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Abstract

JAM is a powerful and portable agent-based distributed data mining system that employs meta-

learning techniques to integrate a number of independent classifiers (models) derived in parallel from

independent and (possibly) inherently distributed databases. Although meta-learning promotes scalabil-

ity and accuracy in a simple and straightforward manner, brute force meta-learning techniques can result

in large, redundant, inefficient and some times inaccurate meta-classifier hierarchies. In this paper we

explore several methods for evaluating classifiers and composing meta-classifiers, we expose ther limita-

tions and we demonstrate that meta-learning combined with certain pruning methods has the potential to

achieve similar or even better performance results in a much more cost effective manner.
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1 Introduction

Machine learning constitutes a significant part in the overallKnowledge Discovery in Databases(KDD) process, the

process of extracting useful knowledge from large databases. Plain data is neither knowledge nor information and the

benefits in maintaining volumes of data depend on the degree we can analyze and exploit the stored data. One means

of analyzing and mining useful information from large databases is to apply various machine learning algorithms to

discover patterns exhibited in the data and compute descriptive representations (also called classifiers or models).

Over the past decade, machine learning has evolved from a field of laboratory demonstrations to a field of sig-

nificant commercial value [22]. Machine-learning algorithms have been deployed in heart disease diagnosis [29], in

predicting glucose levels for diabetic patients [12], in detecting credit card fraud [30], in steering vehicles driving

autonomously on public highways at 70 miles an hour [24], in predicting stock option pricing [23], in computing

customizing electronic newspapers[15] etc. Many large business institutions and market analysis firms attempt to

distinguish the low-risk (high profit) potential customers by learn simple categorical classifications of their potential

customer data base. Similarly, defense and intelligence operations utilize similar methodologies on vast information

sources to predict a wide range of conditions in various contexts.

Machine learningor Inductive learning(or learning from examples[20]) aims to identify regularities in a given

set of training examples with little or no knowledge about the domain from which the examples are drawn. Given

a set of training examples, i.e.{(x1, y1), ..., (xn, yn)}, for some unknown functiony = f(x), each interpreted as

a set of attribute (feature) vectorsx of the form{x1, x2, ..., xm} and a class labely associated with each vector,

y ∈ y1, y2, ..., yk, the task is to compute aclassifieror modelf̂ that approximatesf and correctly labels any feature

vector drawn from the same source as the training set, for which the class labely is unknown. Some of the common

representations used for the generated classifiers are decision trees, rules, version spaces, neural networks, distance

functions, and probability distributions. In general, these representations are associated with different types of algo-

rithms that extract different types of information from the database and provide alternative capabilities besides the

common ability to classify unknown instances drawn from some domain.

However, one of the main challenges in knowledge discovery and data mining communities is the development of

inductive learning techniques thatscale upto large and may be physically distributed data sets. Many organizations

seeking added value from their data are already dealing with overwhelming amounts of global information that in time

will likely grow in size faster than available improvements in machine resources. Most of the current generation of

learning algorithms are computationally complex and require all data to be resident in main memory which is clearly

untenable for many realistic problems and databases. Furthermore, in certain cases, data may be inherently distributed

and cannot be localized on any one machine (even by a trusted third party) for a variety of practical reasons including

physically dispersed mobile platforms like an armada of ships, security and fault tolerant distribution of data and

services, competitive (business) reasons, as well as statutory constraints imposed by law. In such situations, it may not

be possible, nor feasible, to inspect all of the data at one processing site to compute one primary “global” concept or

model. We call the problem of learning useful new information from large and inherently distributed databases, the

scaling problem for machine learning.

Meta-learning[7], a technique similar tostacking[32], was developed recently to deal with the scaling problem.

The basic idea is to execute a number of machine learning processes on a number of data subsets in parallel, and then
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to combine their collective results (classifiers) through an additional phase of learning. Initially, each machine learning

task, also calledbase learner, computes abase classifier, i.e. a model of its underlying data subset ortraining set.

Next, a separate machine learning task, calledmeta learner, integrates these independently computed base classifiers

into a higher level classifier, calledmeta classifier, by learning ameta-level training set. This meta-level training

set is basically composed from the predictions of the individual base-classifiers when tested against a separate subset

of the training data, also calledvalidation set. From these predictions, the meta-learner discovers the characteristics

and performance of the base-classifiers and computes a meta-classifier which is a model of the “global” data set.

To classify an unlabeled instance, the base-classifiers present their own predictions to the meta-classifier which then

makes the final classification.

Meta-learning addresses thescaling problem for machine learningbecause it improves efficiency, scalability and

accuracy. It improvesefficiencyby executingin parallel the base-learning processes (each implemented as a distinct

serial program) on (possibly disjoint) subsets of the training data set (a data reduction technique). This approach has

the advantage, first, of using the same serial code without the time-consuming process of parallelizing it, and second,

of learning from small subsets of data that fit in the same memory. Meta-Learning, isscalablebecause meta-classifiers

are classifiers themselves that can be further combined into higher level meta-classifiers by employing meta-learning

in a similar manner. Furthermore, it improvesaccuracyby combining different learning systems each having different

inductive bias(e.g representation, search heuristics, search space) [21]. By combining separately learned classifiers,

meta-learning is expected to derive a higher level learned model that explains a large database more accurately than

any of the individual learners.

TheJAM system (Java Agents for Meta-learning) [31] is a distributed agent-based data mining system that im-

plements meta-learning.JAM takes full advantage of the inherent parallelism and distributed nature of meta-learning

by providing a set of learning agents that compute models (classifier agents) over data stored locally at a site, by

supporting the launch and exchange of learning and classifier agents amont the participating data base sites through a

special distribution mechanism, and by providing a set of meta-learning agents that combined the computed models

that were learned (perhaps) at different sites.

Employing meta-learning, however, addresses the scalability problem only partially. As the number of data sites,

the size of data subsets and the number of deployed learning algorithms increases, more base classifiers are made

available in each site and meta-learning and meta-classifying are bound to strain the system resources. The analysis of

the characteristics and dependencies of the classifier and the selection and use of the most appropriate agents within

the data sites constitutes the other half of the problem. This problem is the topic of this paper. We investigate the

effects of discarding certain base-classifiers on the performance of the meta-classifier. If not controlled properly, the

size and arrangement of the meta-classifiers inside each data site may incur unnecessary and prohibitive overheads.

From actual experiments on base- and meta-classifiers trained to detect credit card fraud, we measured 50%, 90%

and 95% credit card transaction throughput drop for meta-classifiers composing of 13, 60 and 100 base-classifiers

respectively. (The experiments were conducted on on a Personal Computer with a 200MHz Pentium processor running

Solaris 2.5.1). As more base-classifiers are combined in a meta-classifier, additional time and resources are required

to classify new instances and that translates to increased overheads and lower throughputs. Memory constraints are

equally important. For the same problem, a single ID3 decision tree ([27]) may require more than 650KBytes of

main memory, while a C4.5 decision tree ([28]) may need 75KBytes. Retaining a large number of base classifiers and
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meta-classifiers may not be practical nor feasible.

Meta classifiers are defined recursively as collections of classifiers structured in multi-level trees [8], hence deter-

mining the optimal set of classifiers is a combinatorial problem.Pre-training pruning1 refers to the filtering of the

classifiers before they are used in the training of a meta-classifier. Instead of combining classifiers in a brute force

manner, with pre-training pruning (hereafter refered to as pruning) we introduce a pre-meta-learning stage for analyz-

ing the available classifiers and qualifying them for inclusion in a meta-classifier. Only those classifiers that appear

(according to one or more pre-defined metrics) to be most “promising” participate. The objective of pruning is to build

partially grown meta-classifiers (meta-classifiers with pruned subtrees) that are more efficient and scalable and at the

same time achieve comparable or better performance (accuracy) results than fully grown meta-classifiers.

Here we examine several evaluation metrics and pruning algorithms, and we compare their performance in the

credit card fraud detection domain. By way of summary, we find that pruned meta-classifiers can sustain accuracy

levels, increase theTP −FP spread and reduce losses due to fraud (with respect to a cost model fitted to the problem)

at a substantially higher throughput, compared to the non-pruned meta-classifiers. The remainder of this paper is

organized as follows. Section 2 reviews various classifier evaluation metrics that have been examined in the past and

introduces the ones used here. Section 3 describes the pruning algorithms while Section 4 presents the experiments

performed and studies the collected results. The paper concludes with Section 5.

2 Evaluating and Selecting Classifiers
To analyze, compare and manage ensembles of classifiers, one can employ several different measures and methods.

Before we present the metrics employed in this study, we summarize the previous and current research within the

Machine Learning and KDD communities.

Leo Breiman [2] and LeBlanc and Tibshirani [17] acknowledge the value of using multiple predictive models

to increase accuracy, but they view the problem from a different perspective. They rely on cross-validation data and

analytical methods, (e.g. least squares regression), to form, evaluate and decide on the best linear combination of the

available hypothesis (models), a method that can be considered as weighted voting among these hypothesis. Instead,

our method employs meta-learning to combine the available models, i.e. we apply learning techniques to discover

the correlations among the available models. Meta-learning has the advantage of searching for more complex and

non-linear relations among the classifiers, at the expense of generating less intuitive representations.

In a related study, Merz’sSCANN algorithm [19] employs correspondence analysis2 to map the predictions of

the available classifiers onto a new scaled space that clusters similar prediction behaviors and then uses the nearest

neighbor algorithm to meta-learn the transformed predictions of the individual classifiers. Even thoughSCANN is a

sophisticated meta-learning algorithm, it does not support pruning3 and it is expensive and impractical when dealing

with numerous of classifiers and large data sets. On the other hand, the pruning methods presented in this paper

precede the meta-learning phase and, as such, can be used in conjunction withSCANN or any other algorithm.

Provost and Fawcett [26] introduced the ROC convex hull method for its intuitiveness and flexibility. The method

evaluates models for binary classification problems, by mapping them onto aTrue Positive/False Negativeplane and

1As opposed topost-training pruning[25] which denotes the evaluation and revision/pruning of the meta-classifier after it is computed.
2Very similar to Principal Component Analysis
3Although the transformed predictions may be mapped on a new scaled space of lower dimension than the original (i.e the number of base-

classifiers),SCANN still needs all base-classifiers to map the training and test (unseen) instances onto the new representation.
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by allowing comparisons under different metrics (TP/FP rates, accuracy, cost, etc.). The focus of this paper, however,

is on evaluation methods that are suitable for multi-class problems and on metrics that provide information about the

interdependencies among the base classifiers and their potential when forming ensembles of classifiers [10, 14].

In the most related work, Margineantu and Dietterich [18] studied the problem of pruning the ensemble of classi-

fiers (i.e. the set of hypothesis (classifiers)) obtained by the boosting algorithm ADABOOST[13]. According to their

findings, by examining the diversity and accuracy of the available classifiers, it is possible for a subset of classifiers to

achieve similar levels of performance as the entire set. This research however, was restricted to derive all classifiers

by applying the same learning algorithm on many different subsets of the same training sets. In this paper, we are con-

sidering the same problem, but with these additional dimensions; we study the more general setting where ensembles

of classifiers can be obtained by training (possibly) different learning algorithms over (possibly) distinct databases.

Furthermore, instead of voting (ADABOOST) over the predictions of classifiers for the final classification, we adopt

meta-learning to combine predictions of the individual classifiers.

In this paper, we focus on thediversityandspecialtymetrics. Apart from these metrics andaccuracy, correlation

error andcoveragehave also been used to analyze and explain the properties and performance of classifiers. Ali and

Pazzani [1] define as correlation error the fraction of instances for which a pair of base classifiers make the same

incorrect predictions and Brodley and Lane [4] measured coverage by computing the fraction of instances for which

at least one of the base classifiers produces the correct prediction.

2.1 Diversity

Brodley [5] defines diversity by measuring theclassification overlapof a pair of classifiers, i.e. the percentage of the

instances classified the same way by two classifiers while Chan [6] associates it with the entropy in the predictions

of the base classifiers. (When the predictions of the classifiers are distributed evenly across the possible classes, the

entropy is higher and the set of classifiers more diverse.) Kwok and Carter [16] correlate the error rates of a set of

decision trees to their syntactical diversity, while Ali and Pazzani [1] studied the impact of the number of gain ties4

on the accuracy of an ensemble of classifiers.

Here, we measure the diversity within a set of classifiersS by calculating the average diversity of all possible pairs

of classifiers in that setS:

D =
∑|S|−1

i=1

∑|S|
j=i+1

∑n
k=1Dif (Ci(yk), Cj(yk))

(|S|−1)·|S|
2 · n

whereCj(yi) denotes the classification of theyi instance by theCj classifier andDif(a, b) returns zero ifa and

b are equal, and one if they are different. Intuitively, the more diverse the set of classifiers is, the more room a meta

classifier will have to improve performance.

2.2 Class specialty

The termclass specialtydefines a family of evaluation metrics that concentrate on the “bias” of a classifier towards

certain classes. A classifier specializing in one class, should exhibit, for that class, both, a high True Positive(TP )

4The information gain of an attribute captures the “ability” of that attribute to classify an arbitrary instance. The information gain measure favors

the attribute whose addition as the next split-node in a decision tree (or as the next clause to the clause body of a rule) would result in a tree (rule)

that would separate into the different classes as many examples as possible.
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and a low False Positive(FP ) rate. TheTP rate is a measure of how “often” the classifier predicts the class correctly,

whileFP is a measure of how often the classifier predicts the wrong class.

For concreteness, given a classifierCj and a data set containingn examples, we construct a two dimensional

contingency tableT j where each cellT jkl contains the number of examplesx for which the true labelL(x) = ck and

Cj(x) = cl. According to this definition, cellT jkk contains the number of examples classifierCj classifies correctly as

ck. If the classifierCj is capable of 100% accuracy on the given data set, then all non-zero counts appear along the

diagonal. The sum of all the cells inT j is n. Then, True Positive and False Positive rates are defined as:

TP (Cj , ck) =
T jkk∑c
i=1 T

j
ki

FP (Cj , ck) =
∑
i6=k T

j
ik∑

i6=k
∑c
l=1 T

j
il

In essence,FP (Cj , ck) calculates the number ofck examples that classifierCj misclassified versus the total

number of examples that belong in different classes (c is the number of classes). Theclass specialtymetric quantifies

the bias of a classifier towards a certain class. In particular, a classifierCj is highly biased/specialized for classck

when itsTP (Cj, ck) is high and itsFP (Cj , ck) is low.

One-sided class specialty metric Given the definitions of theTP andFP rates, this is the simplest and most

straight forward metric of the class specialty family. We can use the one-sided class specialty metric to evaluate a

classifier by inspecting theTP rate or theFP rate (but not both) of the classifier on a given class over the validation

data set. A simple pruning algorithm would integrate in a meta-classifier the (base-) classifiers that exhibit highTP

rates with the classifiers that exhibit lowFP rates.

Two-sided class specialty metrics The problem with the one-sided class specialty metric is that it may qualify poor

classifiers. Assume, for example, the extreme case of a classifier predicting always the classck. This classifier is highly

biased and the algorithm will select it. So, we define two new metrics, thepositive combined specialtyPCS(Cj , ck)

and thenegative combined specialtyNCS(Cj , ck) metrics, that take into account both theTP andFP rates of a

classifier for a particular class. The former is biased towardsTP rates, while the later is biased towardsFP rates:

PCS(Cj , ck) = TP (Cj, ck)− FP (Cj , ck)
1− TP (Cj , ck) NCS(Cj , ck) = TP (Cj , ck)− FP (Cj , ck)

FP (Cj , ck)

Combined class specialty metric A third alternative is to define a metric that combines theTP andFP rates of a

classifier for a particular class into a single formula. Such a metric has the advantage of distinguishing the single best

classifier for each class with respect to some predefined criteria. Thecombined class specialtymetric, orCCS(Cj , ck),

is defined as:

CCS(Cj , ck) = fTP (ck) · TP (Cj, ck) +fFP (ck) · FP (Cj , ck)

where−1 ≤ fTP (ck), fFP (ck) ≤ 1,∀ck. Coefficient functionsfTP and fFP are single variable functions

quantifying the importance of each class according to the needs of the problem and the distribution of each class in

the entire data set.5 Note that, theaccuracyof a classifierCj can be computed by the
∑c
k=1CCS(Cj , ck), with each

fTP (ck) set to the distribution of the classck in the testing set and eachfFP (ck) set to zero.

5A more general and elaborate specialty metric may take into account the individual instances as well:

CCS(Cj ,ck,(xi,yi))=fTP (ck,(xi,yi))·TP (Cj ,ck,(xi,yi))+fFP (ck,(xi,yi))·FP (Cj,ck,(xi,yi))
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In many real world problems, e.g. medical data diagnosis, credit card fraud, etc, the plainTP (Cj, ck) and

FP (Cj , ck) rates fail to capture the entire story. The distribution of the classes in the data set may not be balanced

and maximizing theTP rate of one class may be more important than maximizing total accuracy. In the credit card

fraud detection problem, for instance, catching expensive fraudulent transactions is more vital than eliminating the

possibility for false alarms. Thecombined class specialty metricprovides the means to associate a cost model with

the performance of each classifier and evaluate the classifiers from an aggregate cost perspective.

With these metrics, a straight forward pruning algorithm would evaluate all available (base-) classifiers and then

select the ones with the highest specialty per class. Recall that high specialty for a class means high accuracy for that

class, so, in essence, the algorithm would choose the (base-) classifiers with the most specialized and accurate view of

each class. We expect that a meta-classifier trained on these (base-) classifiers will be able to uncover and learn their

bias and take advantage of their properties.

Combining metrics Instead of relying just on one criterion to choose the (base-) classifiers the pruning algorithms

can employ several metrics simultaneously. Different metrics capture different properties and qualify different clas-

sifiers as “best”. By combining the various “best” classifiers into a meta-classifier we can presumably form meta-

classifiers of higher accuracy and efficiency, without searching exhaustively the entire space of the possible meta-

classifiers. For example, one possible approach would be to combine the (base-) classifiers with highcoverageand

low correlation error. In another study [30] concerning credit card fraud detection we employ evaluation formulas for

selecting classifiers that are based on characteristics such asdiversity, coverageandcorrelated erroror their combi-

nations, i.e.True Positive rateanddiversity. Next, we introduce two algorithms that we use in the rest of this paper.

3 Pruning algorithms
Pruningrefers to the evaluation and selection of classifiers before they are used for the training of the meta-classifier.

A pruning algorithm is provided with a set of pre-computed classifiersH (obtained from one or more databases by

one or more machine learning algorithms) and a validation setV (a separate subset of data, different from the training

and test sets). The result is a set of classifiersC ⊆ H to be combined in a higher level meta-classifier. Determining

the optimal meta-classifier is a combinatorial problem, so we employ the accuracy, diversity, coverage and specialty

metrics to guide the greedy search. More specifically, we implemented a diversity-based pruning algorithm and three

instances of the combined coverage/specialty-based pruning algorithm, described in Table 3.

Diversity-Based Pruning Algorithm The diversity-based algorithm works iteratively selecting one classifier each

time starting with the most accurate base classifier. Initially it computes the diversity matrixd where each celldij

contains the number of instances of the validation set for which classifiersCi andCj give different predictions. In

each round, the algorithm adds to the list of selected classifiersC the classifierCk that is most diverse to the classifiers

chosen so far, i.e. theCk that maximizesD overC∪ Ck,∀k in 1, 2, . . . |H|. The selection process ends when theN

most diverse classifiers are selected.N is a parameter that depends on factors such as minimum system throughput,

memory constraints or diversity thresholds:6 The algorithm is independent of the number of attributes of the data set

6The diversityD of a set of classifiersC decreases as the size of the set increases. By introducing a threshold, one can avoid including redundant

classifiers in the final outcome.
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Let C := ∅,N := maximum number of classifiers
For i := 1, 2, . . . ,|H| - 1 do

For j := i, i+1, . . . , |H| do
Let dij := the number of instances whereCi

andCj give different predictions
Let C′ := the classifier with the highest accuracy
C := C ∪ C′,H :=H− C′
For i := 1, 2, . . . ,N do

For j := 1, 2, . . . ,|H| do

Let Dj :=
∑|C|

k=1
djk

Let C′ := the classifier fromH with the highestDj
C := C ∪ C′,H :=H−C′

Let C := ∅
For all target classesck, k = 1, 2, . . . ,c, do

Let E := V
Let Ck := ∅,Hk := ∅
Until no other examples inE can be covered

orHk = ∅
Let C′ := the classifier with the bestclass

specialtyon target classck for E
Ck := Ck ∪ C′,Hk := Hk −C′
E := E - examples covered byC′

C := C ∪ Ck

Table 1: The Diversity-based (left) and Coverage/Specialty-based (right) pruning algorithms

and is bounded by anO(n · |H|2) (wheren denotes the number of examples) complexity due to the computation of

the diversity matrix. For all practical problems, however,|H| is much smaller thann and the overheads are minor.

Coverage/Specialty-Based Pruning Algorithm This algorithm combines thecoveragemetric and one of the in-

stances of thespecialty metriccovered in section 2. Initially, the algorithm starts by choosing the base classifier with

the best performance with respect to the specialty metric for a particular target class on the validation set. Then it con-

tinues by iteratively selecting classifiers based on their performance on the examples the previously chosen classifiers

failed to cover. The cycle ends when there are no other examples to cover and then the algorithm repeats the selection

process for a different target class. The complexity of the algorithm is bounded byO(n · c · |H|). For each target class

(c is the total number) it considers at most|H| classifiers and each time it compares each classifier with all remaining

classifiers (bounded by|H|)) on all misclassified examples (bounded byn).

Even though the algorithm performs a greedy search, it combines classifiers that are diverse (they classify cor-

rectly different subsets of data), accurate (with the best performance on the data set used for evaluation with respect

to the class specialty) and with high coverage. The three instances of the pruning algorithm combine coverage and

PCS(Cj , ck), coverage and a specificCCS(Cj , ck) and coverage and a combined class specialty metric that asso-

ciates a specific cost model tailored to the credit card fraud detection problem.

4 Experiments and Results
Learning algorithms Five inductive learning algorithms are used in our experiments. ID3, its successor C4.5, and

Cart [3] are decision tree based algorithms, Bayes, described in [11], is a naive Bayesian classifier and Ripper [9] is a

rule induction algorithm.

Learning tasks Two data sets of real credit card transactions were used in our experiments provided by the Chase

and First Union Banks, members of the FSTC (Financial Services Technology Consortium). The two data sets contain

credit card transactions labeled as fraudulent or legitimate. Each bank supplied .5 million records spanning one year.

Chase bank data consisted, on average, of 42,000 sampled credit card transaction records per month with 20% fraud

versus 80% non-fraud average distribution, whereas First Union data were sampled in a non-uniform manner (many

records from some months, very few from others) with a total of 15% fraud versus 85% non-fraud.

To evaluate and compare the meta-classifiers constructed, we adopted three metrics: the overall accuracy, the

(TP −FP ) spread and a cost model fitted to the credit card detection problem. Overall accuracy expresses the ability
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of a classifier to give correct predictions,(TP−FP )7 denotes the ability of a classifier to catch fraudulent transactions

while minimizing false alarms, and finally, the cost model captures the performance of a classifier with respect to the

goal of the target application (stop loss due to fraud).

Credit card companies have a fixed overhead that serves as a threshold value for challenging the legitimacy of

a credit card transaction. In other words, if the transaction amountamt, is below this threshold, they choose to

authorize the transaction automatically. Each transaction predicted as fraudulent requires an “overhead” referral fee

for authorization personnel to decide the final disposition. This “overhead” cost is typically a “fixed fee” that we call

$Y . Therefore, even if we could accurately predict and identify all fraudulent transactions, those whoseamt is less

than$Y would produce(Y − amt) in losses anyway. With this overhead cost taken into account, we seek to produce

classifiers and meta-classifiers that generate the maximum savingsS(Ci, Y ):

S(Cj , Y ) =
∑n
i=1[F (Cj ,xi) · (amt(xi)− Y )−L(Cj,xi) · Y ] · I(xi, Y )

whereF (Cj ,xi) returns one when classifierCj classifies correctly a fraudulent transactionxi andL(Cj ,xi)

returns one when classifierCj misclassifies a legitimate transactionxi. I(xi, Y ) inspects the transaction amountamt

of transactionxi, and returns one if it greater than $Y and zero otherwise, whilen denotes that number of examples

in the data set used in the evaluation.

Experiments First we distributed the data sets across six different data sites (each site getting two months worth

of data) and we prepared the set of candidate base classifiers, i.e. the original set of base classifiers the pruning

algorithm is called to evaluate. We obtained these classifiers by applying the 5 learning algorithms on each month

of data, therefore creating 60 base classifiers (10 classifiers per data site). Next, we had each data site import the

“remote” base classifiers (50 in total), and use only them in the pruning and meta-learning phases thus ensuring that

each classifier would not be tested unfairly on known data. Specifically, we had each site use half of its local data (one

month) to test, prune and meta-learn the base-classifiers and the other half to evaluate the overall performance of the

pruned meta-classifier. Note that the above month-dependent data partitioning scheme, was applied only on the Chase

bank data set. The very skewed nature of the First Union data forced us to equi-partition the entire data set randomly

into 12 subsets and assign 2 subsets in each data site.

With 50 candidate base classifiers per data site, there are(250 − 50) different possible combinations of base

classifiers from which the pruning algorithm has to choose one. In the meta-learning stage we employed all five

learning algorithms to combine the selected combination. The results section that follows, reports the performance

results of pruning and meta-learning averaged over all six data sites. In essence, the design of this experiment follows

the popular cross validation evaluation technique, here, with 6 folds.

Results The results from these experiment are displayed in Figures 1, and 2. Figure 1 plots the overall accuracy, the

(TP − FP ) spread and the savings (in dollars) for the Chase bank credit card data, and Figure 2 for the First Union

data. Each figure contrasts two specialty/coverage based, one diversity-based, a metric-specific pruning method and an

additional classifier selection method denoted here asarbitrary. As the name indicates,arbitrary uses no intelligence

7TheTP − FP spread is an ad-hoc, yet informative and simple metric characterizing the performance of the classifiers. In comparing the

classifiers, one can replace theTP − FP spread, which defines a certain family of curves in the ROC plot, with a different metric or even with a

complete analysis [26] in the ROC space.
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Figure 1:Pruning algorithms: Total accuracy (left), (TP-FP) spread (middle) and savings (right) on CHASE credit card data.
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Figure 2:Pruning algorithms: Total accuracy (left), (TP-FP) spread (middle) and savings (right) on First Union credit card data.

to evaluate base classifiers; instead it combines them in a “random” order, i.e. when they become available. The metric-

specific pruning methods (which correspond to three different instances, accuracy,TP −FP , 8 and cost model, of the

CCS specialty metric of section 2) evaluate, rank and select the base-classifiers according to their performance with

respect to that metric. For brevity, we plotted only the best performing meta-learning algorithms, the accuracy of the

Ripper meta-classifiers and theTP − FP rates and savings of the Bayesian meta-classifiers.

The vertical lines in the figures denote the number of base classifiers integrated in the final meta-classifier as

determined by the specialty/coverage algorithms. The final Chase meta-classifier for the TP-FP/coverage algorithm,

for example, combines 33 base classifiers (denoted by the TP-FP vertical line), while the final First Union meta-

classifier for the accuracy/coverage algorithm consists of 26 base classifiers (denoted by the accuracy vertical line). In

these graphs we have included the intermediate performance results (i.e. the accuracy,TP − FP rates and savings

of the partially built meta-classifiers) as well as the performance results of the redundant meta-classifiers would have

8TheCCS/coverage pruning algorithm as defined in section 3 selects for all classesck the classifiers that maximize theCCS(ck). The fraud

detection problem, however, is a binary classification problem, hence theCCS/coverage algorithm is, initially, reduced to select the classifiers that

maximizeCCS(fraud)/coverage, (i.efTP (fraud) -fFP (fraud)), and furthermore, reduced toTP − FP to match the evaluation metric.
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had, had we used more base-classifiers or not introduced the pruning phase. Vertical lines for the diversity-based and

metric-specific pruning algorithms are not shown in these figures as they depend on real-time constraints and available

resources as discussed in Section 3.

The benefits from the pruning methods are clear. In all cases the performance of the pruned meta-classifiers are

superior to that of the complete meta-classifier9 and certainly better than the “arbitrary” non-intelligent pruning method

both with respect to effectiveness (accuracy,TP−FP , savings) as well as efficiency (less base-classifiers are retained);

using more base-classifiers than selected (denoted by the vertical lines) has no positive impact on the performance of

the meta-classifiers. Overall, the pruning methods composed meta-classifiers with 6.2% higher(TP − FP ) spread

and $180K/month additional savings over the best single classifier for the Chase data and 10% higher(TP − FP )

spread and $140K/month additional savings over the best single classifier for the First Union data. These pruned meta-

classifiers also achieve 60% better throughput, 1% higher(TP − FP ) spread and $100K/month additional savings

than the non-pruned meta-classifier for the Chase data and 100% better throughput, 2% higher(TP −FP ) spread and

$10K/month additional savings for the First Union data.

Analysis At first, a head to head comparison between the various pruning algorithms seems to seem to point to a

contradiction. The simple metric-specific pruning methods choose better combinations of classifiers for the Chase

data, while the specialty/coverage-based and diversity-based pruning methods perform better on classifiers of the First

Union data. In fact, this observation is more pronounced in most of the plots (not shown here) generated from the

meta-classifiers computed by the other learning algorithms.

The performance of a meta-classifier, however, is directly related to the properties and characteristics of its con-

stituent base-classifiers.10 As we have already noted, the more diverse the set of base-classifiers is, the more room for

improvement the meta-classifier has. For example, to obtain diverse classifiers from a single learning program Freund

and Schapire [13] introduced a sophisticate algorithm for sampling the data set to artificially generate diverse training

subsets. In our experiments, the diversity of the base classifiers is attributed, first, on the use of disparate learning al-

gorithms, and second, on the degree the training sets are different. Although the first factor is the same for both Chase

and First Union data sets, this is not the case with the second. Recall that the First Union classifiers were trained on

subsets of data of equal size and class distribution while the Chase base-classifiers were trained on subsets of data

defined according to the date of the credit card transaction, which led to variations in the size of the training sets and

the class distributions. As a result, in the Chase bank case, the simple metric-specific pruning algorithm combines the

best base-classifiers that are already diverse and hence achieves superior results while the specialty/coverage pruning

algorithms combine diverse base-classifiers that are not necessarily the best. On the other hand, in the First Union

case, the specialty/coverage pruning algorithms are more effective, since the best base-classifiers are not as diverse.

Our justification is further reinforced by the observation that in the First Union data, the various pruning algorithms

are comparably successful and their performance plots are less distinguishable. Indeed, a closer inspection on the

classifiers composing the pruned sets(C) revealed that, the sets of selected classifiers were more “similar” (there were

more common members) for First Union than for Chase. Moreover, the inspection showed that for the First Union

meta-classifiers, the specialty/coverage based and diversity-based pruning algorithms tended to select mainly the ID3

9Pruned meta-classifiers are superior to the best base-classifiers as well.
10In general, the performance of a classifier depends on the quality of its training set and the biases introduced by the learning algorithm, e.g the

constraints imposed by the search space, the search heuristics, the representation capabilities, etc.
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base-classifiers for being more specialized/diverse11 thus verifying the conjecture that the primal source of diversity

for First Union meta-classifiers is the use of disparate learning algorithms. If the training sets for First Union were

more diverse, there would have been more diversity among the other base-classifiers and presumably more variety in

the pruned set. In any event, all pruning methods tend to converge after a certain point. After all, as they add classifiers,

their pool of selected classifiers is bound to become very similar.

Note that training classifiers to distinguish fraudulent transactions is not a direct approach to maximizing savings

(or theTP − FP spread). In this case, the learning task is ill-defined. The base-classifiers are unaware of the

adopted cost model and the actual value (in dollars) of the fraud/legitimate label. Similarly, the meta-classifiers are

trained to maximize the overall accuracy not by examining the savings in dollars but by relying on the predictions of

the base-classifiers. In fact, a more thorough investigation revealed that with only few exceptions, the Chase base-

classifiers were inclined towards catching “cheap” fraudulent transactions and for this they exhibited low savings

scores. Naturally, the meta-classifiers are trained to trust the wrong base-classifiers for the wrong reasons, i.e. they

trust the most base-classifiers that are most accurate instead of the classifiers that accrue highest savings.

The superior performance of the simple cost-specific pruning method confirms this hypothesis. The cost-specific

pruning method evaluates the base classifiers with respect to the cost model and associates them with priorities ac-

cording to their results. The algorithm forms meta-classifiers by selecting base-classifiers based on their priority.

The performance of this algorithm is displayed in the right plot of Figure 1 under the name “cost”. For as long the

meta-classifiers consist of only of “expensive detectors” they inherit the desirable property and exhibit substantially

improved performance.12 The same, but to a lesser degree, holds for theTP − FP spread. In general, unless the

learning algorithm’s target function is aligned with the evaluation metric, the resulting base- and meta-classifiers will

never be able to address the classification problem at full strength.

One way to alleviate/rectify this ill-defined situation in the credit card domain, is to tune the learning problem

according to the adopted cost model. For example, we can transform the binary classification problem into a multi-

class problem by multiplexing the binary class and the continuousamt attribute (properly quantized into several

“bins”). The classifiers derived from the modified problem would presumably fit better to the specifications of the cost

model and achieve better results.

5 Conclusion

Efficiency and scalability of a distributed data mining system, such as theJAM meta-learning system, has to be

addressed at two levels, the system architecture level and the data site level. In this paper, we concentrated on the

later; we delved inside the data sites to explore the types, characteristics and properties of the available classifiers

and deploy only the most essential classifiers. The goal was to reduce complex, redundant and sizeable meta-learning

hierarchies, while minimizing overheads. We introduced several evaluation metrics and selection algorithms and we

adopted measures such as the overall accuracy, the TP-FP spread and a cost model to measure the usefulness and

11The ID3 learning algorithm is known to overfit its training sets. In fact, small changes in the learning sets can force ID3 to compute significantly

different classifiers.
12The nearsightedness of the learning algorithms was not pronounced in the First Union data set: the majority of the First Union base-classifiers

happened to catch the “expensive” fraudulent transactions anyway, so the pruning algorithms were able to form meta-classifiers with the appropriate

base classifiers.
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effectiveness of our pruning methods. Although there are many intricate issues that need to be addressed and resolved,

the experiments suggest that pruning base classifiers in meta-learning can achieve similar or better performance results

than the brute-force assembled meta-classifiers in a much more cost effective way.
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