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Abstract

We study the complexity of approximating the Stieltjes integral
R 1

0 f (x)dg(x)
for functions f having r continuous derivatives and functionsg whosesth
derivative has bounded variation. Letr(n) denote thenth minimal error
attainable by approximations using at mostn evaluations off and g, and
let comp(ε) denote theε-complexity (the minimal cost of computing an
ε-approximation). We show thatr(n) � n−min{r,s+1} and that comp(ε) �
ε−1/min{r,s+1}. We also present an algorithm that computes anε-approxima-
tion at nearly-minimal cost.

1 Introduction

Numerical integration is one of the most fundamentally important problems studied
by information-based complexity. The IBC literature is replete with hundreds of
references to this problem; see the bibliography of Traub and Werschulz (1998),
as well as the sources cited therein, for pointers. Most of these papers deal with
integrals of the form

R
D f (x)dx for a fixed regionD and a class of integrandsf , or

with weighted integrals of the form
R

D w(x) f (x)dx, with a fixed weight functionw.
For such problems, we have only partial information about the integrandsf ; this
information typically consists of the values off at a finite set of points. Since the
integral is a linear functional of the integrand, the integration problems studied so
far have beenlinear problems in the vast majority of cases studied.
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In this paper, we look at the complexity of approximating Stieltjes integralsR 1
0 f (x)dg(x). This is a famous classical problem, appearing in the standard texts

dealing with integration theory and functional analysis; a particularly well-written
discussion may be found in Riesz and Sz-Nagy (1955, pg. 105 ff.). The Stieltjes
integral occurs in numerous areas, such as biology (Louie and Somorjai, 1984),
chemistry (Cacelli et al., 1988), chemical engineering (Giona and Patierno, 1997),
finance (Duffie, 1996), nuclear engineering (Akiba et al., 1996), physics (Avel-
laneda and Vergassola, 1995), and stochastic differential equations (Revuz and Yor,
1994).

In our study of Stieltjes integration, we shall assume that we have partial infor-
mation aboutf andg. This means that we are considering a nonlinear integration
problem; more precisely, the problem is bilinear in the sense of Jackowski (1990).
It is our belief that most of the linear problems arising in IBC have important non-
linear counterparts; this is only one example.

In this paper, we shall assume thatf hasr continuous derivatives and thatg(s)

is of bounded variation. More precisely, we shall assume thatf belongs to the unit
ball of Cr([0,1]) and that Var∗g+ Var∗g(s) ≤ 1; here Var∗ is a slight modification
of Var, the usual variation of a function.

The main result of this paper is thatr(n), the minimal error attainable ifn
evaluations off and g are used, is proportional ton−min{r,s+1}. In proving this
result, we show how to obtainnth optimal approximations, i.e., approximationsUn,
usingn evaluations off andg, whose error is nearly minimal.

Using these minimal error results, we easily find results about the complexity
comp(ε), i.e., the minimal cost of computing anε-approximation. First, suppose
that r = 0. Since the problem is nonconvergent (i.e., there is a cutoff valueε0 > 0
such thatr(n)≥ ε0 for all n), it then follows that comp(ε) = ∞ if ε> ε0. However,
if r ≥ 1, we find that comp(ε) is proportional tocε−1/min{r,s+1}, wherec is the cost
of a function evaluation; moreover, an approximationUn, wheren is proportional
to ε−1/min{r,s+1}, computes anε-approximation at nearly-minimal cost.

The reader may find the presence of the “+1” a little surprising in these results.
Indeed, recall that thenth minimal error in computing

R 1
0 f (x)dx for f belonging

to the unit ball ofCr([0,1]) is proportional ton−r , see Bakhvalov (1959). Now the
bounded variation ofg(s) means thatg′ is somewhat like ans-times differentiable
function. Moreover, for smooth enoughg, we have

Z 1

0
f (x)dg(x) =

Z 1

0
f (x)g′(x)dx,

Hence, the integrandf g′ has min{r,s} derivatives, and Bakhvalov’s result would
lead us to expect thenth minimal error to be proportional ton−min{r,s}. However,
thenth minimal error for our problem is proportional ton−min{r,s+1}.
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The “+1” gives us another surprise. Many problems are unsolvable if the prob-
lem elements have the minimal of smoothness to make their solution well-defined.
For example, Bakhvalov’s result says that the problem of integrating continuous
functions (r = 0) is unsolvable. However, the presence of the “+1” tells us that
although minimal smoothness in the choice off renders the Stieltjes integration
problem essentially unsolvable, this problem is solvable if we have only minimal
smoothness (s= 0) in the choice ofg.

We sketch the structure of this paper. In Section 2, we give a precise formula-
tion of the problem to be studied. In Section 3, we prove the lower bound for the
problem. The analogous upper bound is proved in Section 4.

Acknowledgements.I would like to thank R. deVore for suggestions about spline
approximation in spaces of functions whose derivatives have bounded variation. I
would also like to thank C. Szmanda for references about applications of Stielt-
jes integrals. Finally, I would like to thank the referee and the editor for their
comments on the initial version of this paper, which have greatly improved the
exposition.

2 Problem formulation

Before describing the problem to be solved, we first recall the definition of Stieltjes
integrals; see Riesz and Sz-Nagy (1955, pg. 105 ff.) for further discussion. Let
I = [0,1] denote the unit interval. For functionsf ,g: I → R, consider a partition

∆ = {x0, . . . ,xn} with 0 = x0 < x1 < · · ·< xn = 1, (2.1)

with
|∆|= max

0≤i≤n−1
xi+1−xi,

and a set of points

Ξ∆ = {ξ1, . . . ,ξn} with ξ j ∈ [xj−1,xj ] for 1≤ j ≤ n.

Let

Σ( f ,g;∆,Ξ∆) =
n

∑
j=1

f (ξ j)[g(xj)−g(xj−1)].

Then Z 1

0
f (x)dg(x) = lim

|∆|→0
Σ( f ,g;∆,Ξ∆)

(if this limit exists) is theStieltjes integralof f with respect tog.
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It is well-known that the Stieltjes integral exists iff is continuous andg is of
bounded variation, i.e., if

Varg = sup
∆

n

∑
j=1
|g(xj)−g(xj−1)|

is finite, with ∆ as in (2.1). In what follows, it will be more convenient to use a
modified form

Var∗g = Varg,

of the variation. Here, the correction functiong: I → R satisfies

• g(x) = g(x) for every pointx∈ [0,1] at whichg is continuous,

• if g is discontinuous atx∈ (0,1), theng(x) lies between the left-hand limit
g(x−) and the right-handg(x+), and

• g is continuous at the endpoints of[0,1].

Then (see DeVore and Lorentz, 1993, pg. 17)g is well-defined whenverg is of
bounded variation; moreover, Var∗g is the norm of the linear functionalf 7→R 1

0 f (x)dg(x) onC(I).
We now describe the problem to be solved, using the standard terminology of

information-based complexity, see, e.g., Traub et al. (1988). Letr ands be given
nonnegative integers. Our class of problem elements will beF×G, where

F = { I
f→ R : f (r) is continuous and‖ f‖Cr (I) ≤ 1}

and

G = { I
g→ R : g(s) is of bounded variation and Var∗g+ Var∗g(s) ≤ 1}.

Our solution operatorS: F×G→ R is defined as

S([ f ,g]) =
Z 1

0
f (x)dg(x) ∀ [ f ,g] ∈ F×G.

Since
R 1

0 f (x)dg(x) is well-defined whenf is continuous andg is of bounded vari-
ation, our solution operator is well-defined.

Let [ f ,g]∈F×G. We compute an approximation toS([ f ,g]) by first evaluating
information aboutf andg, and then using this information in an algorithm. For
our problem, we will computestandard information

N([ f ,g]) = [ f (x1), . . . , f (xm),g(t1), . . . ,g(tn−m)] (2.2)
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about[ f ,g]. By Jackowski (1990, Theorem 3.2.4), there is essentially no loss of
generality in assuming that the information isnonadaptive, i.e., the points

0≤ x1 < x2 < · · ·< xm≤ 1 and 0≤ t1 < t2 < · · ·< tn−m≤ 1,

are independent off andg.
We obtain an approximationU([ f ,g]) to the solutionS([ f ,g]) in the form

U([ f ,g]) = φ(N([ f ,g])). Here,φ is an algorithm using the informationN, i.e.,
a mappingφ : Rn→ R. We measure the quality of an approximationU by its worst
caseerror

e(U) = sup
[ f ,g]∈F×G

|S([ f ,g])−U([ f ,g])|.

Thenth minimal radius of information, defined as

r(n) = inf{e(U) : U uses information of the form (2.2)},

gives us a benchmark by which we can measure how close our approximation is to
being optimal.

The cost of computingU([ f ,g]) is defined as cost(U([ f ,g])), which is the
weighted sum of the total number of function values off andg, as well as the
number of arithmetic operations and comparisons needed to obtainU([ f ,g]). More
precisely, we assume that each evaluation off or g has costc and that each arith-
metic operation or comparison has unit cost. Then

cost(U) = sup
[ f ,g]∈F×G

cost(U([ f ,g])) (2.3)

is the worst casecostof U .
Finally, theε-complexityis the minimal cost of computing anε-approximation,

i.e.,

comp(ε) = inf{cost(U) : approximationsU such thate(U)≤ ε}.

3 A lower bound

In this section, we establish a lower bound on thenth minimal radius for our prob-
lem.1

Theorem 3.1. The nth minimal radius has a lower bound

r(n)<
(

1
n

)min{r,s+1}
.

1We use4,<, and� in this paper to respectively denoteO-, Ω-, andΘ-relations.
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Proof. We first claim that

r(n) <
(

1
n

)r

. (3.1)

Indeed, recall the well-known result that thenth minimal radius for integration over
the unit ball ofCr([0,1]) problem is proportional ton−r ; see Bakhvalov (1959) for
the original proof, or, e.g., Bakhvalov (1977, pp. 301–304) for a proof in English.
Suppose that we chooseg(x) ≡ x; we then have

Z 1

0
f (x)dg(x) =

Z 1

0
f (x)dx,

It then follows that thenth minimal radius for the classical integration problem
over the unit ball ofCr([0,1]) is a lower bound for thenth minimal radius for our
problem of Stieltjes integration. Hence (3.1) holds, as claimed.

We now claim that

r(n)<
(

1
n

)s+1

. (3.2)

Indeed, choosef (x) ≡ x. Integrating by parts, we find that

Z 1

0
f (x)dg(x) = g(1)−

Z 1

0
g(x)dx ∀g∈G.

Moreover, it is easy to see that ifg∈Cs+1(I), then Var∗g+Var∗g(s) ≤‖g‖Cs+1(I). It
then follows that the(n+1)st minimal radius for integration over the unit ball in the
spaceCs+1(I) is a lower bound on thenth minimal radius for our problem; here the
“+1′′ is needed to insure that we evaluateg(1), in addition to the other evaluations
of g. Once again using the classical result of Bakhvalov, it immediately follows
that (3.2) holds, as claimed, which completes the proof of the theorem.

4 An upper bound

In this section, we exhibit an algorithm having nearly-optimal error. The caser = 0
is trivial. Indeed, whenr = 0, thenth minimal radius does not converge to zero
with n, and so the zero algorithm is optimal. In what follows, we shall consider the
case ofr ≥ 1.

Choosing

k = max{r−1,s}, (4.1)
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we let Pk denote the space of polynomials of degree at mostk. For any positive
integer`, we let

∆ = {t0, . . . ,t`+1}
be a uniform partition ofI , i.e.,

ti =
i

`+ 1
(0≤ i ≤ `+ 1).

Let
S∆ =

{
v∈C(I) : v

∣∣
[ti ,ti+1] ∈ Pk for 0≤ i ≤ `−1

}
denote a spline space of dimension

n∆ = dimS∆ = k(`+ 1)+ 1.

We can choose a basis{s1, . . . ,sn∆} forS∆ by the condition

si ∈S∆ satisfiessi(xj) = δi, j (1≤ i, j ≤ n∆), (4.2)

where

xj =
j−1

n∆−1
(1≤ j ≤ n∆).

For any continuous functionv: I → R, we let

(Π∆v)(x) =
n∆

∑
j=1

v(xj)sj(x) (4.3)

denote theS∆-interpolantof v. For [ f ,g] ∈ F×G, we let

n = 2n∆

and define

Un([ f ,g]) =
Z 1

0
(Π∆ f )(x)(Π∆g)′(x)dx (4.4)

as our approximation toS([ f ,g]).
Note that if we define informationNn as

Nn([ f ,g]) = [ f (x1), . . . , f (xn∆),g(x1), . . . ,g(xn∆)] (4.5)

then for any[ f ,g] ∈ F×G, we haveUn([ f ,g]) = φn(Nn([ f ,g])), where

φn(Nn([ f ,g])) =
n∆

∑
i=1

f (xi) ∑
j∈supp(i,∆)

αi, j g(xj), (4.6)
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with

αi, j =
Z 1

0
si(x)s′j (x)dx (1≤ i, j ≤ n∆),

and
supp(i,∆) = { j ∈ {1, . . . ,n∆} : support(si)∩support(sj) 6= /0}.

Hence the approximationUn is given by an algorithmφn using informationNn

involving n evaluations off andg.
Let us estimate cost(Un). First of all, note that since the coefficientsαi, j are

independent of[ f ,g]∈F×G, they may be precomputed. Moreover, since our basis
functionss1, . . .sn∆ satisfy (4.2), we have

κ = sup
∆

max
1≤i≤n∆

supp(i,∆)< ∞.

We then have

Lemma 4.1.
cost(Un)≤ (c+ κ + 1

2)n−1.

Proof. The first step in calculatingUn([ f ,g]) is the evaluation of the information
Nn([ f ,g]) described in (4.5). Hence the information cost forUn is

cost(Nn[ f ,g]) = cn.

Now each inner sum in (4.6) is a sum over at mostκ terms, which means that it
can be evaluated using 2κ− 1 arithmetic operations. Thus the combinatory cost
for calculating each summand for the outer sum is at most 2κ, so that the cost
of calculating all the summands for the outer sum is at most 2κn∆. Finally, there
aren∆ such summands to add, which has an additional cost ofn∆−1 arithmetic
operations. Hence we see that the combinatory cost forUn is

cost
(
φn(Nn([ f ,g]))

)
≤ (2κ + 1)n∆−1 = (κ + 1

2)n−1.

The result now follows from (2.3).

We are now ready to state an error bound forUn:

Theorem 4.1. Let r≥ 1. Then

e(Un)4
(

1
n

)min{r,s+1}
.

Before proving Theorem 4.1, we first establish
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Lemma 4.2. If g(s) is of bounded variation, then

‖g−Π∆g‖L1(I) 4

(
1
n

)s+1

Var∗g(s).

Proof. Sincek≥ s, we may use Werschulz (1991, Lemma 5.4.3) to see that there
existsC> 0, independent ofn, such that for anyw∈Ws+1,1(I), the inequality

‖w−Π∆w‖L1(I) ≤Cn−(s+1)‖w(s+1)‖L1(I)

holds. From DeVore and Lorentz (1993, Chapter 7, Theorem 5.2), it then follows
that

‖g−Π∆g‖L1(I) 4 ωs+1(g,n−1)1, (4.7)

the right-hand side denoting the usual modulus of smoothness inL1(I), see DeVore
and Lorentz (1993, Chapter 2, Definition 7.2). Using DeVore and Lorentz (1993,
Chapter 2, formula (7.13)), we have

ωs+1(g,n−1)1≤ n−sω1(g(s),n−1)1

= n−(s+1) ·nω1(g(s),n−1)1

≤ n−(s+1)‖g(s)‖Lip(1,L1(I)).

(4.8)

Here, Lip(1,L1(I)) is the class of functionsv for which

‖v‖Lip(1,L1(I)) = sup
t>0

t−1ω1(v, t)1

is finite, see DeVore and Lorentz (1993, pg. 5). But DeVore and Lorentz (1993,
Chapter 2, Lemma 9.2) implies that

‖g(s)‖Lip(1,L1(I)) ≤ Var∗g(s). (4.9)

The lemma now follows from (4.7), (4.8), and (4.9).

We are now ready to give the

Proof of Theorem4.1. Let ([ f ,g]) ∈ F×G. We then have

|S([ f ,g])−U([ f ,g])| ≤ |I1|+ |I2|, (4.10)

where

I1 =
Z 1

0
[ f (x)− (Π∆ f )(x)]dg(x)
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and

I2 =
Z 1

0
(Π∆ f )(x)d[g(x)− (Π∆g)(x)].

Clearly
|I1| ≤ ‖ f −Π∆ f‖C(I) Var∗g.

Sincek≥ r−1, we may use Oden and Reddy (1976, Theorem 6.21) to see that

‖ f −Π∆ f‖C(I) 4 n−r‖ f (r)‖C(I).

Hence

|I1|4 n−r‖ f (r)‖C(I) Var∗g4 n−r . (4.11)

Moreover,g andΠ∆g agree at the endpoints ofI , and so an integration by parts
yields

I2 =
Z 1

0
[g(x)− (Π∆g)(x)]d(Π∆ f ).

Hence
|I2| ≤ ‖g−Π∆g‖L1(I)‖(Π∆ f )′‖L∞(I).

From Lemma 4.2, we have

‖g−Π∆g‖L1(I) 4 n−(s+1).

A second application of Werschulz (1991, Lemma 5.4.3) yields

‖( f −Π∆ f )′‖L∞(I) 4 ‖ f ′‖L∞(I),

so that
‖(Π∆ f )′‖L∞(I) 4 ‖ f ′‖L∞(I) ≤ 1.

Thus

|I2|4 n−(s+1). (4.12)

The result now follows from (4.10), (4.11), and (4.12).

Combining the results of Theorems 3.1 and 4.1, and using Lemma 4.1, we
easily have

Corollary 4.1. The following results hold for the Stieltjes integration problem:
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1. Let r= 0. Then the problem is nonconvergent. That is, there existsε0 > 0
such that

r(n)≥ ε0 ∀n∈ N,

and thus
comp(ε) = ∞ ∀ε< ε0.

2. Let r≥ 1.

(a) The nth minimal error satisfies

r(n) �
(

1
n

)min{r,s+1}
.

Moreover, if k≥min{r−1,s}, then the approximation Un given by(4.4)
satisfies

e(Un)�
(

1
n

)min{r,s+1}
,

and thus Un is an nth optimal approximation.

(b) Theε-complexity of the problem is

comp(ε)� c

(
1
ε

)min{r,s+1}
,

where c is the cost of a function evaluation. Moreover, we can compute
an ε-approximation at nearly-minimal cost by using the approxima-
tion Un, with

n�
(

1
ε

)min{r,s+1}
.
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