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Abstract

Datacube queries compute aggregates over database relations at a variety of granularities, and they
constitute an important class of decision support queries. Often one wants only datacube output tuples
whose aggregate value satisfies a certain condition, such as exceeding a given threshold. For example,
one might ask for all combinations of model, color, and year of cars (including the special value “ALL”
for each of the dimensions) for which the total sales exceeded a given amount of money.

Computing a selection over a datacube can naively be done by computing the entire datacube and
checking if the selection condition holds for each tuple in the result. However, it is often the case that
selections are relatively restrictive, meaning that a lot of work computing datacube tuples is “wasted”
since those tuples don’t satisfy the selection condition.

Our approach is to develop algorithms for processing a datacube query using the selection condition
internally during the computation. By making use of the selection condition within the datacube
computation, we can safely prune parts of the computation and end up with a more efficient computation
of the answer. Our first technique, called “specialization”, uses the fact that a tuple in the datacube
does not meet the given threshold to infer that all finer level aggregates cannot meet the threshold. We
propose a scheme of specialization transformations on the underlying data sets, using properties of the
aggregates and threshold functions.

Our second technique is called “generalization”, and applies in the case where the actual value of the
aggregate is not needed in the output, but used just to compare with the threshold. Generalization uses
the fact that a tuple meets the given threshold to infer that all coarser level aggregates also meet the
threshold. We also propose a scheme of generalization transformations.

We demonstrate the efficiency of these techniques by implementing them within the sparse datacube
algorithm of Ross and Srivastava. We present a performance study using synthetic and real-world data
sets. Our results indicate substantial performance improvements for queries with selective conditions.

∗This research was supported by a David and Lucile Packard Foundation Fellowship in Science and Engineering, by an NSF
Young Investigator Award, by NSF grant number IIS-98-12014, and by NSF CISE award CDA-9625374.
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1 Introduction

Datacube queries compute aggregates over database relations at a variety of granularities, and they constitute
an important class of decision support queries. The databases may represent business data (such as sales
data), medical data (such as patient treatments) or scientific data (such as large sets of experimental
measurements).

The computation of a data cube query with k CUBE BY attributes (B1, B2 . . . Bk) involves computing the
aggregates over a relation at 2k granularities where each granularity is one of the the possible 2k subsets of
our k CUBE BY attributes. Attributes that are not present in such a subset are replaced by a special value
ALL in the datacube result. We refer to each of these granularities as a cuboid and we use the notation
Q( ~Bi) to denote the cuboid at granularity ~Bi.

Often one wants only datacube output tuples whose aggregate value satisfies a certain condition, such
as exceeding a given threshold. For example, one might ask for all combinations of model, color, and year
of cars (including the special value ”ALL” for each of the dimensions) for which the total sales exceeded a
given amount of money. This query takes the form of the left query of Figure 1. In some cases we may need
to know the exact value of sales too (the right query of Figure 1).

SELECT a,b,c,d SELECT a,b,c,d,aggregate(G)
FROM relation FROM relation
CUBE BY a,b,c,d CUBE BY a,b,c,d
HAVING aggregate(G) relop threshold HAVING aggregate(G) relop threshold

Figure 1: A selection over a data cube

We can naively execute these queries as follows. Compute the datacube using any of the existing datacube
algorithms [4, 1, 10] and check if the predicate in the HAVING clause holds for each tuple in the datacube.
This strategy is reasonable if a large proportion of the datacube result tuples satisfy the condition. However,
if only a small fraction satisfy the condition (i.e, the query is an example of an “iceberg query” [3]) then it
seems that we may be wasting a lot of time computing aggregates that do not qualify.

However depending upon the aggregate function and the relational operator in the predicate, there are
certain optimizations we can make use of. In this paper we propose two kinds of optimization that we call
generalization and specialization. We defer the formal details until Section 1.1. For now, we motivate these
techniques with examples.

Example 1.1: (Specialization) Suppose that we are computing our example query

Find all combinations of model, color, and year of cars (including the special value ”ALL” for
each of the dimensions) for which the total sales exceeded $100,000. Output the total sales also.

Suppose that during an intermediate step of the computation, we determine that the total sales for all green
cars is below $100,000. Then we can immediately infer that datacube output tuples grouped by (model,color),
(year,color), and (model,year,color) will never meet the threshold when the color is green. If the computation
corresponding to those aggregates has not yet been performed, then perhaps we can avoid that computation
altogether. 2

Example 1.2: (Generalization) Suppose again that we are computing our example query “Find all combi-
nations of model, color, and year of cars (including the special value ”ALL” for each of the dimensions) for
which the total sales exceeded $100,000.” Note that in this case we do not need the total sales in the output.
Suppose that during an intermediate step of the computation, we determine that the total sales for white
1998 Taurus cars is above $100,000. Then we can immediately infer that the class of white cars satisfies
the condition, the class of 1998 Taurus cars satisfies the condition, etc. We can immediately output all of
the additional seven “generalizations” of (white,1998,Taurus). If we have not yet performed the aggregation
needed for some of these additional tuples, then we can potentially avoid such aggregation altogether. 2
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A relation is sparse with respect to a set of attributes if its cardinality is a small fraction of the size of
the cross-product of the attribute domains. Sparseness exists for two distinct reasons: large domain sizes
of some CUBE BY attributes and a large number of CUBE BY attributes in the datacube query. Real-World
data in application domains is often very large and sparse. Hence, efficiently computing datacubes over large
sparse relations is important.

In this paper we examine how we would make use of generalization and specialization to carry out
selections over data cubes efficiently. Since sparse data sets are important we extend the Memory-Cube and
Partitioned-Cube algorithms [10] which can deal efficiently with sparse data. Memory-Cube computes a set
of paths which cover the search lattice and then computes the cuboids on each path in turn. We exploit
specialization by altering the set of base tuples with which each path is computed without affecting the
correctness of the result. Depending on the selectivity of our condition, we can reduce the number of tuples
which are processed in each path leading to substantial improvements in performance. Generalization is
incorporated into the algorithms by introducing marker tuples which allow us to skip computing aggregates
which are known to satisfy our selection criteria. Specialization applies for both of the queries in Figure 1
while generalization applies only for the query on the left. We demonstrate the efficiency of these modifica-
tions by experiments carried out on synthetic and real-world data sets for a variety of selection conditions.
These experiments support our overall conclusion that substantial work can be saved.

1.1 Notation and Terminology

The computation of the various cuboids are not independent of each other, but are closely related in that
some of them can be computed using others. The relationship between cuboids can be captured in terms of
the search lattice of the data cube [6]. Each granularity ~Bi ⊆ {B1, . . . , Bk} is a node in the search lattice,
and there is an edge from node ~Bi to ~Bj if ~Bj is a subset of and has one fewer element than ~Bi; ~Bi is said
to be a parent of ~Bj in the search lattice. If there is a path from ~Bi to ~Bj in the search lattice, ~Bi is said
to be of a finer granularity than ~Bj , and ~Bj is said to be of a coarser granularity than ~Bi. Paths in the
search lattice precisely determine which of the cuboids can be computed from which others. In particular,
cuboid Q( ~Bj) can be computed using Q( ~Bj) if and only if ~Bj is of coarser granularity than ~Bi. A datacube
tuple t1 is more general than tuple t2 if it can be produced from t2 by replacing one or more of t2’s non-ALL
attributes with ALL values. We can restate this by saying that t2 is more specialized than t1. t1 and t2 come
from cuboids at different levels of the search lattice with a path from the cuboid of the more specialized
tuple (t2) to the cuboid of the more general (t1) one.

Using the categorizations of aggregate functions introduced in [4], we focus on the case of distributive
functions. An aggregate function g() is said to be distributive if there is a function h() such that g({Xi,j}) =
h({g({Xi,j|i = 1, . . . I})|j = 1, . . . , J}). Examples of such aggregate functions include SUM,COUNT,MIN
and MAX. Within the class of distributive functions there are several properties we can check for. As we
shall see, these properties are important when considering potential optimizations of aggregate computation.

• Idempotent: An aggregate function g is idempotent if g({g({Xi})}) = g({Xi}).

• One Tuple Dependence (OTD):An aggregate function has one tuple dependence if g({Xi}) ∈ {Xi}, i.e.
the aggregate of a set is an element of the set.

Apart from the aggregate functions in SQL (MIN,MAX,SUM,COUNT), we also consider
⋃

and
⋂

as
aggregate functions. If we use a bitmap representation for a set, then

⋂
corresponds to the AND operation

on bits and
⋃

to the OR operation. Both of these operations are clearly distributive since we can pick g =
⋂

and g =
⋃

respectively.
One property of all the aggregate function discussed is that they have the property of monotonicity.

For operators such as MAX, SUM (for non negative numbers), COUNT and
⋃

, the aggregate value is
monotonically increasing as we move from a more specialized tuple to a more general one. The converse
holds for operators like MIN and

⋂
. Let G(ti) denote the aggregate computed using aggregate function

G which is associated with tuple ti. A pair (G, op), where G is an aggregate function and op a relational
operator, is said to be concordant if for all datacube tuples t1 and t2 (where t1 is more general than t2),
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Function Idempotent OTD Concordant Operators Discordant Operators Inverse
Min Yes Yes ≤ ≥
Max Yes Yes ≥ ≤

Sum (on R+) No No ≥ ≤ -value
Count No No ≥ ≤ -value⋃

Yes No ⊇ ⊆⋂
Yes No ⊆ ⊇

Figure 2: Distributive Aggregate Functions and their properties

G(t1) op G(t2) holds (G(ti) denotes the aggregate computed using aggregate function G which is associated
with tuple ti). Similarly (G, op) is discordant if for all datacube tuples t1 and t2 (where t1 is more general
than t2), G(t2) op G(t1) holds. Hence for MAX, ≥ is a concordant operator while ≤ would be a discordant
operator.

In this paper we propose two optimizations which enable us to do better than than the naive evaluation
strategy suggested above.

For concordant aggregates we have:

• Generalization: Suppose we have evaluated a datacube cuboid, B1B2 . . . Bj from the base tuples,
where B1, B2 . . . Bn are the CUBE BY attributes. Each tuple at this cuboid has the value ALL for
n − j of its attributes. The Generalization principle states that if for tuple t of this cuboid, the
condition "aggregate(G) relationalOperator threshold" is true, this condition will be true for
any generalization of this tuple. In this case we would have 2j − 1 generalizations.

• Specialization : Similarly, if the condition aggregate(G) relationalOperator threshold is false
for t, this condition will be false for any specialization of this tuple. The number of possible specializa-
tions for a tuple t, is given by

∏n
i=j+1 Cardi where Cardi denotes the cardinality of the ith attribute

Bi.

Complementary versions of generalization and specialization apply for discordant aggregates.

2 Data Cube Algorithms

2.1 Array Based Algorithms

The array-based algorithm proposed by Gray et al. [4] is essentially a main memory algorithm, where all
the tuples of the finest level of the datacube are kept in memory as a k dimensional array, where k is the
number of CUBE BY attributes. The data structure needed for this algorithm will often not fit into memory
for sparse relations even when R does. In this case, the algorithm does not apply. When the algorithm does
apply, it requires just a single pass over the data. If we are computing a selection over the data cube, we will
not be able to make use of specialization since we gain by this only if we examine a tuple multiple times. We
can make use of generalization by outputting a tuple as soon as we know that it will be meet the threshold.
This saves us the cost of further aggregations made to that counter in memory, which might be significant
if the aggregate function itself is expensive to compute.

Zhou et al. [13] have proposed an array based algorithm that computes the datacube using array-chunking
techniques. By managing the order in which chunks are processed, substantially less of the result array needs
to be kept in memory at any one time than with the algorithm of Gray et al. Nevertheless, when the data
is very sparse, this algorithm too may fail since it cannot allocate enough main memory to hold the needed
parts of the result array.
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2.2 PIPESORT

The PIPESORT algorithm [1] tries to optimize the overall computation of a datacube by providing a set
of paths which cover the search lattice and then executing each path in turn. This algorithm makes use of
cost estimates of the various ways to compute each cuboid Q( ~Bj) to determine which cuboid will actually
be used to compute the tuples of Q( ~Bj).

Since this algorithm computes various paths in turn and each pass consists of examining all the data in
the underlying relation, the techniques we describe with regard to the Memory-Cube algorithm of [10] are
applicable to PIPESORT too.

2.3 OVERLAP

The OVERLAP algorithm [1] tries to minimize the number of disk accesses by overlapping the computation
of the cuboids, by making use of the partially matching sort orders to reduce the number of sorting steps
performed.

OVERLAP computes a cuboid tree which has the finest granularity cuboid as the root and covers the
entire search lattice. Each cuboid is computed from the tuples of its parent cuboid in this tree. Next a set of
cuboids is chosen that can be computed concurrently within the available memory constraints. At evaluation
time, the cuboids in the “Partition” state are immediately available for pipelining purposes while those in
the “SortRun” state are written to disk; the various runs are subsequently merged, further aggregating as
necessary, and the result tuples are pipelined for further computation.

This algorithm sorts the tuples once. Our scheme for exploiting specialization relies on rearranging and
altering the base tuples, hence it cannot directly be applied here. Our technique for generalization improves
performance because it allows us to skip aggregations we do not have to carry out. If we are computing
aggregations for multiple cuboids concurrently, we may not be able to skip tuples. Hence, OVERLAP is not
a good candidate algorithm for our optimizations.

2.4 Memory-Cube and Partitioned-Cube

Partitioned-Cube and Memory-Cube [10] are efficient algorithms for computing datacubes which work
particularly well for sparse data.

Partitioned-Cube (Figure 3) is an algorithm which uses a divide-and-conquer strategy to divide the
problem of computing the datacube over a relation with T tuples and k CUBE BY attributes into n + 1
sub-datacubes for a large number n. The first n of these sub-datacubes each has approximately T/n tuples
and k CUBE BY attributes. The final sub-datacube has no more than T tuples and has k − 1 CUBE BY
attributes. Algorithm Partitioned-Cube assumes the existence of a subroutine Memory-Cube (Figure 4)
which efficiently computes datacubes for relations that fit in memory.

The structure of Partitioned-Cube follows the recursive structure of datacubes themselves. A datacube
is obtained by fixing each possible value of a CUBE BY attribute Bj in turn and computing the tuples in the
corresponding sub-datacube, followed by computing the datacube tuples with the value ALL for Bj. Rather
than rereading the input relation R for the ALL datacube we read the finest granularity cuboid F , which
may be significantly smaller than R if there are many tuples in each group, and is never larger than R.

Memory Cube computes the various cuboids of the datacube using the idea of pipelined paths where each
path requires the relation to be sorted in a particular attribute ordering. The paths are generated by an

algorithm which generates
(

k
dk/2e

)
paths for a datacube with k CUBE BY attributes. These paths are

processed in an order which allows us to share as much computation as possible across paths. Memory-Cube
does not incur any I/O beyond the input of the relation and the output of the datacube itself.

We now examine how we would incorporate specialization and generalization into these algorithms. We
first look at Memory-Cube and then at Partitioned-Cube. We then perform experiments with the modified
version of these algorithms which show considerable speedup for queries with restrictive selections.
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Algorithm Partitioned-Cube(R, {B1, . . . , Bm}, A,G)
INPUTS: A set of tuples R, possibly stored in horizontal fragments; CUBE BY attributes {B1, . . . , Bm};
attribute A to be aggregated, aggregate function G().
OUTPUTS: The datacube result for R over {B1, . . . , Bm} in two horizontal fragments F and D on disk. F
contains the finest granularity tuples and D contains the remaining tuples. (F and D may themselves be
further horizontally partitioned.)

Method:
If (R fits in memory) return Memory-Cube(R, {B1, . . . , Bm}, A,G);
else { Choose an attribute Bj among {B1, . . . , Bm};

Scan R and partition on Bj into sets of tuples R1, . . . , Rm;
/* n ≤ card(Bj) and n ≤ number of buffers in memory */
fori = 1 . . . n

let (Fi, Di) = Partitioned-Cube(Ri, {B1, . . . , Bm}, A,G)
let F = the union of the Fi’s
let (F ′, D′) = Partitioned-Cube(F, {B1, . . . , Bj−1, Bj+1 . . . , Bm}, A,G)
let D = the union of F ′, D′ and the Di’s
return (F,D) ;}

Figure 3: Algorithm Partitioned-Cube

INPUTS: A set of tuples R, that fits in memory; CUBE BY attributes {B1, . . . , Bm}; attribute A to be
aggregated, aggregate function G().
OUTPUTS: The datacube result for R over {B1, . . . , Bm} in two horizontal fragments F and D on disk. F
contains the finest granularity tuples and D contains the remaining tuples.

Method:
Sort R and combine all tuples that share all the values of {B1, . . . , Bm};
/* Assume that tuples are sorted according to first sort order */
for each sort order {

initialize accumulators for computing aggregates at each granularity
combine first tuple into finest granularity accumulator
for each subsequent tuple t {

Compare t with previous tuple, to find position j of the first sort
order attribute at which they differ
if (j exceeds number of common attributes with next sort order) then {

resort segment from t′(last tuple where condition is satisfied) to tuple
prior to t according to next sort order.

}
if (grouping attributes of t differ from finest granularity accumulator) {

output and combine each accumulator into coarser granularity
accumulator until grouping attributes match those of t;
/* Number of combinings depends on sort order length and j */

}
Combine current tuple with finest granularity accumulator;

}
}

Figure 4: Algorithm Memory-Cube
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3 Specialization

Let us define a datacube tuple to be small if its aggregate is below threshold and large if it is above. For
concordant operators, we output large tuples; for discordant small. We can make use of Specialization by
taking certain actions whenever we compute a small data cube tuple.

If the aggregate function has the OTD property (both MIN and MAX have this property) and the
relational operator is concordant we can speed up Memory-Cube by simply dropping all base tuples for
which the value of the attribute being aggregated is below the threshold. The OTD property ensures that
this does not affect the correctness of our result. Note that if the relational operator is discordant we cannot
make use of this optimization.

We can gain from this optimization in a number of ways:

1. The number of tuples for subsequent sort-orders is smaller. The time spent sorting will hence be less.

2. Since the number of tuples has decreased the time spent processing each sort-order is reduced.

3. We still maintain the exact attribute value for large tuples, so we can handle both variations of our
sample query.

We can incorporate this optimization into Memory-Cube by incorporating a preprocessing check for each
tuple t being processed.

If our distributive aggregate function does not have the OTD property, we cannot drop the tuples since
this would affect the correctness of the result.

3.1 1-Specialization

Let us investigate how we would make use of a 1-Specialization for an aggregate function g, a concordant
relational operator op and a threshold which is a constant T .

Definition 3.1: We define a cuboid consisting of tuples with only one non-ALL attribute value to be a
1-cuboid. 2

1-Specialization applies when we have computed a datacube tuple in a 1-cuboid. If we have 4 cube
by attributes; < a1, ALL,ALL,ALL : v1 > would be one such example tuple (v1 indicates the aggregate
computed using function G for this tuple). If we know that this tuple is small (i.e v op T is false), we can infer
that there will be no datacube tuple with the value a1 for attribute A in the result. Hence, we can replace all
instances of a1 in the base tuples with the a special blank value t. The benefit of this optimization is that if
< a2, ALL,ALL,ALL : v2 >) is also small, we may have altered base tuples of the form < t, b1, c1, d1 : v >
produced by both specializations. These tuples can be combined into a single tuple where v1 and v2 are
merged using h, a function which allows us to merge tuples. As mentioned earlier for any distributive
aggregate function g there exists a function h such that g({Xi,j}) = h({g({Xi,j|i = 1, . . . I})|j = 1, . . . , J}).
For the functions MAX, MIN and SUM h = g. For the function COUNT, h = SUM. In a best case scenario,
we reduce the number of tuples in the next sort order by a factor of the cardinality of attribute a. We do
not increase the number of base tuples in this optimization.

Definition 3.2: Let us define 1-Specialization for a set of base tuples (R) and a datacube query with
k CUBE BY attributes, an aggregate function g, a concordant relational operator op and a threshold (T ).
Consider a small 1-cuboid datacube tuple t with value x in attribute j. 1-Specialization consists of replacing
x with a t in the jth CUBE BY attribute for all tuples of R. 2

Example 3.1: We have a datacube with 4 CUBE BY attributes and the first sort order we are processing is
ABCD. Hence the first lattice path which we compute is ABCD → ABC → AB → A→ φ. The next sort
order is DAB and the corresponding lattice path is DAB → DA→ D. Suppose both a1 and a2 are small.
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Consider the following run of tuples:
< a1, b1, c1, d1 : v1 >
< a1, b1, c1, d4 : v2 >
< a1, b1, c2, d3 : v3 > < t, b1, c1, d1 : h({v1, v6}) >
< a1, b1, c2, d4 : v4 > < t, b2, c1, d1 : v5 >
< a1, b2, c1, d1 : v5 > < t, b2, c1, d2 : v10 >
< a2, b1, c1, d1 : v6 > ⇒ < t, b1, c2, d3 : h({v3, v8}) >
< a2, b1, c1, d4 : v7 > < t, b1, c1, d4 : h({v2, v7}) >
< a2, b1, c2, d3 : v8 > < t, b1, c2, d4 : h({v4, v9}) >
< a2, b1, c2, d4 : v9 >
< a2, b2, c1, d2 : v10 >

After using the 1-Specialization optimization, compacting tuples and sorting we obtain the run of tuples
on the right from the run of tuples on the left. 2

At this point we have to explain how we treat a tuple t which has one or more t’s as attribute values in
the context of the Memory-Cube algorithm. If the t occurs in an attribute which is not a grouping attribute
in any of the nodes on the lattice path, we can treat these tuples in an identical fashion to other tuples.

In general, if a t occurs as the ith attribute in the first node of a lattice path with j attributes and the
number of nodes of the lattice path is k, we have a formula for determining which accumulators will need
to be affected. Due to space constraints, we omit the derivation of this formula. We use this formula in
Memory-Cube to combine a tuple with a t with the appropriate accumulator.

When sorting tuples we can consider a t to be less than any other value. The other aspect which needs
to be addressed is the timing of when tuples are marked with a t. In Memory-Cube we sort tuples according
to the sort order of the next path immediately after processing a tuple. Now we sort tuples only when we
have finished computing a tuple of a 1-cuboid. We then scan all tuples which have just been processed and
contribute to this tuple, and replace all values of ai with t. After all the cuboids on a path have been
computed, we can carry out the sorting and the subsequent compression step. If no 1-cuboids are being
computed on a path, we can use the default of sorting tuples immediately.

3.2 2-Specialization

2-Specialization is similar to 1-Specialization. Here, we make use of the fact that if a tuple from a 2-cuboid
is small, all tuples which are specializations of this tuple will be small too.

We can exploit this in a similar way to 1-Specialization by introducing special values t into the tuples
which contribute towards small tuple from the 2-cuboid. However, we cannot directly replace the non-ALL
attribute values with t’s in the base tuples contributing to the small tuple of the 2-cuboid. The reason for
this is illustrated in the following example.

Example 3.2: Consider a base tuple of the form < a1, b1, c1, d1 : v1 > which contributes to the small tuple
< a1, b1, ALL,ALL : V >. If we replace the base tuple with < t,t, c1, d1 : v1 > we would no longer have
the correct answer when computing tuples of the form < ai, ALL, ci, ALL : V2 >. Since we ignore tuples
which have a t in the grouping attributes for a particular sort order, the tuple < t,t, c1, d1 : v1 > would
be ignored while computing < a1, ALL, c1, ALL >. However, it is clear that V2 is dependent on v1. 2

We can remedy the situation by replacing each base tuple with 3 new tuples. Let us say the small tuple
computed has non-ALL attributes in attributes p and q and they take the value of x and y respectively. Of
the three new tuples, one of these tuples will have x replaced with a t, one would have y replaced with
a t and the third would have both replaced with t’s. The introduction of t’s in the first two tuples give
us potential for compression while the third tuple is introduced for correctness. If the original tuple has
the value v for the attribute being aggregated, the first two would have v too while the third would have
the inverse of v. The inverse of an attribute exists for non idempotent distributive aggregate functions
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like SUM and COUNT. The inverse function here consists of negating the value v (Normally for COUNT
we are negating 1, however if we are 2-specializing a tuple which has been formed from multiple tuples
while computing a previous path we need to negate its current count). This third tuple ensures correctness
while computing cuboids to which both the earlier tuples would contribute. If the aggregate function is
idempotent (MAX,MIN,

⋃
,
⋂

), we are not affected by double counting since the value of the aggregate will
remain unchanged. In this case we only need to introduce the first two tuples.

Example 3.3: Continuing our earlier example we would replace < a1, b1, c1, d1 : v1 > with 3 tuples :
< t, b1, c1, d1 : v1 >, < a1,t, c1, d1 : v1 >, < t,t, c1, d1 : inv(v1) >. The third tuple is necessary so we do
not have an error while computing cuboid CD; both < t, b1, c1, d1 : v1 > and < a1,t, c1, d1 : v1 > contribute
to < ALL,ALL, c1, d1 : h({v1, v1}) > and so we have counted the original tuple twice. The third tuple
compensates for this double counting. 2

While 1-Specialization does not increase the number of tuples, 2-Specialization may lead to a net increase
in the number of tuples if we do not have substantial savings in the compression step. The compression
factor depends upon the sparseness of the data as well as the number of tuples in the 2-cuboid for which the
aggregate is below the threshold.

3.3 n-Specialization

In a similar fashion to 2-Specialization we can define n-Specialization. In this case we introduce 2n−1 tuples
for each original tuple if the aggregate function is invertible but not idempotent. Each of these tuples is
formed by replacing one or more of the n attribute values with t’s. We can assign values of the attribute
being aggregated to the new tuples in the following fashion. We assign the inverse of the original aggregated
value to all tuples in which there are an even number of t’s and the original value to those tuples with an
odd number of t’s. Due to space constraints, we omit the proof of correctness.

Example 3.4: Consider the 3 specialization case, with tuple < a1, b1, c1, ALL,ALL : V > having just been
computed and shown be to small with respect to a concordant aggregate. We can replace < a1, b1, c1, d1, e1 :
v > with 23 − 1 = 7 tuples namely:

< t,t,t, d1, e1 : v >
< a1,t,t, d1, e1 : inv(v) >
< t, b1,t, d1, e1 : inv(v) >
< t,t, c1, d1, e1 : inv(v) >
< a1, b1,t, d1, e1 : v >
< a1,t, c1, d1, e1 : v >
< t, b1, c1, d1, e1 : v >

2

We only need to introduce all 2n − 1 elements if the aggregate function is non idempotent like COUNT
and SUM. If the aggregate function is idempotent, we can ensure correctness by introducing a minimum of
n tuples where these n tuples would be the ones with only one instance of t.

The major gains of n-Specialization come from the reduction in the number of tuples as we move from
sort order to the next. However, as n increases so does the likelihood of a net increase in the number of
tuples.

We also need to work out how to deal with n-Specialization in the context of memory cube as in a single
pipeline we may be having multiple specializations originating due to different levels. We notice that for i < j,
i-Specialization dominates j-Specialization. We only need to carry out the adjustment for i-Specialization.
We can handle this by delaying carrying out specializations until we determine whether we will be carrying
out any 1-Specializations.
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3.4 Generating Paths for Memory-Cube

In Memory-Cube we generate a set of paths which cover the search lattice and execute them in turn. To
make better use of specialization, it is better to execute paths containing a 1-cuboid earlier on, since 1-
Specialization gives us the maximum benefit by decreasing the number of tuples. After executing these
paths, we can use the previous heuristic of ordering paths lexicographically to maximize work shared across
sort orders.

4 Generalization

The Generalization principle states that if a datacube tuple is large then all generalizations of this tuple are
also large. If the data cube has n CUBE BY attributes and the tuple computed has m non-ALL attributes, the
tuple has 2m − 1 generalizations. The Generalization optimization holds only for the left query of Figure 1
where we do not need to know the exact value of the aggregate. Let us see how this optimization would be
incorporated into the Memory-Cube algorithm.

Whenever a large tuple is computed we know that all generalizations of this tuple are large. Some of
these generalizations will lie in cuboids on the current path being executed. We can automatically flush the
accumulators for these cuboids which are maintained for the pipelined execution of the path.

We can adjust for the remaining tuples in the following manner by adding a special extra tuple to the
set of base tuples. This extra tuple would contain marked values of the non-ALL attributes. This marked
tuple would be given special treatment on subsequent lattice paths. When sorting these marked tuples, we
use the following rule: A marked value a∗i is treated such that ai−1 < a∗i < ai. On a subsequent lattice
path, we treat marked tuples as follows. If all the grouping attributes for the first node on the lattice path
correspond to a *’d attribute, we can immediately reach the conclusion that tuple currently being computed
is large and so are all of its generalizations along the path currently being computed. In a similar fashion
we can flush the accumulators for these cuboids.

Example 4.1: If the current lattice path being examined is ABCD → ABC → AB → A→ φ, and we have
just computed a large tuple < a1, b1, c1, ALL : v1 >, the tuples about which we can make generalizations
are the following:
1. < a1, b1, ALL,ALL : v2 >
2. < a1, ALL, c1, ALL : v3 >
3. < ALL, b1, c1, ALL : v4 >
4. < a1, ALL,ALL,ALL : v5 >
5. < ALL, b1, ALL,ALL : v6 >
6. < ALL,ALL, c1, ALL : v7 >
7. < ALL,ALL,ALL,ALL : v8 >

Here, tuples 1,2,4 and 7 lie on the same lattice path and can be handled by flushing the accumulators.
We introduce a tuple < a∗1, b

∗
1, c
∗
1, ALL >. Let the subsequent lattice path be CAD → CA → C. When

we encounter tuple < a∗1, b
∗
1, c
∗
1, ALL > we have yet to encounter any tuples of the form < a1, b1, c1, d1 >

since we treat ALL as being less than any other attribute value.
At this point, we know that we do not have to compute any aggregates for the CA and C cuboids for

a1 and c1. We next have to alter values for the CA cuboid when we encounter a new value of a. At this
point we can write out the values for < a1, ALL, c1, ALL > and < ALL,ALL, c1, ALL > without further
computation. We cannot skip on computing CAD tuples. 2

Since we know what the lattice paths are going to be beforehand, we can encode the last lattice path for
which the special tuple would be required and discard the marked tuple after we have computed that lattice
path.

It is always a win to generalize for tuples which lie along the current lattice path since we are reducing
the number of aggregations. It is not clear that our scheme of introducing marked tuples will always cause an
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improvement in performance. Since we are introducing extra tuples there will be an increase in the costs of
sorting. Furthermore, the benefits of introducing this tuple depend upon how many computations it allows
us to skip. This would be affected by which cuboids have already been computed as well as the number of
non-ALL attributes in the tuple being generalized.

The gains of generalization are more pronounced when the the cost of computing an aggregate is
expensive. If we were dealing with sets of large cardinalities this would be the case whether we used a
bit mapped representation or a list representation.

5 Concordances and Discordances

Our treatment of specialization and generalization has focussed on concordant operators. Let us see how our
modifications to Memory-Cube are affected if the relational operator is discordant rather than concordant.

Consider the left query from Figure 1 with the aggregate function and the relational operator pair being
discordant (e.g. MAX and ≤). The situation is reversed as we now want to output small datacube tuples
rather than large ones.

From the perspective of generalization, we have to make just one change. For generalizations along the
same path, we can flush the accumulators but in this case we do not output the corresponding tuples. We
can still use our technique of introducing marked tuples. Marked tuples can be used to skip computing
aggregates, once again the aggregations skipped are not output.

Let us see what happens in the case of 1-Specialization (the situation will be similar for n-Specialization)
when we have just computed a small tuple from a 1-cuboid. Clearly all specializations of this tuple will also
be small. We cannot use our earlier technique of replacing all attribute values with t’s since now we would
need to output these specialized tuples on subsequent paths.

A possible line of attack could be to try using our technique of introducing t’s for large tuples from a
1-cuboid. Unfortunately, this is where the difference between concordant and discordant operators comes
into play. In this case, all specializations of the the tuple are not necessarily large and hence may need to
be output.

6 Partitioned Cube

We have dealt so far only with the Memory-Cube algorithm in [10], however we need to address how the
optimizations , specialization and generalization could be used in conjunction with Partitioned-Cube. The
key idea behind this algorithm is divide and conquer. The problem of computing a relation R with T tuples
and k CUBE BY attributes into n+1 sub-datacubes, for a large number n. The first n of these sub data cubes
each have approximately T/n tuples and k CUBE BY attributes. the final sub-datacube has no more than T
tuples and k − 1 CUBE BY attributes. We modify the Partitioned Cube algorithm to optimize for selections.
The outline of the process illustrated in Figure 5 follows.

We first split the relation on the basis of a partitioning attribute a, where each sub-datacube corresponds
to a distinct value of a. While carrying out the partitioning scan we can simultaneously generate all 1-
cuboids. This is done by maintaining in memory counters for each of the distinct attribute values. Since
we are performing this step for 1-cuboids the memory requirements of this is bounded by the sum of the
cardinalities of each attribute. We use this information while executing each of the individual sub-datacubes.

1. If a particular partitioning attribute ai in not present in any tuple in 1-cuboid for a, it means that we
do not have to compute this sub-datacube at all.

2. Before we start processing each sub-datacube we can carry out a 1-Specialization step over the tuples.
In this step, each value of each attribute in a tuple is replaced by a t if that value is not present in
the tuples of the corresponding 1-cuboid. We can compact these tuples before we process the sub data
cube. This allows us to gain by reducing the number of tuples before processing any of the sort orders.
We carry out this step even if we do not have to compute the sub data cube since we will require these
tuples later for computing the sub-datacube with k − 1 attributes.

10



The tuples passed to each of the n subcubes (marked with R’s in Figure 5) each have a distinct value
of the partitioning attribute. This immediately means that any generalization of a tuple in datacube i will
either be in the same datacube or in the datacube with k−1 attributes. Within each datacube we can carry
out generalization and specialization.

.........

Partitioning

1-Cuboid Specialization
s s s s

Compressing Tuples

Compute 1-Cuboids

F-1 F-2 F-3 F-n

 o o o o Output tuples

Tuples for n-1 cuboid

Base Tuples R

R-1 R-2 R-3 R-n

Sub-datacube computation

Figure 5: Modified Partition-Cube

The next issue we have to address is which tuples should be used for the sub datacube with k − 1
attributes.

For concordant operators with the OTD property we only need to pass on those base tuples which are
themselves large. If we do not have the OTD property we cannot adopt this scheme nor can we use the post
processed F tuples. The reason for this is illustrated by the following example:

Example 6.1: We are computing a datacube with 5 CUBE BY attributes A,B,C,D,E. In the partitioning
step, we partition by attribute A. Consider the sub datacube with value ai in all its constituent tuples. We
use information from the 1-cuboids computed during the partitioning phase to compact theT tuples to obtain
the F tuples. Assume the first lattice path we compute is ABCDE → ABCD → ABC → AB → A, We are
operating upon the tuples marked with F ’s in Figure 5. If we compute tuple < ai, bj , ALL,ALL,ALL >
and it turns out to be small, we can replace bj with a t in all the base tuples for the rest of this subcube.
If we had a tuple < ai, bj, cx, dy, ez >, we would replace it with < ai,t, cx, dy, ez >. As in earlier cases
we gain if we have similar tuples of this form since we can compact them into a single tuple. However,
when computing the sub datacube with 4 CUBE BY attributes we would have to compute a tuple of the form
< ALL, bj, cx, ALL,ALL >. The tuple < ai, bj, cx, dy, ez >, which we earlier t’ed, contributes to this tuple.
Hence, it is necessary for us to use a copy of the tuples which have not been modified with t’s (the tuples
marked with F ’s in Figure 5 prior to the sub-cube computation). This is superior to tuples marked with T ’s
in Figure 5 since we are making use of the 1-cuboid information to compress tuples. 2

It is likely that the subcube with k− 1 attributes is smaller than it normally would be since we are using
tuples marked F and not those marked T . This might enable us to carry out the computation of the k − 1
sub datacube in memory without having to resort to another partitioning step.

Generalization is unaffected by whether the relational operator is concordant or discordant. For discor-
dant operators we can carry out specialization only in the case where OTD property holds. We have the
same caveat about using the original base tuples for the k − 1 subcube.
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Algorithm Modified Partitioned-Cube(R, {B1, . . . , Bm}, A,G)
INPUTS: A set of tuples R, possibly stored in horizontal fragments; CUBE BY attributes {B1, . . . , Bm},a
concordant selection condition S; attribute A to be aggregated, aggregate function G().
OUTPUTS: The datacube result for R over {B1, . . . , Bm} as D on disk.

Method:
If (R fits in memory) return Memory-Cube(R, {B1, . . . , Bm}, A,G, S);
else { Choose an attribute Bj among {B1, . . . , Bm};

Scan R and partition on Bj into sets of tuples R1, . . . , Rm;
Determine large tuples of all 1-cuboids;
/* n ≤ card(Bj) and n ≤ number of buffers in memory */
fori = 1 . . . n {

Using 1-cuboid information transform Ri to Fi
let (Fi, Di) = Partitioned-Cube(Fi, {B1, . . . , Bm}, A,G, S)

}
let F = the union of the Fi’s
let (F ′, D′) = Partitioned-Cube(F, {B1, . . . , Bj−1, Bj+1 . . . , Bm}, A,G, S)
let D = the union of D′ and the Di’s
return (D) ;}

Figure 6: Algorithm Modified Partitioned-Cube

7 Experimental Results

We have implemented the modified version of the Memory-Cube algorithm presented in Figure 7. This version
of Memory-Cube is modified so that performance is not worse than with the unmodified version. Hence, we
implement only 1-Specialization and generalization for tuples in the same path. Specialization will have the
maximum effect when we have lots of small tuples in the 1-cuboid while generalization will help us benefit
when we have many large tuples in the finer cuboids of the datacube. Thus, our optimizations would provide
gains in both of these complementary cases.

We implemented this algorithm in C++ and it computes the datacube of a partition that fits in memory.
The data is read in or synthetically generated internally. Data is assumed to consist of 4-byte integer values
on all grouping and aggregated attributes, and it is assumed that no extraneous attributes are present. We
report results for the SUM and COUNT operators over a single attribute.

We ran the datacube algorithm on a 200 MHz UltraSparc single processor with 256MB of RAM. The
algorithm was run when no other processes were active on the system. We measured both the CPU time
and the elapsed time. In all our experiments these two measurements were within three percent; we use
the CPU time in our results. The time was measured from the point after the input relation was read or
generated until the end of the datacube computation.

A large fraction of the computing the datacube is spent sorting since as the number of paths required

to cover the search lattice is is
(

n
dn/2e

)
for n CUBE BY attributes and each path requires a sorting step.

To minimize the sorting cost we adopt a scheme described in detail in [11]. We modify the input tables
in such a way as to reduce the sorting cost, and then reconstitute the original values at the end. This is
done by applying Huffman coding independently to each attribute domain to get bit strings corresponding
to each attribute value. We then carry out a counting sort using a composite surrogate key formed by
concatenating the Huffman codes from each of the attributes in a sort order. The counting sort operation
counts the frequency of each b-bit prefix of this surrogate key for some b. A cumulative histogram is created,
and another pass through the data puts it in the order of its most significant b bits. Values that share the
same b-bit prefix are then ordered using quicksort. This scheme leads to substantial speedup over quicksort.

In Figure 8 we investigate the effect of on performance time when we vary the threshold in the selectivity
condition. We use a synthetic dataset with 500000 tuples and 6 CUBE BY attributes and aggregate function
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INPUTS: A set of tuples R, that fits in memory; CUBE BY attributes {B1, . . . , Bm},a concordant selection
condition S; attribute A to be aggregated, aggregate function G().
OUTPUTS: The datacube result for R over {B1, . . . , Bm} in two horizontal fragments F and D on disk. F
contains the finest granularity tuples and D contains the Output tuples.

Method:
Sort R and combine all tuples that share all the values of {B1, . . . , Bm};
/* Assume that tuples are sorted according to first sort order */
for each sort order {

initialize accumulators for computing aggregates at each granularity
combine first tuple into finest granularity accumulator
for each subsequent tuple t {

if ((S has OTD property)&&(tuple is small)) { Drop t from set of tuples }
Determine position l of first t in grouping attributes of tuple
Compare t with previous tuple, to find position j of the first sort
order attribute at which they differ
if (grouping attributes of t differ from finest granularity accumulator) {

combine each accumulator into coarser granularity
accumulator until grouping attributes match those of t;
Output those accumulator values which are large.

Flush all accumulators for coarser granularities .
/* Number of combinings depends on sort order length and j */
if (we have just computed a small tuple in a 1-cuboid)

introduce blanks into contributing base tuples;
}
Combine current tuple with appropriate accumulator;

}
Sort according to next sort order making use of shared work if possible
Merge duplicate tuples produced by specialization.

}

Figure 7: Modified Memory-Cube for Specialization and Generalization
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Figure 8: Varying the size of the output

COUNT. The left figure has uniformly distributed data while the right hand figure has 80/20 skew. We see a
considerable improvement in performance when the selection condition is restrictive. The degradation of our
algorithm when we do not have any opportunity for 1-Specialization is small, the difference in performance
is caused by the code introduced for handling t’s. Note that the selectivity of the condition in terms of the
number of output tuples cannot be made across data sets. With a particular set of data, we might have
many fine output tuples and a few coarse tuples. With a different dataset we might have the same number
of output tuples but with a different breakup between coarse and fine tuples.
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Figure 9: Varying number of CUBE BY attributes with constant |R|

In Figure 9, we vary the the number of CUBE BY attributes for a fixed number of base tuples. In each
case we generate 500000 tuples with a 80/20 skew and a fixed output size. We can fix the output size by
appropriately choosing the threshold for each case. The left hand graph shows how the modified algorithm
compares to the original one. In the right hand graph, we study the impact of having a single compression
step against multiple compression steps in the Memory-Cube algorithm. We can have a single step in which
we compress tuples after carrying out all possible 1-Specializations. Alternatively, whenever we carry out
1-Specialization we can compress the tuples. The graph indicates that the second alternative is better.

In Figure 10 we study the impact of varying the size of the base relation with a fixed output size and
a constant number of CUBE BY attributes. We see that the performance gap between the two versions of
Memory-Cube widens as the number of tuples increases for both skewed and uniformly generated data.

Example 7.1: We also experiment upon real-world data on cloud coverage [5]. The data used corresponds to
measurements of the amount of cloud coverage throughout the globe over a period of one month, September
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Figure 10: Varying |R| with fixed output, CUBE BY attributes

1985. We use a data set containing 117,635 tuples for measurements made over the ocean. We have
chosen 9 CUBE BY attributes out of a possible 20 fields. We have carried out experiments with SUM as
the aggregate function. In the graphs of Figure 11 we show the difference in performance between the
unmodified and modified versions of Memory-Cube as well as the difference in performance between having
a single compression step and n compression steps. We see that the modified version of Memory-Cube does
better than the unmodified version for restrictive selections. The right graph indicates that for restrictive
selections it is better to have many compression steps, but there is nothing to be gained in doing so when
that is not the case. 2
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Figure 11: Cloud Data

We carry out experiments to show the effect of generalization when we have a relatively expensive
aggregation operation. The left hand graph of Figure 12 shows the performance using a simulated1 user-
defined expensive aggregate on a single aggregation column for a datacube with a large number of output
tuples. As we can see in Figure 12, generalization leads to great improvements in performance under these
circumstances. In the right hand graph, we use an actual user defined expensive aggregation function. Our
function is a variation of the union function where along with the elements of a set we also maintain the
count of the number of elements in a set. The set is stored as a bitmap using many aggregation columns
(0123456789 in this example). Note that the count is a distinct count, and could not be computed without
the set being explicitly represented. We output only those datacube tuples which have a more than a certain

1We artificially made the aggregate more expensive by including some irrelevant computation.
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number of elements in a set. This experiment is carried out on a synthetically generated uniform dataset
with 100000 tuples. The query used had 6 CUBE BY attributes.

Example 7.2: Returning to our example of cars, suppose that instead of using sales as the aggregate column,
we use “color”. We use a bitmap set representation for the set of colors used at a particular granularity. As
discussed above, we also keep a count of the number of (distinct) colors. We can apply the generalization
optimization above for a query like “Find combinations of manufacturers and models for which cars of more
than a certain number of colors were sold.” 2
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Figure 12: Effects of Generalization

We carry out experimentation with the same parameters but this time using a discordant relational
operator (we output those datacube tuples with less than a certain number of elements in a set) in conjunction
with our aggregate function. In this case, we can handle the right hand query of Figure 1 too. This is because
we do not need to output the tuples we generalize. The results in Figure 13 (left graph) show that there is
a substantial improvement in performance when the number of output tuples is small.

In our final experiment, we show the improvement in performance when the relational operator has the
OTD property and we can drop small tuples. In the right hand graph of Figure 13, we use the real-world
cloud data set, MAX as the aggregate function and ≥ as the relational operator. We can see that the
improvement in performance is the greatest when the number of output tuples is small.
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Figure 13: Effect of Discordant Operators and the OTD property
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L1 = {Large 1-Cuboids}
for (k = 2;Lk−1 6= φ; k + +) do begin

Ck = Generate(Lk−1)
forall tuples t ∈ R do begin

Ct = subset(Ck, t); ( Generates all possible candidate cuboids from a tuple)
forall candidates c ∈ Ct

aggregate t into c
end
Lk = {c ∈ Ck|aggregate is large}

end
Answer =

⋃
k Lk.

Figure 14: Modified Apriori Algorithm

8 Related Work

The gains of our optimizations depend upon a number of factors, one of which is the fraction of datacube
tuples (f) which constitute the output. If we are dealing with a concordant relational operator and we know
that f is very small, a variant of the Apriori algorithm [2] applies. This algorithm is outlined in Figure 14
and proceeds as follows.

In the first step of the algorithm, we compute all 1-cuboids, namely all tuples which have only one non-
ALL element. The amount of memory required for this step is proportionate to the sum of the cardinalities
of each of the attributes of the relation. We can tighten this bound by initializing an in-memory counter only
for those attribute values which are actually present in the base tuples. Once we have finished a pass over
the data, we can determine which of them are large by checking against the threshold. We output all large
1-cuboids (L1) and discard all small 1-cuboids. In the next step we generate all large 2-cuboids, however
we do not use the naive technique of initializing in-memory counters for all possible 2-cuboids. We initialize
in-memory counters as follows . We know that if our selection against the threshold does not hold for a
particular tuple in a 1-cuboid, it will not hold for for any specialization of the tuple either. Hence, we do
not need not initialize in memory counters for any of the 1-cuboid tuples discarded in the previous pass. We
generate the set of possible counters (C2) by choosing all possible pairs from L1. C2 should be small since
we have discarded all small 1-cuboids. We now scan the data to determine which of the in-memory counters
(L2) satisfy the condition on the threshold.

In a similar fashion, we can generate Lk from Lk−1. The only addition in the generic case is that we have
an additional pruning step to remove all candidate counters in Ck which have generalizations not present in
Ck−1. We do not need this step for k = 2.

This algorithm is useful only if we know that the number of output tuples is going to be small. If this
is not the case, we have the same deficiency as Gray’s algorithm; namely, that the number of in-memory

counters used is large. If we have n cube by attributes, on the dn/2e’th iteration, we would have
(

n
dn/2e

)
cuboids where each cuboid had carddn/2e, if each attribute had the same cardinality card. This memory

requirement of
(

n
dn/2e

)
∗ carddn/2e could easily be in excess of main memory. In fact if we had sufficient

memory, in this situation it would be more efficient to directly apply Gray’s algorithm rather than split the
work across multiple passes.

To restate the main point above, A-priori will work adequately when the number of aggregates to compute
is small. ( In the terminology of [2], the number of cuboids with high “support” is small.) However if that
is not the case, A-priori will perform poorly because not all counters can fit in memory. In contrast, out
techniques “degrade gracefully” in that they reduce to the original partitioned-cube and memory-cube if
the selection condition is not restrictive.

1-Specialization and generalization along the same path give a large gain in performance if the inputs
are suitable, if not they will not affect the performance of our algorithm noticeably. This is not the case for
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the modified version of the Apriori algorithm, while it may give excellent results if f is small, it is no longer
a viable alternative when f is large. Additionally, this optimization can be used only when the relational
operator is concordant.

Work on reasoning with aggregation constraints includes [7, 12], while the idea of moving predicates for
query optimization has been investigated in [8]. The monotonic properties of aggregations has been studied
in [9].

9 Conclusions

Datacube queries with selections are important because in decision support environments we are often
interested in knowing for which tuples in a datacube a certain condition holds. We have proposed two
different ways by which we can use the selection condition internally during the computation of such queries.
By making use of the selection condition within the datacube computation, we can safely prune parts of
the computation and end up with a more efficient computation of the answer. Our first technique, called
“specialization”, uses the fact that a tuple in the datacube does not meet the given threshold to infer that
all finer level aggregates cannot meet the threshold. We propose a scheme of specialization transformations
on the underlying data sets, using properties of the aggregates and threshold functions.

Our second technique is called “generalization”, and applies in the case where the actual value of the
aggregate is not needed in the output, but used just to compare with the threshold. Generalization uses the
fact that a tuple meets the given threshold to infer that all coarser level aggregates also meet the threshold.
We also propose a scheme of generalization transformations.

We demonstrate the efficiency of these techniques by implementing them within the sparse datacube
algorithm of Ross and Srivastava. We present a performance study using synthetic and real-world data sets.
Our results indicate substantial performance improvements for queries with selective conditions.

References

[1] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan, and S. Sarawagi. On
the computation of multidimensional aggregates. In Proceedings of the 22nd International Conference
on Very Large Databases, Mumbai,India, 1996.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings of the 20th
International Conference on Very Large Databases, Santiago, September 1994.

[3] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. Ullman. Computing iceberg queries
efficiently. In Proceedings of the 23rd International Conference on Very Large Databases, New York,
August 1998.

[4] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Datacube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. In Proceedings of the IEEE Conference on Data
Engineering, pages 152–159. IEEE Computer Society, 1996.

[5] C. J. Hahn, S. G. Warren, and J. London. Edited synoptic cloud reports from ships and land stations
over the globe, 1982-1991. Available from http://cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html, 1994.

[6] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes efficiently. In Proceedings of
the 1996 ACM SIGMOD Conference on Management of Data, Montreal,Canada, 1996. Association for
Computing Machinery.

[7] A. Levy and I. Mumick. Reasoning with aggregation constraints. In Proceedings of the Conference on
Extending Database Technology, (EDBT-96), Avignon, France, 1996.

[8] A. Levy, I. Mumick, and Y. Sagiv. Query optimization by predicate movearound. In Proceedings of the
20th International Conference on Very Large Databases, Santiago, September 1994.

18



[9] K. Ross and Y. Sagiv. Monotonic aggregation in deductive databases. Journal of Computer and System
Sciences, 54(1):79–97, 1997.

[10] K. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proceedings of the 23rd
International Conference on Very Large Databases, Athens,Greece, 1997.

[11] K. Ross and D. Srivastava. Fast computation of sparse datacubes. Full Version, 1998.

[12] K. Ross, D. Srivastava, P. Stuckey, and S. Sudarshan. Foundation of aggregation constraints. Theoretical
Computer Science, 193(1):149–179, 1998.

[13] Y. Zhou, P. Deshpande, and J. Naughton. An array-based algorithm for simultaneous multidimensional
aggregates. In Proceedings of the 1997 ACM SIGMOD Conference on Management of Data, pages
159–170, Tucson, Arizona, May 1997. Association for Computing Machinery.

19


