finally, since sin2(Mθa) = sin2(πsa), we complete the proof by using the estimate

of SM,q in (2.30).

Theorem 2.3.12 implies the following corollary.

Corollary 2.3.13. Let q ∈ (1,∞). If σa ∈ Z, then eavgq (f,M) = 0. If σa /∈ Z, then

eavgq (f,M) =
1

M1/q

[
sin2(πsa)

π

(∫ π

0

sinq−2(x)
∣∣ sin(x+ 2θa)

∣∣q dx

+O

(
sin(πsa)

Mmin(1,q−1)

) )]1/q

, (2.32)

with sa ∈ (0, 1
2
], where the factor in the big O notation is independent of f from BN ,

and also independent of N .

We now consider the case q = 1 and present estimates of eavg
1 (f,M) in the following

lemma.

Lemma 2.3.14. Let a = af . If σa ∈ Z, then eavg1 (f,M) = 0. If σa /∈ Z, then
∣∣∣∣eavg1 (f,M)− sin2(πsa) sin(2θa)

M
ΣM,a

∣∣∣∣ ≤
sin2(πsa)

M
| cos(2θa)|, (2.33)
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where sa ∈ (0, 1
2
], and

ΣM,a =
1

M

M−1∑
j=0

∣∣∣∣ cot

(
π(j + sa)

M

)∣∣∣∣.

Proof. The case σa ∈ Z can be proved as in Theorem 2.3.12. Assume that σa /∈ Z.

Using (2.6), we get

eavg
1 (f,M) =

M−1∑
j=0

sin2(Mθa)

2M2

(∣∣∣∣
sin(π(j + σa)/M)

sin(π(j − σa)/M)

∣∣∣∣ +

∣∣∣∣
sin(π(j − σa)/M)

sin(π(j + σa)/M)

∣∣∣∣
)

As in the proof of Theorem 2.3.12 we conclude that

eavg
1 (f,M) =

sin2(Mθa)

M2
SM,1,

where

SM,1 =
M−1∑
j=0

∣∣∣∣
sin(π(j + σa)/M)

sin(π(j − σa)/M)

∣∣∣∣ =
M−1∑
j=0

∣∣∣∣
sin(π(j − dσae+ sa)/M + 2θa)

sin(π(j − dσae+ sa)/M)

∣∣∣∣ ,

with sa = dσae − σa. Changing the index j in the second sum to j − dσae, and using

periodicity of the sine, we get

SM,1 =
M−1∑
j=0

∣∣∣∣
sin(π(j + sa)/M + 2θa)

sin(π(j + sa)/M)

∣∣∣∣

and consequently

SM,1 =
M−1∑
j=0

∣∣∣∣ cos(2θa) + sin(2θa) cot

(
π(j + sa)

M

) ∣∣∣∣ .

Using the triangle inequality twice, we obtain
∣∣∣∣∣SM,1 − sin(2θa)

M−1∑
j=0

∣∣∣∣ cot

(
π(j + sa)

M

) ∣∣∣∣
∣∣∣∣∣ ≤M | cos(2θa)|.

Let sa = σa − bσac. Observe that sa = 1− sa. Since the cotangent is π-periodic and

the function | cot(π(·)/M)| is even, we get

M−1∑
j=0

∣∣∣∣cot

(
π(j + sa)

M

)∣∣∣∣ =
M−1∑
j=0

∣∣∣∣cot

(
π(j + sa)

M

)∣∣∣∣ = M ΣM,a.
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This and

sin2(Mθa) = sin2(πσa) = sin2(πsa)

yield (2.33), as claimed.

From Lemma 2.3.14, we see that the sum ΣM,a is the most important part of the local

average error eavg
1 (M, f). We now estimate ΣM,a.

Lemma 2.3.15. Assume that σa /∈ Z and M ≥ 3. Then

∣∣∣∣∣ ΣM,a − 1

M
cot

(
πsa

M

)
− 1

M

∣∣∣∣ cot

(
π(M − 1 + sa)

M

)∣∣∣∣

− 1

π

∫ π(M−1+sa)/M

π(1+sa)/M

| cotx| dx
∣∣∣∣∣ ≤

1

πM

∫ π(M−1+sa)/M

π(1+sa)/M

1

sin2 x
dx. (2.34)

Proof. This can be shown by using the error formula for rectangle quadratures (2.31).

Note that πΣM,a−(π/M) cot(πsa/M)−(π/M)| cot(π(M−1+sa)/M)| is the rectangle

quadrature for the integral
∫ π(M−1+sa)/M

π(1+sa)/M
| cotx| dx with k = M − 2 ≥ 1. We then

obtain (2.34) by using (2.31).

We now present the final estimate on the local average error eavg
1 (f,M).

Theorem 2.3.16. Assume that f ∈ BN and a = af . For M ≥ 3, the average error

of the QS algorithm for the function f satisfies
∣∣∣∣eavg1 (f,M)− 2 sin2(πsa) sin(2θa)

π

lnM

M

∣∣∣∣ ≤
3π + 2 + ln(π2)

Mπ
sin(πsa). (2.35)

Proof. For σa ∈ Z we have sa = 0, so that (2.35) holds since eavg
1 (f,M) = 0 by [30].

Assume that σa /∈ Z. From Lemmas 2.3.14 and 2.3.15 we have

∣∣∣∣eavg
1 (f,M)− sin2(πsa) sin(2θa)

πM

∫ π(M−1+sa)/M

π(1+sa)/M

| cotx| dx
∣∣∣∣

≤ sin2(πsa)

M

[
sin(2θa)

M

(
cot

(
πsa

M

)
+

∣∣∣∣ cot

(
π(M − 1 + sa)

M

)∣∣∣∣

+
1

π

∫ π(M−1+sa)/M

π(1+sa)/M

1

sin2 x
dx

)
+ | cos(2θa)|

]
.
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Observe that

∫ π(M−1+sa)/M

π(1+sa)/M

| cotx| dx = ln

(
sin−1

(
π(1 + sa)

M

)
sin−1

(
π(1− sa)

M

))
,

∣∣∣∣ cot

(
π(M − 1 + sa)

M

)∣∣∣∣ = cot

(
π(1− sa)

M

)
≤ cot

(
πsa

M

)
,

∫ π(M−1+sa)/M

π(1+sa)/M

1

sin2 x
dx = cot

(
π(1− sa)

M

)
+ cot

(
π(1 + sa)

M

)

≤ 2 cot

(
πsa

M

)
.

The four formulas above yield

∣∣∣∣∣e
avg
1 (f,M)− sin2(πsa) sin(2θa)

πM
ln

(
sin−1

(
π(1 + sa)

M

)
sin−1

(
π(1− sa)

M

))∣∣∣∣∣

≤ sin2(πsa)

M

(
(2 + 2/π) sin(2θa)

M
cot

(
πsa

M

)
+ | cos(2θa)|

)
.

Observe that sin(πsa)/[M sin(πsa/M)] ≤ 1 since sa ∈ (0, 1
2
]. This and the obvious

estimates of sine and cosine yield

∣∣∣∣∣e
avg
1 (f,M)− sin2(πsa) sin(2θa)

πM
ln

(
sin−1

(
π(1 + sa)

M

)
sin−1

(
π(1− sa)

M

))∣∣∣∣∣

≤
(

3 +
2

π

)
sin(πsa)

M
. (2.36)

Consider now the left hand side of (2.36). Remembering thatM ≥ 3, and since 2x/π ≤
sinx ≤ x for x ∈ [0, π/2], we get

∣∣∣∣∣ ln

(
sin−1

(
π(1 + sa)

M

)
sin−1

(
π(1− sa)

M

))
− 2 lnM

∣∣∣∣∣ ≤ ln(π2). (2.37)

Thus by (2.36) and (2.37), we get the final estimate (2.35).

From Corollary 2.3.12 and Theorem 2.3.16, we get sharp estimates on the worst-

average error of the QS algorithm.

Theorem 2.3.17. Let M ≥ 3. Then the worst-average error of the QS algorithm

satisfies the following bounds.
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• For q ∈ (1,∞),

ewor-avg
q (M) ≤ 1

M1/q

(
1

π

∫ π

0

sinq−2(x) dx

)1/q(
1 + o(1)

)
. (2.38)

The last estimate is sharp, i.e.,

ewor-avg
q (M) = Θ

(
1

M1/q

)
. (2.39)

In particular, for M − 2 divisible by 4 we have

ewor-avg
q (M) ≥ 1

M1/q

(
1

π

∫ π

0

sinq−2(x) | cos(x)|q dx
)1/q(

1 + o(1)
)
, (2.40)

and the ratio of the integrals in (2.38) and (2.40) are approximately 1 for q

close to 1.

• For q = 1,

ewor-avg
1 (M) ≤ 2

π

lnM

M
+

3π + 2 + ln(π2)

Mπ
. (2.41)

This estimate is sharp, i.e.,

ewor-avg
1 (M) = Θ(M−1 lnM). (2.42)

In particular, for M − 2 divisible by 4 we have

ewor-avg
1 (M) ≥ 2

π

lnM

M
− 3π + 2 + ln(π2)

Mπ
.

Proof. Consider first the case q ∈ (1,∞). By Corollary 2.3.13 we have

eavg
q (f,M) ≤ 1

M1/q

(
1

π

∫ π

0

sinq−2(x) dx

)1/q(
1 + o(1)

) ∀f ∈ BN ,

where o(1) is independent of f . This yields (2.38).

The estimate (2.38) is sharp since if we let f be a Boolean function such that

saf
≈ 1

2
, then (2.32) yields (2.39). In particular, for M = 4k + 2 and af = 1/2 we

have θaf
= π/4, σaf

= M/4 = k + 1/2 and sa = 1
2
. Therefore

eavg
q (f,M) =

1

M1/q

(
1

π

∫ π

0

sinq−2(x) | cos(x)|q dx
)1/q(

1 + o(1)
)
,
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which proves (2.40). For q close to 1, the value of
∫ π

0
sinq−2(x)dx is mostly due to the

values of sinq−2(x) close to 0 and π. Since | cos(x)|q is then approximately equal to 1,

the ratio of the upper and lower bound integrals is about 1.

For q = 1, the estimate (2.41) follows directly from Theorem 2.3.16. To prove (2.42)

it is enough to choose a Boolean f for which the numbers

sin2(πsaf
) sin(2θaf

) = sin2(Mθaf
) sin(2θaf

)

are uniformly (in M) separated from 0, see Theorem 2.3.16. More precisely, since af

can take any value k/N for k = 0, 1, . . . , N , we take a Boolean function f such

that |af − sin2(π/4 + π/(5M))| ≤ 1/(2N). For sufficiently large N , we have θaf
≈

π/4 + π/(5M). For large M = 4k + β with β ∈ {0, 1, 2, 3}, we then have

sin2(Mθaf
) sin(2θaf

) ≈ sin2

(
4 + 5β

20
π

)
sin

(
1

2
π +

1

2.5M
π

)
> c > 0,

for some c independent of M .

In particular, for M−2 divisible by 4 we take N > M and a Boolean function f ∈
BN with af = 1/2. Then

sa = 1
2

and sin2(πsa) sin(2θa) = 1,

which leads the last estimate of Theorem 2.3.17.

2.3.3.2 Quantum summation algorithm with repetitions

The success probability of the QS algorithm is increased by repeating it a number

of times and taking the median of the outputs as the final output, see e.g., [15]. We

show in this section that this procedure improves the worst-average error estimate.

We perform 2n + 1 repetitions of the QS algorithm for some n ∈ {0, 1, . . .}. We

obtain sin2(πj1/M), sin2(πj2/M), . . . , sin2(πj2n+1/M) and let ān,f be the median of

the outputs obtained, i.e., the (n + 1)st number in the ordered sequence. Let, as

before, AM = {sin2(πj/M) : j = 0, 1, . . . ,M − 1}. For α ∈ AM , let ρn,f (α) be
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the probability that the median ān,f is equal to α. This probability depends on the

distribution function Ff of the original outputs from AM , which is defined as

Ff (α) =





∑
α′∈AM ,α′<α ρf (α′) for α > 0,

0 for α = 0.

It is known, see [41] p. 410, that the distribution of the median ān,f is of the form

ρn,f (α) = (2n+ 1)

(
2n

n

) ∫ Ff (α)+ρf (α)

Ff (α)

tn(1− t)n dt, ∀α ∈ AM . (2.43)

We are now ready to estimate the worst-average error

ewor-avg
q,n (M) = sup

N>M
max
f∈BN

( ∑
α∈AM

ρn,f (α)|af − α|q
)1/q

, q ∈ [1,∞)

of the QS algorithm with 2n+ 1 repetitions.

We estimate ewor-avg
q,n (M) by using Theorem 12 of [4] which states that the QS

algorithm with M queries computes āf such that

|af − āf | ≥ c1
k

M
with probability at most

c2
k

for any positive integer k, Here c1 and c2 are absolute constants and f is any Boolean

function from BN . If

|af − ān,f | ≥ c1
k

M
,

then for at least n outcomes āf (j1), . . . , āf (jn) we must have

|af − āf (jl)| ≥ c1
k

M
for l = 1, . . . , n.

But the probability that this occurs is bounded by

(
2n+ 1

n

) (c2
k

)n

.

It follows then that

Prob { |af − ān,f | ≥ c1k/M } ≤ c k−n,
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where c which may depend on n. We now use the standard summation by parts.

Define

pk = Prob { c1(k − 1)/M ≤ |af − ān,f | < c1k/M}.

Then, by the estimate above we get,

∑

k>l

pk ≤ c l−n ∀l ∈ N.

Therefore

ewor-avg
q,n (M)q ≤

∞∑

k=1

pk(c1k/M)q = (c1/M)q

∞∑

k=1

pk

k∑

l=1

(lq − (l − 1)q)

= (c1/M)q

∞∑

l=1

(lq − (l − 1)q)
∞∑

k=l

pk ≤ cM−q

∞∑

l=1

lq−1−n ≤ cM−q

for n > q, with the number c = cq,n depending only on q and n. In fact, taking n =

dqe + 1 it is easy to check that cq,n is a single exponential function of q. Hence, by

taking the qth root we have

ewor-avg
q,n (M) ≤ c1/q

q,nM
−1,

with c
1/q
q,n of order 1. Therefore we have proved the following theorem.

Theorem 2.3.18. The worst-average error of the median of 2(dqe+1)+1 repetitions

of the QS algorithm with M quantum queries satisfies

ewor-avg
q,dqe+1(M) = O(M−1),

with an absolute constant in the big O notation independent of q and M .

The essence of Theorem 2.3.18 is that the number of repetitions of the QS al-

gorithm is independent of M and depends only linearly on q. Still, it permits us to

dramatically improve the worst-average error of the QS algorithm. As we already

mentioned in the introduction, the bound of order M−1 is a lower bound on the worst-

average error of any quantum algorithm. Hence, the QS algorithm with repetitions

is also optimal in the worst-average setting.
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2.4 Simulation

In this section we show how the quantum Boolean summation algorithm for the

class BN can be simulated on a classical computer. From the previous sections we

see that the core problem is the computation of amplitudes of the final state since

they are needed to compute the probabilities of all possible outcomes. We present

a matlab procedure QSsimul that computes all amplitudes of the final state before

the measurement. The cost of QSsimul is of order (N/ε) log2(1/ε).

2.4.1 QS algorithm simulation

Our simulation computes all amplitudes of the final state of the QS algorithm for a

Boolean function f ∈ BN and given error ε ∈ (0, 1).

First, based on the estimate (2.17), we compute the number m of qubits required

to provide a desired accuracy with probability at least 8/π2. During the computation

we use an N ×M matrix [ai
j,k]M−1,N−1

j=0,k=0 , where M = 2m, with MN coefficients of the

quantum states |η1〉, |η2〉 and |η3〉 as defined in Section 2.2. The coefficients of the

states |ηi〉 are defined with respect to the computational basis {|j〉|k〉}M−1,N−1
j=0,k=0 .

Clearly for i = 1 we have a1
j,k = (MN)−1/2. To obtain the state |η2〉 we need to

apply the Grover iterate operator Λm(Qf ). We now show how to do this efficiently.

We have

|η2〉 = Λm(Q)Wm+n|0〉 =
1√
MN

Λm(Q)
M−1∑
j=0

|j〉
N−1∑

k=0

|k〉 =
1√
MN

M−1∑
j=0

|j〉Qj

N−1∑

k=0

|k〉.

Observe that

Q

N−1∑

k=0

ak|k〉 =
N−1∑

k=0

−akWnS0WnSf |k〉 =
N−1∑

k=0

−(−1)f(k)akWn(I − 2|0〉〈0|)Wn|k〉

=
N−1∑

k=0

−(−1)f(k)ak|k〉+
2√
N

N−1∑

k=0

ak(−1)f(k)Wn|0〉

=
N−1∑

k=0

(
2

N

N−1∑
j=0

aj(−1)f(j) − (−1)f(k)ak

)
|k〉.
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Thus, the coefficients a2
j,k of the state |η2〉 satisfy the following recursive formula

a2
j,k =





(MN)−1/2 j = 0,

2

N

∑N−1
p=0 a

2
j−1,p(−1)f(p) − (−1)f(k)a2

j−1,k, j = 1, . . . ,M − 1,

(2.44)

for k = 0, . . . , N − 1.

To obtain the state |η3〉 we need to apply the inverse quantum Fourier trans-

form F−1
m ⊗ I. Hence

|η3〉 = (F−1
m ⊗ I)

M−1∑
j=0

N−1∑

k=0

a2
j,k|j〉|k〉 =

1√
M

M−1∑
j=0

N−1∑

k=0

M−1∑
p=0

a2
p,ke

−2πipj/M |j〉|k〉,

which yields the final form of the coefficients as

a3
j,k =

1√
M

M−1∑
p=0

a2
p,ke

−2πipj/M .

We see that the rows of the matrix [a3
j,k] are discrete Fourier transforms of the re-

spective rows of the matrix [a2
j,k].

It is easy to see that the costs of the steps computing the states |η1〉 and |η2〉 are

of order MN . We can compute the state |η3〉 by using the Fast Fourier Transform

algorithm with the cost of order MNm = MN log2M . We see then that the total cost

of our simulation is of order of the cost of computing the state |η3〉. Assuming m =

dlog2(π/ε)e), see Corollary 2.3.9, the total cost is of order (N/ε) log2 ε
−1.

The simulation algorithm outlined above has been coded in GNU Octave, see [10],

and can be easily ported to matlab.

The program QSsimul computes all the coefficients of the final state of the QS

algorithm, stores numerical results and creates a PostScript file containing graphs of

the exact value of the sum, the error bounds, possible outputs and their probabilities.
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QSsimul.m
function [outputs, probabs, sp, pmax, avg, qubits]=QSsimul(n, eps, f)

#[outputs, probabs, sp, pmax, avg, qubits]= QSimul( n, eps, f )

#

#INPUT:

#n - number of qubits for coding the domain of the Boolean function f,

# i.e., the cardinality is 2^n

#eps - the desired accuracy 0 < eps < 1

# f - Boolean function {0, .. 2^n -1} -> {0,1}

#OUTPUT:

#outputs - vector Mx1, all possible outputs of the QS algorithm

#probabs - vector Mx1, corresponding probabilities

#sp - the best estimate

#pmax - the probability of obtaining an estimate with accuracy eps

#avg - exact value

#qubits - the number of qubits in the second register

#The visualization of the final state is in the file out.ps

qubits=ceil(log2(pi/eps));

M=2^qubits;

N=2^n;

Reg=ones(M, N);

outputs=zeros(M,1);

avg=0;

i=0;

fo=zeros(N,1);

for i=1:N

ff=feval(f,i-1);
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if ff==1

avg++;

end

fo(i)=(-1)^ff;

end

avg/=N;

for i=2:M

sum=(2/N)*(Reg(i-1,:)*fo);

for j=1:N

Reg(i,j)=sum-Reg(i-1, j)*fo(j);

end

end

Reg=1/(M*sqrt(N))*fft(Reg);

p=0;

sp=0;

probabs=zeros(M,1);

for l=1:M

for ll=1:N

probabs(l)=probabs(l)+abs(Reg(l,ll))^2;

end

outputs(l)=(sin(pi*(l-1)/M))^2;

if (p < probabs(l))

p = probabs(l);
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sp = l-1;

end

end

sp=outputs(sp+1);

pmax=0;

for l=1:M

if (abs(outputs(l)-avg)< eps)

pmax=pmax+ probabs(l);

end

end

data=[(linspace(0, M-1, M))’,outputs, probabs, avg*ones(M,1)];

data= [data, sp*ones(i,1), (avg-eps)*ones(i,1), (avg+eps)*ones(i,1)];

gset output "out1.eps"

gset terminal postscript eps

gset style line 1 lt 1

gset style line 2 lt 2

gset style line 3 lt 3

gset style line 4 lt 4

gset key outside bottom

gset xlabel "States | j > (Total # States = M)"

gset ylabel "Value of the sum"

gplot [0:M-1] [0:1] data using 1:2 title "Possible outputs" \

with points,\

data using 1:3 title "Pr(state | j >)" \
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with boxes 1,\

data using 1:4 title "True value" \

with lines 1,\

data using 1:5 title "Estimated value" \

with lines 2,\

data using 1:6 title "Error bounds" \

with lines 3,\

data using 1:7 title "" with lines 3

end

The results of running QSsimul for three different functions f are presented in

Figures 2.3, 2.4, 2.5.
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Figure 2.3: QSsimul output for N = 210, ε = 0.1, M = 32 and f(k) = 1 for k not

divisible by 3 and f(k) = 0 otherwise.
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Figure 2.4: QSsimul output for N = 210, ε = 0.1, M = 32 and f(k) = 1 for k not

divisible by 8 and f(k) = 0 otherwise.
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Figure 2.5: QSsimul output for N = 210, ε = 0.1, M = 32 and f(k) = 1 for k

divisible by 8 and f(k) = 0 otherwise.
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2.4.2 Computation of the final state distribution

Suppose that we want to know the distribution of the final state of the QS algorithm

without computing all amplitudes of the final state. This problem can be solved

much faster than the full simulation. First we need to compute the arithmetic mean

of a Boolean function with cost of order N . Then, from (2.12) we can compute

the probability the final outcome |k〉. Thus the cost of computing the final state

distribution is clearly of order M + N , which is of order ε−1 + N for the desired

accuracy ε. Hence, we can save a factor of ε−1 log2 ε
−1 over the cost of simulation.

2.5 Conclusions

The results of this chapter show the robustness of the QS algorithm. Its optimality

in the the worst-probabilistic error setting was extended to two more error settings—

average-probabilistic and worst-average.

The average-probabilistic error criterion is weaker than the worst-probabilistic

one. The difference is that the probabilistic error is considered on the average with

respect to the class BN of input Boolean functions. We consider two measures on the

class BN . The first measure is uniform on Boolean functions, while the second one is

uniform on arithmetic means of Boolean functions. We show that for the first measure,

the QS algorithm retains its optimality for a certain choice of its parameters. For the

second measure, the average-probabilistic error is essentially of the same order as the

worst-probabilistic one, so weakening the error criterion does not yield any essential

cost gain over the worst-probabilistic error setting.

In the worst-average setting the QS algorithm with repetitions is optimal. This

shows its superiority over classical randomized algorithms. Indeed, the worst-average

error criterion with respect to L2 norm is analogous to the usual error criterion by

which the error of classical randomized algorithms is considered, among them the

Monte Carlo algorithm. We recall from [34] that the complexity of the Boolean sum-
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mation in the classical randomized setting is of order ε−2, while for the QS algorithm

with repetitions we have the optimal cost of order ε−1. Furthermore, the worst-

average error is a reasonable choice for algorithms for which we cannot compute the

actual a posteriori error, so the result of an algorithm cannot be verified. The reason

for this is that the worst-average error takes into account all the outcomes of an algo-

rithm, while the worst-probabilistic error deals only with highly probable outcomes.

Finally, the worst-average error criterion is stronger than the worst-probabilistic one,

which can be easily proved by using Chebyshev’s inequality.
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Chapter 3

Multivariate Feynman-Kac path

integration

3.1 Introduction

In this chapter, we analyze the multivariate Feynman-Kac path integration problem.

Although we are mainly interested in the quantum setting we also include the worst-

case deterministic and randomized settings, which will allow us to compare the results

for all three settings.

We recall that multivariate Feynman-Kac path integrals are path integrals over

the space of continuous functions from R+ to Rd, equipped with a Wiener measure.

The multivariate Feynman-Kac formula is the solution of the initial value problem

∂z

∂t
(u, t) = 1

2
∆z(u, t) + V (u)z(u, t) for (u, t) ∈ Rd × (0,∞), (3.1)

z(u, 0) = v(u) (3.2)

for the diffusion (heat) equation. Here v, V : Rd → R are the initial value function

and the potential function. As usual, ∆ denotes the Laplacian. The solution z of (3.1)

and (3.2) is given by the famous Feynman-Kac formula

z(u, t) =

∫

C
v(x(t) + u) exp

(∫ t

0

V (x(s) + u) ds

)
w(dx). (3.3)
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Here, C is the set of continuous functions x : R+ → Rd such that x(0) = 0. The

path integral (3.3) is taken with respect to the d-dimensional Wiener measure w, see

[24, 40]. Obviously, (3.3) only holds for functions v and V for which the path integral

exists. In what follows, we assume that the functions v and V belong to a class F for

which (3.3) exists. This class is precisely defined in Section 3.3.

Various computational algorithms, mostly randomized, have been developed for

the univariate case d = 1, where the Feynman-Kac path integral is the solution of

the diffusion equation with one space variable. A novel approach for the univariate

case d = 1 was proposed in [39], where a new deterministic algorithm based on

L2-approximation was constructed and the complexity of the univariate case was

studied. Those results were modified and generalized to the multivariate case in [26]

and then improved in [29]. The multivariate algorithm retained the structure of the

algorithm from [39] and is based on uniform approximation. We briefly discuss the

worst-case setting in Sections 3.2.1, 3.5.2 and 3.6.1.

As we shall see, the quantum setting for multivariate Feynman-Kac path inte-

gration is strongly related to the randomized setting. We present algorithms that

compute approximations of multivariate Feynman-Kac path integrals in both these

settings. Both algorithms are based on uniform approximation, similarly to the de-

terministic algorithm from [29]. We analyze the (informational) costs of these al-

gorithms, i.e., the numbers of function evaluations and/or quantum queries used to

compute approximations with a given error bound. Finally we relate these costs

to the complexity of multivariate Feynman-Kac path integration in the randomized

and quantum settings. As in [29, 39], the complexity is bounded from below by the

complexity of multivariate weighted integration. The upper bounds are provided by

the costs of the algorithms presented in this chapter. As we shall see, the power of

randomization or quantum computation yields a substantial improvement over the

worst case complexity.

We now discuss the complexity results presented later in this chapter. We know
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that deterministic algorithms for the problem of approximating multivariate Feynman-

Kac path integrals with the worst case error assurance are highly inefficient for large d,

see [29]. This is caused by the provable curse of dimensionality of this problem. More

precisely, the cost of computing an ε-approximation by any deterministic algorithm is

at least of order ε−d/r. Here, r measures the smoothness of the initial value and poten-

tial functions, e.g., we consider the class F of functions which are r times continuously

differentiable. Clearly, the cost depends exponentially on d.

Switching to the randomized setting is one way to vanquish the curse of dimen-

sionality. In this setting the path integral is approximated by a multivariate integral,

and then this integral is approximately evaluated by a randomized algorithm, e.g., by

the celebrated Monte Carlo algorithm, see, e.g., [5, 14], also [11]. This yields a cost of

order (1/ε)2, so that the dependence on d disappears. As we shall see, the exponent

of 1/ε can be improved at the expense of introducing a dependence on d. More pre-

cisely, for positive r we construct an optimal algorithm with cost of order ε−2/(1+2r/d),

see Section 3.6.2.

The use of a quantum computer yields even greater improvement. Let us mea-

sure the cost of an algorithm by the number of queries and function evaluations it

uses. We show in Section 3.6.3 that an optimal quantum algorithm computes an ε-

approximation with cost of order ε−1 with no dependence on d and of an optimal or-

der ε−1/(1+r/d) with a dependence on d. Thus, we obtain a roughly-quadratic speedup

over the randomized setting and (as with the randomized algorithm) an exponential

speedup over the worst-case deterministic setting.

3.2 Computational problem

We want to compute an ε-approximation of the path integral (3.3) at a given point

(u, t) ∈ Rd × [0,∞) and for arbitrary functions v, V from the class F . The definition

of an ε-approximation depends on the setting; this will be made precise in the next



80 CHAPTER 3. MULTIVARIATE FEYNMAN-KAC PATH INTEGRATION

three subsections. The ε-approximation av,V (u, t) is computed by an algorithm An

that uses n function values of v and V , i.e.,

av,V (u, t) = An (u, t, v(u1), . . . , v(uk), V (uk+1), . . . , V (un)) .

In the quantum setting, n denotes the number of quantum queries and classical func-

tion evaluations.

3.2.1 Worst-case deterministic setting

In the worst case setting, the error of the algorithm An is defined as

ewor(An) = sup
v,V ∈F

|zv,V (u, t)− av,V (u, t)|.

We also want to determine the complexity, i.e., the minimal number

nwor(ε, F ) = min{n : ∃An such that ewor(An) ≤ ε}

of function values that are needed to compute an ε-approximation in the worst case

setting. The worst-case deterministic setting is analyzed in [26, 29].

3.2.2 Randomized setting

In this setting we use randomized algorithms and replace the worst case error assur-

ance by an expected one. A randomized algorithm An depends on a random element ω

chosen from some probability space Ω. More precisely, we compute

av,V (u, t;ω) = An,ω (u, t, v(uω,1), . . . , v(uω,k), V (uω,k+1), . . . , V (uω,nω)) , (3.4)

with n = E(nω). This means that we allow a random choice of a mapping An,ω and

sample points uω,i, as well as the number nω of sample points, whose expected value

is fixed and equal to n.

We measure the randomized error of the algorithm An with respect to the L2

norm, i.e.,

erand(An) = sup
v,V ∈F

(
E(zv,V (u, t)− av,V (u, t;ω))2

)1/2
.
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To make the notation more compact we shall skip the index ω if the context clearly

indicates that we deal with a randomized algorithm.

As before, we want to determine the complexity, i.e., the minimal expected number

nrand(ε, F ) = min{n : ∃An such that erand(An) ≤ ε}

of function values needed to compute an ε-approximation in the randomized setting.

The randomized setting is analyzed in [27, 28].

3.2.3 Quantum setting

In the quantum setting we use quantum algorithms with randomized quantum queries;

we also assume that we can perform function evaluations and arithmetic operations

on a classical computer. These classical operations are used to prepare an input

for a quantum algorithm and to transform the outcome of a quantum algorithm to

an approximation of the exact solution. We will be interested in minimizing the

total number of quantum queries and function evaluations needed to compute an ε-

approximation.

We base our analysis on the simplified quantum model of computation for con-

tinuous problems with randomized queries from Section 1.1.1. We refer the reader to

[4, 15, 30, 32, 52] for more detailed information. We recall that for a given class F of

input functions f : D → C, we want to approximate the solution operator

S : F → G,

with G being a normed space whose norm is denoted by ‖ · ‖G. A quantum algorithm

may use a classical algorithm Ps with s classical function evaluations to transform a

given input function f ∈ F into f̄ = Ps(f) : D → C, which is then used as an input

to a quantum algorithm.

In this chapter we only use randomized quantum queries as defined in [52]. A

quantum algorithm with randomized queries Un,ω(f̄) : Hn → Hn is a unitary operator
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of the form

Un,ω(f̄) = QnQf̄ , ω Qn−1 · · ·Q1Qf̄ , ω Q0,

with unitary operators Q0, . . . , Qn and a quantum query Qf̄ ,ω, for some f̄ ∈ Ps(H).

The query Qf̄ , ω depends on a random element ω ∈ Ω. This permits the computation

of approximate values of f̄ at randomized points, as explained in Section 1.1.1, see

also[52].

After performing the computation, we obtain a final state

|ψf̄ , ω〉 = Un,ω(f̄)|0〉 = QnQf̄ , ωQn−1 · · ·Q1Qf̄ , ωQ0|0〉.

We then measure the final state to obtain an outcome j ∈ {0, 1, . . . , 2k − 1} with

probability

pf̄ , ω(j) = |〈ψf̄ , ω|j〉|2.

Knowing the outcome j we compute the final result on a classical computer, and the

quantum algorithm An yields

An,ω(f̄ , j) = φ(j).

for some φ.

The error of a quantum algorithm with randomized quantum queries An is de-

fined as

equant(An) = sup
f∈H

(
EEq ‖S(f)− An,ω(Ps(f), j)‖2

G

)1/2
, (3.5)

where E is the expectation over the probability space Ω, and Eq is the expectation

with respect to distribution of the quantum algorithm outcomes. We shall skip the

index ω if it is clear from the context that we deal with randomized queries.

Similarly to the other settings, we want to determine the (information) complexity,

i.e., the minimal number

nquant(ε, F ) = min{s+ n : ∃Ps ∃An such that equant(An, Ps) ≤ ε}

of random quantum queries and classical function evaluations needed to guarantee

that the error does not exceed ε.
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Remark 3.2.1. We briefly comment on the quantum error setting defined by (3.5).

Let us concentrate for a moment on the randomness introduced by a quantum algo-

rithm, leaving aside randomized queries. So far, the literature dealing with continuous

problems in the quantum setting has mainly considered probabilistic error. That is,

instead of taking an expectation with respect to all possible outcomes of a quantum

algorithm, as Eq in (3.5), we want an error estimate such that

(
E ‖S(f)− An,Ps(f),ω‖2

G

)1/2 ≤ ε

to hold with a given (high) probability, for any f ∈ F . Obviously these two ways

of measuring the error of a quantum algorithm are related. We choose to study the

average error for simplicity and two other reasons. The average error is probably

more natural when we cannot verify the result of an algorithm. Moreover, (3.5) is a

stronger error criterion than that above.

The multivariate Feynman-Kac path integration problem in the quantum setting

is defined by taking f = (v, V ), with F × F as the input function class and S(f) =

zv,V (u, t). We shall make more assumptions on the input function class in the next

section.

3.3 The function class BF
To assure the existence of the path integral (3.3), we need to choose an appropriate

class of input functions F , see also [29]:

1. To make the path integral (3.3) well defined we assume that for every u ∈ Rd,

the functional Lu : F → R defined by Luf = f(u) is continuous, and for

arbitrary a, t ∈ R+ we have
∫

C
‖Lx(t)‖F exp

(
a

∫ t

0

‖Lx(s)‖F ds

)
w(dx) <∞. (3.6)

By Fernique’s theorem, see e.g., [25], condition (3.6) holds if there exists α ∈
(0, 2) such that ‖Lx‖F = O(‖x‖α) for ‖x‖ approaching infinity, see [39] for



84 CHAPTER 3. MULTIVARIATE FEYNMAN-KAC PATH INTEGRATION

details. Here and elsewhere in this chapter, ‖x‖ =
√∑d

i=1 x
2
i denotes the

Euclidean norm in Rd.

2. We assume that F is continuously embedded into L∞(Rd). That is, F ⊂ L∞(Rd)

and there exists a positive K such that

‖f‖L∞(Rd) ≤ K‖f‖F ∀f ∈ F. (3.7)

This assumption permits us to relate the multivariate Feynman-Kac path inte-

gration problem to uniform approximation. By uniform approximation, we

mean the approximation of functions from F in the norm of L∞(Rd), i.e.,

given ε > 0 we want to find a function f̄ ∈ L∞(Rd) such that

‖f − f̄‖L∞(Rd) ≤ ε ‖f‖F .

3. We assume that we can compute a uniform approximation f̄ of the function f

from the class F by a linear algorithm

f̄ =

nAPP∑
i=1

f(ui) ζi, ui ∈ Rd, ζi ∈ L∞(Rd) (3.8)

that uses nAPP function evaluations, where

nAPP = nAPP(ε, F ) = O(ε−α(F )) as ε→ 0, (3.9)

for some positive α(F ). The asymptotic constant in (3.9) may depend on the

dimension d. Usually the exponent α(F ) depends on the smoothness and on

the number of variables of functions from F , see Section 3.8.

We stress that these assumptions are not overly-restrictive. It is known that

algorithms of the form (3.8) are optimal for the uniform approximation problem,

see [33]. Moreover the number of function evaluations often depends on ε by

an expression similar to (3.9), see also Section 3.8.
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4. We restrict the norms of the initial value and potential functions. Namely, we

assume that ‖v‖F ≤ β and ‖V ‖f ≤ B for given positive β,B. In other words,

the pair (v, V ) belong to the class

BF = {(f1, f2) ∈ F × F : ‖f1‖F ≤ B, ‖f2‖F ≤ β}. (3.10)

3.4 Feynman-Kac formula as a series of multivari-

ate integrals

In this section we briefly recall some results from [29] that are needed for our analysis.

Without loss of generality we can assume u = 0 in (3.3). Then we can express

the path integral as a series of multivariate integrals

S(v, V ) := z(0, t) =
∞∑

k=0

Sk(v, V ), (3.11)

where

Sk(v, V ) =

∫

R(k+1)d

v(zk+1)
k∏

i=1

V (zi) gk(z1, . . . , zk+1) dz1 . . . dzk+1, (3.12)

with

gk(z1, . . . , zk+1) =

∫

0≤t1≤···≤tk≤t

fk (t1, . . . , tk, t, z1, . . . , zk+1) dt1 . . . dtk (3.13)

and

fk (t1, . . . , tk, t, z1, . . . , zk+1) =
(
(2π)k+1t1(t2 − t1) · · · (t− tk)

)−d/2

× exp

(
−1

2

(‖z1‖2

t1
+
‖z2 − z1‖2

t2 − t1
+ · · ·+ ‖zk+1 − zk‖2

t− tk

))
.

Note that the integral (3.12) depends on the input functions v and V only through

the product

hk(z1, . . . , zk+1) := v(zk+1)
k∏

i=1

V (zi). (3.14)
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Moreover, the weight functions gk can be computed in advance, albeit with difficulty.

Let us recall also that

∥∥gk

∥∥
L1(R(k+1)d)

=
tk

k!
for k ≥ 0, (3.15)

and so the norm of the weight function gk decreases super-exponentially as k goes to

infinity.

3.5 Approximating one term of the series

In this section, we present algorithms approximating one term of the series (3.11).

To make the notation more clear, we define a weighted integration operator

Ik(f) =

∫

R(k+1)d

f(z1, . . . , zk+1) gk(z1, . . . , zk+1) dz1 . . . dzk+1,

where f : R(k+1)d → R is an integrable function. We can then rewrite one term of the

series (3.11) as

Sk(v, V ) = Ik(hk).

In all three settings—worst-case deterministic, randomized and quantum—we

shall use deterministic uniform approximation of the function hk. In the worst-case

setting we use uniform approximation directly as the main building block, whereas

in the randomized and quantum settings, we will apply uniform approximation as a

preprocessing step that will achieve variance reduction.

3.5.1 Uniform approximation by Smolyak’s algorithm

Smolyak’s algorithm is a powerful tool for approximating tensor product problems.

For ϕk ∈ Fk :=

k︷ ︸︸ ︷
F ⊗ · · · ⊗ F , Smolyak’s algorithm is of the form

Uε,k(ϕk) =

n(ε,k)∑
i=1

ϕk(ui,ε,1, . . . ,ui,ε,k)ζi,ε,k, (3.16)
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for some ui,ε,j ∈ Rd and ζi,ε,k ∈ L∞(R(k+1)d). It is proved in [29, Lemma 2] that

‖ϕk − Uε,k(ϕk)‖L∞(R(k+1)d) ≤ ε‖ϕk‖Fk
, (3.17)

where

n(ε, k) ≤ c0

(
c1 + c2

ln 1/ε

k − 1

)(α(F )+1)(k−1)

+

ε−α(F ), (3.18)

for some ci ∈ R. Here a+ denotes max{a, 0}, and the right hand side of (3.18) is

defined to be c0 ε
−α(F ) when k = 1. We shall use Smolyak’s algorithm to approximate

the functions hk defined by (3.14).

3.5.2 Deterministic algorithm

We first consider approximating Sk(v, V ) by the algorithm

φdet
ε (v, V ) = Ik(h̄k,ε),

where h̄k,ε = Uε,khk and hk is defined by (3.14). Using (3.16), we can rewrite φdet
ε as

φdet
ε (v, V ) =

n(ε,k+1)∑
i=1

hk(ui,ε,1, . . . ,ui,ε,k+1)Ik(ζi,ε,k+1). (3.19)

We stress that Ik(ζi,ε,k+1) does not depend on the input functions v and V and can

be precomputed.

We note that the error of the algorithm φdet
ε satisfies

|Sk(v, V )− φdet
ε (v, V )| ≤ ε

Bβktk

k!
. (3.20)

Indeed by (3.10), (3.15) and (3.17) we get

|Sk(v, V )− φdet
ε (v, V )| ≤ Ik

( |hk − Uε,k+1hk|
)

≤ ‖hk − Uε,k+1hk‖L∞(R(k+1)d) ‖gk‖L1(R(k+1)d) ≤ ε
Bβk tk

k!
;

moreover, the total number of function evaluations used by the algorithm φdet
ε (v, V )

is n(ε, k + 1), as defined in (3.18).
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3.5.3 Variance reduction

The idea underlying variance reduction is as follows. First we compute h̄k,ε =

Uε,k+1(hk) using n(ε, k + 1) function values. Then we compute

Ik(h̄k,ε) =

n(ε,k+1)∑
i=1

h̄k(ui,ε,1, . . . ,ui,ε,k+1)Ik(ζi,ε,k+1).

Observe that the functions ζi,ε,k+1 do not depend on the input functions v and V , and

so the integrals Ik(ζi,ε,k+1) can be precomputed. We also stress that h̄k,ε and Ik(h̄k,ε)

are deterministic. We shall use randomized or quantum algorithms to approximate

the multivariate integrals

Ik(hk − h̄k,ε).

Since the error depends on the norm ‖hk − h̄k,ε‖L∞(R(k+1)d), which is now small, we

can do this efficiently. We present the details in the following two sections.

3.5.4 Randomized algorithm

To make our formulas shorter, we define

f̄k,ε := hk − h̄k,ε.

We use a randomized algorithm of the form

φrand
ε,m (v, V ) = Ik(h̄k,ε) +Qrand

m (f̄k,ε). (3.21)

Here

Qrand
m (f) =

1

m

m∑
j=1

f(xj) (3.22)

denotes the classical Monte Carlo algorithm with m randomized sample points. Ran-

domized sample points are chosen with respect to the density gk/‖gk‖L1(R(k+1)d).
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Using the well-known error formula for the classical Monte Carlo algorithm, we

conclude that

(
E(Ik(hk)− φrand

ε,m (v, V ))2
)1/2

=
(
E

(
Ik(f̄k,ε)−Qrand

m (f̄k,ε)
)2

)1/2

=
1√
m

(
Var(f̄k,ε)

)1/2
, (3.23)

with

Var(f̄k,ε) = Ik(f̄ 2
k,ε)−

(
Ik(f̄k,ε)

)2
.

Clearly, from (3.17) and then from (3.10) and (3.15), we get

(
Var(f̄k,ε)

)1/2 ≤ tk

k!
‖f̄k,ε‖L∞(R(k+1)d) ≤ ε

‖v‖F ‖V ‖k
F t

k

k!
≤ ε

Bβk tk

k!
. (3.24)

This yields the error estimate

(
E(Ik(hk)− φrand

ε,m (v, V ))2
)1/2 ≤ ε√

m

Bβk tk

k!
, (3.25)

and the total number of function evaluations being

n(ε, k + 1) +m. (3.26)

3.5.5 Quantum algorithm

The structure of the quantum algorithm is similar to the randomized one and has the

form

φquant
ε,m,κ(v, V ) = Ik(h̄k,ε) +Qquant

m,κ (f̄k,ε), (3.27)

with, as before, f̄k,ε = hk − h̄k,ε. Here, we use a quantum algorithm Qquant
m,κ , with

κ randomized quantum queries, that approximates the classical Monte Carlo algo-

rithm (3.22). In [19], the problem of approximating

1

m

m∑
j=1

f(xj)

was analyzed for Boolean functions f . By reducing the summation problem for

bounded real functions to the summation problem for Boolean functions as in [15],
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we see that a result similar to that of [19] holds. From [19] and (3.17) we conclude

that

(
Eq

(
1

m

m∑
j=1

f(xj)−Qquant
m,κ (f̄k,ε)

)2
)1/2

= O

(
1

κ
‖f̄k,ε‖L∞(R(k+1)d)

)
= O

( ε
κ
Bβk

)
.

By integrating over randomized sample points, we obtain

(
EEq

∣∣Qrand
m,k (f̄k,ε)−Qquant

m,κ (f̄k,ε)
∣∣2

)1/2

= O

(
ε

κ

Bβk tk

k!

)
. (3.28)

The total number of randomized quantum queries and function evaluations is

n(ε, k + 1) + κ.

We stress that this number does not depend on m, which is only used for the definition

of the Monte Carlo algorithm providing sample points for the quantum algorithm.

We now estimate the total error as

(
EEq(Ik(hk)− φquant

ε,m,κ(v, V ))2
)1/2 ≤

(
E

(
Ik(f̄k,ε)−Qrand

m (f̄k,ε)
)2

)1/2

+
(
EEq

∣∣Qrand
m (f̄k,ε)−Qquant

m,κ (f̄k,ε)
∣∣2

)1/2

.

This, by (3.25) and (3.28), yields

(
EEq(Ik(hk)− φquant

ε,m,κ(v, V ))2
)1/2

= O

(
ε√
m

Bβk tk

k!
+
ε

κ

Bβk tk

k!

)
.

Letting m = κ2 we get the error bound

(
EEq(Ik(hk)− φquant

ε,m,κ(v, V ))2
)1/2

= O

(
ε

κ

2B βk tk

k!

)
(3.29)

using

n(ε, k + 1) + κ (3.30)

function values and quantum queries. For the sake of convenience we denote

φquant
ε,κ = φquant

ε,m,κ with m = κ2.
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3.6 Complete algorithms

Based on the previous two sections, we are ready to present algorithms computing

an ε-approximation of multivariate Feynman-Kac path integral S(v, V ). We simply

approximate consecutive terms of the series

S(v, V ) =
∞∑

k=0

Sk(v, V )

by the algorithms

φdet
εdet
k

or φrand
εrand
k ,mk

or φquant

εquant
k ,κk

.

Here, the accuracies εdet
k , εrand

k and εquant
k in the corresponding settings are

εdet
k = ε

k!

Bβk tk2k+1
, (3.31)

εrand
k = ε2/(α(F )+2) k!

Bβk tk2k+1
, (3.32)

εquant
k = ε1/(α(F )+1) k!

Bβk tk2k+2
, (3.33)

with the numbers of randomized sample points mk and quantum queries κk being

mk =
⌈
ε−2α(F )/(α(F )+2)

⌉
, κk =

⌈
ε−α(F )/(α(F )+1)

⌉
. (3.34)

Since mk and κk are independent of k, we shall drop the indices and write m = mk

and κ = κk.

Remark 3.6.1. We see from the definitions (3.31), (3.32) and (3.33) that for k going

to infinity, we have εdet
k , εrand

k and εquant
k also tending to infinity super-exponentially.

Then, by (3.7) and then by (3.20), (3.25) and (3.29), we see that for k = O(ln ε−1)

the deterministic zero algorithm provides sufficient accuracy in all three settings. See

also the following three subsections.

We are now ready to present the final forms of the algorithms and analyze their

errors and costs.



92 CHAPTER 3. MULTIVARIATE FEYNMAN-KAC PATH INTEGRATION

3.6.1 Deterministic algorithm

The deterministic algorithm is of the form

Φdet
ε (v, V ) =

Ndet
ε∑

k=0

φdet
εdet
k

(v, V ),

with the finite sum limit Ndet
ε . From Remark 3.6.1 we see that for εdet

k ≥ Kk+1, the

zero algorithm yields a sufficient accuracy so we can define

Ndet
ε = min{k ∈ N : εdet

k ≥ Kk+1}

and Ndet
ε = O(ln ε−1) . The error of the algorithm Φdet

ε can be estimated from (3.20)

and (3.31) by

|S(v, V )− Φdet
ε (v, V )| ≤

∞∑

k=1

|Ik(hk)− φdet
εdet
k

(v, V )| ≤ ε. (3.35)

The number n(Φdet
ε ) of function evaluations used by Φdet

ε satisfies

n(Φε) = O(ε−α(F )−δ) ∀δ > 0. (3.36)

The proof is given in [29] and is similar to the one from [39]. First, we have

n(Φdet
ε ) ≤

∞∑

k=0

n(εk, k + 1).

Using (3.18) and (3.31), we obtain the bound

n(Φdet
ε ) = O

((
1 +

∞∑

k=1

(
c1 + c2

ln 1/εdet
k

k

)(α(F )+1)k

+

(
Bβktk2k+1

k!

)α(F ))
ε−α(F )

)

and it can be shown, similarly to [39], that

∞∑

k=1

(
c1 + c2

ln 1/εdet
k

k

)(α(F )+1)k

+

(
Bβktk2k+1

k!

)α(F )

= O(ε−δ)

for all δ > 0.
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3.6.2 Randomized algorithm

The randomized algorithm approximating S(v, V ) is of the form

Φrand
ε (v, V ) =

Nrand
ε∑

k=0

φrand
εrand
k ,m,

with N rand
ε defined as

N rand
ε = min

{
k ∈ N : εrand

k ≥ mKk+1
}
.

Again N rand
ε = O(ln ε−1) . As in Section 3.6.1, by (3.25) and (3.32), we can prove

that the error of the algorithm Φrand
ε satisfies

(
E(S(v, V )− Φrand

ε (v, V ))2
)1/2 ≤

∞∑

k=1

(
E(Ik(hk)− φrand

εrand
k ,m(v, V ))2

)1/2

≤ ε (3.37)

The number n(Φrand
ε ) of function evaluations used by the algorithm Φrand

ε satisfies

n
(
Φrand

ε

)
= O

(
ε−2α(F )/(α(F )+2)−δ

) ∀δ > 0. (3.38)

The proof is based on an argument similar to that from Section 3.6.1. By the bounds

(3.18), (3.26) and (3.34) we can estimate n(Φrand
ε ) by

n
(
Φrand

ε

)
= O

((
1 +Bα(F ) +

∞∑

k=1

(
c1 + c2

ln 1/εrand
k

k

)(α(F )+1)k

+

×
(
Bβktk2k+1

k!

)α(F ))
ε−2α(F )/(α(F )+2)

)
.

Similarly to Section 3.6.1, we can show that

∞∑

k=1

(
c1 + c2

ln 1/εrand
k

k

)(α(F )+1)k

+

(
Bβktk2k+1

k!

)α(F )

= O(ε−δ),

for all δ > 0, which proves (3.38).
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3.6.3 Quantum algorithm

The quantum algorithm Φquant
ε is defined as

Φquant
ε (v, V ) =

Nquant
ε∑

k=0

φquant

εquant
k ,κ

,

with Nquant
ε satisfying

Nquant
ε = min

{
k ∈ N : εrand

k ≥ κKk+1
}
,

and Nquant
ε = O(ln ε−1) . As before, we can easily prove that the error of the algorithm

is of order ε. Indeed, by (3.29) and (3.33) we get

(
EEq(S(v, V )− Φquant

ε (v, V ))2
)1/2 ≤

∞∑

k=0

(
EEq(Ik(hk)− φquant

εquant
k ,κ

(v, V ))2
)1/2

= O(ε).

The number of function evaluations and quantum queries n(Φquant
ε ) of the algorithm

Φquant
ε can be estimated as

n
(
Φquant

ε

)
= O

(
ε−α(F )/(α(F )+1)−δ

) ∀δ > 0. (3.39)

As in Section 3.6.2 the proof follows from the estimate

n
(
Φquant

ε

)
= O

((
Bα(F ) +

∞∑

k=1

(
c1 + c2

ln 1/εquant
k

k

)(α(F )+1)k

+

×
(
Bβktk2k+1

k!

)α(F )

+ 1

)
ε−α(F )/(α(F )+1)

)

and the fact that
∞∑

k=1

(
c1 + c2

ln 1/εquant
k

k

)(α(F )+1)k

+

(
Bβktk2k+1

k!

)α(F )

= O(ε−δ)

for all δ > 0.

Obviously we can obtain the error estimate

(
EEq(S(v, V )− Φquant

ε (v, V ))2
)1/2 ≤ ε (3.40)

by redefining ε modulo a factor that would increase the asymptotic constant in the

estimate of the number of function evaluations and quantum queries (3.38).
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3.7 Complexity of multivariate Feynman-Kac path

integration

The analysis of the complexity of the multivariate Feynman-Kac path integration in

randomized and quantum settings is based on that presented in [29] and [39].

3.7.1 Lower bounds

Lower bounds for our problem complexities are provided by the complexities of mul-

tivariate weighted integration problem. By this problem, we mean an approximation

of the integration operator I : F → R defined by

I(f) = (2πt)−d/2

∫

Rd

f(u) exp(−‖u‖/(2t)) du ∀ f ∈ BF .

1. Let Adet
n be a deterministic algorithm that uses n function values and approx-

imates the integration operator I. We say that this algorithm computes an

ε-approximation of the weighted integral if

|I(f)− Adet
n (f)| ≤ ε ∀ f ∈ F.

We denote by ndet
INT(ε,BF ) the minimal number of function values needed to com-

pute an ε-approximation in the worst-case deterministic setting for the class BF .

2. Let Arand
n be a randomized algorithm that uses n function values and approxi-

mates the integration operator I. We say that this algorithm computes an ε-

approximation of the weighted integral if

(
E

(
I(f)− Arand

n (f)
)2

)1/2

≤ ε ∀ f ∈ BF .

We denote by nrand
INT (ε,BF ) the minimal number of function values needed to com-

pute an

ε-approximation in the randomized setting.
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3. Let Aquant
n be a quantum algorithm that uses n randomized quantum queries and

approximates the operator I. We say that Aquant
n computes an ε-approximation

of the weighted integral if

(
EEq

(
I(f)− Aquant

n (f)
)2

)1/2

≤ ε ∀ f ∈ BF . (3.41)

We define nquant
INT (ε,BF ) as the minimal number of quantum queries needed to

compute an ε-approximation.

Since S(v, 0) = I(v), as in [29], we can reduce multivariate Feynman-Kac path

integration to multivariate integration with Gaussian weight by taking V ≡ 0. More-

over, (3.10) and (3.7) imply that

ndet
INT(ε,BF ) ≤ ndet(ε,BF ),

nrand
INT (ε,BF ) ≤ nrand(ε,BF ),

nquant
INT (ε,BF ) ≤ nquant(ε,BF ).

3.7.2 Upper bounds

Obvious estimates of the complexity of the multivariate Feynman-Kac path integra-

tion are provided by the (information) cost of the algorithms derived in Section 3.6.

Thus, by (3.36), (3.38) and (3.39) we get

ndet(ε,BF ) = O
(
ε−α(F ))−δ

)
,

nrand(ε,BF ) = O
(
ε−2α(F )/(α(F )+2)−δ

)
,

nquant(ε,BF ) = O
(
ε−α(F )/(α(F )+1)−δ

)

for all δ > 0, where α(F ) is the exponent of the uniform approximation problem

complexity for the space F containing the class BF defined by (3.9).

From the previous two sections, we can determine when the deterministic, ran-

domized and quantum algorithms presented here are almost optimal. This happens

for the classes of input functions for which worst-case deterministic, randomized and
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quantum complexities of the integration problem defined in Section 3.7.1 are of orders

ε−α(F ), ε−2α(F )/(α(F )+2) and ε−α(F )/(α(F )+1) respectively. We present two examples of

such classes in the next section.

3.8 Examples

In this section we present two examples of function classes F satisfying the assump-

tions from Section 3.3 and compute lower and upper bounds of of the complexities of

the multivariate Feynman-Kac path integration. For both examples, the algorithms

presented in this chapter are almost optimal.

3.8.1 The Sobolev space of compactly supported functions

Let F be a class of d variate r times continuously differentiable functions whose

supports are contained in a cube [a, b]d ⊂ Rd. Thus F is a subclass of the Sobolev

space W r,d
∞ ([a, b]d) with the norm

‖f‖W r,d
∞ ([a,b]d) =

∑

|α|≤r

‖f (α)‖L∞([a,b]d),

where α = [α1, . . . , αd] ∈ Nd and f (α) = ∂|α|/∂α1 · · · ∂αd .

Clearly, assumptions 1 and 2 of Section 3.3 are satisfied. From [6, 7, 33], we also

know an optimal uniform approximation algorithm that satisfies assumption 3 with

the exponent α(F ) = d/r. Based on this algorithm, we can construct almost optimal

algorithms Φdet
ε , Φrand

ε and Φquant
ε computing ε-approximations of the multivariate

Feynman-Kac path integral (3.3) for (v, V ) ∈ BF in the sense of (3.35), (3.37) and

(3.40), with the number of function evaluations and/or quantum queries being roughly

of order ε−d/r, ε−2/(1+2r/d) and ε−1/(1+r/d). We see that the cost of the deterministic

algorithm depends exponentially on the dimension d, whereas for the randomized and

quantum algorithms the exponents of ε−1 are at most 2 and 1 respectively. Thus, the

curse of dimensionality present in the worst-case deterministic setting is vanquished
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in both the randomized and quantum settings. This corresponds to the case when

the exponent of ε−1 is 2 in the randomized setting and 1 in the quantum setting.

We can decrease these exponents to 2/(1 + 2r/d) and 1/(1 + r/d), at the expense of

introducing a dependence on the number d of variables.

3.8.2 Periodic functions

Although this example was considered in [29], we repeat the details for the reader’s

convenience. Following [45] we consider the class Ψ of 2π-periodic functions f :

[0, 2π]d → Rd satisfying the condition

∀ f ∈ Ψ ∀j = 1, . . . , d ∃ϕj ∈ L∞([−2π, 2π]d)

f(x) =
1

2π

∫ 2π

0

ϕj(x1, . . . , xj − t, . . . , xd)Fr(t) dt, (3.42)

where r > 0 and

Fr(t) = 1 + 2
∞∑

k=0

k−r cos
(
k t− r π

2

)
.

The norm in the class Ψ is defined as

‖f‖Ψ =
1

d

d∑
j=1

‖ϕj‖L∞([−2π,2π]d),

where the ϕj are functions from the representation (3.42) of the function f . The

paper [45] provides a linear algorithm Uε that computes a uniform ε-approximation

of functions from the class Ψ, so that

‖f − Uεf‖L∞([0,2π]d) ≤ ε ‖f‖Ψ ∀f ∈ Ψ,

with a cost of order ε−d/r.

Let F denote the class of functions f : Rd → R that are periodic extensions of

functions from Ψ. Let ‖f‖F := ‖f |[0,2π]d‖Ψ. The problem of uniform approximation

for the class F can be obviously solved using the algorithm mentioned above, with

the same cost as for the class Ψ. Similarly to the previous example, we have to
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check the assumptions of Section 3.3. It is easy to see that for f ∈ F , z ∈ Rd, and

arbitrary j ∈ {1, 2, . . . , d}, we have

f(z) ≤ ‖f‖L∞(Rd) = ‖f |[0,2π]d‖L∞([0,2π]d) ≤ C ‖ϕj‖L∞([−2π,2π]d),

with C = (2π)−1
∫ 2π

0
|Fr(t)| dt. Hence

|f(z)| ≤ ‖f‖L∞(Rd) ≤ C ‖f‖F

and so function evaluations are continuous. The remaining assumptions follow im-

mediately.

Finally we can construct the algorithms Φdet
ε , Φrand

ε and Φquant
ε as in the previous

example. Since the uniform approximation exponent α(F ) is the same for both ex-

amples the algorithms approximating multivariate Feynman-Kac path integrals for

the space of periodic functions have properties similar to the algorithms from the

previous example.

3.9 Conclusions

The results of this chapter provide estimates of the complexity of multivariate Feynman-

Kac path integration in the worst-case deterministic, randomized and quantum set-

tings. We also present optimal algorithms in these three settings. Although this

problem considerably differs from ordinary multivariate integration, the complexity

estimates that we obtain are similar to those for multivariate integration.

In Section 1.2.2.2, we indicated that one of our goals is to compare the complex-

ity of multivariate Feynman-Kac path integration to the complexity of general path

integration considered in [48]. This paper deals with path integrals over a separable

Banach space X, with respect to a zero mean Gaussian measure µ, with eigenvalues

λi = Θ(i−k), k > 1. For a functional f : X → R being s times Frechet differentiable,

the general path integral is defined as

S(f) =

∫

X

f(x)µ(dx). (3.43)
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We stress that in [48] evaluations of the functional f from (3.43) are used, while for

multivariate Feynman-Kac path integration we do not assume that we can compute

the values of the integrand in (3.3). Instead we can only compute the values of the

input functions—initial condition and potential. We compare the results from [48]

with the complexities of multivariate Feynman-Kac path integration for the input

function class considered in Section 3.8.1.

The cost of the worst-case deterministic algorithm of [48] is of order ε−ε−γ(s)/k
, with

γ(s) = 1 + δs,1. This estimate is significantly larger than the complexity order ε−d/r

for multivariate Feynman-Kac path integration. Since the deterministic algorithm

presented in this chapter is optimal, its cost order is also ε−d/r and we see that in the

deterministic setting the special structure of the Feynman-Kac path integral provides

a significant improvement.

The randomized algorithm for general path integration of [48] has the cost order

ε−2−γ(s)/k, whereas the complexity of the multivariate Feynman-Kac path integra-

tion (with input functions as in Section 3.8) in the randomized setting is of order

ε−2/(1+2r/d). This is also the order of the optimal randomized algorithm presented in

this chapter. Thus, our algorithm has a polynomial gain for moderate r/d. The same

can be said about the quantum algorithm of [48], whose cost order is ε−1, while our

algorithm has the cost of order ε−1/(1+r/d). Thus for moderate d/r the special struc-

ture of the Feynman-Kac path integral yields an improvement in both the randomized

and quantum settings.
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Chapter 4

Open problems

The analysis of Boolean summation and multivariate Feynman-Kac path integration

from Chapters 2 and 3 leaves some open problems and possible extensions. In this

chapter we present three research problems that seem to be interesting and challeng-

ing.

4.1 Average-average error for quantum Boolean

summation

The quantum Boolean summation was analyzed in Chapter 2. We recall that the per-

formance of the QS algorithm is measured with respect to the input Boolean function

class BN and the final state distribution. This corresponds to the four settings—worst-

probabilistic, average-probabilistic, worst-average and average-average. We studied

the worst performance with respect to the class BN and the probabilistic and average

performance with respect to the final state distribution. We also studied the aver-

age performance with respect to the class BN and the probabilistic performance with

respect to the final state distribution.

What remains to be studied is the average-average error, which measures the

average performance with respect to both a distribution p on the Boolean function
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class BN and the distribution of the QS algorithm final state. We define the average-

average error as follows

eavg-avg
q (QS) =

( ∑

f∈BN

M−1∑
j=0

p(f)pf (j) |S(f)−QS(f, j)|q
)1/q

.

As with the worst-average error we measure the average performance in the Lq norm,

we allow q ∈ [1,∞]. Similarly to the average-probabilistic error we may consider

two measures on the set BN : p1—the uniform distribution over Boolean functions,

and p2—the uniform distribution over the means. We stress that the average-average

error setting for the measure p2 and q = 1 provides a lower bound for the complexity

of quantum summation and integration when randomized queries are used. Lower

bounds for the general quantum Boolean summation problem were established in [36].

We expect that for uniformly distributed Boolean functions (the measure p1), we shall

observe that the cost of the QS algorithm will on M , as in the worst-probabilistic

setting. For the uniformly distributed means (the measure p2) the results are probably

quite different.

4.2 Multivariate Feynman-Kac path integration in

the quantum setting with deterministic queries

We used the concept of randomized query developed in [52] to study the multivariate

Feynman-Kac path integration in the quantum setting in Chapter 3. It would be

natural to consider deterministic (bit) queries used in studies of almost all continuous

problems mentioned in Section 1.1. However, as we mentioned before, the analysis

of the multivariate Feynman-Kac path integration in the quantum setting leads to

some technical difficulties. That is why our results has been so far established only

for randomized queries. It would be important to determine whether the power of

deterministic queries is comparable to that of randomized queries.



4.3. FEYNMAN-KAC INTEGRALS AND FINITE-ORDER WEIGHTS 103

4.3 Multivariate Feynman-Kac path integration in

finite-order weighted spaces

The notion of finite-order weighted spaces, see e.g., [44, 49, 50], has recently been

studied for multivariate problems. Finite-order weights are used to model continuous

multivariate problems for which d-variate functions can be decomposed as sums of

functions of fewer variables. The weights describe the relative importance of each

group of variables. Multivariate problems over finite-order weighted spaces are often

tractable. That is, the minimal number of function values needed to compute an

ε-approximation is polynomial in ε−1 and d. The finite-order weighted structure of a

function space seems to also be very promising for multivariate Feynman-Kac path

integration. The integrands that are used in applications often have this kind of

structure. Moreover, uniform approximation, which is used in optimal algorithms for

all three settings discussed in Chapter 3, is tractable for finite-order weighted spaces,

see [49]. Therefore, it would be important to also study multivariate Feynman-Kac

for finite-order weighted spaces in the quantum model of computation.
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