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Abstract

Concurrency control is one of the key problems in design and implementation of collaborative systems such as
hypertext/hypermedia systems, CAD/CAM systems and software development environments. Most existing systems

store data in specialized databases with built-in concurrency control policies, usually implemented via locking.

It is desirable to construct such collaborative systems on top of the World Wide Web, but most web servers do not
support even conventional transactions, let alone distributed (multi-website) transactions or flexible concurrency

control mechanisms oriented towards teamwork — such as event notification, shared locks and fine granularity locks.

We present a transaction server that operates independently of web servers or the collaborative systems, to fill the
concurrency control gap. The transaction server by default enforces the conventional atomic transaction model,
where sets of operations are performed in an all-or-nothing fashion and isolated from concurrent users. The server
can be tailored dynamically to apply more sophisticated concurrency control policies appropriate for collaboration.
The transaction server also supports applications employing information resources other than web servers, such as
legacy databases, CORBA objects, and other hypermedia systems. Our implementation permits a wide range of

system architecture styles.

KEYWORDS: Distributed Transactions, Extended Transaction Models, WWW, Computer Supported Collaborative
Work, Middleware

1 Introduction

Concurrency Control (CC) is an essential functionality of collaborative systems such as CAD/CAM systems,
distributed authoring systems, software development environments and hypermedia systems. In such systems, users
can simultaneously access the data objects, and their access must be coordinated in order to maintain data

consistency and the correct semantics of user operations.



The concept of transactions [12] from database systems gives most of the features needed by the builders of these
collaborative systems, such as atomic operations, locking, and crash recovery. But these systems should also be
enhanced by extensible CC policies beyond the traditional transactions due to the long-duration, interactive and
open-ended nature of the tasks performed. Extensions for multi-participant tasks can range from the persistent locks
of the check-out/check-in model to shared locks for closely cooperating users, to a sophisticated implementation of
one of the Extended Transaction Models (ETM) proposed in the literature [21]. Existing systems usually employ the
CC features of the underlying storage facility, normally a database system [4, 14, 43]. The CC features built into the

database might then be customized to the needs of the specific application.

The WWW is by far the largest and most popular distributed hypermedia system, and very attractive as an
infrastructure for a variety of applications. Building Collaborative Hypermedia Systems [1], CSCW Systems [9],
and Workflow Systems [28] on top of WWW have been research topics for several years and have recently moved

into the commercial arena.

However, the CC features that are required by such collaborative systems are missing from most WWW servers.
There is no standard underlying database system; indeed, most web servers store their pages directly in the file
system. Further, most web servers are intended as merely read-only data sources: the hypermedia stored in them can
be modified only via the underlying file system, not through the web interface, i.e., HTTP. Only a few web servers
(such as jigsaw [45] from W3C) allow the PUT method, and thus support updates via HTTP, even though PUT is
defined in the original HTTP specification [10].

There have been attempts to build CC capabilities such as locking, check-out/check-in, and even distributed
transactions into the WWW infrastructure. There are two major approaches, categorized according to where the
bulk of the functionality is placed, the server side or the client side. The server approach [40] introduces CC
functionality into the web servers so that the clients can explicitly submit operations as part of a transaction; a
collection of cooperating web servers can then realize distributed transactions. The client approach [27, 41] places
CC policies into the clients, but still often requires the servers to provide very basic CC building blocks such as locks

or versions.

Neither of these approaches addresses the problem of how to dynamically extend the range of CC policies available
to applications. In the realm of collaborative systems, hard-wiring CC policies into either the server or client greatly
limits scalability and flexibility. For example, let us consider a web server that implements a set of CC policies
needed by a Software Development Environment (SDE). It might have specific rules such as whenever someone is
changing a design document, other users should get a copy of the working draft when they try to read the document.
However, when a CAD system shares the server with the SDE, it wants to let its users see only the stable version of

the design document instead. The web server that has been built for the SDE would not allow such flexibility.



We present a third, middleware approach: CC policies are realized in a new component, the external transaction
server. The clients make requests to the transaction server, which carries out the concurrency control policies in the
process of obtaining the data from the web servers on behalf of the clients. The web servers are not required to
provide any CC support at all, although any support they do happen to provide can also be exploited. The major
advantages of this approach are:

e The transaction server can easily be tailored to apply the desired CC policies of specific client applications.

e  The approach does not require any changes to either the servers or the clients in order to support the standard
transaction model, but it can exploit any CC features the servers or clients do provide to accomplish more
sophisticated CC policies. The transaction boundary delimitation could either be done automatically by a
third-party system (such as a proxy, as we discuss in section 7.1.2) or by the client.

e Coordination among clients that share data but have different CC policies is possible if all of the clients use

the same transaction server (or, in planned future work, allied transaction servers).

This approach has its own challenges and limitations, though: It must operate together with different web servers
supporting different CC capabilities and/or different variants of HTTP, and may need to "speak" non-HTTP
communication protocols to encompass information resources other than standard web servers. The transaction
server must have the capability of being customized dynamically to support the CC policies needed by the
applications. And, most severe, since the transaction server is outside of and independent from the web servers and
other information resources, the transaction server has no firm control over the data and thus data consistency

guarantee is hard to achieve (see Section 7.2.1).

We present a prototype transaction server, called JPernLite, which solves all except the last problem — which is
impossible to solve in the general case without changing to the servers. In the following sections, we first analyze
the need for extensible CC policies and independent CC components for web-based collaborative hypermedia
systems. Then we introduce the external transaction service model, and our design and implementation of JPernLite,

followed by a discussion of some issues identified by our research.

2 Requirements Analysis

We analyze the requirements from two sides: the features needed by collaborative systems in general, and the

specific capabilities needed to exploit WWW as the primary information resource.

2.1 CC Features Required by Collaborative Systems

The concurrency control features required for collaborative systems, especially those for hypermedia systems and
software development environments, have been identified in [5, 42]:

e Event notification: notifying collaborating users of data operations that may interest them.



e Fine-grained notification: the ability to distinguish operations on individual attributes of a datum.

e User-controlled locking: locking is done explicitly by the users or applications, not implicitly by the data
sources. In such systems, the semantics of an operation (e.g. check-out a document) is only understood by
the client or even the human user. Therefore the backend data source wouldn't know what locks to put on
when such an operation is requested.

o Fine-grained locking: locking part of a datum.

e Shared locks: allowing collaborating users to hold locks that are normally considered conflicting (e.g., two
write locks, or a read and a write lock).

e Persistency: collaboration information such as the state of on-going transactions should be persistent, i.e.,
survive failures, so that the clients can recover from server crashes without losing valuable work (most
transaction managers roll back in-progress work to its initial state after a failure).

e Synergistic cooperation: several users might have to exchange knowledge (i.e., share it collectively) in order
to be able to continue their work. These users may pass shared objects back and forth in a way that cannot

be achieved by a serial schedule.

2.2 Requirements Imposed by the WWW

In addition to these requirements, extensibility of CC policies is also very important for web-based collaborative
systems. When a traditional database is used as the storage, it is likely to be dedicated to one or a few known
applications; therefore one could hardwire the desired CC policy(ies) into them. However, a web server is likely to
be utilized by multiple unrelated applications, which might be unknown to the website administrators. In fact, the
applications themselves might not know in advance which websites will be accessed. So the CC policies these
applications might require cannot be known to the requisite web servers a priori. Thus it is necessary to be able to

extend the supported CC policies dynamically, while collaborative systems are operating.

Building collaborative systems on top of WWW (as opposed to dedicated databases) also brings the following

requirements because of the peculiarities of the WWW infrastructure:

2.2.1 Large Scale and Heterogeneity

With more than two million websites [32] and hundreds of millions of web pages, WWW is orders of magnitude
larger than any other existing distributed database in both the number of objects and the number of sites. Therefore,
the ability to scale up to a huge number of participating sites is critical to a collaborative hypermedia system that

intends to apply to WWW in general, beyond a few specialized web servers.

Although all web servers speak HTTP, the kind of CC support they provide, if any, can be very different.

Furthermore, some legacy database systems have been modified to respond to HTTP requests [23], making the set of



apparent web servers more diverse. Because the data an application accesses may be stored in many different kinds
of repositories, an application should not be hard-wired to assume any specific capabilities from its data sources, in

particular, communication protocols and CC features.

Also, web servers are distributed around the world and the global network is far less stable and reliable than a local
area network in terms of round-trip delay and accessibility. The traditional recovery algorithms might not work well
under such circumstances. For example, rolling back operations by rewriting the value of each modified object
would be much more expensive than in a local database case, and an application should consider using any “undo” or

other relevant facilities offered by the data sources.

2.2.2 Distributed CC Support

Web servers are moving towards supporting updates (i.e., the HTTP PUT method) in addition to reads and posts
(i.e., form submission for processing by CGI scripts). However, most mainstream servers still do not support
distributed CC features such as:
e Distributed commitment protocol, e.g., the conventional two-phase commit, to support transactions that
include accesses to multiple websites;
e Failure recovery algorithms, especially client-side recovery to restore consistent state in the client
application;
e Web page locking, to prevent unintended overwrites and dirty reads, and versioning, to permit other users to

access an older version, e.g., while the latest version is locked.

2.2.3 Application Semantics

The data model of WWW is very simple: everything is a web document that can be read and written, with the main
"typing" embedded in filename extensions and MIME types indicating the appropriate viewer plug-ins. However,
for a web-based collaborative system, a semantically richer data model, including a broader range of operations that
can be performed on the data, is desired. For example, a web-based software development environment probably
wants to model web documents as source code, design document, test report, code inspection report, etc., even

though these may all be the same “type” from the web browser's perspective (e.g., text or HTML).
In the following section, we describe related work that addresses part of the concurrency control problem by

satisfying a few of the above requirements. Our own work concentrates on extensible CC policies and application

semantics, while the scaling and heterogeneity problems are addressed to a lesser extent.

3 Related Work



3.1 Three-Tier Architecture Transaction Servers

In a Three-Tier Architecture, client, data source and application logic are separated and implemented as independent
components of a system. The application logic includes Transaction Processing (TP) monitors in some cases.
Separating the transaction manager from the clients and the data sources makes it more flexible and scalable, which

is the same in our approach. However, these TP monitors do not address the need for ETMs.

3.1.1 Encina and Tuxedo

Encina, which is now part of IBM TXSeries4.2 [27], is based on Open Software Foundation's (OSF) Distributed
Computing Environment (DCE) standard. TXSeries provides concurrency control, transaction management, data
modeling and application distribution through its toolkits. The Encina Monitor is a full-featured TP monitor that
controls and monitors applications in a distributed environment. It allows servers to be replicated to increase

availability and performance and supports load balancing and automatic restart of failed application servers.

BEA Tuxedo [7], another TP monitor, offers both library-based and language-based programming interfaces to its
clients. The library-based API, the Application to Transaction Manager Interface (ATMI), is a superset of X/Open
XATMI [35] provided in C or COBOL libraries; the language-based interface is an RPC facility called TxRPC.
Both interfaces provide three major transaction primitives: tpbegin, tpcommit and tpabort. The API set also
allows one to use synchronous, asynchronous, pipelined, forwarded, queued, and conversational mechanisms to
structure the distributed applications. In addition to transaction management, BEA Tuxedo also integrates various

essential services, such as name service, event service, queuing service, security management and load balancing.

These TP monitors qualify as "External Transaction Manager" as we define later in Section 4.1, in that they are
third-party components that operates independent of data source and clients. However, because they do not support
ETMs, the applications built on top of them is limited to use the atomic transaction models, and thus enjoy less

flexibility in transaction management.

3.1.2 Object Management Group OTS and Implementations

The Object Transaction Service (OTS) specification [33] is one of the CORBA [34] services defined by OMG.
Transactional objects that know how to participate in distributed two-phase commit and enforce ACID transactions
are the building blocks of the service to the transactional clients. The transaction service issues transaction context
objects that are used in further transaction operations to identify transactions, and separate transaction boundaries
(i.e., delimit operations that belong to different transactions). The transactional objects use Recoverable Resource
Objects (RRO) that know how to rollback changes in case of a transaction abort. If the data source is remote or does

not know how to rollback, the RRO must implement the rollback. The OTS service provides an easy to use interface



to transactional client programmers who want to exercise simple atomic flat transactions, with support for a simple
form of nested rollback. It also provides transparent distributed transaction support, assuming distributed computing

communication through a CORBA ORB and/or I1OP.

There have been several implementations of OTS; here we describe two major ones, from Sun Microsystems and

from Microsoft.

Enterprise Java Beans™ (EJB) [37] of Sun Microsystems defines a set of APIs that target the creation of component-
based, transaction-oriented applications. Java™ Transaction API (JTA) [38] is required by EJB as the client-side
API, which consists of methods to explicitly start, commit and abort transactions. The Java™ Transaction Service
(JTS) [39] is a lower-level API intended to be used by server component builders to provide transaction-aware

system infrastructure. JTS is a Java™ mapping of OMG OTS.

MTS [30] is the transaction service option package of Microsoft Windows NT 4.0 that realizes a three-tier
architecture. The transaction service is applied to client requests in an implicit way, called automatic transactions.
Each back end component, which implements a module of application logic, is marked as different types of
transaction support, such as Requires New, Required, Supported, or Not Supported. Based on the type, when a
back end component is accessed, MTS automatically starts, switches, or temporarily goes out of transactions. For
example, if a component is marked Required, MTS would start a new transaction if the current execution is not
already encompassed in a transaction. Through the use of the component type makers, one can build hierarchical

transaction models such as nested transactions.

These transaction servers share the same architecture as our approach. However, they support primarily the vanilla,
atomic transaction model. The only enhancement is that the transactions can be grouped together as in nested
transactions, and thus can be rolled back in a nested fashion. Options of nested transaction model such as Intra-
transaction parallelism are not supported. Another common characteristic of these transaction servers is that they
assume the back end data source to be transaction-aware. For example, recovery (undo) and two-phase commit
capability are required. With such requirements, these transaction servers can give stronger guarantees of data
consistency. Our approach, on the other hand, does not require the back end data to provide any particular support.

Of course, if we were to impose the same requirements, we can achieve the same guarantees.

Another important issue is transaction awareness of the clients. In both EJB and the current implementation of our
approach, the clients need to explicitly make requests such as begin transaction and commit transaction. But in
MTS, the clients simply access the back end components via COM and the MTS automatically encompass the access
in transactions. The transaction structure and context, as we described above, are totally defined by the back end

components. Our approach can be enhanced by a client side helper (such as an applet or a browser plug-in) that



makes the transaction requests for a client that is not transaction aware. In this case, the client side helper would

need to intercept the client's data requests and wrap them in transactions.

3.2 WWW standards and protocols

There are various Web standards and protocols about concurrency control and distributed transactions. In our
approach, we do not try to modify or replace any of them, but rather follow the standards and work with the clients
and servers that speak such protocols. In this section we mention two very important ones: WEBDAYV that deals

with concurrency control in web servers, and TIP that deals with distributed transactions.

3.2.1 WEBDAV

Web Distributed Authoring and Versioning (WEBDAV) [41] is an Internet draft standard for web servers that intend
to support locking (and versioning, which is under-construction) of their web pages. WEBDAV defines an HTTP
extension that the web servers should speak in order to provide such services. A transaction server can leverage
these features: when a transaction locks a web page, the transaction server not only locks it internally, but can also
place a real lock at the web server. This way, even clients that do not go through the transaction server also share the

concurrency control states.

As of the date of writing, there exists only experimental implementations of WEBDAYV, and some of them are
obsolete according to the latest WEBDAV specification [19]. However, several companies are developing
WEBDAV-capable products such as WebSite Director from CyberTeams [17]. We expect to see more web servers
supporting WEBDAYV, therefore how to utilize the CC features these servers provide is an important issue (see

section 6.1).

3.2.2 Transaction Internet Protocol (TIP)

TIP [40] is another Internet draft standard. It proposes a simple two-phase commit protocol to support atomic
transactions across distributed nodes (the TIP term for servers) on the Internet. The transaction server can leverage
the commit protocol implemented by a TIP-compliant web server to implement its own form of distributed
transactions (which might encompass non-standard CC policies, not addressed by TIP). A sample implementation of

TIP, the Internet Travel Bureau [16], has been developed in Tandem, a division of Compagq.

3.3 Extended Transaction Modeling Formalisms

If one could define a concise, powerful and executable ETM definition language that can express all possible ETMs,

the implementation of transaction managers would be simplified to writing a program in such language and execute



in such a language machine. However, the two most famous works we describe in this section, ACTA and Asset,
did not prove to satisfy all of these needs. Both of them are not implemented and not proved to be extensible
enough. In our approach, we let the ETM designer to define ETMs in Java, a general purpose programming

language, with a helpful transaction engine API.

3.31 ACTA

ACTA [15] is a framework that allows one to specify the effects of one transaction on other transactions (how the
transactions are structured) or data items (how the data objects are modified). It is a comprehensive framework used
for formally defining the properties of ETMs. ACTA defines transaction models through axioms, or invariants, that
make assertions about the possible histories of a particular transaction model. It uses the notions of history,

dependency, view, conflict and delegation as basic constructors to describe the transaction effects.

The authors of ACTA have used it to describe several ETMs, including nested transactions [20], Sagas [22] and
Split/Join transactions [36]. Although ACTA is useful for validating transaction models, because it defines
transactions in the form of axioms, it does not help much in producing an operational transaction model that supports

the model.

3.3.2 Asset

Asset (A System for Supporting Extended Transactions) [13] proposes a set of transaction primitives that can be
used in writing application programs. The transaction primitives, such as commit, abort, delegate and
permit, allow one to create transactions, delegate objects between transactions and permit dirty reads among

them. It has been shown in [13] that several kinds of ETMs can be implemented with this set of primitives.

In the Asset approach, transaction models are coded into the applications rather than bundled with the data sources.
The policies concerning data sharing among applications are defined by the individual applications. Therefore, an
application has to know in advance (when the application is coded, using the transaction primitives) what other
applications it might be sharing data with, code specifically for those collaborative partners, so cannot dynamically

form collaboration teams. Also, the system was never implemented’, and therefore evaluation is rather difficult.

1 . . .
Personal communication between the second author and the authors of Asset shows that Asset was not implemented
From: nhglallegra.att.com (Narain Gehani)
To: kaiser@westend.psl.cs.columbia.edu

Subject: Re: ASSET

asset was not really implemented.
i can give you 0Ode though.

Narain



3.4 Extended Transaction Model Realization

3.4.1 Hyperform

Hyperform [44] is a toolkit that assists development of dynamic, open and distributed multi-user hypermedia
systems. A few hypertext systems, including HyperDisco [43], have been built using Hyperform. Hyperform allows
programmers to extend the data model and data management policies by subclassing the Obj ect class of its OODB.
Limited extensibility in CC policies is also permitted by subclassing the CC Cbj ect class. As hinted by [44], the
possible extensions apparently do not include shared locks, since t he CC Cbj ect provides short database-style
ACID transactions that are directly integrated with the lower-level OODB. Also, it is not clear how this approach
could be applied to WWW, where the web servers may not be under the control of the hypermedia system developer

-- meaning users cannot extend the CC policies by changing the code of the web servers.

3.4.2 PJama

PJama [3] is an on-going research and development project at Sun Labs. It provides orthogonal persistency for
Java™ programmers by transparently making all objects and classes reachable from a given root object persistent.
The transaction support in PJama has not yet been fully designed and implemented, but through the first author's
knowledge by taking part in the project during summer 1998, PJama is intended to support ETMs.

The goal of PJama's transaction support [18] is to provide type orthogonal, code independent, dynamically
customizable transaction modeling support, with high performance, in Java™ VM. It separates transaction modeling
and application development by defining two classes of programmers: The transaction programmers use the
transaction facilities provided by the VM to design and implement ETMs by extending a system class
TransactionShel | . The application programmers simply instantiate the extended Tr ansacti onShel |
classes and run their tasks in the transactions by passing the executable (a Method object that represents a portion

or the whole body of the transaction) to Tr ansact i onShel | objects.

PJama is certainly a very promising technology, and it shares a lot of common goals with our research. However,
PJama's transaction support is designed for the objects inside a Java™ VM-which are in much finer granularity and
larger numbers, while our target transactions consist of objects such as documents and web pages, and the frequency
of data access is often limited by the human user operation. This difference leads to different design choices. For
example, as we think distributed transaction support is essential, PJama does not have it built-in: it is the transaction

programmer's responsibility to manage data sources from multiple sites and provide a distributed commit protocol.

3.4.3 Pern
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Pern [25, 26] is a transaction management component previously developed in our lab. Its transaction management
features are extensible via plug-ins invoked before and after each of its exported operations (begin, commit, lock,
etc.) [25]. Pern can also be customized by CC policy rules (written in a rule-based language called Cord, developed
under the inspiration of CRL [6] another previous work in our lab) specifying how to handle lock conflicts [26].
Pern has been integrated with several systems (Oz, PCTE, and Process Weaver [24, 25]) to provide transaction
functionality. The work presented in this paper inherits its plug-in concept from Pern, but does not incorporate an

extended transaction-modeling notation like Cord.

We extended the research in several directions. First, we want to support heterogeneous data sources without
changing either the clients or the server. Second, we define a clear transaction engine API for the ETM designers.
Pern does not define such an API and writing ETM plug-in requires sophisticated knowledge of the internals. Third,
we are dealing the problem in a distributed environment, where the plug-in code can be sent to the transaction server,

while it is running, from the Internet.

4 Our Approach

Our middleware approach separates the information resources that store the hypermedia (the web servers), the
applications that access the hypermedia for collaborative work (the clients), and the transaction server that provides
the CC capability. The transaction server is independent of both the data sources and the applications. When an
application needs to access a datum, the request is routed through the transaction server, and includes CC
information such as which transaction this access is part of and thus which set of CC policies should be applied. The
actual enforcement of the CC policies is the job of the transaction server. The transaction server may choose to

exploit any CC support provided by the data source, such as locking or versioning, or not.

The transaction server should be extensible in several ways, including the range of CC policies it can support, its
mechanisms for communication with backend data sources, and other application-specific customization such as

event notifications.

Let us consider a simple joint authoring scenario: Alice and Bob are two co-authors of some articles stored and
published by two web servers S1 and S2. They use a collaborative authoring tool that reads and writes the articles
on S1 and S2. David, who is a fan of Alice and Bob, also accesses the web servers and attempts to read the article. It
is conceivable that Alice and Bob do not want David (or anyone else) to see any of the in-progress versions of the
articles, until they are completed, although they would be willing to let David read a pre-publication assessment
version and receive his comments. However, between Alice and Bob there is no such barrier: each co-author wants
to see the latest stored version even if the other one is currently editing the next version, and their authoring tool may

even let the two of them edit the document together in what-you-see-is-what-I-see fashion.
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Figure 1 shows this motivating scenario. The authoring tool that Alice and Bob use to access the articles should
work in tandem with the transaction server to enforce a relaxed (but still consistent) CC policy to allow the co-
authors to read and write the articles in a collaborative fashion. The transaction server retrieves the articles from the
web servers, using their locking mechanism to protect the private versions from being read by outsiders such as
David, who presumably employ conventional web browsers rather than the co-authoring editor (which would in any

case not accept outsiders as members of the authoring team).
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Figure 2. Transaction Server Architecture

Figure 2 shows a generalized architecture depicting how our transaction server might operate in such a scenario. The
application used by Alice and Bob makes requests to the transaction server, which enforces the desired CC policy.

Without changing the authoring tools, the CC policies are written in various forms of callbacks and sent to the

12



transaction server from the collaborative systems (in our case Alice and Bob’s authoring tools). Among other
callbacks, the data access plug-in modules enable the transaction server to access various backend data sources, i.e.,
the web servers, Hyperbases, or CORBA Servers and the CC policies plug-in modules customize the transaction

server so that it can realize the desired ETMs.

The transaction server can be either a full-fledged web server that speaks some HTTP extension with specific URLs
representing transaction operations, or an HTTP proxy that sits between client applications and WWW. The choice
is an implementation issue. If the applications support HTTP proxies, as most web browsers do, the proxy approach
may provide transaction services almost transparently. Our JPernLite implementation can operate either as an HTTP

proxy or as a web server.

4.1 External Transaction Manager

Most traditional databases are constructed in such a way that the transaction manager is part of the database
management system. When a client asks the database for some data operation, the database (either implicitly or as
requested by the user or application) groups the operation with others into a transaction so that the operations are
collectively treated as an atomic unit. The application need know nothing about transaction management details,
such as how the transactions are aborted or committed, how the locks are obtained, and which locks are conflicting

with respect to each other.

When a client needs to access data dispersed across multiple databases, the CC policy is carried out cooperatively by
the set of databases — which usually must be configured to know about each other when they are set up. These
distributed databases form a federation, using protocols such as the conventional two-phase commit to coordinate

with each other.

Instead of applying this approach for web-based hypermedia systems, which would require cooperation between all
the web servers accessed during a distributed transaction, we propose the external transaction manager model
depicted in Figure 2. That is, let the web servers stay as they are in terms of lacking CC or other transaction

functionality, and employ a separate server. This server is thus called an external transaction server.

An external transaction server provides the client applications with transaction services but does not require the web
servers to be set up in any application-specific way, e.g., the web servers do not need to know which other web
servers to contact when a distributed transaction is performed. This function is moved to the transaction server.
When a user starts a task that is intended to be performed as a long-duration transaction, he/she might not know in
advance which data objects will be needed. In fact, the task steps often cannot be predicted either. For example, a

user might need to perform the step "check agenda" first, to find out what work is most pressing, and then determines
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which data will need to be accessed next. The corresponding need for cooperation among the data sources may thus

be formed dynamically and cannot be predicted and hardcoded at the time when the servers are configured.

The external transaction server makes it easier to employ heterogeneous information resources. For example, the
same application may need to access web pages, CORBA objects, tables in a relational database, and links and
anchor information stored in a linkbase such as Chimera 2 [2]. In this case, if we build transaction functionality into
the information resources, or in wrappers around them as in Meteor [31], the adaptation effort is likely to be tedious
and expensive. And the complexity of the system will be unnecessarily high. In our approach, the transaction server

also acts as a CC gateway among the heterogeneous data sources.

4.2 Extensible Concurrency Control Policies

Traditional database systems are targeted for applications that issue large numbers of machine-generated data
operations, for example for bank account maintenance, where speed is a high priority. Naturally, traditional
databases use atomicity and serializability as the CC correctness criteria. Atomicity guarantees that all the operations
in a transaction are done or none of them is done; serializability guarantees that the transactions are executed as if

they were executed independently with each other (in some serial order).

Commercial transaction servers such MTS also share the same problem: they can only implement atomic transaction
model, with very limited customizability. Although some of them can hook up with back end data sources, they

usually require a lot more support, such as recovery and two-phase commit.

During the past two decades, researchers in areas such as CAD/CAM, software development environments and
distributed authoring have found the traditional database transaction model inappropriate for their systems [21]. One
of the problems is that the traditional transaction model prevents partial results from being seen by other transactions,
and therefore explicitly disallows the possibility of collaboration. As a result, they proposed a number of Extended

Transaction Models [21] that relax the traditional CC criteria.

To make the job of building extended transaction managers easier, Pern introduced the idea of an extensible
transaction component that can be integrated with various environment frameworks via a plug-in mechanism [25]. In
our recent research work, we adopted some ideas from Pern, especially how to make the transaction server extensible
via callbacks. To realize the transaction server architecture shown in Figure 2, we introduced new features such as
persistent transactions, an extensible set of information resources, and dynamic loading of the plug-in callback code

over the Internet.

5 Transaction Service
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We have realized the general transaction server architecture presented in the previous sections. The implementation
is called JPernLite, since it is not yet a full implementation of all the ideas. The transaction features provided by
JPernLite can be categorized into four areas: data object management, concurrency control, persistent transaction
management, and session management. In this section we describe each of the above four areas, their functionality

and how they work as part of the transaction server.

Figure 3 shows a sample communication between the transaction server and the client. When functioning as a web
server, JPernLite speaks HTTP extended with some JPernLite-specific headers that carry various information. The
client requests to lock an object whose URL is http://www.cs.columbia.edu in read (R) mode. The values
of PernSessionID and Transaction ID were previously obtained from JPernLite. Upon success, JPernLite
replies with the message that tells the client that the object has been successfully locked, and that the lock ID is
DATAOP://TX://Transaction/1/1.

GET /servlet/psl.pern.interfaces.WebPern
HTTP/1.0

Method: txop

PernSessionID: PS7flopiirgvklvvfu

Transaction: TX://Transaction/1 Reply for a successful lock
Operation: tx lock

Argc: 2 HTTP/1.0 200 OK

Arg0: http://www.cs.columbia.edu Server: PslMiniServer/1.0

PernStatus: Success
PernDataOpID: DATAOP://TX://Transaction/1/1
Date: Tue, 18 Nov 1997 06:28:13 GMT

Argl: R

Request to lock an object

Figure 3. Sample Request and Reply to Lock an Object

5.1 Data Objects

Each datum accessed by a client is represented as an object in JPernLite’s internal object base. In the current
implementation, we use ObjectStore PSE as the tool to implement the object base. These "stub" objects represent

the targets for locking and reference their real-world peers.

The clients may access the data directly from their home data sources. However, in order to obtain the concurrency
control guarantees, the client must follow the convention of asking JPernLite for permission first. Or clients may
request that JPernLite access the data on their behalf, in which case JPernLite automatically caches the objects for

recovery and distributed commitment purposes.

The JPernLite server currently does not remove an object from its object base even after all transactions have
unlocked it. This is due to a trade-off between the size of this database and run-time efficiency, since the object base

also caches the data content. For example, JPernLite might cache a web page (HTML or binary data). When some
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client asks for this web page again, JPernLite employs HTTP conditional GET to fetch the content only if it has been
changed, reducing network transmission costs. A garbage collection command is available for administrators to

clear the cache.

Whenever a client requests a lock, the JPernLite server first locks the corresponding object in its own database; if
that lock was placed successfully, then JPernLite tries to lock the datum in its home data source. For example, if the
datum is a web page and its web server supports the WEBDAYV locking mechanism, JPernLite tries to obtain the lock
from the web server. For web servers that have no notion of locking, the only locks are those kept in the JPernLite

SErver.

5.2 Concurrency Control

JPernLite provides two basic mechanisms for concurrency control: locks and timestamps. Event notification is not

built into the JPernLite server, but can be added by extension code, as we discuss in the next section.

Each operation in a transaction has a timestamp that can be used by a serializability implementation such as
timestamp ordering. Since JPernLite normally uses conventional two-phase locking to ensure serializability, as do
most database transaction managers, the timestamps are left for extension code to exploit - although even the two-

phase locking is technically an "extension", i.e., its not hardwired in our implementation.

Locks in JPernLite are more like user-controlled locks as opposed to the implicit locks of traditional databases and
conventional transaction servers. The client needs to explicitly request to place a lock on a datum and to remove a
previously placed lock. Locking is not performed implicitly as a side effect of data access. The lock modes are
configurable by a lock table, in which the administrator specifies available lock modes and their mutual
compatibilities. This way, the application administrators can invent their own lock mode, such as notify or dirty read
locks, that are very useful for collaborative applications. The lock compatibility table can only specify whether two
lock modes (e.g., read vs. write) are allowed on the same datum at the same time or not. More sophisticated lock
modes such as intention locks on ancestors or linked entities must be implemented via the plug-in mechanism. (An
intention lock is a standard mechanism for preventing deletion or other modification to a composite object

containing the regularly locked datum.)

5.3 Persistent Transactions

All transactions in JPernLite are persistent, in the sense that if the JPernLite server crashes and reboots, the clients
might not even notice it, and can continue their work as if nothing had happened. This kind of failure support is
quite different from the traditional "rollback" recovery, where the client’s work is undone and later has to be redone.

The purpose of persistent transactions is to recover the transaction server to be synchronized with the transaction
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states in the clients, as opposed to vice versa. This is important for human-oriented systems where operations such
as editing and debugging takes a long time to finish, and rolling back the operations, e.g., reverting the file that has
been edited, may lead to heavy loss of human work. A client will detect the crash only if it tries to access JPernLite
before it is restarted, analogous to the crash and restart of a normal web server. However, once restarted, unsaved

changes, ongoing tasks, etc. on the client side can still refer to the transactions that they were working on.

To achieve transaction persistency, all the transactions are stored in the object base as first-class objects as well. That
is, JPernLite itself is a client of a traditional database, thus maintaining crash recovery is made easier. The recovery
mechanism is also used to recover the "stub" objects in case of server crash. However, remember that the original
server(s) is (are) still where the data lives. Therefore, JPernLite’s crash recovery does not affect the actual data

stored in the web servers but rather its own copy of the data.

5.4 Sessions

A session represents a user agent (either an end-user or an application) that employs the transaction service. The
concept of session can be found in many human-oriented application systems. Establishing a session with the

transaction server gives the user agent permission to access its services. It is quite similar to a "login" operation.

JPernLite allows the same user to have multiple sessions, and each session can be disconnected and reconnected in
order to continue working on the transactions that were left unfinished in a previous session. This allows mobile user
agents, e.g., PDAs, to attach to the service at an arbitrary time and location. Mobile clients and applications with
low bandwidth connection can be built in such a way that they only need to remember its own session ID, reconnect

to JPernLite whenever they have internet connection, and continue the task or transaction in JPernLite at anywhere.

The notion of session also facilitates collaboration among users because users can now "transfer" sessions among
each other back and forth, passing around the on-going transaction information. For example, one user can start a
session, start some transactions, and perform some data manipulation, then transfer the session to another user (e.g.,
by calling the other user and telling him the session ID). Then, the other user can carry on the task that is associated
with the session, by probably create more transactions, commit or abort some of the transactions created by the first

user, or work on some of the transactions that he has been given.
Basically the notion of session is another level of indirection between the users and the transactions. By not forcing

the users to be associated with each transaction, JPernLite allows the application builders to construct more dynamic

systems, such as agents moving around the Internet.

6 Extending JPernLite
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JPernLite is designed and implemented with the primary goal of extensibility. In this section, we present the

methodology and mechanisms an administrator might use in order to design and build application-specific ETMs on

top of JPernLite. We conclude this section with several examples that explore various extension areas of JPernLite.

6.1 Designing a JPernLite Extension

Application administrators (or, possibly, end-users) extend JPernLite by writing Java™ plug-in functions that each

operates as a "callback" of a specified transaction operation. The idea of using plug-in code to customize a

transaction manager is discussed in more detail in [25]. JPernLite separates its functionality into the following five

areas:

Locks: JPernLite supports flexible lock modes and lock compatibility via a customizable lock table. One
can easily define lock modes and specify the compatibility among them, and by default JPernLite guarantees
the integrity of an object by disallowing conflicting locks. However, an administrator can write plug-in
code to further specialize the lock semantics. One example is the implementation of two-phase locking: a
transaction cannot acquire new locks after it starts to unlock. Such sophisticated semantics that cannot be
represented by the locking table must be coded in the plug-ins via the API of JPernLite [46].

Timestamp: Each transaction operation request is associated with a timestamp. JPernLite does not directly
use the timestamp, but the plug-in callback code can use it to implement timestamp-based concurrency
control policies such as timestamp ordering [11].

Transaction Operations: Higher-level transaction operations such as to begin a new transaction, commit or
abort a transaction, are also customizable. By writing plug-in code, one can alter the recovery/rollback
policies and commitment procedure. By default, JPernLite supports nested transactions, with a standard
two-phase commitment procedure and an atomic recovery policy. One can also add new transaction
operations to JPernLite by providing extra public tx methods in the extended Transaction classes
(refer to section 6.3.1), if the transaction model to be implemented has operations other than begin, abort and
commit.

Event Notification: One can also notify clients for events of potential interest. For example, applications
might want to be notified of any accesses by relevant users on designated entities or repositories. Putting the
event notification capability in the transaction server (as oppose to in the clients) makes information about
the ongoing transactions available to the event notification callbacks. The callbacks can use whatever
communication protocol that the client recognizes, such as HTTP or RMI, to contact the client.

Data Operations: To support applications utilizing several different kinds of back end data sources, e.g.,
SQL databases in addition to WWW, JPernLite provides means for introducing new data access protocols.
Such data operation plug-ins are also useful for utilizing the concurrency control policies available from the

back end data sources, e.g., a web server that implements WEBDAV.
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We illustrate the procedure for designing a JPernLite extension in Figure 4. The process is divided into three stages:
first determining the transaction operations, then deciding what concurrency control mechanism to use, and last,
analyzing what other necessary facilities such as event notification and data operations are needed. In the first stage,
one determines the extra transaction operations the specific ETM needs, the differences between the ETM and the
standard atomic transaction model in begin, commit and abort procedures, and the transaction structure. If changes
are necessary, one then should design the interface for the transaction operations, and write plug-in callback code to
alter the built-in begin, commit or abort procedures, by extending (subclass) the Transaction class of JPernLite.
When JPernLite starts a new transaction, the client can specify (by name) the type of transaction it wants to start, and

JPernLite will instantiate the corresponding Transaction class.

extra transaction operations
Transaction Model callbacks for transaction operations
Analysis

Extended
Transaction
Classes

callbacks for lock/unlock
use of timestam

CC Mechanisms
Analysis

Extended
DataObject
Classes

Auxiliary Facilities
Analysis |
communication to data sources

Figure 4. Design Process of JPernLite Extension

During the process of defining a transaction model, one must also consider what kind of concurrency control
mechanism it uses, and design the necessary lock or timestamp-based concurrency control algorithms. Then, a new
lock table should be defined and used to customize JPernLite via a lock table file. Sometimes the new lock modes
may require more sophisticated semantics than mutual (in)compatibility. In this case, it is necessary to write plug-in

code to realize such semantics. The plug-in code is written as the callback code of tx lock and tx unlock.

Finally, if the extension involves features such as event notification or utilizes any non-standard web servers or other
back end data sources, additional callback plug-ins should be written to realize such features. As we mentioned
before, a web server may or may not implement concurrency control features such as web page locking, therefore the
transaction server must be prepared to be customized to use such features. The data operation callbacks are done by

extending the DataObject class in JPernLite.
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JPernLite allows different transaction models to co-exist: each transaction model inherits and extends the
Transaction class, and one can specify what class of transaction to start in the arguments to the tx begin

transaction operation.

6.2 Testing Plug-in Code

Testing the plug-in callback code to ensure the correctness of the transaction model is also an important issue. It is
desirable to be able to test the plug-in code alone, without the supporting JPernLite framework. However, since the
plug-in code might access JPernLite’s global databases, that would require a test module which simulates them.
Building such simulation databases could be time consuming. One would have to construct the exact database
interfaces, support all the features they export and create the objects (ongoing transactions, data objects being

accessed, etc.) in the databases to match the test scenario.

We separate the testing process into two parts: testing the transaction callbacks and testing data access callbacks.
The transaction callback testing focuses on the extended Transaction classes, and data access testing focuses on
the extended DataObject classes. This way, when administrators test the transaction callbacks, unnecessary

network traffic to access the data objects can be avoided.

Testing the data access callbacks is rather simple. A simple driver can be written to call the Read, Write,
ExternalOp and UndoExternalOp methods and check the effects of these methods by looking at the actual

data stored in the data sources, e.g., the web servers.

To test the transaction callbacks, one could integrate them into JPernLite with no extended data access modules.
Instead, a DUMB_DataObject class could be used to handle all the data object accesses. DUMB DataObject
normally returns success on data read and write. To test the cases where the transaction model deals with data access
failures, a random factor can be introduced. To verify the correct execution of transactions for our example ETMs,
we produced a log of all the transaction requests and their results and manually went over the list. Specific case-

based tests can also be done in this fashion, by setting up the scenario one wants to test first.

6.3 Plug-in Interface and API

In order to realize ETMs on top of JPernLite, one needs to subclass (or extend, in Java™ terminology) two Java™
classes: Transaction and DataObject. The extended Transaction class holds the plug-in code for locks,
timestamps and transaction operations; the extended DataObject class holds the plug-in code for back end data

access. Event notification code may be written in either or both classes.
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6.3.1 The Transaction Class

The basic Transaction class (Figure 5) defines transaction methods such as begin/commit/abort a transaction
and lock/unlock an object. All the transaction methods take three parameters: "global" contains the handlers to
databases such as the transaction base and recovery base; "ses" describes the session entry from which this
transaction method is issued; "args" passes client parameters to the transaction method. Some examples of client
parameters include the URL of the object to be locked, the lock mode of the lock that the client requires, or the name
of the transaction class to start. The client can pass as many parameters to the transaction method as it wishes, but
the default transaction methods as defined in the base Transaction class only use the first few as indicated in
Figure 5. However, since the client parameters are passed to the callbacks, they serve as an important bridge

between the client and the plug-in code.

public class Transaction {
public TxOpResult tx begin(PernGlobal g, SessionEntry s, String argll]l);
)

1

public TxOpResult tx abort (PernGlobal g, SessionEntry s, String argl[]
public TxOpResult tx_commit (PernGlobal g, SessionkEntry s, String argl]

1)

[

[

)i
public TxOpResult tx lock(PernGlobal g, SessionEntry s, String argl[]):
public TxOpResult tx_unlock(PernGlobal g, SessionkEntry s, String argl]);
public TxOpResult tx dataOp(PernGlobal g, SessionEntry s, String argl]):;

}
public CBresult tx unlock after(PernGlobal g, SessionEntry s, String arg[], TxOpResult r);

Figure S. The Transaction Class

Application administrators subclass the Transaction class and write callbacks to alter the execution of the

methods. There are three kinds of callbacks, categorized by when they are called:

e "pbefore" callback: called before the method is executed
e "after" callback: called after the method is successfully executed
e "error" callback: called when the method fails. An error code and a line of text explaining why the

operation was failed.is passed to the callback via the op res parameter so that the failure reason is both

machine recognizable and human readable.

All the methods listed in the interface can have callbacks. In addition, an implicit method Rol1back, which is
called when a transaction is aborted, can also have callbacks. The name of each callback method is their category
name ("before", "after", T"error") underscore-prefixed by the transaction method name
("tx begin", "tx lock", "Rollback" etc.). The interface for callback methods is also shown in Figure
5. For the "error" and "after" callbacks, the "op res" parameter contains the result of the transaction

method.
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The administrator can choose to write one or more of the possible callbacks for any of these operations. The
callbacks can ask JPernLite (via the "CBresult" return value) to ignore errors, stop the current operation and start
another one instead, or return certain information to the client. The callbacks have access to a wide range of objects
in JPernLite through the API of the databases in "global". They can also make various outside connections on

their own, such as notifying the client of certain events.

The administrator can also choose to write additional transaction operations for the specific transaction model. For
example, an operation to check if a lock is available or has expired can be done in this fashion. Such additional
transaction operations can simply be added to the specific Transaction class as public methods, e.g., a

tx check lock method that has the same interface as the pre-defined transaction operations.

6.3.2 The DataObject Class

The DataObject class models the data object that resides on the WWW or other potential data source, such as an
SQL server, a legacy database that speaks HTTP, a CORBA object and so forth. By default, JPernLite does not
know how to communicate with these data sources to access and manipulate the objects. Whenever an object is
accessed, JPernLite searches in the subclass classes of the DataObject class and looks for the one that is

designed to handle such data objects.

All the data objects must have a string name, although the choice of the name is totally up to the applications. For
example, if an object is a CORBA object, the name could be corba://myorb/objectName. JPernLite would
look for a class that is willing to accommodate such an object by calling the Processes method. The Java™
interface for DataObject is shown in Figure 6. There are two methods for read and write, which are called by

JPernLite whenever a client accesses the object.

public interface DataObject {
public boolean Processes (String name);
public TxOpResult Read (PernGlobal g, SessionEntry s, Transaction tx, String argsl[]):
public TxOpResult Write (PernGlobal g, SessionEntry s, Transaction tx,
String new_content, String args[]);
public TxOpResult ExternalOP (PernGlobal g, SessionEntry s, Transaction tx, String argsl[]):
public TxOpResult UndoExternalOP (PernGlobal g, SessionkEntry s, Transaction tx,
DataOperation dop);

Figure 6. The DataObject Interface

There are also two generic methods, ExternalOp and UndoExternalOp, to perform other operations specific
to that type of data object, and remove the effects of such data operations when JPernLite rolls back a transaction.

For example, JPernLite calls the ExternalOP of a data object to perform lock operations at the data source. If a
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specific type of data supports locking (e.g., a web page on a web server that implements WEBDAYV), the
ExternalOp method can be implemented to support it. These methods can be called by the transaction classes
that use specific types of back end data objects. For example, a CORBA object can be accessed by writing a
CORBA DataObject class that is essentially the stub for the interfaces. Methods other than read and write are

naturally mapped to ExternalOp and the recovery of such methods are written in the UndoExternalOp.

6.3.3 Global Databases API

When a callback is invoked, it is given the global parameter that contains a collection of databases of JPernL.ite:
e Transaction base: the database that stores all the on-going transactions;
e Recovery base: the database that stores all the stub objects of the data objects currently being used;
e Session base: the database that stores all active sessions;

e Lock table: this is not exactly a database, but rather an object that stores the lock table used by JPernL.ite.

The API of these databases (or data structures) is the interface between the callback code and JPernLite. It is fully
specified in [46].

6.4 Example JPernLite Extensions

6.4.1 Two-Phase Locking

The first example we show here is the callback code to implement Two-Phase Locking in JPernLite. Two-phase
locking is the standard algorithm used to guarantee serializability among conflicting transactions in traditional
database systems. Here we implement a common variant of it: a transaction is divided into an "growing" phase

where a transaction acquires locks and a "shrinking" phase where a transaction releases all locks.

public CBresult tx lock before(PernGlobal g, SessionkEntry s, String arg[], TxOpResult res) {
if ((Boolean)GetAtt ("shrinking™)) {
TxOpResult r;
r=new TxOpResult (TxOpResult.ERROR, "PernError", "Cannot lock after started unlock");
return new CBresult(r); // let tx _lock return "r" immediately

} else return new CBresult(); // let tx lock continue normally

public CBresult tx unlock after(PernGlobal g, SessionEntry s, String arg[], TxOpResult res) {
SetAtt ("shrinking", new Boolean(true));

return new CBresult():; // let tx_unlock continue normally

Figure 7. Two Phase Locking
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Figure 7 shows our implementation of two-phase locking using two callbacks: tx unlock after and
tx lock before. tx unlock after marks the transaction to be in the "shrinking" phase upon a successful
unlock operation, and tx_lock before prevents a transaction in the "shrinking" phase from obtaining any new

locks.

6.4.2 Sagas

Sagas [22] are based on the concept of a compensating transaction, where each transaction may be compensated to
semantically undo its effects. Note that the unit of compensation is not atomic data access such as incrementing an
integer by one, but instead is the unit of a transaction. A Saga is a long-lived transaction-like unit that consists of a
set of sub-transactions (T1, T2, ... Tn), each one associated with a compensating transaction (C1, C2, ... Cn). The
execution of a Saga is that either the sequence T1, T2, ... Tn or the sequence T1, T2, ... Tk, Ck, ... C2, C1 (where
1<=k <=n) is executed. The degree of concurrency is increased by the fact that each sub-transaction (T1, T2, ... Tn)
can be committed right after it finishes, and therefore resources can be released as early as possible and reused by

other transactions.

We realize Sagas by adding two callbacks, tx begin after and tx abort before, which are shown in
Figure 8. In tx begin after, we obtain the type of the sub-transaction from the client parameter, and store it in
the transaction base by setting an attribute of the current transaction. Later, when we are about to abort a Saga, we

execute the compensating transactions in reverse order.

public class Sagas_Transaction extends Transaction {
public CBresult tx begin before(PernGlobal g, SessionEntry s, String arg[], TxOpResult r) {
if (GetAtt ("TransactionType") !=null) { // this is a leaf node transaction
TxOpResult res = new TxOpResult (TxOpResult.ERROR, "PernError",
"Cannot start sub transaction on leaf node transactions"):;
return new CBresult (res);
}

return new CBresult();

public CBresult tx begin after(PernGlobal g, SessionkEntry s, String arg[], TxOpResult r) {
if (arg.length > 1) { // leaf node transaction
String tx_id = r.TxInfo("PernTxID"); // ID of the new transaction

Transaction t = g.transactionBase.FindTX(tx id);
t.SetAtt ("TransactionType", argl[l]); // for use of compensation
}

return new CBresult();

public CBresult tx abort before(PernGlobal g, SessionEntry s, String arg[], TxOpResult r) {
Transaction t;

String tx type = (String)GetAtt("TransactionType");
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if (tx type == null) { // this is a top level Sagas transaction
// compensate the sub transactions in reverse order, no compensation failure
for (int i = children.size()-1; i>=0; i--) {
t = g.transactionBase.FindTX ((String)children.elementAt(i));
tx type = (String)t.GetAtt("TransactionType");
if (tx_type == null) { // this is another Sagas transaction
// MethodCaller will call the callbacks if they are defined.
MethodCaller.CallTXmethod(g, s, t, "tx_abort", arg);

telse{ // this is a leaf node in the transaction tree
switch (t.Status()) {
case ALIVE: // hasn't commited yet

MethodCaller.CallTXmethod (g, s, t, "tx_abort", arg);
break;

case COMMITTED:
// ask itself to run the compensate transaction
t.compensate (g, s, arg):;
break;

case ABORTED: // already aborted, do nothing

break;

}
// after compensation, simply let tx abort to return success
return new CBresult (new TxOpResult()):;

}

return new CBresult(); // otherwise, continue normal abort

Figure 8. Extended Transaction Class for Sagas

6.4.3 Access Notification

This example shows how the lock table is useful in extending JPernLite. The example is to realize an access
notification feature where a client can be notified whenever another user accesses a certain data object. One would
set up a lock table as shown in Figure 9, where a new lock mode E that is compatible with all other lock modes is
introduced. The lock table is loaded in to JPernLite via a lock compatibility file. Therefore, the lock table is global
to JPernLite. All the transaction classes share the same set of lock modes and their mutual compatibility. This
design choice is made so that the transaction model designers have to explicitly deal with the lock table conflicts:
different ETMs may have different compatibility between the same set of lock modes. If we hide the difference by
providing each transaction model a separate lock table, the chances to have an unknown lock table conflict will be

greatly increased.

There are several places where the plug-in callback code can be written to notify all users who hold an E lock on the

target datum. One possibility is in the tx lock after callback, which is called when the target datum is
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successfully locked. The second possibility is in the tx lock before callback, which is called when a user
attempts to obtain a lock. One can also write a tx_dataOp before or tx dataOp after that notifies the
client right before or after the actual data operation. The administrator should make the choice based on the exact
semantics that the access notification is intended to achieve. Figure 10 shows an example callback for
tx lock after. The communication between the callback and the client is hidden in the method

notify client (), which is application-specific.

Figure 9. Lock Table for Access Notification

public class AN Transaction extends Transaction {

public CBresult tx lock after(PernGlobal g, SessionEntry ses, String arg[], TxOpResult r) {
Recoveryltem data = g.recoveryBase.ensureltem(s, this, argl0]);
Vector locks = data.locks();
for (int i=0; i<locks.size(); i++){
DataOperation lock = (DataOperation)locks.elementAt(i);
if (((String)lock.GetAtt ("lock mode")) .equals("E")) {
Transaction t = lock.TX();

SessionEntry s = g.sessionBase.FindSession(t.Session());
// notify the user of session s, data is locked in mode arg[l] by someone

notify client(s, data, arglll);

}

return new CBresult();

Figure 10. Callback for Access Notification

6.4.4 Extending Data Objects

In this example, we extended the HTTP DataObject class for web servers that support GET and PUT. The
HTTP DataObject simply maps the read and write requests from the transactions to GET and PUT HTTP
requests, respectively. If a web server implements WEBDAV, locking of web pages can also be done this way. Due
to the length restriction of this paper, Figure 11 only shows part of the implementation. For more details, please

refer to [46].
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public class HTTP DataCbject {

private String url_s;

public HTTP DataCbject(String url p) { url s = url p; }
public boolean Processes (String url) { return (url.indexOf ("http://") == 0); }
public TxOpResult Read(PernGlobal g, SessionEntry ses, Transaction tx, String argl]) {
URL url;
try{

url = new URL(url s);
}catch (MalformedURLException e) {
return new TxOpResult (TxOpResult.ERROR, "PernError", "Malformed URL");

HTTPConnection hcon=setHCon (url, sendModifiedSince, args);

// ... set HTTP connection and GET the content. Omitted.

Figure 11. Fragment of HTTP DataObject

7 Discussion

7.1 Application Integration

JPernLite can be integrated with application systems in several ways: It can be run as an independent web server or
proxy server on the Internet, receiving explicit or implicit transaction requests from the clients through HTTP. It can
also be used as a Java™ servlet, a standard way of integrating services into web servers. Finally, it can also be
treated as a Java™ package, that is, tightly integrated into a host server program via its Java™ API. We illustrate the

possibilities in this section.

7.1.1 JPernLite as a Web Server

To treat JPernLite as an independent web server that manages distributed transactions, one needs to develop a client
that speaks the HTTP dialect of JPernLite. The current version of JPernLite searches for parameters such as type of
transaction operation, transaction ID, or session ID in both the header part of the HTTP message and the variables of
a POST request. Information returned from the JPernLite server is also put in both the headers of the reply message
and a regular, human readable HTML message. The two interfaces are suitable for different clients: custom-made
applications that have their own HTTP code can easily use the headers to manipulate the transaction requests and
replies. More human-oriented applications that want to use existing browsers can use HTML forms to code

transaction requests, and the human can easily read the transaction results.
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The current HTTP interface is supported by Java™'s reflection package (java.lang.reflect). That is, when
such a request is received, it determines the transaction classes and method names through the utilities in
java.lang.reflect. The requirement for a reflective programming language is simply a limitation imposed
by this particular implementation of the transaction server, because JPernLite uses Java™ class extension to define
new transaction types, and callbacks are different methods of the transaction classes. An implementation can also
choose to define transaction types via a scripting language, and use different parameters to distinguish different

callbacks.

7.1.2 JPernlLite as a Proxy Server

Although not yet implemented, JPernLite can be modified to run as an HTTP proxy server. In this mode, it catches
all the HTTP requests from the web clients, and distinguishes normal data request and transaction requests. A
transaction request is one whose URL is the reserved JPernLite URL. When such a request is caught, JPernLite
performs the transaction request, and returns information such as session ID and transaction ID as cookies. Cookies
is an HTTP header that informs the browsers to remember and send whenever they are accessing a certain URL.
Most commercial web browsers, especially both Netscape and MSIE supports cookies. Therefore, when the client
makes GET, POST or PUT requests in the future, the JPernLite proxy server can associate the data request with the
right transaction context, and apply READ or WRITE locks according to the request type.

Although the semantics of GET and PUT is pretty clear, the semantics of a POST request is inherently ambiguous by
its nature in terms of whether it is a read or a write operation. Different web servers use it for different purposes, it
could be a data entry form, or it could simply be a query form. The proxy server interface package currently treats
all POST requests as write operations. If an administrator wants to be specific, URL-specific data object classes can

be written that change the write locks on POST requests to read locks.

7.1.3 JPernlLite as a Java™ Component

For a somewhat tighter integration, one can use JPernLite as a Java™ servlet module or simply a Java™ package.
Most web servers support servlets as a standard way of adding extensions. The Java™ API of JPernLite provides
entry points to the service methods, such as start up JPernLite, execute transaction operations, and setting lock tables.
In this case, the host system, either a web server or a legacy system that wants an internal transaction server requests
the transaction operations directly through the Java™ API without any network traffic involved. Currently JPernlite
does not provide interfaces to receive and configure the callback modules through the Internet, so the web server
administrator would need to install the callbacks by hand (that is, by putting the zipped Java™ classes into the right

directory). A potential problem with this integration approach is that the host system must be willing to accept the
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persistence mechanism that JPernLite uses, i.e., ObjectStore PSE. That means integrating JPernLite also forces the

host system to include ObjectStore in its CLASSPATH.

7.1.4 Our Experience

We have carried out several integration experiments. First, we implemented a Java™ applet client of JPernLite that
can be run by any web browser supporting JDK 1.1. Human users can start transactions through the applet on the fly
while they access one or more web pages. Accesses from multiple users are coordinated via JPernLite and multi-
access transactions can be created, committed, and aborted. During this integration experiment, we also
implemented a client-side Java™ API for JPernLite. The client side JPernLite API accesses the transaction server
through the HTTP interface, and exposes the services to the client application (in our case, the applet) via the Java™
API. Legacy systems that are written in languages other than Java™ would probably need to run JPernLite as a

separate web server and write their own client side API.

Another example is that we integrated JPernLite into a workflow environment server [29], which directly uses
JPernLite as a Java™ package. The workflow manager in the server utilizes JPernLite via the Java™ API to perform
transaction operations. Compared with using JPernLite as an independent web server, this approach helps the
workflow manager to synchronize the on-going tasks with the on-going transactions when recovering from server
crashes. In such a situation, the workflow manager would be able to ask JPernLite to start certain tasks (via
callbacks) when the transaction base recovers from a server crash. If JPernLite was running independently as a web
server, such operations might suffer from network disconnection or jam: that is, the recovery process would have to

involve further recovery protect against network disasters.

7.2 Back End Data Source Integration

JPernLite differs from some other transaction servers in an important way: it does not impose strict requirements on
the back end data source capabilities. In this section we discuss some interesting problems we encountered when the
back end data sources do not offer any transactional support. If JPernLite were to make requirements such as
directly supporting recovery, two-phase commit, and a certain type of authentication, these problems would not exist
in the first place. These problems are handled by the data access modules (the Dat aCbj ect classes) in general.
For example, the authentication scheme of the back end data should be encapsulated in the data object classes. They
should remember the appropriate header fields (the ones that represent user name and password, for example) each

time an access is granted, and use them when the data source needs to be rolled back.

7.2.1 The "Back Door" Problem
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Users can always access data from web servers or other information resources without notifying the transaction
server. This creates what we call the "back door" problem. If the data source supports locking on its data (i.e., web
pages, for web servers), JPernLite could then actually lock them on the server. Then users who access the data
directly could not interfere with a transaction accessing the same data in a conflicting mode. Another possible
solution is to use access control, such as HTTP authentication in the case of WWW. If the data is protected under
HTTP authentication and only JPernLite knows the password, users will not be able to access the data from outside
of JPernLite. However, if none of the above mechanisms is available, e.g., many existing web servers that serve
read-only web pages do not provide any locking capabilities, in the general case clients could not be informed if

someone accesses the web pages directly without notifying the transaction server.

There is another kind of the "Back Door" problem, concerning data sources that generate data on the fly, e.g. by
using CGI-bin or a URL corresponds to a query interface to a database. In this case, the locks applied by JPernLite
is merely on that URL, and does not necessarily mean that the actual data or page is locked. In particular, if two
query URLSs produce the same document, locking one of them in JPernLite would no prevent someone else to obtain
a conflicting lock on the other URL. A solution to this problem is to write the data access modules so that when
such a lock is applied, the data access modules contact the database behind the web server, and actually lock the

objects or tables inside the database directly.

7.2.2 Supporting Distributed Commit

JPernLite uses a two-phase commit protocol when data from multiple data sources are accessed by a single
transaction. Two-phase commit is the standard means for committing data updates over distributed data sources,
where a preparation phase (pre-commit) ensures that all the sites agree prior to the final global commitment phase.
However, many data sources do not support two-phase commit. For example, servers that allow LOCK and PUT
according to the WEBDAV specification may not also have pre-commit and abort (in case pre-commit fails)

operations, which are essential to the two-phase commit protocol.

If the data source supports some form of distributed commit protocol, one can use the callback mechanism to extend
JPernLite to exploit it. If the data source does not support any form of distributed commit protocol, what JPernLite
can do is assume it will eventually agree with the commit and then retry repeatedly to write the current version of the
data. This should work, eventually, for web servers that support only the basic HTTP 1.1 protocol (which includes
the PUT method) - but the "back door" is extended here to include any accesses during the period of time prior to

finalizing global commit.

7.3 Scaling Up
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As we described the transaction server in this paper, all data access requests go through it for concurrency control,
and thus it becomes a bottleneck or center of failure in its client application systems. This is an inherent problem of

any centralized client-server system.

The problem comes mainly from two kinds of delays: network traffic and computation in the transaction server. We
simulated the computation cost in situations where 10, 100 and 1000 users are using the server simultaneously. Each
user randomly starts transactions to perform tasks such as read, write, lock and unlock. The data they access has a
small set of "hot-spots" to simulate the reality of the web: there are a few web sites or web pages that are visited far
more frequently than others. On a Pentium™ 200MHz machine with 64M RAM, the time spent by the server to
service an individual request, in average, are 115, 151 and 450 milliseconds, respectively. The increase in
processing time comes from larger data structures and transaction base, thus makes it harder to search and resolve

concurrency control conflicts.

Considering the domain of potential applications, we think the processing time (0.1 to 0.5 second) is reasonable for a
community of as many as 1000 users. In the anticipated domains, such as co-authoring, software engineering,
CAD/CAM, healthcare, emergency response, etc., human activities take much longer than the CC processing time -
and in any case it is unlikely that more than 1000 users would participate in the same team and thus share a single

transaction server.

To tackle the network traffic problem as well as to scale up to teams of teams, which may rise in size beyond 1000
users, we are working on the idea of alliances among distributed transaction servers, where two or more servers
make agreements between themselves to cooperate on enforcing certain subsets of their CC policies, analogous to
our lab’s previous work on alliances among workflow engines [8]. Multiple instances of the transaction server could
share transaction state information with each other, resolve concurrency control conflicts, and allow users to

collaborate across transaction servers.

7.4 Concurrency Control without Locking

Throughout this paper, we refer to locking as if it were the main CC mechanism. But this is for expository purposes
only: JPernLite is not hardwired in any way to locking. Each operation in the history of a transaction is associated

with a timestamp, therefore various timestamp-based CC algorithms can also be implemented.
Although lock-based concurrency control mechanisms are the most popular ones, there do exist other alternatives.

For instance, optimistic concurrency control policies verify consistency of data at the commit time of a transaction.

Implementing such policies would involve sophisticated use of JPernLite’s plug-in extension capabilities.

31



8 Contributions and Future Work

8.1 Summary

We have presented a middleware approach for distributed concurrency control on WWW and introduced an
independent extensible transaction server component. The transaction server fills the gap between the CC features
hypermedia systems need and the CC features current web servers provide. A Java™ realization, JPernLite, has been
integrated with a workflow system and can also run as a stand-alone server servicing requests from our Java™ applet
client. The architecture makes it possible for JPernLite to support distributed transactions on data stored in
heterogeneous information resources, although to date we have been using WWW as the primary example of such a
data source. Figure 12 lists the transaction service features we summarized in section 2 as requirements for web-

based collaborative systems.

* Event Notification + Fine-grained Notification | + User controlled Locking | ** Fine-grained Locking
+ Shared Locking + Persistency + Synergistic Cooperation | + Extensibility
+ Heterogeneity + Supporting Large Scale + Support Distributed TXs | ** Application Semantics

+: Yes, JPernLite supports this feature

-: No, JPernLite does not support this feature

*: JPernLite provides the opportunity to write event notification callbacks in transaction server, but does not
support any specific communication protocols.

**: Yes, through the use of callbacks.
Figure 12. Summary of Features

8.2 Future Work

The only way to extend JPernLite at present is by writing plug-in code in Java™, which is activated by the JPernLite
server (or servlet or package, its all the same code with multiple interfaces) when the corresponding transaction
operations are performed. We are also defining a scripting language based on the original Pern’s Cord notation to

describe CC policies at a higher level of abstraction.

To support large-scale collaborative systems, it is desirable for the transaction servers to communicate with each
other. Each individual transaction server would service only a subset of the applications and enforce the CC policies
needed by those applications. When two or more applications from different transaction servers share data, these

transaction servers would interact with each other to coordinate data access according to negotiated CC policies.
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