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Abstract

We study the complexity of approximating the Stieltjes integ'(j‘ail (x)dg(x)
for functionsf havingr continuous derivatives and functiogsvhosesth
derivative has bounded variation. Lein) denote thenth minimal error
attainable by approximations using at mosgvaluations off andg, and
let comge) denote thee-complexity (the minimal cost of computing an
g-approximation). We show that(n) =< n-™mrst1} and that com() =
g-1/min{rs+1} e also present an algorithm that computes-approxima-
tion at nearly-minimal cost.

1 Introduction

Numerical integration is one of the most fundamentally important problems studied
by information-based complexity. The IBC literature is replete with hundreds of
references to this problem; see the bibliography of Traub and Werschulz (1998),
as well as the sources cited therein, for pointers. Most of these papers deal with
integrals of the form/f, f(x) dx for a fixed regiorD and a class of integrands or

with weighted integrals of the fornf, w(x) f (x) dx, with a fixed weight functionv.

For such problems, we have only partial information about the integrénttss
information typically consists of the values bfat a finite set of points. Since the
integral is a linear functional of the integrand, the integration problems studied so
far have beetinear problems in the vast majority of cases studied.



In this paper, we look at the complexity of approximating Stieltjes integrals
fol f(x)dg(x). This is a famous classical problem, appearing in the standard texts
dealing with integration theory and functional analysis; a particularly well-written
discussion may be found in Riesz and Sz-Nagy (1955, pg. 105 ff.). The Stieltjes
integral occurs in numerous areas, such as biology (Louie and Somorjai, 1984),
chemistry (Cacelli et al., 1988), chemical engineering (Giona and Patierno, 1997),
finance (Duffie, 1996), nuclear engineering (Akiba et al., 1996), physics (Avel-
laneda and Vergassola, 1995), and stochastic differential equations (Revuz and Yor,
1994).

In our study of Stieltjes integration, we shall assume that we have partial infor-
mation aboutf andg. This means that we are considering a nonlinear integration
problem; more precisely, the problem is bilinear in the sense of Jackowski (1990).
It is our belief that most of the linear problems arising in IBC have important non-
linear counterparts; this is only one example.

In this paper, we shall assume tHahasr continuous derivatives and thglf
is of bounded variation. More precisely, we shall assume ttHegiongs to the unit
ball of C'([0,1]) and that Varg+ Var*g(® < 1; here Vat is a slight modification
of Var, the usual variation of a function.

The main result of this paper is thatn), the minimal error attainable if
evaluations off andg are used, is proportional to- ™"} |n proving this
result, we show how to obtainth optimal approximations, i.e., approximatidig
usingn evaluations off andg, whose error is nearly minimal.

Using these minimal error results, we easily find results about the complexity
comp(e), i.e., the minimal cost of computing @&rapproximation. First, suppose
thatr = 0. Since the problem is nonconvergent (i.e., there is a cutoff \&lue0
such that (n) > g for all n), it then follows that com() = « if € > g9. However,
if r > 1, we find that com(z) is proportional tace =Y/ Mn{rs+1} wherec is the cost
of a function evaluation; moreover, an approximatidp wheren is proportional
to g~/ min{rst1} computes ams-approximation at nearly-minimal cost.

The reader may find the presence of thel” a little surprising in these results.
Indeed, recall that theth minimal error in computingo1 f(x)dxfor f belonging
to the unit ball ofC' ([0, 1]) is proportional tan~", see Bakhvalov (1959). Now the
bounded variation o§® means that/ is somewhat like as-times differentiable
function. Moreover, for smooth enoughwe have

1 1
| 109dg00 = [ 100909 dx
Hence, the integrandlg’ has mifr,s} derivatives, and Bakhvalov’s result would

lead us to expect theth minimal error to be proportional _tnrmi”{'vS}. However,
thenth minimal error for our problem is proportional to ™n{rs+1},
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The “41” gives us another surprise. Many problems are unsolvable if the prob-
lem elements have the minimal of smoothness to make their solution well-defined.
For example, Bakhvalov’s result says that the problem of integrating continuous
functions ¢ = 0) is unsolvable. However, the presence of thel® tells us that
although minimal smoothness in the choicefofenders the Stieltjes integration
problem essentially unsolvable, this problem is solvable if we have only minimal
smoothnesss(= 0) in the choice of).

We sketch the structure of this paper. In Section 2, we give a precise formula-
tion of the problem to be studied. In Section 3, we prove the lower bound for the
problem. The analogous upper bound is proved in Section 4.

Acknowledgementd.would like to thank R. deVore for suggestions about spline
approximation in spaces of functions whose derivatives have bounded variation. |
would also like to thank C. Szmanda for references about applications of Stielt-
jes integrals. Finally, 1 would like to thank the referee and the editor for their
comments on the initial version of this paper, which have greatly improved the
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2 Problem formulation

Before describing the problem to be solved, we first recall the definition of Stieltjes
integrals; see Riesz and Sz-Nagy (1955, pg. 105 ff.) for further discussion. Let
| = [0,1] denote the unit interval. For functiorfsg: | — R, consider a partition

A={Xo,...,%n} with O=x<Xg < - <X =1 (2.1)

with
A= max X.i1—X
| ‘ Ogignflxwl X,

and a set of points
Za={&,...,&}  with & € [xj_1,x]forl<j<n.
Let .
ng—Azzl —9(Xj-1)]-
Then .
/ f(x)dg(x) = lim Z(f,g;A,=p)
0 |A]—0

(if this limit exists) is theStieltjes integrabf f with respect ta.



It is well-known that the Stieltjes integral existsfifis continuous angj is of
bounded variationi.e., if

n
Varg=sup |g(xj) ~g(x;-1)|
=1

is finite, with A as in (2.1). In what follows, it will be more convenient to use a
modified form
Var* g = Varg,

of the variation. Here, the correction functignl — R satisfies
e g(x) = g(x) for every pointx € [0, 1] at whichg is continuous,

e if gis discontinuous at € (0,1), theng(x) lies between the left-hand limit
g(x—) and the right-hang(x+), and

e gis continuous at the endpoints |6 1].

Then (see DeVore and Lorentz, 1993, pg. &4 well-defined whenveg is of
bounded variation; moreover, Va is the norm of the linear functionaf —

Jo T dg(x) onC(1).

We now describe the problem to be solved, using the standard terminology of
information-based complexity, see, e.g., Traub et al. (1988).r la@ids be given
nonnegative integers. Our class of problem elements wilt lseG, where

F={1 5R: " s continuous and/f |l < 1}
and
G={I 2 R:g"¥ is of bounded variation and Viag+ Var g'¥ < 1}.

Our solution operatos: F x G — R is defined as

1
s(f.a)= [ fdo  vIf.geFxG,

Sincefo1 f(x)dg(x) is well-defined wherf is continuous and is of bounded vari-
ation, our solution operator is well-defined.

Let[f,g] € F x G. We compute an approximation$0[ f,g]) by first evaluating
information aboutf andg, and then using this information in an algorithm. For
our problem, we will computstandard information

N([f.d]) = [f(x0)s -, FOm), 9(ta), - 9(tn-m)] (2.2)



about[f,g]. By Jackowski (1990, Theorem 3.2.4), there is essentially no loss of
generality in assuming that the informatiomisnadaptivei.e., the points

0<Xp < X< - <X <1 and Ku<try<---<thm<1,

are independent of andg.

We obtain an approximatiob ([f,g]) to the solution§([f,g]) in the form
U([f,g]) = ®(N([f,g])). Here,@ is analgorithm using the informatior\, i.e.,
a mappingp: R" — R. We measure the quality of an approximatidrby its worst
caseerror

eU)= sup [§([f,g])-U([f.g])l-
[f.gleFxG

Thenth minimal radius of informationdefined as
r(n) =inf{e(U) : U uses information of the form (2.2)

gives us a benchmark by which we can measure how close our approximation is to
being optimal.

The cost of computindJ ([f,q]) is defined as codt ([f,g])), which is the
weighted sum of the total number of function valuesfoandg, as well as the
number of arithmetic operations and comparisons needed to abtging]). More
precisely, we assume that each evaluatior of g has cost and that each arith-
metic operation or comparison has unit cost. Then

cosfU)= sup costU([f,qg])) (2.3)
[f,gleF xG

is the worst caseostof U.
Finally, thee-complexityis the minimal cost of computing arapproximation,
i.e.,

compe) = inf{cos{U) : approximationdJ such thae(U) <e}.

3 Alower bound

In this section, we establish a lower bound onntieminimal radius for our prob-
leml
Theorem 3.1. The nth minimal radius has a lower bound

1 min{r,s+1}
r(n) = (—) .

n

IWe usex, &=, andx in this paper to respectively dendie, Q-, and©-relations.



Proof. We first claim that

r(n) = <}>r. (3.1)

Indeed, recall the well-known result that thié minimal radius for integration over
the unit ball ofC" (][0, 1]) problem is proportional ta~"; see Bakhvalov (1959) for
the original proof, or, e.g., Bakhvalov (1977, pp. 301-304) for a proof in English.
Suppose that we choogéx) = x; we then have

/fdg /f

It then follows that thenth minimal radius for the classical integration problem
over the unit ball o' ([0,1]) is a lower bound for thath minimal radius for our
problem of Stieltjes integration. Hence (3.1) holds, as claimed.

We now claim that
1\ st1
r(n) = (ﬁ) . (3.2

Indeed, choosé(x) = x. Integrating by parts, we find that

/f )dg(x) /g Vg e G.

Moreover, it is easy to see thaigie C3"%(1), then Var g+ Varg®® < ||g|lcsi1()- It

then follows that th¢n+ 1)st minimal radius for integration over the unit baII inthe
spaceCst1(1) is a lower bound on thath minimal radius for our problem; here the
“+1” is needed to insure that we evalugfé), in addition to the other evaluations
of g. Once again using the classical result of Bakhvaloy, it immediately follows
that (3.2) holds, as claimed, which completes the proof of the theorem. O

4  An upper bound

In this section, we exhibit an algorithm having nearly-optimal error. Theicase
is trivial. Indeed, whem = 0, thenth minimal radius does not converge to zero
with n, and so the zero algorithm is optimal. In what follows, we shall consider the
case ofr > 1.

Choosing

k= max{r —1,s}, (4.1)



we let B denote the space of polynomials of degree at rkodtor any positive
integer?, we let
A= {t07 s 7tf+1}

be a uniform partition of, i.e.,
ti=——+ (0<i</l+1).

Let
S = {veC(l) |

G tir1

| ERfor0<i §£—1}
denote a spline space of dimension
np =dimS =k({+1)+ 1.

We can choose a basfsy, ... ,s,,} for # by the condition

s € A satisfiess(x) =68  (1<i,j <m), (4.2)
where :
N (1<j<m)
J_nA—l S1=h)

For any continuous functiom: | — R, we let

na

(Mav)(x) =y v(Xj)sj(X) (4.3)
A 121 1/
denote the#j-interpolantof v. For[f,g] € F x G, we let
n=2na
and define
1
Un((.91) = [ (Ma1)((Mag)'(dx (4.4)

as our approximation t8([f,qg]).
Note that if we define informatiolN,, as

Nn([fvg]) = [f(xl)v"'7 f(XnA)vg(Xl)v"'ag(XnA)] (45)
then for any[f,g] € F x G, we havdJy([f,d]) = ¢(Nn([f,q])), where

W([1.0) =3 1005 o) @)
i= jes

updi,p)



with L
ai,j :/o s(X)sj(x)dx  (1<i,j<m),
and
supi,A) ={j € {1,...,nm} : supports ) Nsupportsj) # 0}.

Hence the approximatiold, is given by an algorithmgp, using informationN,
involving n evaluations off andg.

Let us estimate co@t,). First of all, note that since the coefficierts; are
independent off,g] € F x G, they may be precomputed. Moreover, since our basis
functionssy, . .. s,, satisfy (4.2), we have

K = sup max supfi,A) < co.
A 1<i<np

We then have

Lemma4.1.
cos(Up) < (c+K+3)n—1.

Proof. The first step in calculating([f,g]) is the evaluation of the information
Nn([f,q]) described in (4.5). Hence the information costUgris

cos{Ny[f,g]) =cn.

Now each inner sum in (4.6) is a sum over at moserms, which means that it
can be evaluated using«2- 1 arithmetic operations. Thus the combinatory cost
for calculating each summand for the outer sum is at masts@ that the cost
of calculating all the summands for the outer sum is at mesi 2 Finally, there
arenp such summands to add, which has an additional coggef1 arithmetic
operations. Hence we see that the combinatory cosl fos

cost(@n(Nn([f,0]))) < (2k+ 1) —1=(k+2)n—1
The result now follows from (2.3). O
We are now ready to state an error boundUgqr
Theorem 4.1. Letr> 1. Then

1 min{r,s+1}
n) '

e(Un) < <—

Before proving Theorem 4.1, we first establish



Lemma 4.2. If g is of bounded variation, then

1\ st1
Hg—l‘lAgHLl(,) < <ﬁ> Var*g(S).

Proof. Sincek > s, we may use Werschulz (1991, Lemma 5.4.3) to see that there
existsC > 0, independent afi, such that for anyv € WSt11(1), the inequality

Iw—Maw[, ) < TS WD)

holds. From DeVore and Lorentz (1993, Chapter 7, Theorem 5.2), it then follows
that

19— MagllL, ) < Wsia (9,0 1, (4.7

the right-hand side denoting the usual modulus of smoothnésglin see DeVore
and Lorentz (1993, Chapter 2, Definition 7.2). Using DeVore and Lorentz (1993,
Chapter 2, formula (7.13)), we have

wsr1(9,n 1)1 < NSy (g, n 1),
=" ney (g%, n 1), (4.8)
<n 199 L Lay)-

Here, Lip(1,L1(1)) is the class of functionsg for which
IVIILip (1.L1(1)) = SUpt oo (V)1
t>0

is finite, see DeVore and Lorentz (1993, pg. 5). But DeVore and Lorentz (1993,
Chapter 2, Lemma 9.2) implies that

lg®® ILip(LLiqy) < Var g, (4.9)
The lemma now follows from (4.7), (4.8), and (4.9). O
We are now ready to give the

Proof of Theorem#.1 Let ([f,g]) € F x G. We then have

IS, 9) - U([f,g)] < [laf + 1], (4.10)

where

1
= [ 1100~ (Maf) (0] dg)

9



and 1
o= /0 (Maf)()dlgix) — (Mag)(x)]:

Clearly
1] < [ =Mafllcq) Var'g.

Sincek > r — 1, we may use Oden and Reddy (1976, Theorem 6.21) to see that
1 —Maflleay <01 lcq).

Hence
| <" £]|gq) Varrg s " (4.11)

Moreover,g andlMag agree at the endpoints bf and so an integration by parts
yields

1
lp = /0 1909 — (Mag) ()] d(Ma ).

Hence
2] < [lg—agll, i l[(Maf) L)
From Lemma 4.2, we have

l9—MagliLya) < G+,
A second application of Werschulz (1991, Lemma 5.4.3) yields

[(F=Pat) oy < I o

so that
It leay < 1 T <1
Thus
o] g =+, (4.12)
The result now follows from (4.10), (4.11), and (4.12). O

Combining the results of Theorems 3.1 and 4.1, and using Lemma 4.1, we
easily have

Corollary 4.1. The following results hold for the Stieltjes integration problem:

10



1. Let r= 0. Then the problem is nonconvergent. That is, there exgists 0

such that
r(n) >¢go vneN,
and thus
compe) =0 Ve eg.
2. Letr>1.

(&) The nth minimal error satisfies

min{r,s+1}
r(n) < <}> .

n

Moreover, if k> min{r — 1, s}, then the approximation A yiven by(4.4)
satisfies

9

1 min{r,s+1}
e(Uy) < <ﬁ>
and thus U is an nth optimal approximation.

(b) Thee-complexity of the problem is

)

1 min{r,s+1}
compe) <c <§>

where c is the cost of a function evaluation. Moreover, we can compute

an g-approximation at nearly-minimal cost by using the approxima-

tion Uy, with
1 min{r,s+1}
n= () |
€
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