
ar
X

iv
:q

ua
nt

-p
h/

03
08

14
0

v2

13
 F

eb
 2

00
4

The Power of Various Real-Valued Quantum

Queries

Arvid J. Bessen∗

July 8, 2004

Universität Kaiserslautern
Fachbereich Informatik

Postfach 3049
D-67663 Kaiserslautern

Abstract

The computation of combinatorial and numerical problems on quan-

tum computers is often much faster than on a classical computer in num-

bers of queries. A query is a procedure by which the quantum computer

gains information about the specific problem.

Different query definitions were given and our aim is to review them

and to show that these definitions are not equivalent. To achieve this

result we will study the simulation and approximation of one query type

by another. While approximation is “easy” in one direction, we will show

that it is “hard” in the other direction by a lower bound for the numbers

of queries needed in the simulation. The main tool in this lower bound

proof is a relationship between quantum algorithms and trigonometric

polynomials that we will establish.

1 Introduction to Quantum Queries

Since Grover’s discovery of the quantum search algorithm [5], the notion of
query complexity has played an important role in quantum computation (for
a thorough introduction to quantum computation see Nielsen, Chuang, [8]).
Grover studied the problem to find an index j ∈ {0, 1, . . . , N − 1} so that for a
function

f : {0, . . . , N − 1} → {0, 1}
f(j) = 1 holds. He constructed a quantum algorithm that needs O(

√
N) eval-

uations of f , if exactly one index j with f(j) = 1 exists, while an algorithm on
a classical computer would need Θ(N) evaluations. His quantum evaluation of
f was given by the transformation

|j〉 7→
{
|j〉 if f(j) = 0

− |j〉 if f(j) = 1

∗
bessen@cs.columbia.edu

1

This query can easily be seen to be equivalent to the query

|j〉 |b〉 7→ |j〉 |b⊕ f(j)〉 = |j〉 |b+ f(j) mod 2〉 (1)

which was used by Beals et al. [2] and Nayak and Wu [7]. For this query they
proved important lower bounds for many problems that involve Boolean queries.

All these queries refer to the following model of computation. Let Qf denote
a query transformation for a fixed function f , let Uk denote arbitrary unitary
transformations not depending on f , and let |ψ〉 be a starting state. Consider
the quantum algorithm

UnQfUn−1 . . . U1QfU0 |ψ〉 . (2)

It returns a resulting state |χf 〉 after measurement with probability pχf
. We

identify this state |χf 〉 with its index χf and map it to the solution space by a
computable mapping ϕ not depending on f on a classical computer.

We briefly recall some definitions from information-based complexity (see
the introductions and surveys Traub, Werschulz [13], and Traub, Wasilkowski,
Woźniakowski [12]). These were transferred to quantum computers by Heinrich,
[6], whose approach we follow. Let the correct solution to every problem f , f
from the problem class F , be given by a mapping S : F → G. If the algorithm
returns a ϕ(χf) ∈ G for every input f ∈ F with probability pχf

, so that

∑

χf :‖S(f)−ϕ(χf)‖<ǫ

pχf
≥ 3

4
,

it is said to solve the problem for the problem class F . The best precision ǫ that
can be achieved by a quantum algorithm, which uses only n queries, is called
the n-th minimal quantum query error eq

n(S, F) . Conversely the quantum query
complexity compq

ǫ (S, F) is the minimal number of queries that have to be used
in a quantum algorithm to get the desired result with precision ǫ.

With this formal framework we are able to deal with numerical problems,
if we define what the query Qf is in this case. Since numerical queries have
more than just two possible outcomes we have to extend our notion of a query.
We will follow the formal approach of Heinrich to discuss the different queries.
Suppose we want to query a function f : D → K. To ease our discussion let us
restrict to K ⊆ [0, 1]. We have to choose a mapping τ : {0, 1, . . . , 2n − 1} → D,
decoding the input, and a mapping β encoding the output.

There are two different approaches to encode a value in [0, 1] in a quantum
computer. The first approach was established by Abrams and Williams [1], and
Novak [10], who proposed the following query

Qphase
f |j〉 |0〉 =

√
1 − β(f(τ(j))) |j〉 |0〉 +

√
β(f(τ(j))) |j〉 |1〉

Qphase
f |j〉 |1〉 = −

√
β(f(τ(j))) |j〉 |0〉 +

√
1 − β(f(τ(j))) |j〉 |1〉

(3)

This query continuously changes between the two states |0〉 and |1〉. We will
refer to this query as the phase query since it can be viewed as a (relative) phase
rotation in the space spanned by |0〉, |1〉. In [1] the mapping β was chosen as

β : [0, 1] → [0, 1]

x 7→ x2

2

while in [10] β = id.
Another approach to extend the Boolean query was chosen by Heinrich, [6].

He encoded the values in [0, 1] via β to {0, 1, . . . , 2m − 1} and defined:

Qbit
f |j〉 |x〉 = |j〉 |x⊕ β(f(τ(j)))〉 = |j〉 |x+ β(f(τ(j))) mod 2m〉 (4)

For the rest of this paper we will refer to this query definition as the bit query.
Consider the problem to compute the mean. Let F := {f : {0, . . . , N−1} →

[0, 1]}. The solution operator SN : F → [0, 1] for this problem is

SN(f) :=
1

N

N−1∑

j=0

f(j).

Brassard et al. [3], Novak [10], and Heinrich [6] showed that for this problem

compq
ǫ (SN , F) = Θ(

1

ǫ
)

with phase queries as well as with bit queries, where in both cases the upper
bounds were shown by the amplitude estimation algorithm.

Does this equivalence hold for all problems?

2 Bit queries can simulate phase queries

Suppose we are able to construct a unitary transformation that realizes a phase
query by the use of bit queries. If we additionally show that the required number
of bit queries is a small constant, no algorithm that uses phase queries could be
(asymptotically) faster than an algorithm with bit queries.

Definition 1. If it is possible to find unitary transformations Ui not depending
on f with either

Q
(1)
f = Unq

Q
(2)
f Unq−1 . . . U1Q

(2)
f U0 (simulation) (5)

or
∥∥∥Q(1)

f − Unq
Q

(2)
f Unq−1 . . . U1Q

(2)
f U0

∥∥∥ ≤ δ (approximation) (6)

for all f ∈ F , we say that the query Q
(1)
f is simulated or approximated up to δ

by Q
(2)
f using nq queries Q

(2)
f .

What does this definition of approximation say about the probability to
measure the correct state? As it is shown e.g. in [8], box 4.1, suppose the
probability that on input |ψ〉, the state |ϕ〉 is measured with probability pU , if
U is applied, and with pV , if V is applied. Then

|pU − pV | ≤ 2‖U − V ‖. (7)

Proposition 2. Two applications of Qbit
f suffice to approximate Qphase

f by Qbit
f .

The precision of the approximation only depends on the encodings βphase, βbit,
and the number of bits in the bit query Qbit

f .

3

Fix the encodings βbit : [0, 1] → {0, . . . , 2m − 1}, and βphase : [0, 1] → [0, 1].
Define βbit

− : {0, . . . , 2m − 1} → [0, 1] as a mapping that satisfies βbit ◦βbit
− = id.

Let the starting state |ψ〉 be

|ψ〉 =
∑

j

αj |j〉 |0〉 +
∑

j

βj |j〉 |1〉 ∈ Hn ⊗H1.

We just state the algorithm for the basis states |j〉 |0〉, and |j〉 |1〉, the extension
to arbitrary states |ψ〉 follows from linearity.

• Starting state is |j〉 |0〉 or |j〉 |1〉 .

• Append |0〉 |0〉 ∈ Hn ⊗Hm:

|j〉 |0〉 |0〉 |0〉 or |j〉 |1〉 |0〉 |0〉

• Copy (by addition modulo 2n) the first register to the third register:

|j〉 |0〉 |j〉 |0〉 or |j〉 |1〉 |j〉 |0〉

• Apply Qbit
f to the third and fourth register:

|j〉 |0〉 |j〉
∣∣βbit(f(τ(j)))

〉
or |j〉 |1〉 |j〉

∣∣βbit(f(τ(j)))
〉

(8)

• Define a mapping U by

U |j〉 |0〉 |j〉 |x〉 =
√

1 − βphase(βbit
− (x)) |j〉 |0〉 |j〉 |x〉

+
√
βphase(βbit

− (x)) |j〉 |1〉 |j〉 |x〉

U |j〉 |1〉 |j〉 |x〉 = −
√
βphase(βbit

− (x)) |j〉 |0〉 |j〉 |x〉

+
√

1 − βphase(βbit
− (x)) |j〉 |1〉 |j〉 |x〉

(9)

for every j ∈ {0, . . . , 2n − 1} and x ∈ {0, . . . , 2m − 1}. Note that U does
not depend on f . Apply U to the state (8), resulting in:

√
1 − βphase(βbit

− (βbit(f(τ(j))))) |j〉 |0〉 |j〉
∣∣βbit(f(τ(j)))

〉

+
√
βphase(βbit

− (βbit(f(τ(j))))) |j〉 |1〉 |j〉
∣∣βbit(f(τ(j)))

〉
(10)

or

−
√
βphase(βbit

− (βbit(f(τ(j))))) |j〉 |0〉 |j〉
∣∣βbit(f(τ(j)))

〉

+
√

1 − βphase(βbit
− (βbit(f(τ(j))))) |j〉 |1〉 |j〉

∣∣βbit(f(τ(j)))
〉
. (11)

• Uncompute Qbit
f by mapping

|j〉 |b〉 |k〉 |x〉 7→ |j〉 |b〉 |k〉 |(−x) mod 2m〉
and applying Qbit

f . Now map

|j〉 |b〉 |k〉 |x〉 7→ |j〉 |b〉 |(−k) mod 2n〉 |x〉
and again apply the copy operation. We can discard the additional quan-
tum registers now, since they are in the state |0〉 |0〉 again.

4

A close look at the states in (10), and (11) reveals that we have successfully
simulated the mapping

Qphase

βbit

−

◦βbit◦f
.

Since in general βbit
− ◦ βbit 6= id, our approximation introduced an error in the

simulation. This error is bounded by

sup
x∈D

|βbit
− (βbit(f(x))) − f(x)| ≤ sup

y∈[0,1]

|βbit
− (βbit(y)) − y|

≤ sup{|x− y| |βbit(x) = βbit(y)}. (12)

For the most obvious choice for βbit

βbit : [0, 1) → {0, . . . , 2m − 1}
x 7→ ⌊x · 2m⌋

(13)

a good βbit
− is

βbit
− : {0, . . . , 2m − 1} → [0, 1]

x 7→ x · 2−m + 2−m−1
(14)

for which the error from (12) is less than 2−m−1.
As an example consider βphase = id. After some calculation we get

‖Qphase
f −Qphase

βbit

−

◦βbit◦f
‖ ≤ 2−m/2.

3 Phase queries cannot efficiently approximate

bit queries

Let us consider the (simple) evaluation problem

S : F → [0, 1]

f 7→ Sf := f(0)
(15)

with F = {f : {0} → [0, 1]}. It is obvious that this problem can be solved
on a “classical” computer by just one evaluation of f , i.e. compǫ(S, F) = 1.
The precision ǫ only depends on the accuracy of the query - the function call
returning f(0).

On a quantum computer that uses bit queries to evaluate f also

compq,bit
ǫ (S, F) = 1, (16)

at least, if we choose βbit as in (13) and if the number of qubits m is chosen so
that 2m > 1

ǫ .
If we are only allowed to use phase queries however, we can prove a lower

bound theorem.

Theorem 3. Consider the evaluation problem (15). For any quantum algorithm
that is only allowed to access f by phase queries,

compq,phase
ǫ (S, F) = Ω(

1

ǫ
), (17)

if the encoding βphase is chosen as βphase = id.

5

To prove this theorem we will need lemma 6 and lemma 8, thus we will
postpone the proof. But theorem 3 allows us to easily prove the following
corollary:

Corollary 4. The approximation of an m-bit query Qbit
f to δ ≤ 1

8 by a phase

query Qphase

f requires Ω(2m) phase queries Qphase

f when βphase = id.

Proof. Suppose we could approximate an m-bit query by nq = nq(m) phase
queries and for all c > 0, m0 ∈ N there exists an m ≥ m0 with

nq(m) < c2m.

Fix such an m. Approximation means

∥∥∥Qbit
f − Unq

Qphase
f Unq−1 . . . U1Q

phase
f U0

∥∥∥ ≤ δ.

We know that just one m-bit query is sufficient to solve the evaluation problem
to accuracy ǫ := 2−m+1 and certainty, so we could use the following algorithm:

Ũ1Unq
Qphase

f Unq−1 . . . U1Q
phase
f U0Ũ0 |ψ〉 ,

where
Ũ1Q

bit
f Ũ0 |ψ〉

is the algorithm that uses just one bit query.
The probability that the output of this algorithm with an approximated

query is incorrect would be less or equal than 2δ, see (7). Thus we could solve
the evaluation problem with

compq
ǫ (S, F) ≤ nq < c2m = 2c

1

ǫ
,

which is a contradiction to theorem 3.

With the result from section 2 that any phase query can be approximated
by 2 bit queries we can conclude that bit queries are more powerful than phase
queries.

To prove theorem 3 let us introduce multivariate trigonometric polynomials
(for an introduction see e.g. [9]).

Definition 5. A mapping T : Rn → C is called an n-variate trigonometric

polynomial, if it is of the form

T (θ0, . . . , θn−1) =
∑

j∈J

cje
i(nj,0θ0+...+nj,n−1θn−1)

with cj ∈ C, nj,k ∈ Z, and |J | <∞. We additionally define

deg T (θ0, . . . , θn−1) := max
j∈J

(|nj,0| + . . .+ |nj,n−1|)

as the degree of T (θ0, . . . , θn−1).

6

This definition allows us to define for every quantum algorithm, which de-
pends on a phase query Qphase

f , a corresponding multivariate polynomial. The
idea that allows this is that every phase query as in (3) can also be written as

Qphase
f |j〉 |0〉 = cos θj |j〉 |0〉 + sin θj |j〉 |1〉

Qphase
f |j〉 |1〉 = − sin θj |j〉 |0〉 + cos θj |j〉 |1〉 , (18)

if θj is chosen so that

θj = arcsin
√
βphase(f(τ(j))). (19)

Now we can prove the following lemma, which closely follows the proof idea in
Beals et al., [2].

Lemma 6. For every quantum algorithm A making nq queries Qphase

f there are
trigonometric polynomials Tk(θ0, . . . , θn−1), degTk(θ0, . . . , θn−1) ≤ nq, so that

A |ψ〉 = Unq
Qphase

f Unq−1 . . . U1Q
phase

f U0 |ψ〉

=
∑

k

Tk(θ0, . . . , θn−1) |k〉

holds with θj defined as in (19).

Proof. The proof is by induction over the number of queries nq.

nq = 0 : we have not made any queries Qphase
f therefore the state can be

written as
U0 |ψ〉 =

∑

k

αk |k〉

with constants αk.

nq 7→ nq + 1 : suppose

Unq
Qphase

f Unq−1 . . . U1Q
phase
f U0 |ψ〉 =

∑

k

Tk(θ0, . . . , θn−1) |k〉 .

with deg Tk(θ0, . . . , θn−1) ≤ nq. We can split this state into

∑

k

Tk(θ0, . . . , θn−1) |k〉 =
∑

i,j,l

Tij0l(θ0, . . . , θn−1) |i〉 |j〉 |0〉 |l〉

+
∑

i,j,l

Tij1l(θ0, . . . , θn−1) |i〉 |j〉 |1〉 |l〉 .
(20)

Let Θ = (θ0, . . . , θn−1). After applying Qphase
f to state (20), the result can be

7

written as

∑

i,j,l

|i〉 (cos θjTij0l(Θ) |j〉 |0〉 + sin θjTij0l(Θ) |j〉 |1〉) |l〉

+
∑

i,j,l

|i〉 (− sin θjTij1l(Θ) |j〉 |0〉 + cos θjTij1l(Θ) |j〉 |1〉) |l〉

=
∑

i,j,l

(cos θjTij0l(Θ) − sin θjTij1l(Θ)) |i〉 |j〉 |0〉 |l〉

+
∑

i,j,l

(sin θjTij0l(Θ) + cos θjTij1l(Θ)) |i〉 |j〉 |1〉 |l〉 .

The terms

cos θjTij0l(θ0, . . . , θn−1) − sin θjTij1l(θ0, . . . , θn−1)

and
sin θjTij0l(θ0, . . . , θn−1) + cos θjTij1l(θ0, . . . , θn−1)

again are multivariate trigonometric polynomials and of degree at most nq + 1.
Finally the mapping Unq+1 is independent of f , thus not dependent on Θ,

and just maps to a new linear combination of trigonometric polynomials, which
again has degree at most nq + 1.

For (univariate) trigonometric polynomials we cite (see e.g. [4], [11])

Theorem 7 (Bernstein’s Inequality). Let t(θ) be a trigonometric polyno-
mial. Then

max
−π≤θ≤π

|t′(θ)| ≤ deg t(θ) max
−π≤θ≤π

|t(θ)|.

The trigonometric polynomials Tk(θ0, . . . , θn−1) we found in lemma 6 were
related to f via equation (19):

θj = arcsin
√
βphase(f(τ(j))).

What is the bound of Bernstein’s inequality in dependence on arcsin
√·?

Lemma 8. If there exist an x ∈ [0, 1], and a ∆ with x+ ∆ ∈ [0, 1] so that for
the trigonometric polynomial t(θ)

t(arcsin
√
x) ≥ 3

4
and t(arcsin

√
x+ ∆) ≤ 1

4

and t(θ) ∈ [0, 1] for all θ ∈ R, then

deg t(θ) ≥ c

(√
1

|∆| +

√
m(1 −m)

|∆|

)
, (21)

with m ∈ {x, x+ ∆} so that |m− 1
2 | is maximal and a constant c.

8

Proof. Applying the mean value theorem yields a ξ ∈ [x, x+∆] or ξ ∈ [x+∆, x]
with

|t(arcsin
√
x) − t(arcsin

√
x+ ∆)| =

∣∣∣arcsin
√
x− arcsin

√
x+ ∆

∣∣∣ |t′(ξ)|

and thus

|t′(ξ)| ≥ 1

2

∣∣∣arcsin
√
x− arcsin

√
x+ ∆

∣∣∣
−1

.

Now bound the degree of t(θ) by Bernstein’s inequality (lemma 7) and use that
t(θ) ∈ [0, 1]:

1

2

∣∣∣arcsin
√
x+ ∆ − arcsin

√
x
∣∣∣
−1

≤ deg t(θ) max
−π≤θ≤π

|t(θ)| ≤ deg t(θ). (22)

For the first bound we use that for all ϕ, ψ ∈ [0, π/2]

2

π
|ϕ− ψ| ≤

√
2| sin2 ϕ− sin2 ψ|, (23)

and therefore from (22) and (23)

deg t(θ) ≥ c

√
1∣∣sin2 arcsin

√
x+ ∆ − sin2 arcsin

√
x
∣∣ = c

√
1

|∆| .

The second bound is proven by another application of the mean-value theo-
rem. There exists a ξ ∈ [x, x+ ∆] or ξ ∈ [x+ ∆, x] with

deg t(θ) ≥ 1

2

∣∣∣(arcsin
√
ξ)′(x+ ∆ − x)

∣∣∣
−1

Note that for ξ ∈ [x, x + ∆] or ξ ∈ [x+ ∆, x]

(arcsin
√
ξ)′ =

1

2
√
ξ(1 − ξ)

is maximized by ξ = m, with m ∈ {x, x+ ∆} so that |m− 1
2 | is maximal. Thus

deg t(θ) ≥ c

√
m(1 −m)

|∆| .

Note that the bound (21) closely resembles the bound of Nayak and Wu, [7].
With the help of lemma 8 we are able to prove theorem 3.

Proof of theorem 3. Let nq be the number of queries of an algorithm for the
evaluation problem. By lemma 6 trigonometric polynomials Tk(θ) exist with

Unq
Qphase

f . . . U0 |ψ〉 =
∑

k

Tk(θ) |k〉 , (24)

for θ = arcsin
√
βphase(f(τ(j))), see (19), and deg Tk(θ) ≤ nq.

9

The state (24) is measured and ϕ maps the result of the measurement to an
element of our solution set [0, 1]. Let B be the set of all states so that

B := {k | |ϕ(k) − 1/2| < ǫ}. (25)

The probability to measure a state |k〉 is given by |Tk(θ)|2. Let

Tk(θ) =
∑

l

αk,le
ink,lθ.

Then

∑

k∈B

|Tk(θ)|2 =
∑

k∈B

(
∑

l

αk,le
ink,lθ

)(
∑

l

αk,le
−ink,lθ

)
=: T (θ),

which is a trigonometric polynomial again, degT (θ) ≤ 2nq, and T (θ) ∈ [0, 1].
Choose the input f1, f2 ∈ F with f1(0) = 1

2 , f2(0) = 1
2 − 2ǫ, 0 < ǫ < 1

4 . If
the algorithm is correct,

T (arcsin
√
βphase(f1(0))) ≥ 3

4
and T (arcsin

√
βphase(f2(0))) ≤ 1

4

(all query inputs are mapped to 0 by τ).
Our lemma 8 tells us a bound for the degree of T (θ):

2nq ≥ deg T (θ) ≥ c

(√
1

|∆| +

√
m(1 −m)

|∆|

)
,

where
∆ = βphase(f1(0)) − βphase(f2(0)). (26)

and m ∈ {βphase(f1(0)), βphase(f2(0))} so that |m− 1
2 | is maximal.

We chose βphase = id, so

2nq ≥ c



√

1

2ǫ
+

√
(1
2 − 2ǫ)(1 − 1

2 + 2ǫ)

2ǫ


 = c



√

1

2ǫ
+

√
1
4 − 4ǫ2

2ǫ


 .

There exists a constant c′ so that for ǫ small enough

nq ≥ c′
1

ǫ

holds, therefore

compq,phase
ǫ (S, F) = Ω(

1

ǫ
).

4 Another proof for the hardness of evaluation

with phase queries

An anonymous referee suggested a shorter proof for theorem 3. The proof is
based on the observation that for two inputs f1 and f2 which are chosen as in
the proof of theorem 3, f1, f2 ∈ F = {f : {0} → [0, 1]},

f1(0) =
1

2
and f2(0) =

1

2
− 2ǫ,

10

the difference of Qphase
f1

and Qphase
f2

is bounded in the operator norm by

‖Qphase
f1

−Qphase
f2

‖ = sup
|x〉,‖|x〉‖=1

‖(Qphase
f1

−Qphase
f2

) |x〉 ‖

= sup ‖(Qphase
f1

−Qphase
f2

)(a00 |0〉 |0〉 + a01 |0〉 |1〉 ‖

with a00, a01 ∈ C and |a00|2 + |a01|2 = 1, since Qphase
f1

−Qphase
f2

= 0 for all other
inputs.

Each of the terms can be bounded in the following way (here for a00 |0〉 |0〉):

‖(Qphase
f1

−Qphase
f2

)a00 |0〉 |0〉 ‖

= |a00|
∥∥∥
√

1/2 |0〉 |0〉 +
√

1/2 |0〉 |1〉 −
√

1/2 + 2ǫ |0〉 |0〉 −
√

1/2 − 2ǫ |0〉 |1〉
∥∥∥

=
|a00|√

2

∥∥(1 −
√

1 + 4ǫ) |0〉 + (1 −
√

1 − 4ǫ) |1〉
∥∥

=
|a00|√

2

√
1 − 2

√
1 + 4ǫ+ 1 + 4ǫ+ 1 − 2

√
1 − 4ǫ+ 1 − 4ǫ

= |a00|
√

2 −
√

1 + 4ǫ−
√

1 − 4ǫ.

If we develop
√

1 + 4x into a Taylor series we get

√
1 + 4x = 1 + 2x− 2x2 ±O(|x|3)

and thus

‖(Qphase
f1

−Qphase
f2

)a00 |0〉 |0〉 ‖
≤ |a00|

√
2 − 2 + 4ǫ2 ∓O(|ǫ|3)

= |a00| ǫ
√

4 ∓O(|ǫ|)
∈ |a00|O(ǫ).

The bounds for the term a01 |0〉 |1〉 are analogous.
Therefore we can conclude that

‖Qphase
f1

−Qphase
f2

‖ ∈ O(ǫ).

Now we turn to our quantum algorithm, which is of the form described in
equation (2):

UnQ
phase
f Un−1 . . . U1Q

phase
f U0 |ψ〉 .

We would like to bound the difference between the algorithm on input f1 and
on f2:

∥∥∥UnQ
phase
f1

Un−1 . . . U1Q
phase
f1

U0 |ψ〉 − UnQ
phase
f2

Un−1 . . . U1Q
phase
f2

U0 |ψ〉
∥∥∥ . (27)

We will use the following inequality for unitary matrices A, B, C, and D:

‖AB − CD‖ = ‖AB − CB + CB − CD‖
≤ ‖AB − CB‖ + ‖CB − CD‖ ≤ ‖A− C‖ ‖B‖ + ‖C‖ ‖B −D‖
= ‖A− C‖ + ‖B −D‖

(28)

11

(see e.g. Nielsen and Chuang [8]). Hence equation (27) is bounded by

n
∥∥∥Qphase

f1
−Qphase

f2

∥∥∥ .

Recall the definition of B, the set of all states representing 1
2 from equation

(25). Our algorithm for the evaluation problem must ensure that for f1 the
probability to measure a state from B is greater than 3

4 and for f2 less than 1
4 .

Let pf1
be the probability to measure a state from B on input f1 and pf2

be
the probability on input f2. We want to have

|pf1
− pf2

| ≥ 1

2
. (29)

We use the fact from equation (7) that for Af1
:= UnQ

phase
f1

. . . U0 and Af2
:=

UnQ
phase
f2

. . . U0 and a measurement projection P

|pf1
− pf2

| =
∣∣∣〈ψ|A†

f1
PAf1

|ψ〉 − 〈ψ|A†
f2
PAf2

|ψ〉
∣∣∣

=
∣∣∣〈ψ|

(
A†

f1
P (Af1

−Af2
) +A†

f1
PAf2

+ (A†
f1

−A†
f2

)PAf2
−A†

f1
PAf2

)
|ψ〉
∣∣∣

≤
∣∣∣〈ψ|A†

f1
P (Af1

−Af2
) |ψ〉

∣∣∣+
∣∣∣〈ψ| (A†

f1
−A†

f2
)PAf2

|ψ〉
∣∣∣

≤ ‖PAf1
|ψ〉‖ ‖(Af1

−Af2
) |ψ〉‖ + ‖(Af1

−Af2
) |ψ〉‖ ‖PAf2

|ψ〉‖
≤ 2 ‖Af1

−Af2
‖ ,

where we used the Cauchy-Schwarz inequality. This bound can be found, e.g.,
in Nielsen and Chuang [8].

We choose P as a projection on the subspace spanB and get

|pf1
− pf2

| ≤ 2 ‖Af1
−Af2

‖

≤ 2n
∥∥∥Qphase

f1
−Qphase

f2

∥∥∥

∈ 2nO(ǫ)

(30)

Combining equations (29) and (30) now yields

n ∈ Ω

(
1

ǫ

)
.

5 Acknowledgments

This work was done as a master thesis under the supervision of Stefan Heinrich.
I am very grateful for his guidance and the many helpful discussions we had
on quantum computing and complexity theory. His valuable suggestions were
greatly appreciated.

References

[1] D. S. Abrams and C. P. Williams. Fast quantum algorithms for numerical
integrals and stochastic processes. Technical report, NASA Jet Propulsion
Laboratory, 1999. http://arXiv.org/abs/quant-ph/9908083.

12

[2] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower
bounds by polynomials. In Proceedings of the 39th IEEE Conference on
Foundations of Computer Science (FOCS), pages 352–361, 1998. http://-
arXiv.org/abs/quant-ph/9802049.

[3] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude am-
plification and estimation. http://arXiv.org/abs/quant-ph/0005055, 2000.

[4] E. W. Cheney. Introduction to Approximation Theory. McGraw-Hill Book
Company, 1966.

[5] L. K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the 28th Annual ACM Symposium on Theory of Computing
(STOC), pages 212–219, 1996. http://arXiv.org/abs/quant-ph/9605043.

[6] S. Heinrich. Quantum summation with an application to integration.
Journal of Complexity, 18(1):1–50, 2002. http://arXiv.org/abs/quant-
ph/0105116.

[7] A. Nayak and F. Wu. The quantum query complexity of approximat-
ing the median and related statistics. In Proceedings of the 31th Annual
ACM Symposium on Theory of Computing (STOC), pages 384–393, 1999.
http://arXiv.org/abs/quant-ph/9804066.

[8] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[9] S. M. Nikol’skii. Approximation of Functions of Several Variables and
Imbedding Theorems. Springer Verlag, 1975.

[10] E. Novak. Quantum complexity of integration. Journal of Complexity,
17:2–16, 2001. http://arXiv.org/abs/quant-ph/0008124.

[11] T. J. Rivlin. The Chebyshev Polynomials. Wiley, 1974.

[12] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-Based
Complexity. Academic Press, 1988.

[13] J. F. Traub and A.G. Werschulz. Complexity and Information. Cambridge
University Press, 1998.

13

	Introduction to Quantum Queries
	Bit queries can simulate phase queries
	Phase queries cannot efficiently approximate bit queries
	Another proof for the hardness of evaluation with phase queries
	Acknowledgments

