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Abstract

The tractability of multivariate problems has usually been studied only for the approximation of
linear operators. In this paper we study the tractability of quasilinear multivariate problems. That is, we
wish to approximate nonlinear operatd{g-, -) that depend linearly on the first argument and satisfy a
Lipschitz condition with respect to both arguments. Here, both arguments are functidnsidébles.

Many computational problems of practical importance have this form. Examples inlude the solution
of specific Dirichlet, Neumann, and Sélinger problems. We show, under appropriate assumptions,
that quasilinear problems, whose domain spaces are equipped with product or finite-order weights, are
tractable or strongly tractable in the worst case setting.

This paper is the first part in a series of papers. Here, we present tractability results for quasilinear
problems under general assumptions on quasilinear operators and weights. In future papers, we shall
verify these assumptions for quasilinear problems such as the solution of specific Dirichlet, Neumann,
and Schodinger problems.

1 Introduction

The tractability of multivariate problems has recently become an extensive research area; see [7] for a survey.
For such problems, we wish to approximate operasgrdefined over classes of functiopf d variables,
whered may be very large. Such problems occur in computational practice. Probably the best-known
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source of such problems is mathematical finance, wherein applications are known forvdaictpbe in the
hundreds or even in the thousands &pds a linear integration operator; see [13] and references cited there
for examples.

One goal of tractability studies is to prove that the minimal number of evaluatigneedded to approx-
imate S;(g) to within ¢ is polynomial ins~ andd; see [17]. In most tractability papers, it is assumed that
S, is alinear operatott A typical result for linear operators is that as long as we consider isotropic spaces
(in which all d variables play the same role), then tractability doeshold? since the minimal number of
evaluations is exponential #A. This is called thecurse of dimensionality To break intractability or the
curse of dimensionality, we may treat variables or groups of variables of linear multivariate problems in a
non-isotropic way. This leads tweightedspaces of functions; the paper [11] is probably the first to study
this idea. For many linear multivariate problems (including, e.g., integration and approximation), we know
conditions on the weights that are necessary and sufficient for tractability; see again [7] for a survey.

Tractability has been studied for several kinds of weights; see, e.qg., [3] for further discussion. The first
papers dealt witiproductweights, where thgth variable was moderated by a specific weightA typical
result is that tractability holds if[j‘f:l y;j is bounded by a multiple of la. Hence the isotropic case, for
whichy; = 1, is intractable. On the other hand, suppose we have a decreasing polynomial dependence on
the successive variables, so that= ®(j~*). Then the problemis tractable #f > 1. Fora > 1, the series
2?021 y; is convergent, and we often hastongtractability. That is, the minimal number of evaluations of
the functiong to approximates, (g) to within ¢ doesnotdepend on/ and is polynomially bounded i .

The second class of weights is the clasfimife-orderweights, which has recently been studied, see [3]
where finite-order weights were first defined and [3, 10, 14] where finite-order weights were further studied.
Such weights are used to model functiongi/ofariables that can be represented as, or approximated by, a
sum of functions of fewer variables. That is, each term of this sum depends on abmasables, with
w independent ofl. It turns out that finite-order weights imply tractability, or even strong tractability, for
many linear multivariate problems even in the worst case.

The purpose of this paper is to extend the study of tractability to certain nonlinear multivariate problems.
We restrict ourselves tguasilinearmultivariate problems. That is, we wish to approximé&jiéf, ¢), where

1. f andg ared-variate functions,
2. S,;(f,q) depends linearly orf, and
3. S4(f, q) satisfies a Lipschitz condition with respect to bgtlandg.

Many computational problems of practical importance have this form. Examples include the solution of
specific Dirichlet, Neumann and Séidinger differential equations. These problems are roughly defined
as follows. Let/? = (0,1)¢, and letf andg be functions defined ovel, enjoying given smoothness
properties, withy being non-negative.

1. TheDirichlet problemdefines: = S,(f, ¢) as the variational solution of the Poisson equation
subject to homogeneous Dirichlet boundary conditions

u=20 onal.

1The only exception of which we are aware is the paper [9], where tractability of fixed points for economics problems is studied.
2There are, however, at least two examples, where tractability holds for isotropic spaces; see [5, 6].



2. TheNeumann problerdefinest = S, (f, ¢) as the variational solution of the Poisson equation given
above, subject to homogeneous Neumann boundary conditions
ou

— =0 onal“,
ov

with 3/9v denoting the outer-directed normal derivative.

3. TheSchidinger problendefines:t = S;(f, ¢) as the variational solution of the Séialinger equation

U aus in 74
l— = —AU u
ot 9

for ¢ > 0, with the initial condition
M(', 0) = fa
subject to homogeneous Dirichlet boundary conditions.

For these problems, the functigh corresponds to the right hand side of the differential equation or the
initial value of the solution, whereas the functigris part of the differential operator. Then the solution
S.(f, q) depends linearly orf and nonlinearly oy, and has Lipschitz dependence on bgtandg.

We study quasilinear problems for weighted spaces. Our main emphasis is on product and finite-order
weights. We show that the tractability results of [14] for the approximation problem can be extended to
quasilinear problems. We obtain tractability, or even strong tractability, of quasilinear problems, under
appropriate assumptions on quasilinear problems and weights.

This paper is the first in a series of papers. Here we present tractability results for general quasilinear
problems under certain assumptions on the operaipend the weights. We shall show in future papers
that these assumptions hold for quasilinear problems such as the solution of specific Dirichlet, Neumann
and Schadinger problems.

We now discuss the approach in this paper in more technical termsg ket(f, g). We approxi-
mateS,(g) by algorithms evaluating finitely many functionals pfandq. The form of these functionals is
restricted to a specific clags. We consider two classes. The first class consists of all continuous linear
functionals, and the second class consists of only function values. We define the error of an algorithm in the
worst case setting. We consider two error criteria: absolute and normalized. For the absolute error criterion,
we want to find an algorithm whose worst case error is at midsr the normalized error criterion, we want
to find an algorithm whose worst case error reduces the initial error by a tactéere, the initial error is
defined as the minimal worst case error over algorithms using no evaluatigngndfoth cases, we say that
the algorithm computes anapproximation to the operatsy.

Let cards, S;, A) denote the minimal number of evaluations from the claseeeded to find am-
approximation of the operatdi; under the given error criterion. The problem is tractable if ¢arfl;, A)
depends polynomially oa~! andd, and is strongly tractable if cafel S;, A) is bounded independently
of d by a polynomial ine=1. Using the results and proof techniques of [14], we present several estimates of
carde, Sy, A). For product weights and finite-order weights, we prove tractability and strong tractability of
general quasilinear problems, under appropriate assumptions.

The main idea behind our approach is that we use the results from [14] for the multivariate approximation
problem. More precisely, we know from [14] that there are algoritiimssing a polynomial number of
evaluations ire~* andd such thatA( f) and A(q) ares-approximations off andg, respectively. We then
approximateS, (f, g) by S;(A(f), A(g)). We underline that the results of [14] are constructive for the class
of all continuous linear functionals, and non-constructive for the class of function values. Therefore our
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results are also non-constructive for the second class. To overcome this problem, one could use the results
of the recent paper [15], which contains constructive results for the multivariate approximation problem for
the class of function values, with error bounds that are sometimes slightly worse. In this way, one can obtain
constructive results for quasilinear problems and the class of function values.

Finally, we want to stress that so far we have studied tractability of quasilinear problems only in terms
of the number of functionals needed to obtainsaapproximation. We have not considered the problem
of how many arithmetic operations are needed to implement the algorithms for which we obtained the
tractability bounds. This problem is easier for linear multivariate problems, since it is enough to consider
linear algorithms requiring precomputation of as many elements as are found in the tractability bounds.
However, for quasilinear problems, we use nonlinear algorithms since we need to casnp(ité) for
known f = A(f) andg = A(g). Itis not clear a priori how to implement this at cost polynomiak irt
andd. We are, however, optimistic that this can be achieved at least for some quasilinear problems of
practical importance. We will study this issue in the future.

2 Tensor products ofRKHS with general weights

We first establish a few notational conventions. Rlfis an ordered ring, the®* and R™* respectively
denote the non-negative and positive elementR.off X andY are normed linear spaces, then Lin[Y]
denotes the space of bounded linear transformatiods iofo Y. We write Lin[X] for Lin[ X, X], and X*
for Lin[ X, R]. Finally, we use the standard notation for Sobolev inner products, seminorms, norms, and
spaces, found in, e.g., [8, 16].

We first discuss the univariate case. Fot (0, 1), letK : I x I — R be a nonzero, symmetric, positive
definite function, i.e., the matrixq (x;, x;)]} ;_; is a positive semidefinite matrix for amye Z**t and any
distinctxy, ..., x, € I. We assume that

1
K1 = / K(x,x)dx < oo. (2)
0
Let H(K) be the reproducing kernel Hilbert spagx{s) associated with the kern&l, so that

f@) = (f K. nwy VYxel, feHK).

As in [14, Sect. 2], we find that

1/2

1
| f Loy = (/o (f(x))zdx> < K11/2||f||H(1<) Vf e HK),

so thatH (K) is embedded i, (7).
We now turn to the multivariate case. kbe Z*+, let 22, denote the power set ¢1, 2, ..., d}. Let

~Y={ysu:ue Pydecl}
be a set of non-negative weights. If we denote the cardinality of a get|bthen obviously
Hyaw:iue 2y} <28 VdeZ'.

The most well-studied examples of such weights are the following (see, e.qg., [3]):



1. We say thaty is a set ofproductweights if there exist numbegg > y» > ... > 0 such that

yd,u=1_[)/j Yue Py, deZ'.

JEu
2. We say thaty is a set offinite-orderweights if for somev € Z**, we have
Yau=0 Vue Z;and|u| > w, d € Z*. 2
Theorder of a sety of finite-order weights is the smalleste Z** such that (2) holds.

Ford € Z+* andu € &,, defineK,,: I¢ x I? — R as

Kau(X,y) ZHK(XJ',Y/) vx,yel

Jjeu
We then letH (K, ,,) be theRKHS with reproducing kernek, ,,. By convention,
Kip=1 and H(K, ) = sparfl}.

For nonempty, the spaced (K, ,,) is the tensor product space of the spaces of univariate functions with
indices from the set.
Let~ be a weight sequence. As in [14], férc Z*, let H(K ;) be theRkHS whose reproducing kernel
iS
Kq= Z YauKau.

ue Ay

For f € H(K,), we can write

f = Z fuv Wherefu = Vd,ufd,u € H(Kd,u)- (3)

ue P,

The termy, ,, in this decomposition depends on tlué variables indexed by. For weights of ordew, the
sum consists 00 (d ©) terms, with each term consisting of at masvariables.
Since the decomposition (3) is generally not unique, we have

Ly = 0F D" vaul faulfi, . VS € HK),

ue &y

the infimum being taken over dlif; . € H(K4.)}uez, such that (3) holds; see [1] for further discussion.
The decomposition (3) is unique iff ¥ H(K), in which case we have the orthogonal direct sum
decomposition

H(Kq) = P H(Kaw).

ue P,

along with the explicit formula

(f- &) ko =Y Vaulfauw gadrksy V.8 € H(Ky)

ue P,

for the H (K )-inner product.



Example.Let
1 1
w=[ [ Kwydvar (4)
0o Jo

SinceK is a reproducing kernel, it easily follows that x, < «;. If the kernelK is strictly positive
definite, thenc, > 0. On the other hand, i, = 0, then [14, Lemma 1] tells us thatd H (K), implying

that we have the orthogonal direct sum decomposition given above. O
Define
1/2
0q4(0) = (Z yd,ueu) Vo e RT. (5)
ueﬁd

Clearly, see also [14, Sect. 2], we have

/ Kq(X, X) dX = 02(k1),
Id

and
1/2
I Wiy i= (/ (f(X))de) < oa(kD I f kg VfeH(K).
Id

HenceH (K,) is embedded i, (19).

3 Problem formulation

We consider operators
Sat H(Kq) X Q4 — Gy,

where
1. G, is anormed linear space, and
2. Q. is a set of real-valued functions defined oyér

We require our problem to bguasilinear meaning thasS, is linear with respect to the first argument, and
satisfies a Lipschitz condition with respect to both arguments. The formal definition is given in Section 5.
Ford € Z**, define

Hyp,={fe€eHKy fllaky =p} Vp>0

as the ball inH (K,) of radiusp. Our goal is to efficiently approximat®;( f, g) for [ f, g] € Ha p, X (Qa N
H, ,,). Here,p, andp, are positive constants, which are independent, aind we assume that, N Hy ,
is nonempty.
Note that there is a certain lack of symmetry in our clHgs, x (Q,N Hy ,,) of problem elements. The
first factorH, ,, is a ball in the spacél (K,), whereas the second factoy, N H, ,, is not a ball in a space,
but is the intersection of such a ball with some other set of functions. This asymmetry is needed to model
many important problems, such as the elliptic Dirichlet problem.



Example: The Dirichlet ProblemLet G, be the standard Sobolev spaHé(ld), and letQ, = {gq €
Loo(I9) 1 q = 0}. For[f,q] € H(K;) x Qi C Lo(I?) x Qq4, standard results [2, 4, 8] on elliptic
boundary-value problems tell us that there exists a unigaeH}(1¢) such that

_d[Vu -Vw + quw] = /_d fw  Ywe HIIY.
I 1

Of coursey is the variational solution of the Dirichlet problem of finding I¢ — R such that

—Au+qu=f inId,
u=0 onal?.

Hence, if we writeu = S;(f, q), we see that we have an operatgr H(K,;) x Q, — G, as above.
The Dirichlet problem is specified by two functionsandg. To solve this problem computationally, we
need to assume that both functions enjoy some degree of smoothness, and this is modeled by a proper choice
of the spaceéd (K,). Hence, we hav¢, g € H(K,). We also need to normalizé andg, since the problem
cannot be solved otherwise. Therefore we assumeftteat, ,, andg € H, ,, for somep; andp,, which
presumably will not be too large. Since the Dirichlet problem is not well defined for arbitrmom H (K ;)
we need to guarantee thats also non-negative. We therefore have Q, N H; ,,, as required in our class
of problem elements. O

The Dirichlet problem illustrates a general situation for quasilinear problems. We knoW, thad)
is linear for each choice of € Q,. Hence the assumption about the first fadtlr, should come as no
surprise, being typical when studying the complexity of linear problems; see [12, Sect. 4.5.1]. On the other
hand, there are many important problems such $héf, -) is not defined over a ball of arbitrary radius in
a function space for € H(K,), but must be defined only over a set of functions satisfying an additional
condition; again turning to the elliptic Dirichlet problem, the simplest example of such a condition is that
g be non-negative. This explains the presenc@pf H, ,, in our definition.

We approximateS ( f, ¢) by computing finitely many values(f) andi(g), wherer € A. Here,A is a
class of linear functionals oH (K ;). We will restrict our attention to the following two choices:

1. A = [H(K,)]*, the set of all continuous linear functionals & K,). That is,» € A" iff there
existsr, € H(K,) such that

ACS) =, [ H®KY Vf e H(Ky.

Obviously,
Ml a & = 17l H k) Vaie AW

2. ASY the set of all function evaluations ovér(K,). Thatis,» € ASYiff there existsx, € I such
that
AS) = f0) = (f, Ka(-, X)) H(KkY) Vf e H(Ky).

Clearly, we now have
1/2
Ml = K206, %) ¥ae A%

andAsd c Al



Ford € Z** andn € Z**, let A, , be an algorithm for approximating,, using at most information
evaluations from\. That is,

Adn(f.q) = ¢a(f), oo M), Akr2(@)s - - An(q))

for somek € [0, n], someis, ..., A, € A, and some mapping : R* — G,. The linear functionals
A, ..., A, can be chosen adaptively, along with the numbef functionals used; see, e.g., [12].
The worst caserror of A, , is defined to be

e(Aan, Sa, N) = sup 1Sa(f, q) — Aan(fs @G,
[f»Q]EHd,pledﬂHd,pz

Thenth minimal erroris defined to be

e(l’l, Sda A) = Lnf e(Ad,ns Sd? A),
d,n

the infimum being over all algorithms using at mashformation evaluations from.

Forn = 0 we do not use any information evaluations pandg, and algorithms,; o are just constant
elements fronG,. Their worst case error is defined as above. The minimal efrS,;, A) is called the
initial error. Since this initial error involves no information evaluations, it is independent, @nd hence
we shall simply denote it a50, S,;). From the results of [12, Sect. 4.5], we see that

the problem is quasilinear=> ¢(0, S;) = p1 sup  [1Sa(-, @) llLin[H(k).Ga)- (6)
q€QaNHa,p,

Lete € (0, 1). We wish to measure the minimal number of information evaluations needed to compute
ane-approximation. Here, we say that an algoritimg, provides are-approximatiorto S, if

e(Ad,n’ Sd, A) <e&- ErrCrit(Sd),
with ErrCrit being arerror criterion. In this paper, we will use the error criteria

. 1 for absolute errgr
ErrCrit(Sy) = ) °
e(0, S;) for normalized errar

Hence:

1. An algorithm provides am-approximation in theabsolutesense simply means that the error of the
algorithm is at most.

2. An algorithm provides an-approximation in theormalizedsense simply means that the algorithm
reduceghe initial error by at least a factor ef and is thus at most- ¢(0, S,).

For these two error criteria, let
carde, S;, A) =min{n € Z* : e(n, Sz, A) < ¢ - ErrCrit(Sy) }

denote the minimal number of information evaluations frameeded to obtain asrapproximation ofs,.
Of course, the-cardinalities for the absolute and normalized criteria are related by the equation

card®'(e, S;, A) = card®S(e - e(0, S,), Sy, A). 7)



We are ready to define tractability as in [17]. The probl&m {S,},cz++ is said to bdractablein the
classA if there exist non-negative nuUMbers perr, and pgim Such that

Perr
carde, Sy, A) < C (—) d Pdim Vee(0,1),deZ". (8)
&

Any numbersper = per(S, A) and pgim = paim(S, A) such that (8) holds are called andd-exponents of
tractability; these need not be uniquely definedpdf, = 0 in (8), then the probler§ is said to bestrongly
tractablein A, and

Perr
Pstrond S, A) = inf { Perr > 0: 3C > 0 suchthat cam@, S;, A) < C (—) Vee (0,1),d e Zt" }
&

is called theexponent of strong tractability
We stress that tractability results for the absolute sense may differ from those for the normalized sense,
sincee(0, S;) may depend od.

4 Some results for the approximation problem

We need to recall some results from [14] aboutdabproximation problemi.e., the problem of approximat-
ing the embedding operator AppH (K;) — L»(1%) defined by App f = f for f € H(K,). We will use
these results in Section 5.

Letd € Z**. The operatoW, = (App,)*(App,) € Lin[ H(K,)] may be explicitly written as

Waf = 3 [ vawKautx 2f00dx  ¥f € H(Ka)
ue &y 1
We will also need to use the embedding operator Aphin[ H(K), L»(I)], as well as the operatd¥ =
(App)*(App) € Lin[H (K)]. The latter is given explicitly as

1
WF =/ K(x,)f(x)dx  Vfe HK). 9)
0

SinceW, is a self-adjoint compact operator &K ), there exist eigenvalues
A1 > Ag2>-->0
and an orthonormal basfg, ;};cz++ for H(K,) such that
Waeq,; = Aa jeq,; VjieZtt.

We have

IWallting skl = 11 APP IEing ek . Loty
and

IW llingr oy = 11 APP IEing k). 20y < K1

see [14, Lemma 2].
We summarize the results of [14] in the following Lemmas:



Lemma 4.1. Letxy, k2 ando, be defined byl), (4) and (5).

1. There exists; € [k», k1] such that
| APR, IILin (K ), Lo14)] = Oa(Ca).

2. If ko =0, then

12
1 APRy [ling k), Lord) = max [Yad Wt ]

Lemma4.2. Letd € Zt+ andn € Z™.

1. Let i
Ay ()= (freajyuwpea; VS € HK).
j=1
Then D
% 04(K1
| APP; — Ay, Linf i (k). Loid)] = Sl
2. There exist points, ..., t, and elements,, ..., a, € H(K,) such that
Ain(f) =) _ftpa;  YfeH(Ky,
j=1
we have

04KV
| APP; —Adn llLin{ i (k). L1ty = o

We stress that these results are non-constructive for the afSsConstructive error bounds may be

found in [15].

5 General results for quasilinear problems

We first define what we mean by a quasilinear problem, and then present a number of results that guarantee

tractability of quasilinear problems.

We say that the problersi = {S,},ez++ is quasilinearif for all d € Z**, the operatosS,; : H(K,;) x

0. — G, satisfies two conditions:

1. Foranyg € Q4, we haveS,(-, g) € LinN[H(Kz), G4].

2. There exists a function: H(K,;) — Qg, and a non-negative numb€y;, such that

184(f @) = Sa(F. 8@, = Ca[If = Fleasy + g = 0]

VIf gl € Hip % Qa, [f.4] € H(Ky) x H(Ky). (10)

10



We now comment on these conditions. The first condition simply statesjhatlinear if we fix the
second argument. The second condition states tigtsatisfies a Lipschitz condition with respect to both
its arguments. We wish to motivate the need for the funcfioff we perturb two argumentg andg and
obtain f andg, then the perturbegl andg are elements off (K,)). We would like to treatS,(f, §) as a
perturbation ofS,( f, ¢). Unfortunately,S,(f,§) need not be well defined, since the second arguriient
need not belong t@,. However, if we have a functiop that maps elements df (K,) to the setQ,,
thensS, (-, ¢(g)) will be well defined. Going back to our example of the Dirichlet problem, the role of the
functiong¢ is to guarantee that(g) > 0.

We now turn to tractability results, which will be derived for the absolute and normalized errors. These
errors are linked by the relation (7). We will be able to simultaneously state results for both the absolute and
normalized errors by using ErrC¢H;,) in the assumptions needed for our estimates. In the remainder of this
section, we shall let catd -, -) denote either cafd, -, -) or card®(-, -, -), as appropriate.

Theorem 5.1. LetS = {S,}4cz++ be a quasilinear problem . Suppose that there exists0 such that

N — su Call APP, IILin H (Ky), L2 (14)] - (1)
R d @ ErrCrit(S,) '
Then , ,
1
carde, Sg, A™) < 2(p1 + p2)*N? oulis) (—) >,
” Appd ”Lin[H(Kd),Lz(Id)]
and

4 1 4
carde, Sz, ASY < |78(/01 + p2)*N; Of(Kl) (—) d““—‘ +1.
” Appd ”Lin[H(Kd),Lz(]d)]

Proof. The proof is based on that of [14, Thm. 1]. We first consider the d@$sForn € Z7, let

U;,n(fs q) =S4 (Az,m/zj f ¢(AZ,U,/2JCI)) V[fs Q] € Hd,pl x (QqaN Hd,pz)

whereAj |, , is as defined in Lemma 4.2. The expression on the right-hand side of this equation is well-
defined sinced |, o, f € H(Ky). ClearlyU; , is an algorithm using at mostevaluations froom@!. From
(10) and Lemma 4.2, we have

1Sa(f, q) — U,}k,,,(f» Dle, = Ca [||f - A;,Ln/ZJf”Lz(I") +llg — AZ,Wzﬂlle(m]
- _CGaoalky)
T JIn/2)+1
- V2Ci(p1+ p2)oa(ky)
- Vn+1

since[n/2] + 1> (n+ 1)/2. This holds for arbitrary f, ¢g] € Hy ,, x (Qa N Hy ,,), and therefore

[”f”H(Kd) + ||Q||H(K,,)]

V2Cy(p1 + p2)oa(ict)
vn+1 '

(A, Sa, A <

11



Hence

2C2 2.2 1 2
carde. S;. A% < 2(p1+ p2)°0 7 (k1) (_)

[ErrCrit(S,)]? €
CoA _ 2 2 1\2
= 2(p1 + p2)? ( i pfd ”Lm[fI(Kd)’LZ(Id)]) (;d = (_) -~
d® ErrCrit(Sy) | App, |||_in[H(Kd),L2(1d)] €
o2(ky) 1\*
< 2(p1+ p2)°N; A > : (_) 4
I App, “Lin[H(Kd)yLZ(Id)] ¥

as claimed.
Now we consider the classs. Forn > 2 let

Uan(f. @) = Sa (Aa.inj2) fr ¢ (Ad,1nj219)) V[f.ql € Hyp x (Qa N Hyp,)

where algorithmA, |,,/2; is as defined in from Lemma 4.2. The expression on the right-hand side of this
equation is well-defined sinc&; .2 f € H(K,). ClearlyU, , is an algorithm using at mostevaluations
from ASY. From (10) and Lemma 4.2, we have

1Sa(f. @) = Uan(fr Dy < Ca [l f = Adin2) flloady + 19 — Ad,inj219 1 Ly ]
- V2Cy04(k1)
~ [(n—1)/214
_ 2%Cu(p1 + p2)ouicy)
= (n— DA

[ Flaks + gk ]

forany [f, q] € Ha p, X (Qa N Hy p,). This implies that

25/4C(p1 + p2)oa (k1)
St
e(Adns San M%) < 1)

DenotingA = || App, lILin(a k,). L, WE then obtain

29/4C4(p1 + p2)oatic)\” Caoalcr) \* (1)*

st _ 4 _ =

carde, S, A%) < ( ¢ ErrCrit(S,) ) +1=18(p+p2) (ErrCrit(Sd)) (e) +1
. i 4 C,A 403(/(1) 1. 4 o

= | 81t r2) (daErrCrit(sd)> A% (a) =+l

] o o
8(ps + o) NI TLD (;) dﬂ +1,

A

A4

as claimed.

Note that the cardinality estimates of Theorem 5.1 consist of several factors:
1. The first factor involvedV,, p1, andp,. This factor is independent efandd.

2. The next factor involves, (k1) and|| App, Iluin{# k), o4y This factor is independent ef However
at this point, it is unclear whether this factor dependgon

12



3. The next factor is a power of/&.
4. The last factor is a power af

Since we want to use these estimates to establish tractability results, we must resolve the status of the second
factor.
We first consider general weighs after which we will treat product and finite-order weights.

Theorem 5.2. Let S = {S,}4cz++ be a quasilinear problem . Let, «2, 04, and W be as in(1), (4), (5),
and (9). Leta and N, be as in TheorerB.1 Suppose that there exigts> 0 such that

Fﬂ == Sup Fﬂ,d < OO’
del++

where X
0, (k1)

8es.0 (maxyd,un W||L‘;n[H(K)]> + (1= 8,,,0)07 (ic2)
ue P,

’

1
F/S,d = d_ﬂ

wheres,, o is the Kronecker delta. Then

1 2
carde, Sq, A*) < 2(p1 + p2)°NZTp (—) d*+P
&

and

1 4
carde, Sy, A*) < |78(,01 + p2)*NJT (—) d4“+2ﬂ-‘ +1.
&

Hence in both classea?' and ASY, the quasilinear problens is strongly tractable il = g = 0 and
tractable ifa + 8 > 0.

Proof. Using Lemma 4.1 and the fact that is non-increasing, we have

AR, Wik 0.1y = 620 (L@%ﬁyd,u|| Wn';;,L[H(K)]) + (1= 8,,,0)07 (k2).

from which it follows that
02 (k1)

2
APPG ing 1k ), 251001

< Fﬁ,ddﬂ < Fﬂdﬁ.

The desired result now follows from Theorem 5.1. O

Let us see how to apply this result when we have product weights, i.e., when

yd,u:nyj Vue Py, del™,

Jjeu
wherey; > y, > --- > 0. Similarly to [14, Sect. 3.2], we have the following:

Theorem 5.3. Consider a quasilinear problerfi = {S;}4ez++ With product weights. Let; and«, be as
in (1) and(4), and leta and N,, be as in Theorerb.1

13



1. Suppose that
j=1

ThenI'y < oo, so that for both classes®! and ASY, the quasilinear problens is tractable ifo > 0,
and strongly tractable ifc = 0. For « > 0, we have

1 2
carde, Sg, A*") < 2(p1 + p2)*N2To <_> a*
e

and
1 4
carde, Sz, A% < |78(,01 + p2)*NJTS (—) d““—‘ +1.
I
For o = 0, we have ,
1
carde, Sy, A%) < 2(p1 4 p2)2NETo (—)
£

and
1\
carde, Sy, A% < |78(,01 + p2)*NgT'§ (—) —‘ + 1
I

2. Suppose that

d— o0

1
= limsup———— ; .
4 pln(d+1);y~’<°°

ThenT < oo for B > a(k1 — k2), and in both classea?' and ASY, the quasilinear problens is
tractable, with

1 2
carde, Sy, A*) < 2(p1 + p2)*N2T s (—) d**r
&

and )
1
carde, Sq, A% < [8(,01 + p2)*NJT; (;) d“‘”zﬁ—‘ +1

Proof. Since we are using product weights, we have

d
o5 ®) =[]a+6y).

j=1

We first consider the case whepe?’,y; < oo. Thenoj 2(9) is uniformly bounded ind. Using
Lemma 4.1, we find that for, > 0 we have

o= sup gy = Sup o ]_[(1+K17/]) < 00,

deZ++ dgezt+ 02(k2) ~
whereas fok, = 0 we have
2
I sup I'py = sup a (k1) <00
0= 0,d — .
deZ++ deZ++ MaXe 2, l_[, 1 VillWlLinpa (k)

14



In this last estimate, we use the fact that fim, y; = 0 implies limy o [1"; ¥/ | W llLingrcxyy = 0. The
rest directly follows from Theorem 5.2.
We now consider the case wherés finite. Choosing > 0, there exists an integég such that

d
1
— = — Yy <a+s Vd=ds.
Ind +1)

Ford > ds, we then have

d

d
02(0) = exp<Z In(1 + eyj)) < exp(e > y,-> < H@HIINEHY — (g 4 )0t

j=1 j=1
Since(1+ k1y;)/(1 4+ k2y;) < 1+ (k2 — k1) y;, we have

2 d
o7(k1) l—[ 1+ K1y,

O‘dz(Kz) N j=1 1+K2)/j

d
<@+ 1= k2)y)) = 0Z(k1 — K2).
j=1
Now takeB = (a + ) (k1 — k2). Fork, > 0, we have

2
Fﬂ = Ssup szl) <
deZ++ dﬂad (k2)

2 d+1)°
< max{ max 0"(2’(1) , @+1 < 00
d<ds dﬁUd (k2) aza; dF

Fork, = 0 we haveB = «1(a + §) and

= sup o2 (k1)
ﬂ pu—
aczt+ d P maxe s, [TiSy vj IW llingn )
2 B
o5 (k d+1
< max{ max ‘l’u(l v , sup ( I: )
d<ds dP maxue s, [ ;21 Vil Wiltinpraoy d=ds dP maxez, [ 1521 villWlluinga ko
< 00,

since limi_, . y; = 0 and limy_, « ]_[‘j“:‘1 YillWlluniax) = O as before. Sincé can be arbitrarily small,
this proves thal's < oo for all 8 > (k1 — k2)a. The rest directly follows from Theorem 5.2. O

We now discuss finite-order weights of ordeyi.e., y;, # 0 only if [u| < w for all u € &; and
d € Z**. We need the following lemma.

Lemmab.1. Letd, w € Z*T.

1. Let
“.(d
m@=2<)
j=o \J
Then
P,(d) <2d°.

2. Let~ be finite-order weights of ordes. Then

04(0) < \/Zdw max6©, 1} maxy,, V6 eR".
ue P,

15



Proof. Let us establish the first part of the Lemma. The casel is straightforward, sinc€, (1) = P1(1)
for w > 1 andP1(1) = 2. Now suppose that > 2. If » = 1, then

Pi(d)=1+d <2d,

whereas ifo > 2, we have

w _ < w+1
Pw(d)=zd(d 1)...d—j+1 Z (1Zd1~+ +i|)dw
j=0

I/\

= Jj! J! !

Y

We now turn to the second part of the Lemma. fghx = max.e», va.u If 6 > 1, then

w—1

Ul

1 1 1
S )ae < (S = )de < Ger hav <24
'o]! w! d ol

iz

020) = > yau®™ <0” D Yau < 0“Ymax Y 1= 0"YmaxPu(d).

ue P, ue P, ue P,
[u<w

whereas i < [0, 1], we have

02(0) < Y Vau < YmaxPu(d).
ue &y

Using the first part of the Lemma, we find
a7(0) < max{6”, 1} YmaxPo(d) < max{6”, 1} Ymax- 2d°,
as required. O
We are now ready to apply the results of Theorem 5.1 to the case of finite-order weights.

Theorem 5.4. Consider a quasilinear problersi = {S;},cz++ With finite-order weights of ordep. Letk;
and«; be defined byl) and (4), and N, by (11).

1. Suppose that, > 0.

(a) Forthe classA?', we have
P w 2
carde, Sg, A%y < 2(p1 + p2)®N? (—l) (—) d>.
K2 &
(b) For the classAS"Y, we have

2w 4
1
carde, Sy, A% < {8@1 + p2)*N; (ﬂ> (—) d““—‘ +1
K2 €

Hence in both classea?' and ASY, the quasilinear problens is strongly tractable itx = 0, and
tractable ifae > 0.
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2. Suppose that, = 0. Let
max(l, k1)

— min(L, [|Wluinga))

(a) For the classA?', we have
1 2
carde, Sy, A% < 4(o1 + p2)>N2T® (—) d®e,
&
(b) For the classAS"d, we have

14
carde, Sy, A% < |V32(,01 + p2)*NAT 2% (_) d4oz+2w—‘ 11
€

Hence in both classes?' and ASY, the quasilinear problers is tractable.

Proof. As in the proof of [14, Thm. 2], we find that if, > 0, then the first part of Lemma 4.1 yields

|

O'dz(Kl) _ U;(Kl) < O'dZ(Kl) o Zue@d,lu\sw Klu Vd.u - (E)w
2 - 2 - 2 - — :

” Appd ”Lin[H(Kd),Lz(Id)] Oy (Cd) Oy (KZ) Zue@d, [ul<w K‘zul Yd.u K2

If ko = 0, then the second part of Lemma 4.1 yields

02 (k1) . 02 (k1)

2 - , ]
FAPPs Cintrr ik roay M@, Ya il Wl tin oy
max,, e, Yau Maxl, «k1)® P,(d)

< , —T“P,(d) < 2T°d"
max,, e, Ya,u MINCL, [|W|Lin & x))®

(we use the first part of Lemma 5.1 in the last step of the second inequality). Using these inequalities in
Theorem 5.1, we obtain the desired results. O

As an application of this theorem, we obtain simple conditions that establish strong tractability with
finite-order weights.

Theorem 5.5. Suppose that the hypotheses of Theosefrhold withx, > 0. Furthermore, suppose that
either

p3i= Sup Vi < 00 (12)
deZ++ u;{] *
and c
d
C*':= sup —— , 13
deZR ErrCrit(S,) = (13)
or that
M= sup | App, ”Lin[l.LI(Kd),Lz(Id)] - o (14)
deZ++ ErrCrit(S,)
and
C* = sup C,; < oo. (15)

deZ++
Then the quasilinear problefiis strongly tractable. More precisely:
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1. For the classA?!, we have

w 1 2
carde, Sy, A%y < 2(p1 + p2)®N3 (ﬂ> (—) :
K2

&

Hence
Pstrong(Ss Aa”) <2

2. For A9 we have

&

2w 4
1
carde, Sq, A%) < |78(,01 + p2)*Ng (ﬂ) (-) —‘ +1.
K2

Hence
Pstrond( S AStd) <4

Here, Ny is defined by{11), and satisfies the bound

No < {c pa?max(x?’?, 1} if (12)and(13)hold, (16)

C*M if (14)and(15) hold.
Proof. If (12) and (13) hold, we find that

1/2
Il AP, Ilting (ko) Loy = Oalca) < og(max{ks, 1) < maxix;”?, 1}( > yd,u)

ue,@d
< py*max(y’?, 1.

Using this inequality, along with (11), we obtai, < C*p3/> maxks’?, 1}. On the other hand, if (14)

and (15) hold, we can use (11) to see thgt< C**M. Hence in either case, we find that (16) holds. The
remaining results now follow from Theorem 5.4. O
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