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Abstract

As random access memory gets cheaper, it becomes increasingly affordable to build computers with
large main memories. We consider decision support workloads within the context of a main memory
database system, and consider ways to enhance the performance of query evaluation.

Indexes can potentially speed up a variety of operations in a database system. In our context, we
are less concerned about incremental updating of the index, since we can rebuild indexes in response to
batch updates relatively quickly. Our primary concerns are the time taken for a lookup, and the space
occupied by the index structure.

We study indexing techniques for main memory, including hash indexes, binary search trees, T-trees,
B+-trees, interpolation search, and binary search on arrays. At one extreme, hash-indexes provide fast
lookup but require a lot of space. At another extreme, binary search on an array requires no additional
space beyond the array, but performs relatively poorly. An analysis of binary search on an array shows
that it has poor reference locality, leading to many cache misses and slow lookup times.

Our goal is to provide faster lookup times than binary search by paying better attention to reference
locality and cache behavior, without using substantial extra space. We propose a new indexing technique
called ”Cache-Sensitive Search Trees” (CSS-trees). Our technique stores a directory structure on top of
a sorted array. The directory represents a balanced search tree stored itself as an array. Nodes in this
search tree are designed to have size matching the cache-line size of the machine. Because we store the
tree in an array structure, we do not have to store internal-node pointers; child nodes can be found by
performing arithmetic on array offsets.

We provide an analytic comparison of the algorithms based on their time and space requirements.
We have implemented all of the techniques, and present a performance study on two popular modern
machines. We demonstrate that with a small space overhead, we can reduce the cost of binary search on
the array by more than a factor of two. We also show that our technique dominates B+-trees, T-trees,
and binary search trees in terms of both space and time. Our performance graphs show significantly
different rankings of algorithms than shown in a 1986 study by Lehman and Carey. The explanation of
the difference is that during the last twelve years, the relative cost of a cache miss to that of a CPU
instruction cycle has increased by two orders of magnitude. As a result, it is now much more important
to design techniques with good cache behavior.

∗This research was supported by a David and Lucile Packard Foundation Fellowship in Science and Engineering, by an NSF
Young Investigator Award, by NSF grant number IIS-98-12014, and by NSF CISE award CDA-9625374.
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1 Introduction

As random access memory gets cheaper, it becomes increasingly affordable to build computers with large
main memories. It is possible to configure machines with gigabytes of main memory for just a few thousand
dollars. Thus, one begins to ask whether some data intensive applications such as decision-support query
processing can take advantage of the speed of main memory to provide rapid answers to complex queries.
In this paper we work with databases that fit entirely into main memory. There are many applications with
large datasets of the order of several gigabytes for which this limitation is feasible [GMS92].

Index structures are important even in main memory database systems. Although there are no more
disk accesses, indexes can be used to reduce overall computation time without using too much extra space.
Past work on measuring the performance of indexing in main-memory databases includes [LC86b, WK90],
with [LC86b] being the most comprehensive on the specific issue of indexing. In the twelve years since
[LC86b] was published, there have been substantial changes in the architecture of computer chips. The most
relevant change is that CPU speeds have been increasing at a much faster rate (60% per year) than memory
speeds (10% per year) as shown in Figure 1 (borrowed from [CLH98]). Thus, the relative cost of a cache
miss has increased by two orders of magnitude since 1986. As a result, we cannot assume that the ranking
of indexing algorithms given in [LC86b] would be valid on today’s architectures. In fact, our experimental
results indicate very different relative outcomes from [LC86b] for lookup speed.

Figure 1: Processor-memory performance imbalance

A second recent development has been the explosion of interest in On-Line Analytical Processing (OLAP).
OLAP workloads are query-intensive, and have infrequent batch updates. In an OLAP context, it is more
important to optimize query performance than update performance. In a main-memory system, it may be
relatively cheap to rebuild an index from scratch after a batch of updates. With OLAP as our focus, we can
design algorithms for query performance, perhaps at the expense of update performance.

Two important criteria for the selection of index structures are space and time. Space is critical in a main
memory database and we may have a limited amount of space available for precomputed structures such as
indexes. Given space constraints, we try to optimize the time taken by index lookups. In a main-memory
database there are several factors influencing the speed of database operations. An important factor is the
degree of locality in data references for a given algorithm. Good data locality leads to fewer (expensive)
cache misses, and better performance.

We study a variety of existing techniques, including hash indexes, binary search on a sorted list of record
identifiers, binary trees, B+-trees [Com79], T-trees [LC86a], and interpolation search. We also introduce
a new technique called “Cache-Sensitive Search Trees” (CSS-trees). CSS-trees augment binary search by
storing a directory structure on top of the sorted list of elements. CSS-trees differ from B+-trees by avoiding
storing the child pointers in each node. The CSS-tree is organized in such a way that traversing the tree
yields good data reference locality (unlike binary search), and hence relatively few cache misses.

We measure the time and space requirements of each algorithm. When range queries or sequential access
are needed on an attribute, we keep a list of record-identifiers that is sorted by that attribute. (If the
underlying table is clustered by that attribute, then such a list is not necessary.) Our major conclusions are
as follows:

• Hash indices have a high space overhead (the hash table is at least as large as the list of record-
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identifiers). The hash table space is in addition to space to support sequential access, since hash tables
do not allow for ordered access. Nevertheless, for random lookups of data sets with minimal skew,
hash indices perform best in terms of time.

• Binary search on a sorted array has a negligible space overhead beyond the data structures needed for
sequential access. However, due to poor data reference locality, search times are relatively high.

• Interpolation search performs well only for data sets that behave linearly. It doesn’t perform very well
on random data and performs even worse on non-uniform data.

• T-Trees and binary search trees essentially have the same poor cache behavior as binary search on an
array and thus have a commensurate high searching cost.

• B+-trees are more cache conscious and thus perform better than binary search and T-trees. But since
each node has to store a child pointer with each key, the utilization of each node is low.

• CSS-Trees are the most cache conscious. They make the best use of each cache line and have faster
lookup time than B+-trees. CSS-trees also use less space than B+-trees of the same node size.

We summarize the space/time tradeoffs of various methods in Figure 2. Each point for T-trees, B+-trees
and CSS-trees corresponds to a specific node size. The stepped line basically tells us what’s the optimal
searching time for a given amount of space. Our conclusion is that CSS-trees dominate T-trees and B+-trees
in both space and time. There are tradeoffs between space and time for binary search, CSS-trees and hash
indices. CSS-trees reasonably balance space and time. We discuss this issue in more detail in Section 7.
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Figure 2: Space/time Tradeoffs

2 Indexing and Main Memory Databases

2.1 Data Layout in Main Memory Databases

As has been observed before, query evaluation techniques that are developed specifically for main-memory
databases can be much faster than techniques developed for disk-based databases, even when the data needed
for the query is resident in the buffer pool in main memory [LSC92]. [AHK85] and others introduced the
concept of domain. When data is first loaded into main memory, distinct data values are stored in an
external structure—domain, and only pointers to domain values are stored in place in each column. This
has the benefits of: (a) saving space in the presence of duplicates, (b) simplified handling of variable-length
fields and (c) pointer comparisons can be used for equality tests. In the main memory database project at
Columbia University, we focus on an OLAP main memory database system. We go further than [AHK85] by
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keeping the domain values in order and associate each value with a domain ID (represented by an integer).
As a result, we can process both equality and inequality tests on domain IDs directly, rather than on the
original values. Although keeping values in order has extra cost, we expect the data is updated infrequently.
Independently, Tandem Inc.’s InfoCharger storage engine [Eng98] has also chosen to keep domain values in
sorted order. This means that many indexes can be built with smaller keys.

2.2 Indexing in Main Memory Databases

Although sequential data access is much cheaper in main memory, indexing remains very important in main
memory databases. First of all, searching an index is still useful for answering single value selection queries
and range queries. Next, cheaper random access makes indexed nested loop joins more affordable in main
memory databases. Indexed nested loop join is pipelinable, requiring minimal storage for intermediate results
and is relatively easy to implement. As a matter of fact, indexed nested loop join is the only join method
used in [WK90]. This approach requires a lot of searching through indexes on the inner relations. Last but
not least, transforming domain values to domain IDs (as described in the previous section) requires searching
on the domain.

A list of record identifiers sorted by some columns provides ordered access to the base relation. Ordered
access is useful for range queries and for satisfying interesting orders [SAC+79]. A sorted array is an index
structure itself since binary search can be used.

2.3 Assumptions

We assume an OLAP environment, so we don’t care too much about updates. Our main concerns are the
lookup time for an index, and the space required to store the index.

3 Cache Optimization on Index Structures

In this section, we first describe cache memories and the impact of cache optimization. We then give a survey
of the related work. Finally, we analyze the cache behavior of various existing index structures for searching
and point out their shortcomings.

3.1 Cache Memories and Cache Conscious Techniques

Cache memories are small, fast static RAM memories that improve program performance by holding recently
referenced data [Smi82]. Memory references satisfied by the cache, called hits, proceed at processor speed;
those unsatisfied, called misses, incur a cache miss penalty and have to fetch the corresponding cache block
from the main memory.

A cache can be parameterized by capacity, block size and associativity, where capacity is the size of the
cache, block size is the basic transferring unit between cache and main memory, associativity determines
how many slots in the cache are potential destinations for a given address reference.

Cache optimization in a main memory database system is similar to main memory optimization in a
disk-based system. But the management of the cache is done by the hardware and the database system
doesn’t have direct control of which block to bring into a cache. This makes cache optimization more subtle.

Typical cache optimization techniques include clustering, compression and coloring [CLH98]. Clustering
tries to pack, in a cache block, data structure elements that are likely to be accessed successively. Compression
tries to remove irrelevant data and thus increases cache block utilization by being able to put more useful
elements in a cache block. This includes key compression, structure encodings such as pointer elimination
and fluff extraction. Coloring maps contemporaneously-accessed elements to non-conflicting regions of the
cache.

Previous research has attacked the processor-memory gap using the above techniques. Wolf and Lam [WL91]
exploited cache reference locality to improve the performance of matrix multiplication. LaMarca and
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Ladner [LL96, LL97] considered the effects of caches on sorting algorithms and improved performance by
restructuring these algorithms to exploit caches. In addition, they constructed a cache-conscious heap
structure that clustered and aligned heap elements to cache blocks. [CLH98] demonstrated that cache
optimization techniques can improve the spatial and temporal locality of pointer-based data structures.
They showed improvement on various benchmarks.

In [NBC+94], Nyberg et al. have shown that for achieving high performance sorting, one should worry
about cache memory. They have emphasized a large cache and do not explore alternative optimization
techniques.

Cache conscious algorithms have been considered in database systems also. In [SKN94], the authors
suggested several ways to improve the cache reference locality of query processing operations such as joins
and aggregations. They showed that the new algorithms can run 8% to 200% faster.

Although cache optimization has been considered on tree-based structures, nobody has looked at the
influence of cache on index structures used in database systems. In the rest of this section, we study the
cache behavior of different index structures in a main memory database system.

3.2 Array Binary Search

The problem with binary search is that many accesses to elements of the sorted array result in a cache miss.
We do not get misses for the first references because of temporal locality over many searches. We avoid
misses for the last references, due to spatial locality, if many records from the array fit inside a single cache
line. However, when the array is substantially bigger than the cache, many of the intervening accesses cause
cache misses. In the worst case, the number of cache misses is of the order of the number of key comparisons.

3.3 T-Trees

T-Trees have been proposed as a better index structure in main memory database systems. A T-Tree [LC86a]
is a balanced binary tree with many elements in a node. Elements in a node contain adjacent key values
and are stored in order. Its aim is to balance the space overhead with searching time and cache behavior is
not considered (twelve years ago the gap between processor and main memory speeds was not that large).
T-Trees put more keys in each node and give the impression of being cache conscious. But if we think
of it carefully, we can observe that for most of the T-Tree nodes, only two end keys are actually used for
comparison (in the improved version [LC86b], only one key is used). This means that the utilization of each
node is low. Since the number of key comparisons is still the same, T-Trees do not provide any better cache
behavior than binary search.

Another problem with the T-Tree is that it has to store a record pointer for each key within a node.
Since most of the time the record pointers won’t be needed, essentially half of the space in each node is
wasted. Potentially, one could put just RIDs in the T-tree with no keys, but then search is much slower due
to indirection.

3.4 B+-trees

Although B+-trees were designed for disk-based database systems, they actually have a much better cache
behavior than T-trees. In each internal node we store keys and child pointers, but the record pointers are
stored on leaf nodes only. Multiple keys are used to search within a node. If we fit each node in a cache
line, this means that a cache load can satisfy more than one comparison. So each cache line has a better
utilization ratio. In an OLAP environment, we can use all the slots in a B+-tree node and rebuild the tree
when batch updates arrive.

But B+-trees still need to store child pointers within each node. So for any given node size, only half of
the space can be used to store keys.

4



3.5 Hash

Hash indices can also benefit from cache optimization. The most common hashing method is the chained
bucket hashing [Knu73]. In [GBC98], the authors use the cache line size as the bucket size and squeeze in as
many < key,RID > pairs as possible. This can reduce the number of cache misses when scanning through
the buckets. Hash indices are fast in searching only if the length of each bucket is small. This requires
a fairly large directory size and thus a fairly large amount of space. Skewed data can seriously affect the
performance of hash indices unless we have a relatively sophisticated hash function, which will increase the
computation time. Hash indices do not preserve order. In order to provide ordered access, an ordered list
has to be kept in addition to the hash indices.

3.6 Handling Duplicates

All methods mentioned in previous sections can be generalized to handle duplicates. An inorder traversal
of T-trees can find all the matches of a given key. For array binary search and B+-trees, we can find the
leftmost element of all the duplicates and sequentially scan towards right. Hashing needs to search the entire
bucket for all the matches.

4 Cache Sensitive Search Trees

In this section, we present our cache conscious searching methods—the CSS-trees. Section 4.1 introduces
the concept of “full” CSS-trees. We describe how to build and search a full CSS-tree in Section 4.1.1 and
Section 4.1.2 respectively. We talk about “level” CSS-trees in Section 4.2.

Suppose that we have a sorted array a[1..n] of n elements. The array a could contain the record-
identifiers of records in some database table in the order of some attribute k. a could alternatively contain
column-k keys from the records in the table, with a companion array holding the corresponding record-
identifiers, using some extra space to avoid an indirect reference during the search. a could alternatively
contain records of a table or packed domain clustered by column k.

Binary search of a has a serious cache usage problem as described in Section 3.2. A second problem
with binary search is that it requires a calculation to be performed log2 n times to find the next element to
search. Even if this calculation uses a shift rather than a division by two [WK90], the calculation represents
a significant portion of the execution time needed. Nevertheless, binary search has the benefit that no
additional space beyond a is needed to perform a search. Our goal is to improve upon the search time of
binary search without using a significant amount of additional space.

4.1 Full CSS-Trees

We create a search tree with nodes containing exactly m keys. (We’ll see how to choose m later.) If the
depth of the tree is d, then the tree is a complete (m+ 1)-ary search tree up to depth d− 1, and at depth d
the leaves are filled from left to right. An example tree is shown for m = 4 in the left diagram of Figure 3
(the numbers in the boxes are node numbers and each node has four keys). The nodes of a CSS-tree can be
stored in an array as shown on the right in Figure 3. Note that we do not need to store explicit pointers to
child nodes; the children of a node can be computed from offsets in the CSS-tree array. (The exact formulas
are given below.)

Our basic idea is to store a CSS-tree as a directory structure on top of the array a. There are two reasons
why we expect a traversal of such a tree to be faster than binary search. First, if we choose m such that a
node fits in a cache line, then all local searching within a node happens with at most one cache miss. As a
result we get at most logm+1 n cache misses for a lookup, unlike binary search which gets up to log2 n cache
misses. (Even if a node occupies two cache lines, half the time only one cache miss will be generated, while
half the time there will be two cache misses.) Second, we can hard-code the traversal within a node, so that
calculations needed to find the next node happen logm+1 n times rather than log2 n times. (Note that the
total number of comparisons is the same.)
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Suppose that we number the nodes and keys starting at 0. If we have an internal node numbered b, then
it is not difficult to show that the children of that node are numbered from b(m+1)+1 to b(m+1)+(m+1).
Within the directory, we have m keys per node, so key number i in the directory array maps to node number
b imc. As a result, one can find the offset of the first key of the child nodes within the directory array as

((m+ 1) ∗ b i
m
c+ 1) ∗m through ((m+ 1) ∗ b i

m
c+m+ 1) ∗m (1)

0

1 2 3 4 5

31-55 56-80

11-156-10 21-25 26-30

Full CSS-Tree (m=4)

0 1

III

1615 3130

0

I II

65*4 elements in the array

49 50

leaf nodesinternal nodes

directory in an array

sorted array a

80

64

16-20

Figure 3: Layout of a full CSS-tree

A subtle point in the structure of a CSS-tree is that we store the leaf nodes in a contiguous array in key
order. This conflicts with the natural order of the CSS-tree that stores the nodes from left to right, level by
level. The CSS-tree order would split the array, putting the right half of the array (which appears at a higher
level than the left half of the array) ahead of the left half of the array. In Figure 3, the natural tree order is
to store nodes 16-30 before nodes 31-80. However, when the leaves are stored in a sorted array, nodes 31-80
come before nodes 16-30. Since maintaining a contiguous array in key order is desirable for other purposes,
and since the array is given to us without assumptions that it can be restructured, we leave the array in key
order. To get to the correct leaves when searching the CSS-tree, we modify the natural search algorithm.

When performing a search, we move from parent to child by recalculating the offset within the directory
structure as above. We mark the end of the directory structure (in Figure 3, that’s the last key in node 15),
and terminate this portion of the search when the computed offset exceeds the endpoint. If the leaves were
stored in the natural CSS-tree order, we’d use this offset to look up the directory directly. However, since
the two parts of the leaf nodes are stored in reverse order in a separate array, we need to process this offset
further.

Imagine a “virtual” leaf level in CSS-tree order. The order of the elements in the directory array would
be something like that shown in the right diagram of Figure 3, with the leaves at the higher level (having
greater keys) appearing earlier than those leaves at the next level. Let us denote as the “mark” the offset
in the directory array of the first key at the deeper leaf level. (In Figure 3 that’s the first key in node 31.)
A computed offset x greater than the mark y corresponds to the element at position x− y from the start of
the sorted array a. A computed offset x less than y, but greater than the last internal node, corresponds to
the element at position y − x from the end of a. This effect can be visualized as the switching of regions I
and II in the right diagram of Figure 3.

Note that our techniques apply to sorted arrays having elements of size different from the size of a key.
Offsets into the leaf array are independent of the record size within the array; the compiler will generate the
appropriate byte offsets.

The following lemma tells us how to calculate the node number of the last internal node, and the node
number of the mark node. Key offsets can be obtained by multiplying these numbers by m.
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Lemma 4.1: Let n = B ∗ m be the number of elements in the sorted array a (B is the number of leaf
nodes). The total number of internal nodes in a full CSS-tree is (m+1)k−1

m −b (m+1)k−B
m c. The first leaf node

in the bottom level is number (m+1)k−1
m . In both formulas, k = dlogm+1(B)e.

4.1.1 Building a Full CSS-Tree

To build a full CSS-tree from a sorted array, we first split the sorted array logically into two parts (based on
Lemma 4.1) and establish the mapping between the leaf nodes and elements in the sorted array. We then
start with the last internal node. For each entry in the node, we fill it with the value of the largest key in
its immediate left subtree. Finding the largest key in a subtree can be done by following the link in the
rightmost branch until we reach the leaf nodes.

Algorithm 4.1: Building a full CSS-tree with m entries per node.

Input: the sorted array (a),
number of elements in the array (n).

Output: the array storing the internal nodes of a full CSS-tree (b).
last internal node number (lNode).
index of the first entry of the leftmost leaf node in the bottom level in a CSS directory array. (MARK).

Method:
Calculate the number of internal nodes needed and allocate space for b.
Calculate lNode, MARK.
for i=the array index of the last entry of node lNode to 0 {

Let d be the node number of entry i.
Let c be the node number of entry i’s immediate left child node.
while (c <= lNode) {

Let c be the node number of the (m+1)th child of c.
}
//now we are at the leaves, map to the sorted array.
Let diff be the difference of the array index of the first entry in node c and MARK.
if (diff<0) { //map to the second half of the array from the end.

b[i]=a[diff+n+m-1];
}
else { //map to the first half of the array from the beginning.

if ((diff+m-1) is in the first part of the array)
b[i]=a[diff+m-1];

else
b[i]=the last element in the first part of the array.

}
}
return b, lNode and MARK.

Some internal nodes, namely ancestors of the last leaf node at the deepest level, may not have a full
complement of keys. In our algorithm, we simply fill in those dangling keys with the last element in the
first half of array a. So there may be duplicate keys in some internal nodes. In our searching algorithm,
we tune the searching within each node in such a way that the leftmost key will always be found in case of
duplicates. So we will never reach the leaf nodes in the deepest level with an index out of the range of the
first half of the sorted array.

Although it’s difficult to incrementally update a full CSS-tree, it’s relatively inexpensive to build such a
tree from scratch. In Section 6.3 we show that to build a full CSS-tree from a sorted array of twenty-five
million integer keys takes less than one second on a modern machine. Therefore, when batch updates arrive,
we can afford to rebuild the CSS-tree.

4.1.2 Searching a Full CSS-Tree

Once a full CSS-tree is built, we can search for a key. We start from the root node. Every time we reach
an internal node, we do a binary search to find out which branch to go to. We repeat until we reach a leaf
node. Finally, we map the leaf node into the sorted array and binary search the node.

Algorithm 4.2: Searching for a key in a full CSS-tree.

Input: the sorted array (a),
the array consisting of the internal nodes of a full CSS-tree (b),
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number of elements in the sorted array (n).
last internal node number (lNode).
index of the first entry of the leftmost leaf node in the bottom level in a CSS directory array. (MARK).

Output: the index of the matching key in array a: if the key is found;
-1: otherwise.

Method:
d=0;
while (d < lNode) {

binary search node d to find the correct branch l to go to. (hard-coded)
Let d be the node number of the lth child of d.

}

Let diff be the difference of the array index of the first entry in node d and MARK.
if (diff<0) { //map to the second half of the array from the end.

binary search a[num+diff..num+diff+m-1]. (hard-coded)
}
else { //map to the first half of the array from the beginning.

binary search a[diff..diff+m-1]. (hard-coded)
}
if (the last binary search succeeds)

return the index of the matching key in array a;
else

return -1;

In Algorithm 4.2, all the searches within a node consist of hard-coded if-else statements. When doing
binary search in the internal nodes, we keep checking the keys in the left part if its greater than or equal to
the searching key. We stop when we find the first slot that has a value smaller than the searching key and
then follow the branch on the right (if such a slot can’t be found, we follow the leftmost branch). In this
way, if there are duplicates in a node, we are guaranteed to find the leftmost key among all the duplicates.
When there are duplicate keys being indexed (as discussed in Section 3.6), we can return the leftmost match
in a fashion similar to B+-trees.

4.2 Level CSS-Trees

1

2

3

4

5

6

7

8

Figure 4: Binary search tree within a node with 8 keys

A full CSS-tree with m entries per node will have exactly m keys, i.e., all the entries are fully used.
Figure 4 shows the binary search tree of a node with m = 23 entries. Out of the nine possible branches,
seven of them need three comparisons and two of them need four. But if we waste one entry and just put
seven keys per node, we will have a full binary search tree and all the branches need three comparisons.
This may give us some benefit. So for m = 2t, we define a tree that only uses m − 1 entries per node and
has a branching factor of m a level CSS-tree. A level CSS-tree will be deeper than the corresponding full
CSS-tree since now the branching factor is m instead of m + 1. However, we have fewer comparisons per
node. If N is the number of nodes that the elements in the sorted array can form, a level CSS-tree has
logmN levels while a full CSS-tree has logm+1N levels. The number of comparisons per node is t for a level
CSS-tree and t ∗ (1 + 2

m+1 ) for a full CSS-tree. So the total number of comparisons for a level CSS-tree is
logmN ∗ t = log2N and that for a full CSS-tree is logm+1N ∗ t ∗ (1 + 2

m+1 ) = log2 n ∗ logm+1m ∗ (1 + 2
m+1 ).
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Figure 5: Comparison and cache access ratio between level CSS-tree and full CSS-tree

The ratio of the former to the latter is

(m+ 1) logm (m+ 1)
m+ 3

.

Thus a level CSS-tree always uses fewer comparisons than a full CSS-tree for searching. On the other hand,
level CSS-trees may require logmN cache accesses and logmN node traversals, compared with logm+1N
for full CSS-trees. Whether we obtain a net gain in speed depends upon how time-consuming a comparison
operation is compared with node traversals and cache accesses. Figure 5 shows both ratios as a function of
m.

Notice that a level CSS-tree still utilizes most of the data in each cache line. A level CSS-tree uses a little
more space than a full CSS-tree, but this may be desirable for users who want to trade space for time.

The building of level CSS-trees is similar to that of full CSS-trees. We can also make good use of the
empty slot in each node. During the population, we can use that slot to store the largest value in the last
branch of each node. We can thus avoid traversing the whole subtree to find the largest element. The
searching algorithm of a level CSS-tree is quite similar to that of a full CSS-tree. The only difference is the
calculation of the offset of a child node.

5 Time and Space Analysis

In this section, we analytically compare the time performance and the space requirement for different
methods. We let R denote the space taken by a record-identifier, K denote the space taken by a key,
P denote the space taken by a child pointer and n denote the number of records being indexed. h denotes
a hashing fudge factor (typically about 1.2, meaning that the hash table is 20% bigger than the raw data
in the hash table). c denotes the size of a cache line in bytes, and s denotes the size of a node in a T-tree,
CSS-tree or B+-tree measured in cache-lines.

5.1 Time Analysis

To make the analysis easy, in this section we assume that R, P and K are the same. Thus we have a single
parameter m, which is the number of slots per node (s = mK

c ).
The first table in Figure 6 shows the branching factor, number of levels, comparisons per internal node

and comparisons per leaf node for each method. B+-trees have a smaller branching factor than CSS-trees
since they need to store child pointers explicitly. The total cost of each searching method has three parts,
namely the comparison cost, the cost of moving across levels and the cache miss cost. We show the three
costs for each method in the second table in Figure 6. We use D to denote the cost of dereferencing a pointer,
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Parameter Typical Value
R 4 bytes
K 4 bytes
P 4 bytes
n 107

h 1.2
c 64 bytes
s 1

Table 1: Parameters and Their Typical Values

Method branching # of levels comparisons per comparisons per
factor (l) internal node (nComp) leaf node (Achild)

Binary search 2 log2 n 1 1
T-trees 2 log2

n
m − 1 1 log2m

B+-trees m
2 logm

2

n
m log2m− 1 log2m

Full CSS-trees m+ 1 logm+1
n
m (1 + 2

m+1) log2m log2m

Level CSS-trees m logm
n
m log2m log2m

Method Total comparisons Moving across Level Cache Misses Cache Misses
mk
c <= 1 mk

c > 1
Binary search log2 n log2 n ∗Ab log2 n log2 n
T-trees log2 n log2 n ∗D log2 n log2 n

B+-trees log2 n logm
2

n
m ∗D

log2 n
log2 m−1 logm

2
n(log2

mk
c + c

mk )
Full CSS-trees (1 + 2

m+1 ) logm+1m log2 n logm+1
n
m ∗Afcss

log2 n
log2 (m+1) logm+1 n(log2

mk
c + c

mk )
Level CSS-trees log2 n logm

n
m ∗Alcss

log2 n
log2 m

logm n(log2
mk
c + c

mk )

Figure 6: Time analysis

Ab, Afcss, Alcss to denote the cost of computing the child address for binary search, full CSS-tree and level
CSS-tree respectively. First of all, the comparison cost is more or less the same for all the methods. Full
CSS-trees have slightly more comparisons than level CSS-trees as we described earlier. Some of the methods
find the child node by following pointers and others by arithmetic calculations. The relative cost depends on
computation complexity and the hardware. For example, while Ab could be smaller than D, Afcss is likely
to be more expensive than D. Nevertheless, methods with a higher branching factor have fewer levels and
thus usually have a lower cost of moving across levels. But that doesn’t mean the larger the branching factor
the better. Too large a node size will increase the cache miss cost, which is probably the most important
factor since each cache miss can be an order of magnitude more expensive than a unit computation.

We assume a cold start in the cache. If the node size is smaller than the cache line size, each level has one
cache miss. When the node size is larger than the cache line size, we estimate the number of cache misses
per node to be log2 s+ 1

s = log2
mK
c + c

mK . The results are summarized in the last two columns of the table.
For most reasonable configurations, the number of cache misses is minimized when the node size is the same
as cache line size. In the third column, we can see that binary search and T-trees always have a number of
misses that are independent of m. B+-trees and CSS-trees have only a fraction of the cache misses of binary
search. The fractions for CSS-trees are even smaller than that of B+-trees. So CSS-trees have the lowest
values for the cache related component of the cost. As we can see, as m gets larger, the number of cache
misses for all the methods approaches log2 n (essentially all methods degrade to binary search). There is a
tradeoff between full CSS-trees and level CSS-trees. While the latter has slightly more cache misses, it also
performs fewer comparisons. It’s hard to compare the moving cost of the two since Alcss is cheaper than
Afcss. We will show our experimental result in Section 6.

To summarize, we expect CSS-trees to perform significantly better than binary search and T-trees in
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Method Space Typical Value Space Typical Value RID-Ordered
(indirect) (direct) Access

Binary search 0 0 MB 0 0 MB Y
Interpolation search 0 0 MB 0 0 MB Y
Full CSS-trees nK2

sc 2.5 MB nK2

sc 2.5 MB Y
Level CSS-trees nK2

sc−k 2.7 MB nK2

sc−k 2.7 MB Y
B+-trees nK(P+K)

sc−P−K 5.7 MB nK(P+K)
sc−P−K 5.7 MB Y

Hash table (h− 1)nR 8 MB hnR 48 MB N
T-trees 2nP (K+R)

sc−2P 11.4 MB 2nP (K+R)
sc−2P + nR 51.4 MB Y

Figure 7: Space analysis

searching, and also outperform B+-trees. If a bunch of searches are performed in sequence, the top level
nodes will stay in the cache. Since CSS-trees have fewer levels than all the other methods, it will also gain
the most benefit from a warm cache.

5.2 Space Analysis

Figure 7 lists the space requirements of the various algorithms. The column “Space (indirect)” describes the
space required by the algorithms if the structure being indexed is a collection of record-identifiers that can
be rearranged if necessary. In other words, it is acceptable for a method to store record-identifiers internally
within its structure, as opposed to leaving the list of record-identifiers untouched as a contiguous list. In
this column, we do not count the space used by the record-identifiers themselves since all methods share this
space requirement.

The column “Space (direct)” describes the space required by the algorithms if the structure being indexed
is a collection of records that cannot be rearranged. In other words, it is not acceptable for a method to store
the records internally within its structure. In this column, we count the space used by record-identifiers for
T-trees and hash tables since record-identifiers would not be necessary with other methods.

All methods other than hash tables support access in RID-order. The formula for Level CSS-trees assumes
that sc

K is a power or 2. Figure 8 shows the required amount of space with respect to the sorted array size
using the typical values in Table 1. As we can see, hash tables and T-trees use much more space than
CSS-trees.
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6 Experiment Results

We perform an experimental comparison of the algorithms on two modern platforms. We analyze the wall-
clock time taken to perform a large number of random successful lookups to the index. We summarize our
experiments in this section.

6.1 Experimental Setup

We ran our experiments on an Ultra Sparc II machine (296MHz, 1GB RAM) and a Pentium II (333MHz,
128M RAM) personal computer. The Ultra machine has a < 16k, 32B, 1 > (<cache size, cache line size,
associativity>) on-chip cache and a < 1M, 64B, 1 > secondary level cache. The PC has a < 16k, 32B, 4 >
on-chip cache and a < 512k, 32B, 4 > secondary level cache. Both machines are running Solaris 2.6. We
implemented all the methods including chained bucket hashing, array binary search, interpolation search,
T-tree, B+-tree, full CSS-tree and level CSS-tree in C++. Since cache optimization can be sensitive to
compilers [SKN94], we also chose two different compilers, one is Sun’s native compiler CC and the other is
GNU’s g++. We used the highest optimization level of both compilers. However, the graphs for different
compilers look very similar, so we only report the results for CC. All the keys are distinct integers and are
chosen randomly. Each key takes four bytes. The keys to look up are generated in advance to prevent the
key generating time from affecting our measurements. We performed 100,000 searches on randomly chosen
matching keys. We repeated each test five times and report the minimal time. Note that by assuming
distinct key values we are slightly favoring binary search trees and T-trees. If duplicates were allowed then
these two methods would need to keep additional information on a stack to facilitate the inorder traversal
of the tree.

6.2 Algorithm Implementation Details

We tried our best to optimize all the searching methods. For methods that can have different node sizes, we
implemented specialized versions for selected node size. We use logical shifts in place of multiplication and
division whenever possible. We unfold the binary search loop in each internal node by hardcoding all the
if-else tests to reduce the amount of overhead. The search within a leaf node is also hardcoded. Additionally,
once the searching range is small enough, we simply perform the equality test sequentially on each key. This
gives us better performance when there are less than 5 keys in the range. Code specialization is important.
When our code was more “generic” (including a binary search loop for each node), we found the performance
to be 20% to 45% worse than the specialized code.

The sorted array is aligned properly according to the cache line size. For T-trees, B+-trees and CSS-trees,
all the tree nodes are allocated at once and the starting addresses are also aligned properly.

For the implementation of B+-trees, we forced each key and child pointer to be adjacent to each other
physically. Since there is always one more pointer than keys, for nodes with an even number of slots, we
leave one slot empty.

We avoid storing the parent pointer in each node of a T-tree since it’s not necessary for searching. We
implemented the improved version of T-Tree [LC86b], which is a little bit better than the basic version. For
each T-tree node, we store the two child pointers adjacent to the smallest key so that they will be brought
together into cache in the same cache line (Most of the time, the improved version checks the smallest key
only in each node.).

For the chained bucket hashing, we followed the techniques used in [GBC98] by using the cache line size
as the bucket size. Besides keys, each bucket also contains a counter indicating the number of occupied slots
in the bucket and the pointer to the next bucket. Our hash function simply uses the low order bits of the
key and thus is cheap to compute.
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6.3 Results

In the first experiment, we test how long it takes to build a CSS-tree. Figure 9 shows the building time of a
full CSS-tree and a level CSS-tree.1 As we can see that both building time curves are linear in the size of the
sorted array. Level CSS-trees are cheaper to build than full CSS-trees because they don’t need to traverse
each subtree to find the largest key.
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Figure 9: Building time for CSS-trees on Ultra Sparc II

We then test the searching time for all the algorithms. We first fix the node size and vary the size of the
sorted array. We choose the node size to be each of the cache line size of the two levels of cache in Ultra
Sparc (32 bytes and 64 bytes). Figure 10 shows the result on Ultra Sparc. First of all, when all the data can
fit in cache, there is hardly any difference among all the algorithms (except for interpolation search). As the
data size increases, we can see that our cache conscious CSS-trees perform the best among all the methods
except for hashing. T-tree and binary search are the worst and run more than twice as slow as CSS-trees.
The B+-tree curve falls in the middle. Although these searching methods all have to do the same number
of key comparisons, they differ on how many of those comparisons cause a cache miss. T-tree search and
binary search essentially have one cache miss for each comparison. For CSS-trees, all comparisons within
a node are performed with only one cache miss. B+-tree also has one cache miss per node. But since it
stores half as many keys per node as CSS-trees, it has more levels than CSS-trees. Although it’s hard to
discern visually, the level CSS-tree performs slightly better than the full CSS-tree. Across all of our tests we
observed that level CSS-trees were up to 8% faster than full CSS-trees. The performance of interpolation
search depends on how well the data fits a linear distribution. Although not shown here, we also did some
tests on non-uniform data and interpolation search performs even worse than binary search. So in practice,
we would not recommend using interpolation search. For B+-trees and the two CSS-trees, the numbers in
Figure 10(b) are smaller than that in Figure 10(a). The reason is that the miss penalty for the second level
of cache is larger than that of the on-chip cache. B+-trees get more benefit than CSS-trees from having a
larger node size. This is because B+-trees always hold half the number of keys per node as CSS-trees and
thus its benefit from avoiding extra cache misses is more significant. Although the T-tree has many keys per
node, it doesn’t benefit from having a larger node size. In this experiment, we chose the hash table directory
size to be 4 million. Hashing uses only one third of the time of CSS-trees. But we have to keep in mind that
it’s using 20 times as much space.

Figure 11 shows the result on Pentium PC. The relative position of each algorithm remains the same. For
CSS-trees, the 32-byte node size is better than 64-byte node size since the cache line size of Pentium is 32
bytes. In the 32-byte node case, level CSS-tree is slightly worse than full CSS-tree although the 64-byte case
shows it’s better. In both Figure 10 and Figure 11, we can see that array-based binary search is sometimes
better than using a pointer-based binary search tree. In [LC86a, LC86b], the authors reported that T-trees

1We didn’t include the memory allocation time since in a main memory database system, all the space will be preallocated
once.
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Figure 10: Varying array size, Ultra Sparc II
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Figure 11: Varying array size, Pentium PC

perform better than binary search and B+-trees. Our result shows the contrary conclusion. The explanation
is that the CPU speed has improved by two orders of magnitude relative to memory latency during the past
twelve years [CLH98].

In our next experiment, we fix the size of the sorted array and vary the node size of T-trees, B+-trees,
full CSS-trees and level CSS-trees. Figure 12 shows the result on Ultra Sparc. For both CSS-trees, we can
see clearly that the lowest point is 16 integers per node, which corresponds to the cache line size of the
machine. B+-trees have its minimum at 32 integers per node. Although this doesn’t quite fit in the time
analysis in Section 5.1, the difference between 16-integer and 32-integer per node is not very significant. As
we can see, there is a bump for full CSS-trees and B+-trees when each node has 24 integers. One reason is
that the node size is not a multiple of the cache line size. Thus nodes are not properly aligned with cache
line and cause more cache misses. The bumps in full CSS-trees are more dramatic. After a careful analysis,
we found that the arithmetic computation for the child node is more expensive for m = 24 since division
and multiplication must be used to compute child nodes instead of logical shifts. We also tested the optimal
hash directory size of chained bucket hash. Each point correspond to a directory size from 223 to 218 with
the leftmost point having the largest directory size. When the directory size has been increased to 223, the
system starts to run out of memory and thus the searching time goes up. T-trees perform much worse on
all the node sizes. Theoretically, the performance of T-trees should not be very sensitive to node size. But
the lines in Figure 12 seem to fluctuate a little bit. In both pictures, T-trees of node size of 24 integers take
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Figure 12: Varying node size, Ultra Sparc II
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Figure 13: Varying node size, Pentium PC

the minimal time.
Figure 13 shows the result on the PC. CSS-trees have the lowest point when the node size fits in a cache

line. Using the formula in Section 5.1, B+-trees should have the lowest point at 16-integer node size. The
experimental result is pretty close. The line for T-trees in the left picture is more smooth. The time for
T-trees in the right picture is not shown since the system starts to run out of memory.

7 Space/Time Tradeoffs

An indexing method is measured by the pair (S, T ) of space required for the whole index structure (S),
and time taken for a single lookup (T ). Figure 14 shows the space requirement and searching time for each
method.2 Each point for T-trees, B+-trees and CSS-trees corresponds to a specific node size. Since keeping
an ordered RID list is usually necessary, we calculate the space requirement using the formula for “direct”
space listed in Figure 14. The stepped line basically tells us how to find the optimal searching time for a
given amount of space. All the methods on the upper-right side of the line are dominated by some methods
on the line. As we can see that T-trees and B+-trees are both dominated by CSS-trees. Methods on the line
have tradeoffs between space and time. On the bottom, we have binary search on the sorted array, which

2We choose the numbers from searching a sorted array of 5 million elements on an Ultra Sparc II.
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Figure 14: Space/time Tradeoffs

doesn’t require any extra space, but uses three times as much time as CSS-trees and seven times as much
as hashing. If we invest a little bit of extra space, we can use CSS-trees, which reduce the searching time to
one third of binary search. To make another factor of two improvement, we have to pay 20 times as much
space as CSS-trees to be able to use hashing. When space is limited, CSS-trees balance the space and time.

8 Conclusion

In this paper, we study the cache behavior of various in-memory indexes in an OLAP environment. We
show that cache conscious methods such as the CSS-trees proposed in this paper can improve searching
performance by making good use of cache lines. As the gap between CPU and memory speed is widening,
we expect the improvement by exploiting the cache will be even more significant in the future. Cache
conscious searching behavior is just one step towards efficiently utilizing the cache in database systems. We
aim to study the effect of cache behavior on other database operations in the future.
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