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Abstract

The tractability of multivariate problems has usually been studied only for the approximation of
linear operators. In this paper we study the tractability of quasilinear multivariate problems. That is, we
wish to approximate nonlinear operatorsSd(·, ·) that depend linearly on the first argument and satisfy a
Lipschitz condition with respect to both arguments. Here, both arguments are functions ofd variables.
Many computational problems of practical importance have this form. Examples inlude the solution
of specific Dirichlet, Neumann, and Schrödinger problems. We show, under appropriate assumptions,
that quasilinear problems, whose domain spaces are equipped with product or finite-order weights, are
tractable or strongly tractable in the worst case setting.

This paper is the first part in a series of papers. Here, we present tractability results for quasilinear
problems under general assumptions on quasilinear operators and weights. In future papers, we shall
verify these assumptions for quasilinear problems such as the solution of specific Dirichlet, Neumann,
and Schr̈odinger problems.

1 Introduction

The tractability of multivariate problems has recently become an extensive research area; see [7] for a survey.
For such problems, we wish to approximate operatorsSd defined over classes of functionsg of d variables,
whered may be very large. Such problems occur in computational practice. Probably the best-known
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source of such problems is mathematical finance, wherein applications are known for whichd can be in the
hundreds or even in the thousands andSd is a linear integration operator; see [13] and references cited there
for examples.

One goal of tractability studies is to prove that the minimal number of evaluations ofg needed to approx-
imateSd(g) to within ε is polynomial inε−1 andd; see [17]. In most tractability papers, it is assumed that
Sd is a linear operator.1 A typical result for linear operators is that as long as we consider isotropic spaces
(in which all d variables play the same role), then tractability doesnot hold2 since the minimal number of
evaluations is exponential ind. This is called thecurse of dimensionality. To break intractability or the
curse of dimensionality, we may treat variables or groups of variables of linear multivariate problems in a
non-isotropic way. This leads toweightedspaces of functions; the paper [11] is probably the first to study
this idea. For many linear multivariate problems (including, e.g., integration and approximation), we know
conditions on the weights that are necessary and sufficient for tractability; see again [7] for a survey.

Tractability has been studied for several kinds of weights; see, e.g., [3] for further discussion. The first
papers dealt withproductweights, where thej th variable was moderated by a specific weightγj . A typical
result is that tractability holds iff

∑d
j=1 γj is bounded by a multiple of lnd. Hence the isotropic case, for

which γj = 1, is intractable. On the other hand, suppose we have a decreasing polynomial dependence on
the successive variables, so thatγj = 2(j−α). Then the problem is tractable iffα ≥ 1. Forα > 1 , the series∑

∞

j=1 γj is convergent, and we often havestrongtractability. That is, the minimal number of evaluations of
the functiong to approximateSd(g) to within ε doesnot depend ond and is polynomially bounded inε−1.

The second class of weights is the class offinite-orderweights, which has recently been studied, see [3]
where finite-order weights were first defined and [3, 10, 14] where finite-order weights were further studied.
Such weights are used to model functions ofd variables that can be represented as, or approximated by, a
sum of functions of fewer variables. That is, each term of this sum depends on at mostω variables, with
ω independent ofd. It turns out that finite-order weights imply tractability, or even strong tractability, for
many linear multivariate problems even in the worst case.

The purpose of this paper is to extend the study of tractability to certain nonlinear multivariate problems.
We restrict ourselves toquasilinearmultivariate problems. That is, we wish to approximateSd(f, q), where

1. f andq ared-variate functions,

2. Sd(f, q) depends linearly onf , and

3. Sd(f, q) satisfies a Lipschitz condition with respect to bothf andq.

Many computational problems of practical importance have this form. Examples include the solution of
specific Dirichlet, Neumann and Schrödinger differential equations. These problems are roughly defined
as follows. LetI d

= (0, 1)d , and letf andq be functions defined overI d , enjoying given smoothness
properties, withq being non-negative.

1. TheDirichlet problemdefinesu = Sd(f, q) as the variational solution of the Poisson equation

−1u + qu = f in I d,

subject to homogeneous Dirichlet boundary conditions

u = 0 on∂I d .

1The only exception of which we are aware is the paper [9], where tractability of fixed points for economics problems is studied.
2There are, however, at least two examples, where tractability holds for isotropic spaces; see [5, 6].
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2. TheNeumann problemdefinesu = Sd(f, q) as the variational solution of the Poisson equation given
above, subject to homogeneous Neumann boundary conditions

∂u

∂ν
= 0 on∂I d,

with ∂/∂ν denoting the outer-directed normal derivative.

3. TheSchr̈odinger problemdefinesu = Sd(f, q) as the variational solution of the Schrödinger equation

i
∂u

∂t
= −1u + qu in I d

for t > 0, with the initial condition
u(·, 0) = f,

subject to homogeneous Dirichlet boundary conditions.

For these problems, the functionf corresponds to the right hand side of the differential equation or the
initial value of the solution, whereas the functionq is part of the differential operator. Then the solution
Sd(f, q) depends linearly onf and nonlinearly onq, and has Lipschitz dependence on bothf andq.

We study quasilinear problems for weighted spaces. Our main emphasis is on product and finite-order
weights. We show that the tractability results of [14] for the approximation problem can be extended to
quasilinear problems. We obtain tractability, or even strong tractability, of quasilinear problems, under
appropriate assumptions on quasilinear problems and weights.

This paper is the first in a series of papers. Here we present tractability results for general quasilinear
problems under certain assumptions on the operatorsSd and the weights. We shall show in future papers
that these assumptions hold for quasilinear problems such as the solution of specific Dirichlet, Neumann
and Schr̈odinger problems.

We now discuss the approach in this paper in more technical terms. Letg = (f, q). We approxi-
mateSd(g) by algorithms evaluating finitely many functionals off andq. The form of these functionals is
restricted to a specific class3. We consider two classes3. The first class consists of all continuous linear
functionals, and the second class consists of only function values. We define the error of an algorithm in the
worst case setting. We consider two error criteria: absolute and normalized. For the absolute error criterion,
we want to find an algorithm whose worst case error is at mostε; for the normalized error criterion, we want
to find an algorithm whose worst case error reduces the initial error by a factorε. Here, the initial error is
defined as the minimal worst case error over algorithms using no evaluations ofg. In both cases, we say that
the algorithm computes anε-approximation to the operatorSd .

Let card(ε, Sd, 3) denote the minimal number of evaluations from the class3 needed to find anε-
approximation of the operatorSd under the given error criterion. The problem is tractable if card(ε, Sd, 3)

depends polynomially onε−1 andd, and is strongly tractable if card(ε, Sd, 3) is bounded independently
of d by a polynomial inε−1. Using the results and proof techniques of [14], we present several estimates of
card(ε, Sd, 3). For product weights and finite-order weights, we prove tractability and strong tractability of
general quasilinear problems, under appropriate assumptions.

The main idea behind our approach is that we use the results from [14] for the multivariate approximation
problem. More precisely, we know from [14] that there are algorithmsA using a polynomial number of
evaluations inε−1 andd such thatA(f ) andA(q) areε-approximations off andq, respectively. We then
approximateSd(f, q) by Sd(A(f ), A(q)). We underline that the results of [14] are constructive for the class
of all continuous linear functionals, and non-constructive for the class of function values. Therefore our
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results are also non-constructive for the second class. To overcome this problem, one could use the results
of the recent paper [15], which contains constructive results for the multivariate approximation problem for
the class of function values, with error bounds that are sometimes slightly worse. In this way, one can obtain
constructive results for quasilinear problems and the class of function values.

Finally, we want to stress that so far we have studied tractability of quasilinear problems only in terms
of the number of functionals needed to obtain anε-approximation. We have not considered the problem
of how many arithmetic operations are needed to implement the algorithms for which we obtained the
tractability bounds. This problem is easier for linear multivariate problems, since it is enough to consider
linear algorithms requiring precomputation of as many elements as are found in the tractability bounds.
However, for quasilinear problems, we use nonlinear algorithms since we need to computeSd(f̃ , q̃) for
known f̃ = A(f ) andg̃ = A(g). It is not clear a priori how to implement this at cost polynomial inε−1

andd. We are, however, optimistic that this can be achieved at least for some quasilinear problems of
practical importance. We will study this issue in the future.

2 Tensor products ofRKHS with general weights

We first establish a few notational conventions. IfR is an ordered ring, thenR+ andR++ respectively
denote the non-negative and positive elements ofR. If X andY are normed linear spaces, then Lin[X, Y ]
denotes the space of bounded linear transformations ofX into Y . We write Lin[X] for Lin[ X, X], andX∗

for Lin[X, R]. Finally, we use the standard notation for Sobolev inner products, seminorms, norms, and
spaces, found in, e.g., [8, 16].

We first discuss the univariate case. ForI = (0, 1), letK : Ī × Ī → R be a nonzero, symmetric, positive
definite function, i.e., the matrix [K(xi, xj )]ni,j=1 is a positive semidefinite matrix for anyn ∈ Z++ and any

distinctx1, . . . , xn ∈ Ī . We assume that

κ1 :=
∫ 1

0
K(x, x) dx < ∞. (1)

Let H(K) be the reproducing kernel Hilbert space (RKHS) associated with the kernelK, so that

f (x) = 〈f, K(·, x)〉H(K) ∀ x ∈ Ī , f ∈ H(K).

As in [14, Sect. 2], we find that

‖f ‖L2(I ) :=

(∫ 1

0

(
f (x)

)2
dx

)1/2

≤ κ
1/2
1 ‖f ‖H(K) ∀f ∈ H(K),

so thatH(K) is embedded inL2(I ).
We now turn to the multivariate case. Ford ∈ Z++, let Pd denote the power set of{1, 2, . . . , d}. Let

γ = { γd,u : u ∈ Pd, d ∈ Z++
}

be a set of non-negative weights. If we denote the cardinality of a set by| · |, then obviously∣∣{ γd,u : u ∈ Pd }
∣∣ ≤ 2d

∀ d ∈ Z++.

The most well-studied examples of such weights are the following (see, e.g., [3]):
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1. We say thatγ is a set ofproductweights if there exist numbersγ1 ≥ γ2 ≥ · · · ≥ 0 such that

γd,u =

∏
j∈u

γj ∀ u ∈ Pd, d ∈ Z++.

2. We say thatγ is a set offinite-orderweights if for someω ∈ Z++, we have

γd,u = 0 ∀ u ∈ Pd and|u| > ω, d ∈ Z++. (2)

Theorder of a setγ of finite-order weights is the smallestω ∈ Z++ such that (2) holds.

Ford ∈ Z++ andu ∈ Pd , defineKd,u : Ī d
× Ī d

→ R as

Kd,u(x, y) =

∏
j∈u

K(xj , yj ) ∀ x, y ∈ Ī d .

We then letH(Kd,u) be theRKHS with reproducing kernelKd,u. By convention,

Kd,∅ = 1 and H(Kd,∅) = span{1}.

For nonemptyu, the spaceH(Kd,u) is the tensor product space of the spaces of univariate functions with
indices from the setu.

Let γ be a weight sequence. As in [14], ford ∈ Z++, letH(Kd) be theRKHS whose reproducing kernel
is

Kd =

∑
u∈Pd

γd,uKd,u.

Forf ∈ H(Kd), we can write

f =

∑
u∈Pd

fu, wherefu = γd,ufd,u ∈ H(Kd,u). (3)

The termfd,u in this decomposition depends on the|u| variables indexed byu. For weights of orderω, the
sum consists ofO(d ω) terms, with each term consisting of at mostω variables.

Since the decomposition (3) is generally not unique, we have

‖f ‖
2
H(Kd ) = inf

∑
u∈Pd

γd,u‖fd,u‖
2
H(Kd,u) ∀f ∈ H(Kd),

the infimum being taken over all{fd,u ∈ H(Kd,u)}u∈Pd
such that (3) holds; see [1] for further discussion.

The decomposition (3) is unique iff 16∈ H(K), in which case we have the orthogonal direct sum
decomposition

H(Kd) =

⊕
u∈Pd

H(Kd,u),

along with the explicit formula

〈f, g〉H(Kd ) =

∑
u∈Pd

γd,u〈fd,u, gd,u〉H(Kd,u) ∀f, g ∈ H(Kd)

for theH(Kd)-inner product.
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Example.Let

κ2 =

∫ 1

0

∫ 1

0
K(x, y) dy dx. (4)

SinceK is a reproducing kernel, it easily follows that 0≤ κ2 ≤ κ1. If the kernelK is strictly positive
definite, thenκ2 > 0. On the other hand, ifκ2 = 0, then [14, Lemma 1] tells us that 16∈ H(K), implying
that we have the orthogonal direct sum decomposition given above.

Define

σd(θ) =

( ∑
u∈Pd

γd,uθ
|u|

)1/2

∀ θ ∈ R+. (5)

Clearly, see also [14, Sect. 2], we have∫
Ī d

Kd(x, x) dx = σ 2
d (κ1),

and

‖f ‖L2(I
d ) :=

(∫
Ī d

(
f (x)

)2
dx

)1/2

≤ σd(κ1)‖f ‖H(Kd ) ∀f ∈ H(Kd).

HenceH(Kd) is embedded inL2(I
d).

3 Problem formulation

We consider operators
Sd : H(Kd) × Qd → Gd,

where

1. Gd is a normed linear space, and

2. Qd is a set of real-valued functions defined overI d .

We require our problem to bequasilinear, meaning thatSd is linear with respect to the first argument, and
satisfies a Lipschitz condition with respect to both arguments. The formal definition is given in Section 5.

Ford ∈ Z++, define

Hd,ρ = { f ∈ H(Kd) : ‖f ‖H(Kd ) ≤ ρ } ∀ ρ > 0

as the ball inH(Kd) of radiusρ. Our goal is to efficiently approximateSd(f, q) for [f, q] ∈ Hd,ρ1 × (Qd ∩

Hd,ρ2). Here,ρ1 andρ2 are positive constants, which are independent ofd, and we assume thatQd ∩ Hd,ρ2

is nonempty.
Note that there is a certain lack of symmetry in our classHd,ρ1 × (Qd ∩Hd,ρ2) of problem elements. The

first factorHd,ρ1 is a ball in the spaceH(Kd), whereas the second factorQd ∩ Hd,ρ2 is not a ball in a space,
but is the intersection of such a ball with some other set of functions. This asymmetry is needed to model
many important problems, such as the elliptic Dirichlet problem.
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Example: The Dirichlet Problem.Let Gd be the standard Sobolev spaceH 1
0 (I d), and letQd = { q ∈

L∞(I d) : q ≥ 0}. For [f, q] ∈ H(Kd) × Qd ⊂ L2(I
d) × Qd , standard results [2, 4, 8] on elliptic

boundary-value problems tell us that there exists a uniqueu ∈ H 1
0 (I d) such that∫

Ī d

[∇u · ∇w + quw] =

∫
Ī d

f w ∀ w ∈ H 1
0 (I d).

Of course,u is the variational solution of the Dirichlet problem of findingu : Ī d
→ R such that

−1u + qu = f in I d,

u = 0 on∂I d .

Hence, if we writeu = Sd(f, q), we see that we have an operatorSd : H(Kd) × Qd → Gd , as above.
The Dirichlet problem is specified by two functions,f andq. To solve this problem computationally, we

need to assume that both functions enjoy some degree of smoothness, and this is modeled by a proper choice
of the spaceH(Kd). Hence, we havef, q ∈ H(Kd). We also need to normalizef andq, since the problem
cannot be solved otherwise. Therefore we assume thatf ∈ Hd,ρ1 andq ∈ Hd,ρ2 for someρ1 andρ2, which
presumably will not be too large. Since the Dirichlet problem is not well defined for arbitraryq from H(Kd)

we need to guarantee thatq is also non-negative. We therefore haveq ∈ Qd ∩Hd,ρ2, as required in our class
of problem elements.

The Dirichlet problem illustrates a general situation for quasilinear problems. We know thatSd(·, q)

is linear for each choice ofq ∈ Qd . Hence the assumption about the first factorHd,ρ1 should come as no
surprise, being typical when studying the complexity of linear problems; see [12, Sect. 4.5.1]. On the other
hand, there are many important problems such thatSd(f, ·) is not defined over a ball of arbitrary radius in
a function space forf ∈ H(Kd), but must be defined only over a set of functions satisfying an additional
condition; again turning to the elliptic Dirichlet problem, the simplest example of such a condition is that
q be non-negative. This explains the presence ofQd ∩ Hd,ρ2 in our definition.

We approximateS(f, q) by computing finitely many valuesλ(f ) andλ(q), whereλ ∈ 3. Here,3 is a
class of linear functionals onH(Kd). We will restrict our attention to the following two choices:

1. 3all
= [H(Kd)]∗, the set of all continuous linear functionals onH(Kd). That is,λ ∈ 3all iff there

existsrλ ∈ H(Kd) such that

λ(f ) = 〈rλ, f 〉H(Kd ) ∀f ∈ H(Kd).

Obviously,
‖λ‖[H(Kd )]∗ = ‖rλ‖H(Kd ) ∀ λ ∈ 3all.

2. 3std, the set of all function evaluations overH(Kd). That is,λ ∈ 3std iff there existsxλ ∈ Ī d such
that

λ(f ) = f (xλ) = 〈f, Kd(·, xλ)〉H(Kd ) ∀f ∈ H(Kd).

Clearly, we now have
‖λ‖[H(Kd )]∗ = K

1/2
d (xλ, xλ) ∀ λ ∈ 3std,

and3std
⊂ 3all.
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For d ∈ Z++ andn ∈ Z++, let Ad,n be an algorithm for approximatingSd , using at mostn information
evaluations from3. That is,

Ad,n(f, q) = φ(λ1(f ), . . . , λk(f ), λk+1(q), . . . , λn(q))

for somek ∈ [0, n], someλ1, . . . , λn ∈ 3, and some mappingφ : Rn
→ Gd . The linear functionals

λ1, . . . , λn can be chosen adaptively, along with the numbern of functionals used; see, e.g., [12].
The worst caseerror of Ad,n is defined to be

e(Ad,n, Sd, 3) = sup
[f,q]∈Hd,ρ1×Qd∩Hd,ρ2

‖Sd(f, q) − Ad,n(f, q)‖Gd
.

Thenth minimal error is defined to be

e(n, Sd, 3) = inf
Ad,n

e(Ad,n, Sd, 3),

the infimum being over all algorithms using at mostn information evaluations from3.
Forn = 0 we do not use any information evaluations onf andq, and algorithmsAd,0 are just constant

elements fromGd . Their worst case error is defined as above. The minimal errore(0, Sd, 3) is called the
initial error . Since this initial error involves no information evaluations, it is independent of3, and hence
we shall simply denote it ase(0, Sd). From the results of [12, Sect. 4.5], we see that

the problem is quasilinearH⇒ e(0, Sd) = ρ1 sup
q∈Qd∩Hd,ρ2

‖Sd(·, q)‖Lin[H(Kd ),Gd ] . (6)

Let ε ∈ (0, 1). We wish to measure the minimal number of information evaluations needed to compute
anε-approximation. Here, we say that an algorithmAd,n provides anε-approximationto Sd if

e(Ad,n, Sd, 3) ≤ ε · ErrCrit(Sd),

with ErrCrit being anerror criterion. In this paper, we will use the error criteria

ErrCrit(Sd) =

{
1 for absolute error,

e(0, Sd) for normalized error.

Hence:

1. An algorithm provides anε-approximation in theabsolutesense simply means that the error of the
algorithm is at mostε.

2. An algorithm provides anε-approximation in thenormalizedsense simply means that the algorithm
reducesthe initial error by at least a factor ofε, and is thus at mostε · e(0, Sd).

For these two error criteria, let

card(ε, Sd, 3) = min{ n ∈ Z+ : e(n, Sd, 3) ≤ ε · ErrCrit(Sd) }

denote the minimal number of information evaluations from3 needed to obtain anε-approximation ofSd .
Of course, theε-cardinalities for the absolute and normalized criteria are related by the equation

cardnor(ε, Sd, 3) = cardabs(ε · e(0, Sd), Sd, 3). (7)
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We are ready to define tractability as in [17]. The problemS = {Sd}d∈Z++ is said to betractablein the
class3 if there exist non-negative numbersC, perr, andpdim such that

card(ε, Sd, 3) ≤ C

(
1

ε

)perr

d pdim ∀ ε ∈ (0, 1), d ∈ Z++. (8)

Any numbersperr = perr(S, 3) andpdim = pdim(S, 3) such that (8) holds are calledε- andd-exponents of
tractability; these need not be uniquely defined. Ifpdim = 0 in (8), then the problemS is said to bestrongly
tractablein 3, and

pstrong(S, 3) = inf

{
perr ≥ 0 : ∃ C ≥ 0 such that card(ε, Sd, 3) ≤ C

(
1

ε

)perr

∀ ε ∈ (0, 1), d ∈ Z++

}
is called theexponent of strong tractability.

We stress that tractability results for the absolute sense may differ from those for the normalized sense,
sincee(0, Sd) may depend ond.

4 Some results for the approximation problem

We need to recall some results from [14] about theapproximation problem, i.e., the problem of approximat-
ing the embedding operator Appd : H(Kd) → L2(I

d) defined by Appd f = f for f ∈ H(Kd). We will use
these results in Section 5.

Let d ∈ Z++. The operatorWd = (Appd)
∗(Appd) ∈ Lin[H(Kd)] may be explicitly written as

Wdf =

∑
u∈Pd

∫
Ī d

γd,uKd,u(x, ·)f (x) dx ∀f ∈ H(Kd).

We will also need to use the embedding operator App∈ Lin[H(K), L2(I )], as well as the operatorW =

(App)∗(App) ∈ Lin[H(K)]. The latter is given explicitly as

Wf =

∫ 1

0
K(x, ·)f (x) dx ∀f ∈ H(K). (9)

SinceWd is a self-adjoint compact operator onH(Kd), there exist eigenvalues

λd,1 ≥ λd,2 ≥ · · · ≥ 0

and an orthonormal basis{ed,j }j∈Z++ for H(Kd) such that

Wded,j = λd,jed,j ∀ j ∈ Z++.

We have
‖Wd‖Lin[H(Kd )] = ‖ Appd ‖

2
Lin[H(Kd ),L2(I

d )]

and
‖W‖Lin[H(K)] = ‖ App‖

2
Lin[H(K),L2(I )] ≤ κ1,

see [14, Lemma 2].
We summarize the results of [14] in the following Lemmas:
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Lemma 4.1. Letκ1, κ2 andσd be defined by(1), (4) and (5).

1. There existscd ∈ [κ2, κ1] such that

‖ Appd ‖Lin[H(Kd ),L2(I
d )] = σd(cd).

2. If κ2 = 0, then
‖ Appd ‖Lin[H(Kd ),L2(I

d )] = max
u∈Pd

[
γd,u‖W‖

u
Lin[H(K)]

]1/2
.

Lemma 4.2. Letd ∈ Z++ andn ∈ Z+.

1. Let

A∗

d,n(f ) =

n∑
j=1

〈f, ed,j 〉H(Kd )ed,j ∀f ∈ H(Kd).

Then

‖ Appd −A∗

d,n‖Lin[H(Kd ),L2(I
d )] ≤

σd(κ1)
√

n + 1
.

2. There exist pointst1, . . . , tn and elementsa1, . . . , an ∈ H(Kd) such that

Ad,n(f ) =

n∑
j=1

f (tj )aj ∀f ∈ H(Kd),

we have

‖ Appd −Ad,n‖Lin[H(Kd ),L2(I
d )] ≤

σd(κ1)
√

2

n1/4
.

We stress that these results are non-constructive for the class3std. Constructive error bounds may be
found in [15].

5 General results for quasilinear problems

We first define what we mean by a quasilinear problem, and then present a number of results that guarantee
tractability of quasilinear problems.

We say that the problemS = {Sd}d∈Z++ is quasilinearif for all d ∈ Z++, the operatorSd : H(Kd) ×

Qd → Gd satisfies two conditions:

1. For anyq ∈ Qd , we haveSd(·, q) ∈ Lin[H(Kd), Gd ].

2. There exists a functionφ : H(Kd) → Qd , and a non-negative numberCd , such that

‖Sd(f, q) − Sd(f̃ , φ(q̃))‖Gd
≤ Cd

[
‖f − f̃ ‖L2(I

d ) + ‖q − q̃‖L2(I
d )

]
∀ [f, q] ∈ Hd,ρ1 × Qd, [f̃ , q̃] ∈ H(Kd) × H(Kd). (10)
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We now comment on these conditions. The first condition simply states thatSd is linear if we fix the
second argumentq. The second condition states thatSd satisfies a Lipschitz condition with respect to both
its arguments. We wish to motivate the need for the functionφ. If we perturb two argumentsf andq and
obtainf̃ and q̃, then the perturbed̃f and q̃ are elements ofH(Kd). We would like to treatSd(f̃ , q̃) as a
perturbation ofSd(f, q). Unfortunately,Sd(f̃ , q̃) need not be well defined, since the second argumentq̃

need not belong toQd . However, if we have a functionφ that maps elements ofH(Kd) to the setQd ,
thenSd(·, φ(q̃)) will be well defined. Going back to our example of the Dirichlet problem, the role of the
functionφ is to guarantee thatφ(q̃) ≥ 0.

We now turn to tractability results, which will be derived for the absolute and normalized errors. These
errors are linked by the relation (7). We will be able to simultaneously state results for both the absolute and
normalized errors by using ErrCrit(Sd) in the assumptions needed for our estimates. In the remainder of this
section, we shall let card(·, ·, ·) denote either cardabs(·, ·, ·) or cardnor(·, ·, ·), as appropriate.

Theorem 5.1. LetS = {Sd}d∈Z++ be a quasilinear problem . Suppose that there existsα ≥ 0 such that

Nα := sup
d∈Z++

Cd‖ Appd ‖Lin[H(Kd ),L2(I
d )]

d α ErrCrit(Sd)
< ∞. (11)

Then

card(ε, Sd, 3
all) ≤ 2(ρ1 + ρ2)

2N2
α

σd(κ1)
2

‖ Appd ‖
2
Lin[H(Kd ),L2(I

d )]

(
1

ε

)2

d 2α,

and

card(ε, Sd, 3
std) ≤

⌈
8(ρ1 + ρ2)

4N4
α

σd(κ1)
4

‖ Appd ‖
4
Lin[H(Kd ),L2(I

d )]

(
1

ε

)4

d 4α

⌉
+ 1.

Proof. The proof is based on that of [14, Thm. 1]. We first consider the class3all. Forn ∈ Z+, let

U ∗

d,n(f, q) = Sd

(
A∗

d,bn/2c
f, φ(A∗

d,bn/2c
q)

)
∀ [f, q] ∈ Hd,ρ1 × (Qd ∩ Hd,ρ2)

whereA∗

d,bn/2c
is as defined in Lemma 4.2. The expression on the right-hand side of this equation is well-

defined sinceA∗

d,bn/2c
f ∈ H(Kd). ClearlyU ∗

d,n is an algorithm using at mostn evaluations from3all. From
(10) and Lemma 4.2, we have

‖Sd(f, q) − U ∗

d,n(f, q)‖Gd
≤ Cd

[
‖f − A∗

d,bn/2c
f ‖L2(I

d ) + ‖q − A∗

d,bn/2c
q‖L2(I

d )

]
≤

Cdσd(κ1)
√

bn/2c + 1

[
‖f ‖H(Kd ) + ‖q‖H(Kd )

]
≤

√
2Cd(ρ1 + ρ2)σd(κ1)

√
n + 1

sincebn/2c + 1 ≥ (n + 1)/2. This holds for arbitrary [f, q] ∈ Hd,ρ1 × (Qd ∩ Hd,ρ2), and therefore

e(A∗

d,n, Sd, 3
all) ≤

√
2Cd(ρ1 + ρ2)σd(κ1)

√
n + 1

.

11



Hence

card(ε, Sd, 3
all) ≤

2C2
d(ρ1 + ρ2)

2σ 2
d (κ1)

[ErrCrit(Sd)]2

(
1

ε

)2

= 2(ρ1 + ρ2)
2

(
Cd‖ Appd ‖Lin[H(Kd ),L2(I

d )]

d α ErrCrit(Sd)

)2
σ 2

d (κ1)

‖ Appd ‖
2
Lin[H(Kd ),L2(I

d )]

(
1

ε

)2

d 2α

≤ 2(ρ1 + ρ2)
2N2

α

σ 2
d (κ1)

‖ Appd ‖
2
Lin[H(Kd ),L2(I

d )]

(
1

ε

)2

d 2α,

as claimed.
Now we consider the class3std. Forn ≥ 2 let

Ud,n(f, q) = Sd

(
Ad,bn/2cf, φ(Ad,bn/2cq)

)
∀ [f, q] ∈ Hd,ρ1 × (Qd ∩ Hd,ρ2)

where algorithmAd,bn/2c is as defined in from Lemma 4.2. The expression on the right-hand side of this
equation is well-defined sinceAd,bn/2cf ∈ H(Kd). ClearlyUd,n is an algorithm using at mostn evaluations
from 3std. From (10) and Lemma 4.2, we have

‖Sd(f, q) − Ud,n(f, q)‖Gd
≤ Cd

[
‖f − Ad,bn/2cf ‖L2(I

d ) + ‖q − Ad,bn/2cq‖L2(I
d )

]
≤

√
2Cdσd(κ1)

[(n − 1)/2]1/4

[
‖f ‖H(Kd ) + ‖q‖H(Kd )

]
≤

23/4Cd(ρ1 + ρ2)σd(κ1)

(n − 1)1/4

for any [f, q] ∈ Hd,ρ1 × (Qd ∩ Hd,ρ2). This implies that

e(Ad,n, Sd, 3
std) ≤

23/4Cd(ρ1 + ρ2)σd(κ1)

(n − 1)1/4
.

DenotingA = ‖ Appd ‖Lin[H(Kd ),L2(I
d )] , we then obtain

card(ε, Sd, 3
std) ≤

⌈(
23/4Cd(ρ1 + ρ2)σd(κ1)

ε ErrCrit(Sd)

)4
⌉

+ 1 =

⌈
8(ρ1 + ρ2)

4

(
Cdσd(κ1)

ErrCrit(Sd)

)4 (
1

ε

)4
⌉

+ 1

=

⌈
8(ρ1 + ρ2)

4

(
CdA

d α ErrCrit(Sd)

)4
σ 4

d (κ1)

A4

(
1

ε

)4

d 4α

⌉
+ 1

≤

⌈
8(ρ1 + ρ2)

4N4
α

σ 4
d (κ1)

A4

(
1

ε

)4

d 4α

⌉
+ 1,

as claimed.

Note that the cardinality estimates of Theorem 5.1 consist of several factors:

1. The first factor involvesNα, ρ1, andρ2. This factor is independent ofε andd.

2. The next factor involvesσd(κ1) and‖ Appd ‖Lin[H(Kd ),L2(I
d )] . This factor is independent ofε. However

at this point, it is unclear whether this factor depends ond.

12



3. The next factor is a power of 1/ε.

4. The last factor is a power ofd.

Since we want to use these estimates to establish tractability results, we must resolve the status of the second
factor.

We first consider general weightsγ, after which we will treat product and finite-order weights.

Theorem 5.2. Let S = {Sd}d∈Z++ be a quasilinear problem . Letκ1, κ2, σd , andW be as in(1), (4), (5),
and (9). Letα andNα be as in Theorem5.1. Suppose that there existsβ ≥ 0 such that

0β = sup
d∈Z++

0β,d < ∞,

where

0β,d =
1

d β

σ 2
d (κ1)

δκ2,0

(
max
u∈Pd

γd,u‖W‖
|u|

Lin[H(K)]

)
+ (1 − δκ2,0)σ

2
d (κ2)

,

whereδκ2,0 is the Kronecker delta. Then

card(ε, Sd, 3
all) ≤ 2(ρ1 + ρ2)

2N2
α0β

(
1

ε

)2

d 2α+β

and

card(ε, Sd, 3
std) ≤

⌈
8(ρ1 + ρ2)

4N4
α02

β

(
1

ε

)4

d 4α+2β

⌉
+ 1.

Hence in both classes3all and 3std, the quasilinear problemS is strongly tractable ifα = β = 0 and
tractable ifα + β > 0.

Proof. Using Lemma 4.1 and the fact thatσd is non-increasing, we have

‖ Appd ‖
2
Lin[H(Kd ),L2(I

d )] ≥ δκ2,0

(
max
u∈Pd

γd,u‖W‖
|u|

Lin[H(K)]

)
+ (1 − δκ2,0)σ

2
d (κ2),

from which it follows that
σ 2

d (κ1)

‖ Appd ‖
2
Lin[H(Kd ),L2(I

d )]

≤ 0β,dd
β

≤ 0βd β .

The desired result now follows from Theorem 5.1.

Let us see how to apply this result when we have product weights, i.e., when

γd,u =

∏
j∈u

γj ∀ u ∈ Pd, d ∈ Z++,

whereγ1 ≥ γ2 ≥ · · · ≥ 0. Similarly to [14, Sect. 3.2], we have the following:

Theorem 5.3. Consider a quasilinear problemS = {Sd}d∈Z++ with product weights. Letκ1 andκ2 be as
in (1) and (4), and letα andNα be as in Theorem5.1.

13



1. Suppose that
∞∑

j=1

γj < ∞.

Then00 < ∞, so that for both classes3all and3std, the quasilinear problemS is tractable ifα > 0,
and strongly tractable ifα = 0. For α > 0, we have

card(ε, Sd, 3
all) ≤ 2(ρ1 + ρ2)

2N2
α00

(
1

ε

)2

d 2α

and

card(ε, Sd, 3
std) ≤

⌈
8(ρ1 + ρ2)

4N4
α02

0

(
1

ε

)4

d 4α

⌉
+ 1.

For α = 0, we have

card(ε, Sd, 3
all) ≤ 2(ρ1 + ρ2)

2N2
000

(
1

ε

)2

and

card(ε, Sd, 3
std) ≤

⌈
8(ρ1 + ρ2)

4N4
002

0

(
1

ε

)4
⌉

+ 1.

2. Suppose that

a := lim sup
d→∞

1

ln (d + 1)

d∑
j=1

γj < ∞.

Then0β < ∞ for β > a(κ1 − κ2), and in both classes3all and3std, the quasilinear problemS is
tractable, with

card(ε, Sd, 3
all) ≤ 2(ρ1 + ρ2)

2N2
α0β

(
1

ε

)2

d 2α+β

and

card(ε, Sd, 3
std) ≤

⌈
8(ρ1 + ρ2)

4N4
α02

β

(
1

ε

)4

d 4α+2β

⌉
+ 1.

Proof. Since we are using product weights, we have

σ 2
d (θ) =

d∏
j=1

(1 + θγj ).

We first consider the case where
∑

∞

j=1 γj < ∞. Then σ 2
d (θ) is uniformly bounded ind. Using

Lemma 4.1, we find that forκ2 > 0 we have

00 = sup
d∈Z++

00,d = sup
d∈Z++

σ 2
d (κ1)

σ 2
d (κ2)

≤

∞∏
j=1

(1 + κ1γj ) < ∞,

whereas forκ2 = 0 we have

00 = sup
d∈Z++

00,d = sup
d∈Z++

σ 2
d (κ1)

maxu∈Pd

∏|u|

j=1 γj‖W‖Lin[H(K)]

< ∞.
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In this last estimate, we use the fact that limj→∞ γj = 0 implies lim|u|→∞

∏|u|

j=1 γj‖W‖Lin[H(K)] = 0. The
rest directly follows from Theorem 5.2.

We now consider the case wherea is finite. Choosingδ > 0, there exists an integerdδ such that

1

ln(d + 1)

d∑
j=1

γj ≤ a + δ ∀ d ≥ dδ.

Ford ≥ dδ, we then have

σ 2
d (θ) = exp

( d∑
j=1

ln(1 + θγj )

)
≤ exp

(
θ

d∑
j=1

γj

)
≤ eθ(a+δ) ln(d+1)

= (d + 1)θ(a+δ).

Since(1 + κ1γj )/(1 + κ2γj ) ≤ 1 + (κ2 − κ1)γj , we have

σ 2
d (κ1)

σ 2
d (κ2)

=

d∏
j=1

1 + κ1γj

1 + κ2γj

≤

d∏
j=1

(
1 + (κ1 − κ2)γj

)
= σ 2

d (κ1 − κ2).

Now takeβ = (a + δ)(κ1 − κ2). Forκ2 > 0, we have

0β = sup
d∈Z++

σ 2
d (κ1)

d βσ 2
d (κ2)

≤ max

{
max
d<dδ

σ 2
d (κ1)

d βσ 2
d (κ2)

, sup
d≥dδ

(d + 1)β

d β

}
< ∞.

Forκ2 = 0 we haveβ = κ1(a + δ) and

0β = sup
d∈Z++

σ 2
d (κ1)

d β maxu∈Pd

∏|u|

j=1 γj‖W‖Lin[H(K)]

≤ max

{
max
d<dδ

σ 2
d (κ1)

d β maxu∈Pd

∏|u|

j=1 γj‖W‖Lin[H(K)]

, sup
d≥dδ

(d + 1)β

d β maxu∈Pd

∏|u|

j=1 γj‖W‖Lin[H(K)]

}
< ∞,

since limj→∞ γj = 0 and lim|u|→∞

∏|u|

j=1 γj‖W‖Lin[H(K)] = 0 as before. Sinceδ can be arbitrarily small,
this proves that0β < ∞ for all β > (κ1 − κ2)a. The rest directly follows from Theorem 5.2.

We now discuss finite-order weights of orderω, i.e., γd,u 6= 0 only if |u| ≤ ω for all u ∈ Pd and
d ∈ Z++. We need the following lemma.

Lemma 5.1. Letd, ω ∈ Z++.

1. Let

Pω(d) =

ω∑
j=0

(
d

j

)
.

Then
Pω(d) ≤ 2d ω.

2. Letγ be finite-order weights of orderω. Then

σd(θ) ≤

√
2d ω max{θ ω, 1} max

u∈Pd

γd,u ∀ θ ∈ R+.
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Proof. Let us establish the first part of the Lemma. The cased = 1 is straightforward, sincePω(1) = P1(1)

for ω ≥ 1 andP1(1) = 2. Now suppose thatd ≥ 2. If ω = 1, then

P1(d) = 1 + d ≤ 2d,

whereas ifω ≥ 2, we have

Pω(d) =

ω∑
j=0

d(d − 1) . . . (d − j + 1)

j !
≤

ω∑
j=0

d j

j !
≤

(
1

d

ω−1∑
j=0

d j−ω+1

j !
+

1

ω!

)
d ω

≤

(
1

d

ω−1∑
j=0

1

j !
+

1

ω!

)
d ω

≤

(
e

d
+

1

ω!

)
d ω

≤ (1
2e +

1
2)d

ω
≤ 2d ω.

We now turn to the second part of the Lemma. Letγmax = maxu∈Pd
γd,u If θ > 1, then

σ 2
d (θ) =

∑
u∈Pd

γd,uθ
|u|

≤ θω
∑

u∈Pd

γd,u ≤ θωγmax

∑
u∈Pd
|u|≤ω

1 = θωγmaxPω(d),

whereas ifθ ∈ [0, 1], we have
σ 2

d (θ) ≤

∑
u∈Pd

γd,u ≤ γmaxPω(d).

Using the first part of the Lemma, we find

σ 2
d (θ) ≤ max{θω, 1} γmaxPω(d) ≤ max{θω, 1} γmax · 2d ω,

as required.

We are now ready to apply the results of Theorem 5.1 to the case of finite-order weights.

Theorem 5.4. Consider a quasilinear problemS = {Sd}d∈Z++ with finite-order weights of orderω. Letκ1

andκ2 be defined by(1) and (4), andNα by (11).

1. Suppose thatκ2 > 0.

(a) For the class3all, we have

card(ε, Sd, 3
all) ≤ 2(ρ1 + ρ2)

2N2
α

(
κ1

κ2

)ω (
1

ε

)2

d 2α.

(b) For the class3std, we have

card(ε, Sd, 3
std) ≤

⌈
8(ρ1 + ρ2)

4N4
α

(
κ1

κ2

)2ω (
1

ε

)4

d 4α

⌉
+ 1.

Hence in both classes3all and 3std, the quasilinear problemS is strongly tractable ifα = 0, and
tractable ifα > 0.
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2. Suppose thatκ2 = 0. Let

0 =
max(1, κ1)

min(1, ‖W‖Lin[H(K)])
.

(a) For the class3all, we have

card(ε, Sd, 3
all) ≤ 4(ρ1 + ρ2)

2N2
α0ω

(
1

ε

)2

d 2α+ω.

(b) For the class3std, we have

card(ε, Sd, 3
std) ≤

⌈
32(ρ1 + ρ2)

4N4
α02ω

(
1

ε

)4

d 4α+2ω

⌉
+ 1.

Hence in both classes3all and3std, the quasilinear problemS is tractable.

Proof. As in the proof of [14, Thm. 2], we find that ifκ2 > 0, then the first part of Lemma 4.1 yields

σ 2
d (κ1)

‖ Appd ‖
2
Lin[H(Kd ),L2(I

d )]

=
σ 2

d (κ1)

σ 2
d (cd)

≤
σ 2

d (κ1)

σ 2
d (κ2)

=

∑
u∈Pd , |u|≤ω κ

|u|

1 γd,u∑
u∈Pd , |u|≤ω κ

|u|

2 γd,u

≤

(
κ1

κ2

)ω

.

If κ2 = 0, then the second part of Lemma 4.1 yields

σ 2
d (κ1)

‖ Appd ‖
2
Lin[H(Kd ),L2(I

d )]

=
σ 2

d (κ1)

maxu∈Pd
γd,u‖W‖

|u|

Lin[H(k)]

≤
maxγd,u∈Pd

γd,u max(1, κ1)
ω Pω(d)

maxγd,u∈Pd
γd,u min(1, ‖W‖Lin[H(K)])ω

= 0ωPω(d) ≤ 20ωd ω

(we use the first part of Lemma 5.1 in the last step of the second inequality). Using these inequalities in
Theorem 5.1, we obtain the desired results.

As an application of this theorem, we obtain simple conditions that establish strong tractability with
finite-order weights.

Theorem 5.5. Suppose that the hypotheses of Theorem5.4 hold withκ2 > 0. Furthermore, suppose that
either

ρ3 := sup
d∈Z++

∑
u∈Pd

γd,u < ∞ (12)

and

C∗ := sup
d∈Z++

Cd

ErrCrit(Sd)
< ∞, (13)

or that

M := sup
d∈Z++

‖ Appd ‖Lin[H(Kd ),L2(I
d )]

ErrCrit(Sd)
< ∞ (14)

and
C∗∗ := sup

d∈Z++

Cd < ∞. (15)

Then the quasilinear problemS is strongly tractable. More precisely:

17



1. For the class3all, we have

card(ε, Sd, 3
all) ≤ 2(ρ1 + ρ2)

2N2
0

(
κ1

κ2

)ω (
1

ε

)2

.

Hence
pstrong(S, 3all) ≤ 2.

2. For 3std, we have

card(ε, Sd, 3
std) ≤

⌈
8(ρ1 + ρ2)

4N4
0

(
κ1

κ2

)2ω (
1

ε

)4
⌉

+ 1.

Hence
pstrong(S, 3std) ≤ 4.

Here,N0 is defined by(11), and satisfies the bound

N0 ≤

{
C∗ρ

1/2
3 max{κω/2

1 , 1} if (12)and (13)hold,

C∗∗M if (14)and (15)hold.
(16)

Proof. If (12) and (13) hold, we find that

‖ Appd ‖Lin[H(Kd ),L2(I
d )] = σd(cd) ≤ σd(max{κ1, 1}) ≤ max{κω/2

1 , 1}

( ∑
u∈Pd

γd,u

)1/2

≤ ρ
1/2
3 max{κω/2

1 , 1}.

Using this inequality, along with (11), we obtainN0 ≤ C∗ρ
1/2
3 max{κω/2

2 , 1}. On the other hand, if (14)
and (15) hold, we can use (11) to see thatN0 ≤ C∗∗M. Hence in either case, we find that (16) holds. The
remaining results now follow from Theorem 5.4.
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