
Usenetfs: A Stackable File System for Large Article Directories

Erez Zadok and Ion Badulescu
Computer Science Department, Columbia University

{ezk,ion }@cs.columbia.edu

CUCS-022-98

Abstract

The Internet has grown much in popularity in the past
few years. Numerous users readUSENET newsgroups
daily for entertainment, work, study, and more.USENET

News servers have seen a gradual increase in the traffic
exchanged between them, to a point where the hardware
and software supporting the servers is no longer capable of
meeting demand, at which point the servers begin “drop-
ping” articles they could not process. The rate of this in-
crease has been faster than software or hardware improve-
ments were able to keep up, resulting in much time and ef-
fort spent by administrators upgrading their news systems.

One of the primary reasons for the slowness of news
servers has been the need to process many articles in very
large flat directories representing newsgroups such ascon-
trol.canceland misc.jobs.offered. A large portion of the
resources is spent on processing articles in these few news-
groups. Most Unix directories are organized as a linear
unsorted sequence of entries. Large newsgroups can have
hundreds of thousands of articles in one directory, resulting
in significant delays processing any single article.

Usenetfs is a file system that rearranges the directory
structure from being flat to one with small directories
containing fewer articles. By breaking the structure into
smaller directories, it improves the performance of looking
for, creating, or deleting files, since these operations occur
on smaller directories. Usenetfs takes advantage of article
numbers; knowing that file names representing articles are
composed of digits helps to bound the size of the smaller
directories. Usenetfs improves overall performance by at
least 22% for average news servers; common news server
operations such as looking up, adding, and deleting articles
are sped up by as much as several orders of magnitude.

Usenetfs was designed and implemented as a stack-
able Vnode layer loadable kernel module[Heidemann94,
Rosenthal92, Skinner93]. It operates by “encapsulating”
a client file system with a layer of directory management.
To the process performing directory operations through a
mounted Usenetfs, all directories appear flat; but when in-
specting the underlying storage that it manages, small di-

rectories are visible.
Usenetfs is small and is transparent to the user. It re-

quires no change to News software, to other file systems,
or to the rest of the operating system. Usenetfs is more
portable than other native kernel-based file systems be-
cause it interacts with the Vnode interface which is similar
on many different platforms.

1 Introduction

USENET is a popular world-wide network consisting of
thousands of discussion and informational “news groups.”
Many of these are very popular and receive thousands of
articles each day. In addition, many control messages are
exchanged between news servers around the world, a large
portion of which are article cancellation messages gener-
ated by anti-spam detection software. All of these articles
and messages must be processed fast. If they are not, new
incoming articles may be dropped.

Traditional Unix file system directories are structured as
a flat, linear sequence of entries representing files. When
the operating system wants to lookup an entry in a directory
with N entries, it may have to search allN entries to find
the file in question. Portions of directories are often cached
in the file system, so that subsequent lookups do not have
to retrieve the data from disk. Table 1 shows the frequency
of all file system operations that use a pathname on our
news spool over a period of 24 hours.1 The table shows
that the bulk of all operations are for looking up files, so
these should run very fast regardless of the directory size.
Operations such as creating news files and deleting ones are
usually run synchronously and account for about 10% of
news spool activity; these operations should also perform
well on large newsgroups

These requirements necessitate a powerful news server
that can copy memory fast, and have fast disks and I/O. As
demands grow, the ability of the news server to process arti-

1Table 1 does not include reading and writing operations since they do
not use a pathname in the file system function. In the file system, a lookup
operation precedes every read of an existing file.

1

Operation Frequency % Total
Readdir 38371 0.48
Lookup 7068838 88.41
Unlink 432269 5.41
Create 345647 4.32
All other 110473 1.38
Total 7995598 100.00

Table 1: Frequency of File System Operations on a News
Spool

cles diminishes to a point where it starts rejecting or “drop-
ping” articles. The effort to upgrade a site’s news server
is significant: large amounts of data need to be copied to a
new server as fast as possible, because while an upgrade is
in progress, new articles are not processed and can be lost.

In practice, many sites have resorted to reducing the
number of articles in use by removing large newsgroups
from their distribution and expiring articles more often,
sometimes as often as several times a day. Most site ad-
ministrators accepted the fact that their news servers will
lose articles on occasion.

For example, our department runs an average size news
server. We have several hundred users and three feeds from
neighboring sites. Our server has had two major upgrades
in the past 5 years, and several smaller upgrades in be-
tween. The major upgrades were from SunOS 4.1.3, to
Solaris 2.x, and the last one was to Linux 2.0. Each major
upgrade included news server (INN) software upgrade, a
faster CPU, more memory, and more and faster disk space.
Our previous news server was running on a Sun SparcSta-
tion 5 with 8GB of stripped disk space, 196MB of RAM,
and Fast Ethernet. But the CPU and I/O bus had not been
able to keep up with traffic, and for the last two years of that
server’s life, it kept on losing more and more articles. Just
before it was replaced, our old news server was dropping
50% of all articles.

A few months ago we upgraded our news server to an
AMD K6/200Mhz with faster disks and tripled the over-
all disk space available. We used the top-of-the-lineSCSI

cards and Fast Ethernet adapters. We also upgraded the
operating system to Linux 2.0.34, because the Linux oper-
ating system is a small, fast, and highly optimized for the
x86 platform. In addition, Linux’s disk based file system
(ext2fs) has two features useful for optimizing disk perfor-
mance:

1. It can turn off the updating of access times of files in
the inodes; access times are not useful for news sys-
tems.

2. While ext2fs’ on-disk directory structure is linear, it
hashes cached entries in kernel memory for faster ac-
cess.

Since the upgrade, our new news server had dropped no

articles, and has kept up with traffic. However, we have no-
ticed that its network utilization is over 80% and that more
disk space is constantly being added. At the current growth
rate, we expect it to outrun its capabilities in a couple of
years.

1.1 Current Solutions

Several current solutions are available to the problem of
slow performance of large directories used with news
servers. They fall into one of two categories:

1. Modified news servers that store articles in an alter-
nate fashion[Fritchie97].

2. New native file systems that arrange directory entries
in a manner that is accessible faster than linear search
time[Reiser98, Sweeney96].

These solutions suffer from several problems.

• Development costs and stability: news server soft-
ware is large and complex. It is difficult and time con-
suming to modify it. Creating new native disk-based
file systems is even more complicated, requiring deep
understanding of the operating system internals. Such
software will take time to become stable, and admin-
istrators would be reluctant to use it initially.

• Portability : INN is a user-level software, and needs to
be portable to many platforms. Fundamental changes
to it such as a new storage methodology are not sim-
ple and require porting to existing platforms. Worse,
native file systems are not portable at all, since they
directly interface with operating system internals, de-
vice drivers, and the virtual memory subsystem. A
solution that is portable to only a few platforms will
not enjoy wide usage.

• Deployment: distributing a rather different news
server software or file system is a large undertaking.
Since the changes are so fundamental, an upgrade path
may not be a drop-in replacement for neither the news
server nor the file system. News administrators would
be reluctant to make significant changes to their news
server unless the benefits would be significant.

Our approach modifies neither the news server/client
software nor the native file systems.

1.2 The Stackable Vnode Interface

Usenetfs is a small file system based on the loopback
(lofs)[SMCC92] one. Usenetfs mounts (“stacks”) itself on
top of a news spool hierarchy and interfaces between ex-
isting news software and disk based file systems, a seen in
Figure 1. It makes a hierarchy of many small directories
appear to be a single large flat directory.

2

“Vnode Stacking”[Heidemann94, Rosenthal92,
Skinner93] is a technique for modularizing file sys-
tem functions, by allowing one vnode interface to call
another. Before stacking existed, there was only a single
vnode interface; higher level operating system code
called the vnode interface which in turn called code for a
specific file system. With vnode stacking, several vnode
interfaces may exist and may call each other in order.
The Usenetfs and vnode layers in Figure 1 are really at

read()

vn_read() vn_write()

usenetfs_read() usenetfs_write()

vn_write()vn_read()

NFS

Local Disk Remote Network

disk_dev_read() net_dev_write()

ext2_read() nfs_write()

USENETFS LAYER

VNODE LAYER

VNODE LAYER

EXT2FS

write()

Process BProcess A

U
se

r
K

er
ne

l

Figure 1: Stacked Vnode File System

the same abstraction level; each one may call the other
interchangeably.

2 Design

Our design goals for Usenetfs were:

• Usenetfs should not require changing existing news
servers, operating systems, or file systems. It should
maintain a valid file system on the one being managed.
At the same time, Usenetfs should be as portable as
possible.

• It should improve performance of these large directo-
ries enough to justify its overhead and complexity.

• It should be small and impose little overhead.

• It should allow selective management of large direc-
tories without requiring that smaller ones be managed
as well. This was to allow finer grained control over
which newsgroups in the news spool are managed by
Usenetfs and which are not.

The main idea for improving performance for large flat
directories was to break them into smaller ones. Since ar-
ticle names are composed of sequential numbers, we took

.001 999

control

cancel

000 345

123456

Figure 2: A Usenetfs Managed Newsgroup

advantage of that. We decided to create a hierarchy consist-
ing of one thousand directories as depicted in Figure 2. We
therefore distribute articles across 1000 directories named
000 through 999. Since article numbers are sequential, we
maximize the distribution by computing the final directory
into which the article will go based on three lesser signifi-
cant digits, skipping the least significant one. For example,
the article namedcontrol/cancel/123456 is placed
into the directorycontrol/cancel/345/ . The article
name itself does not change; it only gets moved one level
down. We chose to pick the directory based on the second,
third, and fourth digits of the article number to allow for
some amount of “clustering.” By not using the least sig-
nificant digit we cluster 10 sequential articles together; e.g.
the 10 articles 123450-123459get placed in the same direc-
tory, which increases the chances of kernel cache hits due
to the likelihood of sequential access of these articles — a
further performance improvement. In general, every arti-
cle numbered X..XYYYZ gets placed in a directory named
YYY.

Each operation that needs to manipulate a file name
(such aslookup) performs name translation of the path-
name to include the new subdirectory. For reading a whole
directory (readdir), we would iterate over all of the sub-
directories in order: 000, 001, ..., 999. Each entry read in
these directories is returned to the caller of the system call.

Usenetfs needs to determine if a directory is managed
or not. We decided to use a seldom used mode bit for di-
rectories, the setuid bit, to flag a directory as managed by
Usenetfs. Using this bit allows the news administrator to
control which directory is managed by Usenetfs and which
is not, using a simplechmod command.

The next bit of design needed was how to handle files
and directories whose names are not article numbers. Di-
rectories containing articles may include other directories
representing other newsgroups, threads database files, etc.
Usenetfs optimizes performance for the majority of files
in the news spool — articles. We decided not to compli-
cate the code for the sake of these few non-article files:
all non-articles are also moved one directory level down-
ward into a special directory namedaaa . For exam-
ple, an original filecontrol/cancel/foo is moved to
control/cancel/aaa/foo .

3

We chose to move all files, articles, and non-articles,
one level deeper because it was simpler to uniformly treat
all files in a directory managed by Usenetfs. It simpli-
fies lookups of the “..” parent directory. In order to
maintain the illusion of a flat directory, Usenetfs also has
to skip upward lookups of “..” one level up. For ex-
ample, if a lookup for “..” happens in a managed sub-
directory control/cancel/345/ , that lookup must
return the directory vnode forcontrol/ and not for
control/cancel/ . In other words, the process per-
forming a lookup (or chdir) for “..” for a managed directory
control/cancel/ should not know that the underlying
storage was different and should get back the expected di-
rectorycontrol/ .

An alternate solution to this problem that we considered
was to manage article files based on their name, consist-
ing only of digits, and assume that anything that does not
consist of digits alone is not an article. However, there are
unfortunately some newsgroups where part of the compo-
nent name is all digits:alt.2600andalt.autos.porsche.944
among others. Distinguishing between directories with nu-
meric names and files with numeric names would require
a stat(2) of each, and that would have slowed the perfor-
mance of Usenetfs. Therefore we rejected this idea and
opted for simplicity: move all articles and non-articles to a
two-level deeper hierarchy.

The next issue was how to convert an unmanaged di-
rectory to be managed by Usenetfs — creating some of
the 000-999 subdirectories, and moving existing articles to
their designated location. When measuring the number of
articles in various newsgroups over a period of one month,
we noticed that the large newsgroups remained large, while
the small remained relatively small; no major changes were
noticed other than a small but gradual increase in traffic.
Newsgroups that were good candidates for management by
Usenetfs were not likely to become low traffic overnight
and will continue to have lots of traffic. Also, the number
of such large newsgroups is small. In our news server for
example, only 6 out of 11,017 newsgroups contained more
than 10,000 articles each. Given that, we decided to make
the process of turning directory management on/off an off-
line process to be triggered by the news administrator with
a script that we provide.

Alternately, we could have put all that code in the kernel,
but that would have complicated the file system a lot, and
would have cost us in significantly more development time,
since kernel work is difficult. We did not feel that it was
crucial to include this functionality at this stage, especially
since we did not expect many directories to be managed.

3 Implementation

The implementation of Usenetfs proceeded according to
the design. We began by using a loopback file system (lofs)
and modified it to our needs.

Each Vnode operation that handles a file name such as
lookup , open andunlink calls a simple function that
converts the file name to a one-level deep directory hier-
archy. For example here is the (slightly simplified) vnode
operation to remove a file:

usenetfs_unlink(inode_t *dir, char *name, int len)
{

int err = -EPERM;
inode_t *i_dir = get_interposed_vp(dir);

if (dir->i_mode & S_ISUID) {
err = get_transit_dir(name, len, &i_dir);
if (err < 0)

return err;
err = i_dir->i_op->unlink(i_dir, name, len);

}
return err;

}

The function retrieves the stacked on (interposed) vnode
from the current directory vnode. It continues by checking
if the directory where the filenameneeds to be removed is
managed by Usenetfs (whether the setuid bit is on.) If so, it
calls the routineget transit dir to get the vnode for
the directory where the file is actually located. This routine
looks at the file name and computes the directory where
the file should be. For example if we want to remove the
file name987 , this function gets the vnode for the direc-
tory 0987 ; that value is put intoi dir . Finally, the unlink
function calls the same operation on the interposed direc-
tory and returns its result.

3.1 Directory Reading

The one complication we were faced was with the “readdir”
vnode operation. Readdir is implemented in the kernel as
a restartable function. A user process calls thereaddir
C library call, which is translated to repeated calls to the
getdents(2) system call, passing it a buffer of a given
size. The buffer is filled by the kernel with enough bytes
representing files within a directory being read, but no
more. If the kernel has more bytes to offer the process (i.e.
the directory has not been completely read) it will set a spe-
cial EOF flag to false. As long as the user process sees that
the flag is false, it must callgetdents(2) again. Each
time it does so, it will read more bytes starting at the file
offset of the opened directory as was left off from the last
read.

The important issue with respect to directory reading is
not how to handle the file names, but how to continue read-
ing the directory from exactly the offset it was left off the
last time. Since the readdir kernel function needs to be im-
plemented as a restartable call, the file system has to store
some state in one of the returning variables or structures so
that it may be passed back to the readdir call upon the next
invocation; at that time the call must continue reading the
directory exactly where it left off previously.

4

We chose Linux as our first development platform for
one main reason: directory reading is simpler in the Linux
kernel. In other operating systems such as Solaris, we
have to read a number of bytes from the interposed file
system, and parse them into chunks ofsizeof(struct
dirent) that have the actual file name characters ap-
pended to. It is cumbersome and asks the file system to
perform a lot of bookkeeping. In Linux, much of that com-
plexity was moved elsewhere to more generic code that is
outside the main implementation of the file system. A file
system developer would provide the Linux kernel a call-
back function for iterating over the entries in a directory.
This function will be called by higher level code on each
file name. It was easier for us to provide such a function,
which in conjunction with our version of readdir proceeded
to read directories as follows:

1. Generate an entry for “.” and “..” and return those
first.

2. Read the special directory “aaa” and return entries
within in the order they were read.

3. Read all the directories 000, 001, through 999 and re-
turn entries within, also in order.

4 Evaluation

Our evaluation concentrated on three aspects: stability,
portability, and performance. Of those, performance is the
most important and is evaluated in detail.

4.1 Stability

We configured a test new server running INN version 1.7.2
and gave it a full feed from our primary news server. We
turned on Usenetfs management for 6 large newsgroups
and let it run. The system ran for two weeks without a
single crash or indication of abnormal behavior. We then
repeated the test on our production news server and got the
same results. We were satisfied that the Usenetfs file sys-
tem kernel module was stable.

4.2 Portability

When we started working with vnode-stackable file sys-
tems, we first searched for sources to a loopback filesys-
tem; lofs is a good starting point for any stacking work.
Linux does not have an lofs as part of the main kernel. We
were able to locate a reference implementation of it else-
where, but had to spend some time getting familiar with it
and fixing bugs.2

2This time was actually spent while writing another more complex
stackable file system, Cryptfs, which encrypts files transparently.

Being familiar with kernel and file system internals, and
knowing how difficult and time consuming operating sys-
tem work can be, we expected the implementation to take
us several weeks. However, we completed the code for
Usenetfs in one day. The speed at which this was accom-
plished surprised us. The two contributing factors to this
were the simple design we chose and Linux’s easier-to-use
vnode interface (especially for the readdir function.)

Given sources to an lofs for another Unix operating sys-
tem, we expect to be able to port Usenetfs to the new plat-
form within a few days to two weeks. We know it will take
longer than Linux because directory reading is more cum-
bersome in operating systems such as Solaris and BSD-4.4.
We have ported other stackable file systems to Solaris and
Linux; the most complex was an encrypting file system,
and it was more complicated than Usenetfs. Nonetheless,
our experience has shown that once an initial stackable file
system is written, it can be ported in less than 2-3 weeks to
another platform.

4.3 Performance

When measuring the performance of Usenetfs we were
concerned with these three aspects:

1. What is the overhead of stacking alone?

2. How much does performance improve for the typical
file system actions that a news server performs?

3. How much better does a news server run when using
Usenetfs?

Usenetfs is a stackable file system and adds overhead to
every file system operation, even for unmanaged directo-
ries. We wanted to make this overhead as small as possi-
ble. To test the overhead, we compared the time it took to
compile Am-utils3. We ran a full configure and build 12

File Linux 2.0.33 (32MB RAM)
System SPARC/85Mhz P5/90
ext2fs 1097.0 524.2
lofs 1110.1 530.6

Table 2: Time for 12 Large Builds (Sec)

times on an otherwise quiet system, and averaged the mea-
sured elapsed time for each build. The results are shown
in Table 2. The overhead of the loopback file system, and
therefore of a single level stackable file system, is 1.2%.
This overhead is relatively small compared to the overall
improvements that Usenetfs offers.

Next, we tested specific file system actions. We set a
testbed consisting of a Pentium-II 333Mhz, with 64MB of
ram, and a 4GB fastSCSI disk for the news spool. The

3Am-Utils is the new version of the Berkeley Automounter available
from http://www.cs.columbia.edu/˜ezk/am-utils/.

5

• • • • • • •
•

•

•

•
•

•
•

•
•

•
•

•
•

Directory Size (random lookups)

T
im

e
 (

m
ill

is
e

c)

1 10 100 1000 10000 100000

1
0

1
0

0
1

0
0

0
1

0
0

0
0

• • • • • • • • • • • •
• • • • • • • •

Usenetfs

ex
t2f

s

• • • • • • • •

•

•

•
•

• • • • • •
• •

Directory Size (sequential lookups)

T
im

e
 (

m
ill

is
e

c)

1 10 100 1000 10000 100000

5
0

1
0

0
1

5
0

2
0

0
2

5
0

• • • • • • • •
•

•

• •
• • • • • • •

•

Usenetfs

ext2fs

Figure 3: Cost for 1000 Article Lookups

machine ran Linux 2.0.34 with our Usenetfs. We created
directories with exponentially increasing numbers of files
in each: 1, 2, 4, 8, and so on. The largest directory had
524288 (219) files numbered starting with 1. Each file was
exactly 2048 bytes long and was filled with random bytes
we read from/dev/urandom . The file size was cho-
sen as the representative most common article size on our
production news server. We created two hierarchies with
increasing numbers of article in different directories: one
flat and one managed by Usenetfs.

The next tests we performed were designed to match the
two actions most commonly undertaken by a news server.
First, a news server looks up and reads various articles,
mostly in response to users reading news, and when out-
going feeds are processed. The more users there are the
more random the article numbers read would be, and while
users read articles in a mostly sequential order, the use of
threaded newsreaders results in more random reading. The
(log-log) plot of Figure 3 shows the performance of 1000
random lookups (usinglstat(2)) in both regular (un-
managed) and Usenetfs-managed directories, as well as the
performance of 1000 sequential lookups. The time reported
is in milliseconds spent by the process and the operating
system on its behalf.

For random lookups on directories with fewer than 1000-
2000 articles, Usenetfs adds overhead and slows perfor-
mance. This was expected because the “bushier” direc-
tory structure Usenetfs maintains has over 1000 subdirec-
tories. However, as directory sizes increase, lookups on
flat directories become linearly more expensive while tak-
ing an almost constant time on Usenetfs-managed direc-
tories. The difference exceeds an order of magnitude for
directories with 10,000 or more articles. For sequential
lookups on managed directories with about 500 or less ar-
ticles, Usenetfs adds a small overhead. When the direc-
tory size exceeds 1000, lookups on regular directories take
twice as long. The reason the performance flattens out for
sequential lookups is because cache hits are more likely due

to locality of files in disk blocks. Usenetfs performs better
because its directories contain fewer files so initial lookups
cost less than on unmanaged directories.

• • • • • • • • • •
•

•
•

•
•

•

•
•

•
•

Directory Size

T
im

e
 (

m
ill

is
e

c)

1 10 100 1000 10000 100000

5
0

0
5

0
0

0
5

0
0

0
0

5
0

0
0

0
0

• • • • • • • • • • • • • • • • • •
• •Usenetfs

ex
t2f

s

Figure 4: Cost for 1000 Article Additions and Deletions

The second action a news system performs often is cre-
ating new article files and deleting expired ones. New ar-
ticles are created with monotonically increasing numbers.
Expired articles are likely to have the smallest numbers so
we made that assumption for the purpose of testing. Fig-
ure 4 (also log-log) shows the time it took to add 1000 new
articles and then remove the 1000 oldest articles for suc-
cessively increasing directory sizes. The results are more
striking here: Usenetfs times are almost constant through-
out. Adding and deleting files in flat directories, however,
took linearly increasing times. Note that in both Figures 3
(random lookups) and 4, the linear behavior of the graph
for the “regular” (ext2fs) file system is true when the num-
ber of articles in the directory exceeds about one hundred;
that is because up until that point, all directory entries were
served off of a single cached directory disk block.

Creating over 1000 additional directories adds overhead
to file system operations that need to read whole directo-

6

••••••• • •
•

•

•

•

Directory Size

T
im

e
 (

m
ill

is
e

c)

0 100000 200000 300000 400000

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

••••••••••••
•
•

• •

•
• •

ext2fs

Usenetfs

Figure 5: Cost for Reading a Directory

ries, especially the readdir call.4 Figure 5 shows that read-
dir time is linear with the size of the flat directory. Usenetfs
has an almost constant overhead of half a second, regard-
less of directory size; that is because Usenetfs always has
at least 1000 directories to read. When directories con-
tain more than about 100,000 articles, non-Usenetfs per-
formance becomes worse. That is because such large di-
rectories require following double-indirect pointers to data
blocks of the directory, while Usenetfs directories are small
enough that no indirect blocks are required.

Figures 3 and 4 showed us that Usenetfs is beneficial for
newsgroups with more than 1000 articles. Figure 5 showed
us that readdir performance is better for directories with
more than 100,000 articles. It is clear from these figures
that such large directories are very well suited to be man-
aged by Usenetfs, and at the same time that it is not worth
managing directories smaller than 1000 articles. But when
directory sizes are between 1000 and 100,000 we have to
find out if the benefits of Usenetfs outweigh its overhead.
Figure 6 shows the total time possibly spent by a news sys-
tem over a period of 24 hours, taking into account Fig-
ures 3, 4, and 5 as well as the frequencies of file system
operations reported in Table 1. The numbers were com-
puted by multiplying frequencies by their respective times,
and summing them for all operations, for each directory
size. These computations assume that the number of op-
erations reported in Table 1 were proportionally distributed
among the newsgroups based on the newsgroup’s size. Fig-
ure 6 shows that Usenetfs’ benefits outweigh its overhead
for newsgroups with 10,000 or more articles; at that size,
the extra cost of readdir operations is offset by the savings
in the other operations.

It should be noted here that the numbers reported in these
figures assume that the directories of these various sizes
are actually managed by Usenetfs. This analysis shows
that newsgroups with only 10,000 articles or more should
be managed. The “bad” numbers with overhead reported

4It also consumes at least 1000 more inodes per managed directory,
but that is small compared to the rest of the news spool; the latter is often
formatted with millions of inodes.

• • • • • • • • •
•

•
•

•
•

•

•

•
•

•
•

Directory Size

T
o

ta
l T

im
e

 (
M

in
u

te
s)

1 10 100 1000 10000 100000

1
0

0
5

0
0

5
0

0
0

5
0

0
0

0

• • • • • • • • • • • • • •
• •

• • • •

ex
t2f

s

Usenetfs

Figure 6: Potential Impact of Usenetfs on a News System

for example in Figure 5 are valid only if those small news-
groups are managed by Usenetfs. In practice they will not
be, and their overhead will be 1.2% as reported in Table 2.

The last test we ran was intended to measure how well a
host performs when it is dedicated to running a news sys-
tem and employs Usenetfs. Our production news server
is an AMD K6/200Mhz with 16GB of fast-SCSI disks and
128MB of memory. We decided to turn on management
on every newsgroup with more than 10,000 articles in it.
There were 6 such newsgroups totaling about 300,000 ar-
ticles, the largest of which had over 120,000 articles. That
was 25% of all the articles in the spool at the time.

The news system is a complex one, composed of many
programs and scripts that run at different times, and de-
pends on external factors such as news feeds and readers.
We felt that a simple yet realistic measure of the overall
performance of the system would be to test how much re-
serve capacity is left in the server. We decided to test the
reserve capacity by running a repeated set of compilations
of a large package (Am-utils), timing how long it took to
complete each build.

Hour of the Day

C
o

m
p

ile
 T

im
e

 (
se

c)

6 8 10 12 14

2
0

0
4

0
0

6
0

0
8

0
0

ext2fs
Usenetfs

Figure 7: Compile Times on a News Server

Figure 7 shows the compile times of Am-utils, once
when the news server was running without Usenetfs man-
agement, and then when Usenetfs managed the top 6 news-

7

groups. The average compile time was reduced by 22%
from 243 seconds to 200 seconds. The largest savings ap-
peared during busy times when our server transferred out-
going articles to our upstream feeds, and especially during
the 4 daily expiration periods. The largest expiration hap-
pens at 7am, when we also renumber the article ranges in
the active file. Expiration of articles, and active file renum-
bering in particular, are affected more by the large news-
groups — the ones with the biggest directories and the most
articles to remove. During these expiration peaks, perfor-
mance improved by a factor of 2-3.

There are other peaks in the server’s usage (around 7:45,
8:15, 9:30, and 11:20) representing bulk article transfers to
our neighbors. These actions cause the lookup and reading
of many articles from the spool, a lot of which reside in
large newsgroups. When Usenetfs was used, these peaks
were mostly smoothed out. The overall effect of Usenetfs
had been to keep the performance of the news server more
flat, removing those load surges.

We believe that the performance of Usenetfs can be made
better. First, we have not optimized the code yet. Sec-
ondly, our server represents a medium size news site but
the hardware is powerful enough that it can handle all of
the traffic it gets. If we had more traffic, kept more arti-
cles online, or our news server had used a slower CPU, we
believe that Usenetfs’ improvements would be more pro-
nounced. For example, one of our neighboring news sites
(sol.ctr.columbia.edu) is a busier news server. It has 543
newsgroups with over 10,000 articles each, a few of which
surpass 500,000 articles. These big newsgroups account for
87% of the spool’s size on that server.5 Such a busy server
would benefit more from Usenetfs than our own.

Finally, we have experimented with other types of di-
rectory structures. For a given article numbered 123456,
we tried to structure it using various subdirectories: 34/56/,
56/34/, and 456/. All three experiments resulted in poorer
performance because they either had too many (10,000) ad-
ditional directories thus imposing significantly larger over-
heads, or they did not cluster adjacent articles in the same
directory and resulted in too many cache misses. All of the
algorithms we have used are in the code base and can be
turned on/off at run time.These results will be included in
the final paper.

5 Related Work

5.1 Cyclic News File System

The Cyclic News File System (CNFS)[Fritchie97] stores
articles in a few large files or in a raw block device, re-
cycling their storage when reaching the end of the buffer.
CNFS avoids most of the overhead of traditional FFS-

5Even if the number of large newsgroups is small, they often represent
at least one quarter of all spool files — a significant portion — thus worth
managing by Usenetfs.

like[McKusick84] file systems, because it reduces the need
for many synchronous meta-data updates. CNFS reports an
order of magnitude reduction in disk activity.

CNFS requires substantial modifications to INN 1.7, and
is planned as part of INN 2.0. INN 2.0 in still under de-
velopment and will take a long time to to become stable
along with CNFS, and even longer to deploy throughout the
Internet. Moreover, transition from the traditional storage
method to CNFS will not be trivial. This underscores our
point that any work that makes significant modifications to
large news software packages will take a lot of time to be-
come widely distributed.

5.2 XFS

XFS[Sweeney96] is Silicon Graphics’ new file system for
the IRIX operating system. It supports large file systems,
a large number of files, large files, and very large direc-
tories. XFS uses B+ trees to store data and meta-data on
disk, avoiding the traditional linear directory structure, and
achieving good performance improvements over IRIX’s
older file system, EFS.

XFS comes only with IRIX and is not likely to be avail-
able for other operating systems. Since the requirements of
news systems change often due to increasing resource de-
mands, news administrators usually opt for less expensive
off-the-shelf hardware that can be upgraded easily and in-
expensively — mostly high-end PCs; they are not likely to
purchase a more expensive SGI system.

5.3 reiserfs

Reiserfs6 is a file system for Linux that uses balanced trees
to optimize performance and space utilization for small and
large files alike. By balancing files and their names, direc-
tories are packed more efficiently resulting in faster access.

Reiserfs is free but available only for Linux. It is a native
disk-based file system and as such is very difficult to port to
other operating systems. It is a complex and large piece of
software that will take time to become stable and available
for production use. (We have tried to test reiserfs but the
kernel module crashed after creating some 50,000 files in
one directory.)

6 Conclusions

For directories larger than 100,000 articles, Usenetfs im-
proves performance by more than an order of magnitude.
For directories containing 10,000 articles or more it im-
proves performance by at least several factors. Usenetfs
provides more efficient utilization of existing hardware,
thus extending its lifetime in the face of ever increasing
news traffic.

6http://www.idiom.com/˜beverly/reiserfs.html

8

We have shown that a relatively portable and highly sta-
ble file system can be written in a short period of time. The
short development time and higher portability than native
file systems were both the result of designing and imple-
menting Usenetfs as a stackable vnode interface file sys-
tem.

Stackable file systems and stackable vnodes are not a
new idea, but they have seen very little use. With this work,
we hope to prove that a lot can be accomplished with lit-
tle effort and without the need to rewrite any application
software, design radically new disk-based file systems, or
redesign operating systems. We believe that many more
stackable file systems can be written for existing vnode in-
terfaces. But we also recognize that in the long run, a truly
stackable vnode interface would have to be designed for
modern operating systems in order to maximize its utility.
We also believe that while more cumbersome and difficult
to develop, new file systems coupled with a new data stor-
age models for news are the better long term solutions to
performance problems ofUSENETnews systems.

Next we plan to complete our port of Usenetfs to Solaris
and also port it to FreeBSD, since these are representative
of the other two major Unix flavors in use.

7 Acknowledgments

Special thanks to Daniel Duchamp for his detailed reviews
of this paper; his useful comments enabled us to improve
Usenetfs’ performance. Thanks to Alex Shender and Jeff
Pavel for their assistance in the initial phases of the design,
and to Alex for his comments on this paper. Also thanks
to our ex-newsmasters Fred Korz and Seth Robertson for
reviewing the work.

This work was partially made possible thanks to NSF in-
frastructure grants numbers CDA-90-24735 and CDA-96-
25374.

References

[Fritchie97] S. L. Fritchie. The Cyclic News Filesystem:
Getting INN To Do More With Less.System Adminis-
tration (LISA XI) Conference(San Diego, California),
pages 99–111. USENIX, 26-31 October 1997.

[Heidemann94] J. S. Heidemann and G. J. Popek. File
System Development with Stackable Layers.Trans-
actions on Computing Systems, 12(1):58–89. (New
York, New York), ACM, February, 1994.

[McKusick84] M. K. McKusick, W. N. Joy, S. J. Leffler,
and R. S. Fabry. A fast file system for UNIX.ACM
Transactions on Computer Systems, 2(3):181–97, Au-
gust 1984.

[Reiser98] H. Reiser. Trees Are Fast. Un-
published Technical Report. The Nam-

ing System Venture, June 1998. Available
http://www.idiom.com/˜beverly/reiserfs.html.

[Rosenthal92] D. S. H. Rosenthal. Requirements for
a “Stacking” Vnode/VFS Interface. Unix Interna-
tional document SD-01-02-N014. UNIX Interna-
tional, 1992.

[Skinner93] G. C. Skinner and T. K. Wong. ”Stack-
ing” Vnodes: A Progress Report.USENIX Confer-
ence Proceedings(Cincinnati, OH), pages 161–74.
USENIX, Summer 1993.

[SMCC92] SMCC. lofs – loopback virtual file system.
SunOS 5.5.1 Reference Manual, Section 7. Sun Mi-
crosystems, Incorporated, 20 March 1992.

[Sweeney96] A. Sweeney, D. Doucette, W. Hu, C. Ander-
son, M. Nishimoto, and G. Peck. Scalability in the
XFS File System. Usenix Conference Proceedings
(San Diego, California), pages 1–14. USENIX, 22-
26 January 1996.

[Zadok97] E. Zadok. FiST: A File System Component
Compiler. PhD thesis, published as Technical Report
CUCS-033-97 (Ph.D. Thesis Proposal). Computer
Science Department, Columbia University, 27 April
1997. Available http://www.cs.columbia.edu/˜library/
or http://www.cs.columbia.edu/˜ezk/research/.

8 Author Information

Erez Zadok is an PhD candidate in the Computer Sci-
ence Department at Columbia University. His primary
interests include operating systems, file systems, and
ways to ease system administration tasks. The work de-
scribed in this paper was first mentioned in his PhD thesis
proposal[Zadok97]. In May 1991 Erez received his B.S. in
Computer Science from Columbia’s School of Engineering
and Applied Science. In December of 1994 he received his
M.S. degree in Computer Science from the same school.
Erez came to the United States in 1987 and has lived in
New York ever since. In his free time Erez is an amateur
photographer, science fiction devotee, and classical music
fan. Email address:ezk@cs.columbia.edu .

Ion Badulescu is a staff associate at the computer sci-
ence department. He is also a B.A. candidate at Columbia
University and is expected to graduate in May 1999. His
primary interests include operating systems, networking,
compilers, and languages. His life outside the Com-
puter Science Department includes classical music, soccer,
roller-blading, biking, and science fiction. Email address:
ion@cs.columbia.edu .

For the latest news on Usenetfs and other stackable file
systems, see http://www.cs.columbia.edu/˜ezk/research/.

9

