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Abstract

Stackable file systems promise to ease the development of
file systems[6, 16, 19]. Operating system vendors, however,
resist making extensive changes to support stacking, because
of the impact on performance and stability. Existing file sys-
tem interfaces differ from system to system and they sup-
port extensibility poorly. Consequently, extending file sys-
tem functionality across platforms is difficult.

We propose a new language,FiST, to describe stackable
file systems. FiST uses operations common to file system
interfaces. From a single description, FiST’s compiler pro-
duces file system modules for multiple platforms. The gen-
erated code handles many kernel details, freeing developers
to concentrate on the main issues of their file systems.

This paper describes the design, implementation, and eval-
uation of FiST. We extended file system functionality in a
portable way without changing existing kernels. We built
several file systems using FiST on Solaris, FreeBSD, and
Linux. Our experiences with these examples shows the fol-
lowing benefits of FiST: average code size over other stack-
able file systems is reduced ten times; average development
time is reduced seven times; performance overhead of stack-
ing is 1–2%.

1 Introduction

Writing new file systems or extending existing ones is diffi-
cult. Stackable file systems[15] promise to speed the process
of file system development by providing an extensible file
system interface. This extensibility allows new features to be
added incrementally over other stackable file systems.

A number of approaches have been taken toward the de-
sign of stackable file systems: new stackable file system
interfaces, null layer file systems, source code templates,
and stackable templates. Several newstackable file sys-
tem interfaceshave been proposed and a few have been
implemented[6, 16, 19]. Unfortunately, these proposals re-
quired many changes to existing operating systems and file
systems. This added overhead to the performance of native
file systems, even if these stacking interfaces were not in use.
As a result, almost none of the major operating system ven-
dors today offer a stackable file system interface.

Null layer file systems such as Solaris’s Lofs[20] or BSD’s
Nullfs[14] implement some of the stacking principles, and
thus are suitable as templates from which other stackable file
systems could be written. However, null layer file systems
such as Lofs and Nullfs lack crucial infrastructure necessary
for practical stacking. They do not provide developers with
an easy way to modify file data, change file names, inspect
file attributes, add new functionality, etc.

Alternatively, existing source code for any file system
(FFS, NFS, etc.) can be used as a starting template for file
system development. The code base for existing file systems,
however, is usually large and complicated. Again, detailed
knowledge of kernel and file system internals is required to
write stackable file systems using any other file system as a
template.

In earlier work to improve the process of writing stack-
able file systems, we introduced a stackable template sys-
tem called Wrapfs[25]. Unlike other stackable file system
interfaces, Wrapfs adds missing stacking functionality with-
out changing existing kernels or file systems. This improves
the stability of the rest of the system, thus alleviating some
of concerns operating system vendors have. Unlike null layer
file systems, Wrapfs includes code to manipulate file names
and file data—the two most common changes desired by de-
velopers. However, like other stackable file systems, writing
file systems using Wrapfs still has a number of drawbacks:

� File system developers using Wrapfs are required to
modify Wrapfs templates by hand, increasing the
chances for human errors.

� Making simple changes to file names or file data is rel-
atively easy with Wrapfs, because Wrapfs centralizes
such changes into a few places. Making other changes,
even small ones, is sometimes tedious: with thousands
of lines of C code per Wrapfs template (Section 5.1),
developers have to read through many lines of operat-
ing system specific code.

� Wrapfs does not alleviate many portability concerns.
Developers still have to find, for each platform, how to
allocate and free kernel memory, how to access or mod-
ify user credentials, how to change file attributes, etc.
Code written in one Wrapfs template for one platform
has to be ported to all other operating system templates
to run on other platforms. The more Wrapfs templates
there are (currently four), the more porting work is re-
quired.

� Because Wrapfs provides a general stackable file sys-
tem infrastructure, it provides functionality that may not
be used by all file systems. If developers do not need
to make changes to file names or file data, they have
to manually and carefully remove all of that code, and
replace it with appropriate code. If that unused code
is not removed, many unnecessary identical copies of
data pages and file names are created, consuming mem-
ory and affecting performance unnecessarily. Moreover,
kernel modules containing unused code consume pre-
cious kernel memory (which is often physical memory).

Programmers who want to try a new file system feature,
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even a small one, must still inspect and modify large amounts
of existing code. This effort must be repeated for each port
to another platform. Differences in file system interfaces and
operating systems make portability of file systems very dif-
ficult. Even if one uses the platform specific source code
for the same file system (e.g., NFS) as a template, one still
finds that actual implementations across platforms differ sig-
nificantly. As a result, application developers, who are nei-
ther systems programmers nor file system developers, lack
the tools necessary to experiment with new file system ideas
that may improve their user applications.

1.1 Why a Language?

To ease the problems of developing and porting stackable file
systems, we propose a high-level language to describe such
file systems. Four benefits to using a language are:

Simplicity: A file system language can provide higher-level
primitives and first-class functions specific to file sys-
tems that simplify their development and reduce the
amount of code that developers need to write. This re-
duces developers’ need to know many kernel internals,
allowing even non-experts to develop file systems.

Portability: A language can describe file systems using an
interface abstraction that is common to operating sys-
tems. The language compiler can bridge the gaps be-
tween its interface and the other platforms’ interfaces.
From a single description of a file system, we could
generate file system code for different platforms. This
improves portability considerably.

Specialization: A language allows developers to customize
the file system their needs. Instead of having one large
and complex file system with many features that can be
configured and turned on or off, the compiler for a file
system language can produce special-purpose file sys-
tems. This improves performance and memory footprint
because specialized file systems include only necessary
code.

Optimization: A language compiler can perform global op-
timizations to improve the performance of file systems
that would be tedious and difficult to do by hand. For
example, a language compiler can collapse functionality
from multiple stacking layers into a single layer, remov-
ing the multiplicative stacking overhead costs of each
layer.

This paper describes the design and implementation of the
FiST, a File System Translatorlanguage for stackable file
systems. FiST lets developers describe stackable file sys-
tems at a high level, using operations common to file sys-
tem interfaces and system calls. With FiST, developers need
only describe the core functionality of their file systems. The
FiST language code generator,fistgen, generates file system
modules for several platforms using a single description. We
currently support Solaris 2.6, FreeBSD 3.3, and Linux 2.3.

To assist fistgen with generating stackable file systems,
we created a minimal stackable file system template called
Basefs. Basefs adds missing stacking functionality and re-
lieves fistgen from dealing with many platform-dependent
aspects of file systems. Basefs does not require any changes
to the kernel or existing file systems. Its main function is to
handle many kernel internals relating to stacking: how and
when to lock file system objects, how to allocate and free
objects, accurately maintaining reference counts, and more.
Basefs provides simple hooks for fistgen to insert code that
performs common tasks desired by file system developers,
such as modifying file data or inspecting file names. That
way, fistgen can produce file system code for any platform
we port Basefs to. The hooks also allow fistgen to include
only necessary code, improving performance and reducing
kernel memory usage.

We built several example file systems using FiST. Our ex-
periences with these examples shows the following benefits
of FiST compared with other stackable file systems: average
code size is reduced ten times; development time is reduced
seven times; performance overhead of stacking is less than
2%, and unlike other stacking systems, there is no perfor-
mance overhead for native file systems.

Our focus in this paper is to demonstrate how FiST sim-
plifies the development of file systems, provides write-once
run-anywhere portability across UNIX systems, and reduces
stacking overhead through file system specialization. The
rest of this paper is organized as follows. Section 2 details the
design of FiST, and describes the FiST language, fistgen, and
Basefs. Section 3 discusses key implementation and porta-
bility details. Section 4 describes four example file systems
written using FiST. Section 5 evaluates the ease of develop-
ment, the portability, and the performance of our file systems.
Section 6 surveys related work. Finally, Section 7 concludes
and explores future directions.

2 Design

We have five main design goals for the FiST system:

1. The FiST language should allow developers to express
easily common file system operations. Detailed under-
standing of file system internals should not be necessary.

2. FiST code should look familiar to system developers.
In addition, FiST’s syntax should incorporate the best
common file system features from various operating
systems and file system interfaces.

3. FiST should take care of as many kernel internals and
portability issues as possible.

4. FiST should not limit what file system developers can
implement and should provide as much functionality as
traditional system programming languages such as C.
Furthermore, code produced by FiST should be readable
and easily extensible to enable developers to have full
control of the produced file system.
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5. FiST performance overhead should be small and at least
comparable to the best of other stackable file systems.

The overall structure of the FiST system is shown in Fig-
ure 1. The figure illustrates how the three parts of FiST work

Stackable File System Sources

Templates
fistgen

Basefs

FiST Input File

Figure 1: FiST Operational Diagram. Fistgen reads a FiST input
file, and with the Basefs templates, produces sources for a new file
system.

together: the FiST language, fistgen, and Basefs. File sys-
tem developers write FiST input files to implement file sys-
tems using the FiST language.Fistgen, the FiST language
code parser and file system code generator, reads FiST input
files that describe the new file system’s functionality. Fist-
gen uses additional input files, the Basefs templates. These
templates contain the stacking support code for each oper-
ating system and hooks to insert developer code. Fistgen
combines the functionality described in the FiST input file,
with the Basefs templates, and produces new sources as out-
put. These C sources implement the functionality of the new
file system. Developers can, for example, write simple FiST
code to manipulate file data and file names. Fistgen, in turn,
translates that FiST code into C code and inserts it at the
right place in the templates, along with any additional sup-
port code that may be required. Developers can also turn on
or off certain file system features, and fistgen will condition-
ally include code that implements those features.

Figure 2 shows the hierarchy for different file system ab-
stractions. At the lowest level reside file systems native to
the operating system, such as disk based and network based
file systems. They are at the lowest level because they in-
teract directly with device drivers. Above native file systems
there are stackable file systems such as the examples in Sec-
tion 4, as well as Basefs and Wrapfs themselves. These file
systems provide a higher abstraction that native file systems
because stackable file systems interact only with other file
systems through a well defined file system interface. At the
highest level, we define the FiST language. FiST abstracts
the different file system (vnode) interfaces and different op-
erating systems into a single common description language.
We found that while vnodevnode interface[9] interfaces dif-
fer from system to system, they share many similar features.
Our experience shows that similar file system concepts ex-
ist in other non-Unix systems, and our stacking work can
be generalized to include them. Therefore, we designed the
FiST language to be as general as possible.

(lofs, crypfs, aclfs, unionfs, etc.)
Stackable (VFS) File Systems

Low-Level File Systems
(UFS, NFS, etc.)

Basefs templates

FiST Language

Figure 2: FiST Structural Diagram. Stackable file systems, in-
cluding Basefs, are at the VFS level, and are above low-level file
systems. FiST descriptions provide a higher abstraction than that
provided by the VFS.

2.1 The FiST Language

The FiST language is a high-level language that uses file sys-
tem features common to several operating systems. It pro-
vides file system specific language constructs for simplifying
file system development. In addition, FiST language con-
structs can be used in conjunction with additional C code to
provide the full flexibility of a system programming language
familiar to file system developers. The ability to integrate C
and FiST code is reflected in the general structure of FiST
input files. Figure 3 shows the four main section of a FiST
input file. The FiST grammar was modeled after YACC[7]

%f
1 C Declarations

%g
2 FiST Declarations

%%
3 FiST Rules

%%
4 Additional C Code

Figure 3:FiST Grammar Outline

input files, because YACC is familiar to programmers and the
purpose for each of its four sections matches with four dif-
ferent subdivisions of desired file system code: raw included
header declarations, declarations which affect the produced
code globally, actions to perform when matching vnode op-
erations, and additional code.

C Declarationsare used to include additional C headers,
define macros or typedefs, list forward functions, etc. to be
used throughout the rest of the code.

FiST Declarations define global file system properties
that affect the overall semantics of the produced code. These
properties are useful because they allow developers to make
common global changes in a simple manner. In this section,
for example, we declare if the file system will be read-only or
not. FiST Declarations can also define special data structures
used by the rest of the code for this file system.

FiST Rulesdefine per-rule actions. A FiST rule is a piece
of code that executes for a selected set of vnode operations,
for one operation, or even a portion of a vnode operation.
Rules allow developers to control the behavior of one or more
file system functions in a portable manner. The FiST rules
section is the primary section, where most of the actions for
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the produced code are written. In this section, for example,
we can choose to change the behavior ofunlink to rename
the file to be deleted, so it might be restored later.

Additional C Code includes additional C functions that
might be necessary or referenced by code in the rules sec-
tion. We separated this section from the rules section for code
modularity: FiST rules are actions to take for a given vnode
function, while the additional C code may contain arbitrary
code that could be called from anywhere.

The C Declarations and Additional C Code sections are
simple. Next we go into the details of the two more important
sections: FiST Declarations and FiST Rules.

2.2 FiST Declarations

FiST declarations change the overall properties of the gen-
erated file system. They also define auxiliary data structures
that can be used in the rest of the FiST file. The fields of
these data structures can be referenced as attributes of the
objects they are extending: files, vnodes, ioctls, and mount-
time options. We first describe global properties and then
data structures. We show possible uses for each.

%accessmodedetermines if the file system is read-only,
write-only, or allows both reading and writing. Read-only
file systems can be a useful security feature[23].

%debug determines whether or not debugging code is in-
cluded. FiST provides extensive debugging support; devel-
opers do not have to write debugging statements. If used,
our debugging code can trace vnode operations, arguments
passed to functions, structures and the values of their fields,
etc. Debugging code, when included and not activated, has
no noticeable impact on performance. Debugging code, how-
ever, when included and activated, can slow performance sig-
nificantly.

%errorcode defines a new error code to return to user pro-
cesses. This is used to extend the set of operating system er-
ror codes. Developers can use file system specific error codes
to specialize their applications. For example, an encryption
file system might define EBADKEY to inform a user process
that the encryption key used was invalid. (Note that existing
user programs can not be aware of new errno codes unless
the programs are modified.)

%fanout defines how many file systems will stack imme-
diately under this one. A fan-out of two or more is useful
in replicated, load-balancing, unifying[14], or caching file
systems[6, 19]. Specifying fan-out values greater than one
simplifies code generation because we can deal with a fixed
number of lower level vnodes; this also improves perfor-
mance because we do not have to generate more costly code
that handles dynamic fan-out levels. The vnodes of the indi-
vidual file systems we stack on will be referenced as $1, $2,
$3, etc. (See Section 2.3.1.)

%mntstyle determines if mounting this file system will
overlay the mounted directory with the mount point. An
overlay mount hides the lower level file system. This can
be useful in security file systems. For example, our ACL file

system (Section 4.3) stores additional access control infor-
mation in auxiliary files named.acl . Aclfs can hide the
existence of these ACL files, but would have to use overlay
mounting to ensure that the ACL files could not be accessed
through the lower level file system. Regular (non-overlay)
mounts are useful when fast access to the lower level data is
needed. For example, in an encryption file system, a backup
utility can backup the data faster (and more securely) by ac-
cessing the ciphertext files in the lower level file system.

The following FiST Declarations define data structures
that can be used in the rest of the FiST file. The data struc-
tures takebasic data types. Basic data types are those that
can be safely copied between user space and the kernel: in-
tegers, character arrays, etc.—but not pointers, since these
refer to data that resides in two different address spaces.1

%fileformat formatnamefbasic data typesg is used with
an auxiliary file as if it were formatted with the data structure.
Auxiliary files are used to store additional information about
files permanently—information that cannot be stored directly
in the files. FiST has commands to read and write auxiliary
files with the data in the fields of the data structure as if the
data structure were in-memory. Our ACL file system (Sec-
tion 4.3) uses this feature to store additional access control
information in auxiliary files, because we cannot represent it
using standard file attributes.

%ioctl declares additional ioctl codes. These ioctls behave
like existing ones. They allow users to control the behavior of
files or file systems. For example, our encryption file system
Section 4.2) uses an ioctl to set cipher keys.

%mntdata defines additional data for user processes to
pass once to the kernel duringmount(2) . For example, a
versioning file system can be passed a number indicating the
maximum number of versions to allow per file.

%per vfs defines additional data to store (in memory) for
each mounted instance of that file system. This allows de-
velopers to define easily a data structure that becomes a part
of each mounted file system. For example, a load-balancing
file system might flag non-responsive replica servers in a bit
array.

%per vnodedefines additional data to store (in memory)
per file. This allows developers to define easily a data struc-
ture that becomes a part of each file that is in use. The struc-
ture’s fields automatically become attributes of the file (Sec-
tion 2.3.1). For example, an encryption file system could use
this feature to store per-file cipher keys.

2.3 FiST Rules

This section of a FiST file defines specific actions to perform
for file system functions. This is the primary section of the
FiST file, where we define important actions. For example,
for a load-balancing file system we can write multi-replica
lookup instead of the normal lookup; for a versioning file

1It is possible to follow user space pointers in the kernel, but we avoided
this complexity in the first version of FiST.
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system, we can write FiST code to store a backup copy of a
file each time it is open for writing.

Figure 4 highlights what a typical stackable vnode opera-
tion does: (1) find the vnode of the lower level file system,
and (2) repeat the same operation on the lower vnode. The

int fsname_getattr(vnode_t *vp, args...)
f

int error;
vnode_t *lower_vp = get_lower(vp);

/* pre-call code goes here */
/* call same operation on lower file system */
error = VOP_GETATTR(lower_vp, args...);
/* post-call code goes here */
return error;

g

Figure 4: Skeleton of typical stackable vnode functions. Pre-call
and post-call are explained in Section 2.3.4.

example vnode function receives a pointer to the vnode on
which to apply the operation, and other arguments. First,
the function finds the corresponding vnode at the lower level
file system. Next, the function actually calls the lower level
file system through a standardVOP* macro that applies the
same operation, but on the file system corresponding to the
type of the lower vnode. The macro uses the lower level
vnode, and the rest of the arguments unchanged. Finally, the
function returns to the caller the status code which the lower
level file system passed to the function.

Figure 4 shows two important objects that all vnode func-
tions need to handle: the current vnode (vp) and the corre-
sponding lower vnode (lowervp). FiST defines variables
that refer to arguments passed to the function, such as vn-
odes, directories to lookup, and file names to create. Vari-
ables can refer to the vnode objects at this stack level or those
at the lower level. Objects represented by variables can have
attributes (e.g., owner, file name, etc.) FiST allows develop-
ers to access the attributes of vnodes.

FiST also defines auxiliary functions that abstract kernel
functionality that is different across platforms: memory allo-
cation and freeing, string operations, etc. FiST rules can use
variables, their attributes, and auxiliary functions.

There are two types of FiST rules: filter rules and vnode
function rules. Filter rules simplify the most common and at
the same time the most complex actions that a stackable file
system can take—manipulating file data and file names. Han-
dling them requires careful coding in many functions, and the
code to support changing file names and file data is long and
complex. Rather than ask developers to write their code into
many vnode functions, we instead centralize this into four
functions: two to encode and decode file names, and two to
encode and decode file data pages.

The second type of FiST rules are vnode function rules.
These rules allow developers to modify the behavior of a sin-
gle vnode operation or sets of vnode functions collectively.
Developers can insert code at the beginning of vnode func-
tions, insert code at the end, or replace the whole code. These

rules allow developers to change the function’s behavior be-
fore accessing the lower level file system, after accessing the
lower file system, or change the behavior of the default call
to the lower file system.

FiST rules mirror system calls and the NFS protocol for
five reasons: First, system calls are familiar to programmers.
Second, system calls and the NFS protocol are more stan-
dardized than (Unix-specific) vnode interfaces. Third, after
comparing several different vnode interfaces, we found that
they still act similarly, and that allowed us to translate more
popular APIs (system calls and NFS) to each platform’s spe-
cific vnode interface. Fourth, we plan in the future to port
FiST to generate user-level NFS-based file servers. Fifth,
by defining a file system API that is as general as possible,
we allow future ports of FiST to non-Unix platforms such as
Windows NT.

We also allow rules to be applied to sets of vnode func-
tions. For example, in security file systems, developers can
apply a rule to all operations that attempt to change file sys-
tem state (unlink, write, mkdir, etc.), perhaps to detect intrud-
ers. Also, an encryption file system that uses per-user keys
can insert key validation code at the beginning of all vnode
functions—by defining only one rule.

2.3.1 Variables and Attributes

As we already mentioned, FiST variables can refer to vnode
objects at this level and the level below us. The form to refer
to vnodes and their attributes is

$varg : N:attr (1)

wherevarg refers to possible vnode arguments passed to the
function,N indicates if we are referring to the current vnode
or to one of the lower vnodes, andattr refines the specifica-
tion to one attribute of the vnode. Below are a few examples:

� $0 is the current or primary vnode

� $this:0 is the long form of$0

� $2 refers to the second lower vnode of the current vnode
in a file system with a fan-out of two or more

� $dir:0 is the directory vnode of this operation, and
may be written more concisely as$dir (second form)

� $1.owner refers to the user who owns the first (or
only) lower vnode

� $from:2 is the second lower vnode of the source
vnode in a rename operation

� $from:2.name is the name of the$from:2 vnode

� $vfs.key an encryption key used on this directory,
assuming %pervfs defined “key”

� $2.fstype is the name (type) of the second lower file
system, when using a fan-out of two ore more

Vnode functions can also access additional data, such as
names of files to create ($name) and other global variables:
%pagesize, %gid, %uid, %pid, %time, and more. Global
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variables are useful when the file system needs to know cre-
dentials of the user accessing the file system, or to find gen-
erally fixed properties of the platform (such as native page
size).

2.3.2 Auxiliary Functions

FiST defines several useful auxiliary functions that help pro-
grammers to write portable code.2 FiST functions are first
class functions. The reason FiST has these functions is to
provide a common “library” of functions without having to
worry about their internal implementation. For example, dif-
ferent operating systems use different names for their in-
kernel memory allocator. Some can allocate kernel memory
from different pools, and the type of pool must be specified.
When freeing memory, some operating system require the
length of buffer to free. FiST abstracts all of this complexity
by providing a two simple functions (fistMalloc and fistFree)
that work much the same as the ones in standard C libraries.

Other simple auxiliary functions include the following:
handling strings (fistStrAdd and fistStrEq, useful when file
names are manipulated); buffer copy and comparison func-
tions (fistMemCpy and fistMemCmp); getting and setting
errors (fistLastErr, fistSetErr, and fistRetErr); copying files
(fistCopyFile); printing messages (fistPrintf); and checking
modes and types of files or vnodes (fistIsMode, fistIsDir, fist-
IsFile, fistIsSymlink, etc.)

All auxiliary functions that take a vnode can also take a file
name instead, and FiST will convert the name to its vnode.
This makes it easier to write FiST code using either names of
existing vnodes to refer to the same file object. Since FiST
will open the files if their names were given, it saves a lot of
kernel-specific coding from developers.

FiST defines two functions to handle ioctls (fistSetIoctl-
Data and fistGetIoctlData) and two to handle files formatted
as data structures (fistSetFileData and fistGetFileData). The
set functions write into the proper field in an ioctl object or
a (persistent) file object the data provided by the developer;
thegetfunctions retrieve the data from a field in one of these
two types of objects. Ioctls are a useful mechanism for user
processes to exchange information with the file system (e.g.,
encryption keys). Files formatted with a given data structure
can be used asauxiliaryfiles that augment current file system
functionality. For example, Aclfs (Section 4.3) stores access
controls in special.acl files.

Finally, FiST functions can take a variable number of argu-
ments, even allowing developers to skip listing intermediate
arguments. Any undefined argument is substituted with suit-
able defaults. For example, fistRetErr can take zero or one
arguments. If an argument is defined, the produced code will
return that error from the vnode function. If an argument is
not defined, the produced code will return the last error re-
turned from the lower file system.

2While FiST provides these auxiliary functions, it also allows users the
flexibility to use platform-specific code in FiST files, even if it hinders porta-
bility.

2.3.3 Filter Rules and Filter Functions

The most useful and at the same time most complex data ma-
nipulations in stackable file system involve file data and file
names. To manipulate them consistently without FiST, de-
velopers must make careful changes in many places. For
example, file data is manipulated in read, write, and all of
the MMAP functions; file names also appear in many places:
lookup, create, unlink, readdir, etc.

FiST simplifies the task of manipulating file data or file
names using two types offilters. A filter is a function like
Unix shell filters such as sed or sort: they take some input,
and produce possibly modified output.

If developers put “filter data ” in their FiST file, fist-
gen looks for two data coding functions in the Additional C
Code section of the FiST File:fsnameencodedata andfs-
namedecodedata. These functions take an input data page,
and an allocated output page. Developers are expected to
implement these coding functions in the Additional C Code
section of the FiST file. The two functions must fill in the
page by encoding or decoding it appropriately, and finally
return the number of bytes successfully encoded3. (Section
2.5 explained why it was simpler to manipulate data in whole
pages.) Our encryption file system uses a data filter to en-
crypt and decrypt data (Section 4.2).

If developers declare “filter name ” in their FiST file,
fistgen inserts code and calls to encode or decode strings
representing file names. The file name coding functions (fs-
nameencodename andfsnamedecodename) take an input
file name string and its length. They must allocate a new
string using fistMalloc, and encode or decode the file name
appropriately. Finally, the coding functions return the num-
ber of bytes in the newly allocated string, or a negative error
code. Fistgen inserts code at the caller’s level to free the
memory allocated by file name coding functions.

2.3.4 Vnode Function Rules

So far we described FiST’s variables and their attributes,
how to refer to various vnodes, auxiliary functions, and filter
rules. We now turn to the most important part of the FiST
rules section: describing how to modify file system opera-
tions. Figure 4 showed a typical stackable vnode function
and how it breaks into three general parts:

1. Pre-call: This part gives the file system a chance to per-
form some actions before calling the lower level file sys-
tem. For example, a pre-call code inunlink can refuse
to delete files whose names end with.key because they
may contain vital information.

2. Call: actually perform the call to the lower file system,
passing it the (possibly modified) arguments that were
passed to this vnode function. Of the three parts, this
is the only mandatory one. A file system that would

3Since we do not yet support file systems that change data size (e.g.,
compression), the number of successfully encoded bytes must be equal to
the page size.
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allow un-deleting files, for example, could replace the
unlink call with a rename call, essentially saving
the file instead of removing it, allowing the file to be
restored at a later time.

3. Post-call: Post-call code allows developers to define ac-
tion to take after having called the lower level file sys-
tem. For example, a lookup in replicated file system
may succeed for one replica and fail for another. The
file system can return the user a special error code indi-
cating partial failure, the kind that is not severe enough
to abort the user program.

The pre-call and post-call parts are normally empty. Users
are not required to use them. These two sections allow users
the flexibility to perform actions before or after the stackable
file system calls the lower level one. Thecall part contains
the code to repeat the vnode function on the lower level; users
have the option of changing this part.

FiST also lets you apply some operations to sets of file
system operations such as all of those that change state (e.g.,
unlink or write), or all of those that do not change state (e.g.,
readlink or read). In addition, you can also refer to sets of
functions that apply only to file names or to file data. This
offers a convenient and concise method of affecting change
in many functions at once. For example, an intrusion analy-
sis file system could place post-call code in all of the vnode
functions that change state, and log some information that
may help it analyze attacks. An encryption file system that
wants to authenticate per-user keys can insert the validation
code at the beginning of every vnode function, all using a
single FiST statement.

The general form for a FiST function rule is:

%callset : optype : part fcodeg (2)

Callset defines a collection of operations to operate on
such as all operations, operations that change state, opera-
tions which do not change state, etc.Optypefurther defines
the call set to a subset of operations (those that manipulate
file names, those that manipulate file data, etc.), or a single
operation such as unlink, read, mkdir, symlink, rename, etc.
Part defines the part of the call that the following code refers
to: pre-call, call, or post-call. Finally,codecontains any C
code enclosed in braces. This code is inserted in the proper
location in vnode functions and may refer to any FiST vari-
able or function.

2.4 Fistgen

Fistgen is the FiST language code generator. Fistgen reads
in an input FiST file, and using the right Basefs templates,
produces all the files necessary to build a new file system de-
scribed in the FiST input file. These output files include C file
system source files, headers, sources for user level utilities,
and a Makefile to compile them on the given platform.

Fistgen implements a subset of the C language parser and
a subset of the C preprocessor. It handles conditional macros

(such as #ifdef and #endif). It recognizes the beginning of
functions after the first set of declarations and the ending of
functions. It parses FiST tags inserted in Basefs (explained in
the next section) used to mark special places in the templates.
Finally, fistgen handles FiST variables (beginning with $ or
%) and FiST functions (such as fistLookup) and their argu-
ments.

After parsing an input file, fistgen builds internal data
structures and symbol tables for all the keywords it must han-
dle. Fistgen then reads the templates, and generates output
files for each file in the template directory. For each such
file, fistgen inserts needed code, excludes unused code, or re-
places existing code with another. It also produces several
new files (including comments) useful in the compilation for
the new file system: a header file for common definitions,
and two source files containing auxiliary code.

The auxiliary code generated by fistgen may contain au-
tomatically generated functions that are necessary to proper
FiST semantics and for FiST functions to be first class. Each
FiST function is replaced with one true C function, not a
macro, inlined code, a block of code statements, or any fea-
ture that may not be portable across operating systems and
compilers. While it might have been possible to use other
mechanisms such as C macros to handle some of the FiST
language, it would have resulted in unmaintainable and un-
readable code. One of the advantages of the FiST system is
that it produces highly readable code. Developers can edit
that code and add more features by hand, if they so choose.

Another compelling reason for fistgen to produce auxil-
iary functions is that they are sometimes specialized to han-
dle syntax that is not possible in the C language. For exam-
ple, the fistGetIoctlData function takes arguments that rep-
resent names of data structures and names of fields within.
A C function cannot pass such arguments; C++ templates
would be needed, but we opted against C++ to avoid requir-
ing developers to know another language, because modern
Unix kernels are still written in C, and to avoid interoperabil-
ity problems between C++ produced code and C produced
code in a running kernel. Preprocessor macros can handle
data structure names and names of fields, but they do not
have exact or portable C function semantics. To solve this
problem, fistgen replaces calls to functions such as fistGe-
tIoctlData with automatically generated specially named C
functions that hard-code the names of the data structures and
fields to manipulate. Fistgen generates these auxiliary func-
tions only if needed and only once.

2.5 Basefs

Basefs is a template system similar to Wrapfs[25] and was
derived from Wrapfs. Basefs therefore inherited the follow-
ing design goals from Wrapfs:

� It is a stacking layer that is independent from the layers
above and below it. Figure 5 shows this. Basefs appears
to the upper VFS as a lower level file system; Basefs
also appears to file systems below it as a VFS; all the
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while, Basefs repeats the same vnode operation on the
lower level file system.
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Figure 5:How Basefs Fits Inside the Kernel

� No changes to other file systems, the VFS, or the rest of
the kernel are required.4

� All data reading and writing operations are performed
on whole pages. File systems derived from Basefs ma-
nipulate data in whole page chunks and may not change
the data size (e.g., compression).

� Since Wrapfs always made copies of data pages, it also
cached encoded pages at the lower layer, and cached
decoded pages in the upper layer.5 Basefs improves
caching performance by caching at the lower layer only
if file data is manipulated and the file system was not
overlay mounted. Overlay mounts hide the lower level
file system, so direct access to it is impossible, in which
case, caching at the lower level would not improve per-
formance and would only consume memory.

Basefs, however, is different from Basefs in several ways.
First, substantial portions of code to manipulate file data and
file names, as well as debugging code were removed from
Basefs. These are included only if the file system needs
them. By including only code that is necessary we gener-
ate output code that is more readable than code with multi-
nested#ifdef /#endif pairs. Conditionally including this
code also resulted in improved performance, as reported in
Section 5.3. Matching or beating the performance of other
layered file systems was one of the design goals for Basefs.

Second, Wrapfs did not support fan-out file systems na-
tively. Basefs includes that support. This code is also condi-
tionally included, because it is more complex than single-
stack file systems, adds more performance overhead, and
consumes more memory.

Third, Basefs includes (conditionally compiled) support
for many other features that had to be written by hand in
Wrapfs. This added support can be thought of as an auxiliary
library of common functions: opening, reading or writing,

4Most of our small changes to Linux were incorporated since the 2.3.18
kernel.

5Heidemann proposed a solution to the cache coherency problem
through a centralized cache manager[4]. His solution, however, required
modifications to existing file systems and the rest of the kernel.

and then closing arbitrary files; overlaying file contents with
data structures; user-level utilities to mount and unmount file
systems, as well as manipulate ioctls; inspecting and modi-
fying file attributes, and more.

Finally, Basefs includes specialtags that help fistgen lo-
cate the proper places to insert certain code. Inserting code
at the beginning or the end of functions is simple, but in some
cases the code to add has to go elsewhere. For example, han-
dling newly defined ioctls is done (in the basefsioctl vnode
function) at the end of a C “switch” statement, right before
the “default:” case,

3 Implementation

We implemented the FiST system in Solaris, Linux, and
FreeBSD because these three operating systems span the
most popular modern Unix platforms and they are suffi-
ciently different from each other. This forced us to under-
stand the generic problems in addition to the system-specific
problems. Also, we had access to kernel sources for all three
platforms, which proved valuable during the development of
our templates. Finally, all three platforms support loadable
kernel modules, which sped up the development and debug-
ging process. Loadable kernel modules are a convenience in
implementing FiST; they are not required. This section de-
scribes the implementation of the two key parts of the FiST
system, fistgen and Basefs.

3.1 Implementation of Fistgen

Fistgen translates FiST code into C code. For Unix platforms
that support loadable kernel modules, the C code takes the
form of a loadable kernel module implementing the file sys-
tem described in the FiST file. In this section we describe
the implementation of key features of FiST that span its full
range of capabilities.

We implemented simple global variables such as%uid by
looking for them in one of the fields fromstruct cred
in Solaris orstruct ucred in FreeBSD. The VFS passes
these structures to vnode functions. The Linux VFS simpli-
fies access to credentials by reading that information from the
disk inode and into the in-memory vnode structure,struct
inode . So on Linux we find UID and other credentials by
referencing a field directly in the inode which the VFS passes
to us.

Most of the vnode attributes listed Section 2.3.1 are sim-
ple to find. On Linux they are part of the main vnode struc-
ture. On Solaris and FreeBSD, however, we first perform a
GETATTR vnode operation to find them, and then return the
appropriate field from the structure that the getattr function
fills.

The vnode attribute “name” was more complex to imple-
ment, because most kernels do not store file names after the
initial name lookup routine translates the name to a vnode.
On Linux, implementing the vnode name attribute was sim-
ple, because it is part of a standard directory entry structure,
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dentry . On Solaris and FreeBSD, however, we add code
to the lookup vnode function that stores the initial file name
in the private data of the vnode. That way we could access
it as any other vnode attribute, or any other per-vnode at-
tribute added using the%per vnode declaration. To im-
prove performance and reduce kernel memory usage, we in-
clude this name storing code only if the FiST file makes use
of the vnode name attribute.

Just as we implemented the vnode name attribute as a piece
of information in the private data of the vnode, so we imple-
mented all other fields defined using the%per vnode FiST
declaration (Section 2.2).

The FiST declarations described in Section 2.2 affect the
overall behavior of the generated file system. We imple-
mented the read-only access mode by replacing the call part
of every file system function that modifies state (such as un-
link and mkdir) to return the error code “read-only file sys-
tem.” We implemented the overlay-only mount style by in-
cluding code that uses the mounted directory’s vnode also as
the mount point.

The only difficult part of implementing the%ioctl decla-
ration and its associated auxiliary functions, fistGetIoctlData
and fistSetIoctlData, was finding how to copy data between
user space and kernel space. Solaris and FreeBSD use the
routines copyin and copyout; Linux 2.3 uses copyfrom user
and copyto user.

The last complex feature we implemented was the
%fileformat FiST declaration and the auxiliary functions
used with it: fistGetFileData and fistSetFileData. Consider
this small code excerpt:

%formatname fmt f data structure g
fistGetFileData( file, fmt, field, out)

First, we generate a C data structure namedfmt. To imple-
ment fistGetFileData, we openfile, read as many bytes from
it as the size of the data structure, map these bytes onto a
temporary variable of the same data structure type, copy the
desiredfieldwithin that data structure intoout, close the file,
and finally return a error/success status value from the func-
tion.

Fistgen itself (excluding the templates) is highly portable,
and can be compiled on any Unix system. The total number
of source lines for fistgen is 4813. Fistgen can process each
1KB of template data in under 0.25 seconds (measured on
the same platform used in Section 5.3).

3.2 Implementation of Basefs

The implementation of Basefs proceeded mostly according
to its design (Section 2.5). We started with the Wrapfs tem-
plates and updated them for newer kernel versions. We then
removed debugging code and code to manipulate file names
and data pages, because that code gets included conditionally
by fistgen only when necessary. We continued by writing
support for fan-out file systems, and also wrote some aux-
iliary support functions (i.e., for reading and writing arbi-
trary files). Finally, we tagged the Basefs templates in special

places where fistgen needs to insert certain code (such as for
handling new ioctls).

4 Examples

This section describes the design and implementation of four
sample file systems we wrote using FiST. The examples gen-
erally progress from those with a simple FiST design to those
with a more complex design. Each example introduces a few
more FiST features.

1. Snoopfs: detects and warns of attempted access to
users’ files by other non-root users.

2. Cryptfs : is an encryption file system.

3. Aclfs: adds simple access control lists.

4. Unionfs: joins the contents of two file systems.

These examples are experimental and intended to illus-
trate the kinds of file systems that can be written using FiST.
We do not consider them to be complete solutions. We il-
lustrate and discuss only the more important parts of these
examples—those that depict key features of FiST. Whenever
possible, we mention potential enhancements to our exam-
ples. We hope to convince readers of the flexibility and sim-
plicity of writing new file systems using FiST. Additional ex-
amples are available elsewhere[22].

4.1 Snoopfs

Snoopfs attempts to detect unauthorized access to users’
files. Its premise is that only the file’s owner and the root
user should be allowed to access users’ private files. Anyone
else trying (and failing) to access them, may be considered
an intruder. Snoopfs shows the use of one of the more use-
ful file system functions, lookup. The FiST code for Snoopfs
uses only one rule in FiST Rules section:

%op:lookup:postcall f
if ((fistLastErr() == EPERM ||

fistLastErr() == ENOENT) &&
$0.owner != %uid && %uid != 0)

fistPrintf("snoopfs detected access by uid %d, n
pid %d, to file %s nn", %uid, %pid, $name);
g

If the accessing user is neither root nor the file’s owner, and
the error from looking up the file was either “permission de-
nied” or “no such entry,” then we print a warning message to
the console. The message may be logged viasyslog(3)
(which also adds a timestamp). Note that successful access
to world-readable or group-readable files will not result in a
warning.

4.2 Cryptfs

Cryptfs is a strong encryption file system. It uses the
Blowfish[18] encryption algorithm in Cipher Feedback
(CFB) mode[17]. We used one fixed Initialization Vector
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(IV), and one 128-bit key per mounted instance of Cryptfs.
Cryptfs encrypts both file data and file names. After encrypt-
ing file names, Cryptfs also uuencodes them to avoid char-
acters that are illegal in file names. Additional design and
important details are available elsewhere[24].

The FiST implementation of Cryptfs shows three addi-
tional features: file data encoding, using ioctl calls, and using
per-VFS data. Cryptfs’s FiST code uses all four sections of a
FiST file. Most of the code for Cryptfs is:

%f
#include <blowfish.h>
%g
filter:data;
filter:name;
ioctl:fromuser SETKEY fchar ukey[16]; g;
per_vfs fchar key[16]; g;
%%
%op:ioctl:SETKEY f

char temp_buf[16];
if (fistGetIoctlData(SETKEY, ukey, temp_buf) < 0)

fistSetErr(EFAULT);
else

BF_set_key(&$vfs.key, 16, temp_buf);
g
%%
unsigned char global_iv[8] = f

0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10 g;
int cryptfs_encode_data(const page_t *in,

page_t *out)
f

int n = 0; /* blowfish variables */
unsigned char iv[8];

fistMemCpy(iv, global_iv, 8);
BF_cfb64_encrypt(in, out, %pagesize,

&($vfs.key), iv, &n,
BF_ENCRYPT);

return %pagesize;
g

We omitted the call to decode data and the calls to encode
and decode file names because they are similar in behavior
to data encoding. Cryptfs defines an ioctl named SETKEY,
used to set 128-bit encryption keys. We wrote a simple user-
level tool which prompts the user for a passphrase and sends
an MD5-hash of it to the kernel using this ioctl. When the
SETKEY ioctl is called, Cryptfs stores the (cipher) key in
the private VFS data field “key”, to be used later.

There are several possible extensions to Cryptfs: storing
per-file or per-directory keys in auxiliary files that would oth-
erwise remain hidden from users’ view, much the same as
Aclfs does (Section 4.3.); using several types of encryption
algorithms, and defining mount flags (using%mntflag ) to
select among them.

4.3 Aclfs

Aclfs allows an additional UID and GID to share access to a
directory as if they were the owner and group of that direc-
tory. Aclfs shows three additional features of FiST: using the
more secure overlay mounts, using special purpose auxiliary
files, and hiding files from users’ view. The FiST code for
Aclfs uses the FiST Declarations and FiST Rules sections:

mntstyle overlay;
ioctl:fromuser SETACL int u; int g;;
fileformat ACLDATA int us; int gr;;
%%
%op:ioctl:SETACL f

if ($0.owner == %uid) f
int u2, g2;
if (fistGetIoctlData(SETACL, u, &u2) < 0 ||

fistGetIoctlData(SETACL, g, &g2) < 0)
fistSetErr(EFAULT);

else f
fistSetFileData(".acl", ACLDATA, us, u2);
fistSetFileData(".acl", ACLDATA, gr, g2);

g
g else

fistSetErr(EPERM);
g
%op:lookup:postcall f

int u2, g2;
if (fistLastErr() == EPERM &&

fistGetFileData(".acl", ACLDATA, us, u2)>=0 &&
fistGetFileData(".acl", ACLDATA, gr, g2)>=0 &&
(%uid == u2 || %gid == g2))

fistLookup($dir:1, $name, $1,
$dir:1.owner, $dir:1.group);

g
%op:lookup:precall f

if (fistStrEq($name, ".acl") &&
$dir.owner != %uid)

fistReturnErr(ENOENT);
g
%op:readdir:call f

if (fistStrEq($name, ".acl"))
fistSkipName($name);

g

When looking up a file in a directory, Aclfs first performs
the normal access checks (inlookup ). We insert postcall
code after the normal lookup that checks if access to the file
was denied and if an additional file named.acl exists in
that directory. We then read one UID and GID from the
.acl file. If the effective UID and GID of the current pro-
cess match those listed in the.acl file, we repeat the lookup
operation on the originally looked-up file, but using the own-
ership and group credentials of theactualowner of the direc-
tory. We must use the owner’s credentials, or the lower file
system will deny our request.

The .acl file itself is modifiable only by the directory’s
owner. We accomplish this by using a special ioctl. Finally,
we hide .acl files from anyone but their owner. We in-
sert code in the beginning of lookup that returns the error
“no such file” if anyone other than the directory’s owner at-
tempted to lookup the ACL file. To complete the hiding of
ACL files, we skip listing.acl files when reading directo-
ries.

Aclfs shows the full set of arguments to the fistLookup
routine. In order, the five arguments are: the directory to
lookup in, the name to lookup, the vnode to store the newly
looked up entry, and the credentials to perform the lookup
with (UID and GID, respectively).

There are several possible extensions to this implementa-
tion of Aclfs. Instead of using the UID and GID listed in the
.acl file, it can contain an arbitrarily long list of user and
group IDs to allow access to. The.acl file may also include
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sets of permissions to deny access from, perhaps using neg-
ative integers to distinguish them from access permissions.
The granularity of Aclfs can be made on a per-file basis;
for each fileF , access permissions can be read from a file
. F .acl , if one exists.

4.4 Unionfs

Unionfs joins the contents of two file systems similar to
BSD-4.4’s Unionfs[14]. The two lower file systems can
be considered two branches of a stackable file system tree.
Unionfs shows how to merge the contents of directories in
FiST, and how to define behavior on a set of file system op-
erations. The FiST code for Unionfs uses the FiST Declara-
tions and FiST Rules sections:

fanout 2;
%%
%op:lookup:postcall f

if (fistLastErr() == ENOENT)
fistSetErr(fistLookup($dir:2, $name));

g
%op:readdir:postcall f

fistSetErr(fistReaddir($dir:2, NODUPS));
g
%delops:all:postcall f

fistSetErr(fistOp($2));
g
%writeops:all:call f

fistSetErr(fistOp($1));
g

Normal lookup will try the first lower file system branch
($1). We add code to lookup in the second branch ($2) if
the first lookup did not find the file. If a file exists in both
lower file systems, Unionfs will use the one from the first
branch. Normal directory reading is augmented to include
the contents of the second branch, but setting a flag to elim-
inate duplicates; that way files that exist in both lower file
systems are listed only once. Since files may exist in both
branches, they must be removed (unlink, rmdir, and rename)
from all branches. Finally we declare that all writing opera-
tions should perform their respective operations only on the
first branch; this means that new files are created in the first
branch where they will be found first by subsequent lookups.

There are several other issues file system semantics and
especially concerning error propagation and partial failures,
but these are beyond the scope of this paper. Extensions to
our Unionfs include larger fan-outs, masking the existence
of a file in $2 if it was removed from $1, and ioctls or mount
options to decide the order of lookups and writing operations
on the individual file system branches.

5 Evaluation

We evaluate the effectiveness of FiST using three criteria:
code size, development time, and performance. We show
how development and porting times are dramatically reduced
when using FiST. We also show that performance overhead
is small and comparable to other stacking work. We report

results based on the four example file systems described in
Section 4, Snoopfs, Cryptfs, Aclfs, and Unionfs, on three
different platforms: Linux 2.3, Solaris 2.6, and FreeBSD 3.3.

5.1 Code Size

Code size is one measure of the development effort neces-
sary for a file system. To demonstrate the savings in code
size achieved using FiST, we compare the number of lines
of code that need to be written to implement the four exam-
ple file systems in FiST versus three other implementation
approaches: writing C code using a standalone version of
Basefs, writing C code using Wrapfs, and writing the file
systems from scratch as kernel modules using C. In particu-
lar, we first wrote all four of the example file systems from
scratch before writing them using FiST. For these example
file systems, the C code generated from FiST was identical
in size to the hand-written code.

When counting lines of code, we excluded comments,
empty lines, and %% separators. For Cryptfs we excluded
627 lines of C code of the Blowfish encryption algorithm,
since we did not write it. When counting lines of code for
implementing the example file systems using the Basefs and
Wrapfs stackable templates, we exclude code that is part of
the templates and only count code that is specific to the given
example file system. These results are shown in Table 1 for
Linux 2.3, Solaris 2.6, and FreeBSD 3.3. For reference, we
include the code sizes of Basefs and Wrapfs and also show
the number of lines of code required to implement Wrapfs
in FiST and Basefs. Table 1 shows huge reductions in code
size when comparing FiST versus writing hand-written code
from scratch. We focus though on the comparison of FiST
versus stackable template systems. As Wrapfs represents the
most conservative comparison, the table shows for each file
system the reduction factor in the number of lines of code
written using Wrapfs compared to FiST. The average code
size reduction in using FiST versus Wrapfs across all four
file systems on all four platforms is a factor of 10. Table 1
shows three size reduction classes:

1. For simple file systems such as Snoopfs (on Linux) and
Cryptfs, code size was reduced by 30–50%. This reduc-
tion factor is relatively small because the generated code
matches almost one-to-one with the FiST code. The re-
duction factor for Snoopfs on Solaris and FreeBSD is
5–6 because on those two platforms, finding the owner
of a file requires calling the GETATTR vnode operation,
while on Linux this information is part of the in-memory
inode structure.

2. Moderate savings (5–6 times) are achieved for Aclfs and
for Snoopfs on Solaris and FreeBSD. The reason for this
is that some lines of FiST code for these file systems
produce ten or more lines of C code.

3. The largest savings appeared for Unionfs, a factor of
28–33 times. The reason for this is that fan-out file sys-
tems produce C code that affects all vnode operations;
each vnode operation must handle more than one lower
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Op. File FiST C code given Wrapfs From
Sys. System Code Basefs Wrapfs / FiST Scratch
Linux Basefs 0 0 0 2594
2.3 Wrapfs 40 772 0 0.0 3366

Snoopfs 4 6 6 1.5 2600
Cryptfs 99 896 124 1.3 3513
Aclfs 39 214 214 5.5 2835
Unionfs 15 500 500 33.3 3094

Solaris Basefs 0 0 0 2914
2.6 Wrapfs 40 1034 0 0.0 3948

Snoopfs 4 20 20 5.0 2934
Cryptfs 99 1158 124 1.3 4072
Aclfs 39 224 224 5.7 3138
Unionfs 15 420 420 28.0 3334

FreeBSD Basefs 0 0 0 2751
3.3 Wrapfs 40 1693 0 0.0 4058

Snoopfs 4 24 24 6.0 2755
Cryptfs 99 1817 124 1.3 4182
Aclfs 39 216 216 5.5 2967
Unionfs 15 481 481 32.1 3232

Table 1: Number of additional lines of code for various file sys-
tems, over that of Basefs or Wrapfs, and the size reduction factor
when using FiST. The last column counts the total number of lines
written in C from scratch.

vnode. This additional code was not part of the original
Wrapfs implementation, and it is not used unless fan-
outs of two or more are defined (to save memory and
improve performance). If we exclude the code to han-
dle fan-outs, Unionfs’s added C code is still over 100
lines producing savings of a factor of 7–10.6

Table 1 shows the code sizes foreachplatform. The sav-
ings gained by FiST are leveraged with each port. If we sum
up the savings for the above three platforms, we reach reduc-
tion factors ranging from 4 to over 100 times. The more ports
of fistgen exist, the better these cumulative savings would be.

5.2 Development Time

Estimating the time to develop kernel software is very dif-
ficult. Developers’ experience can affect this time signif-
icantly, and this time is generally reduced with each port.
In this section we report our own personal experiences
given these file system examples and the three platforms we
worked with. Table 2 shows the number of days we spent
developing various file systems and porting them to four dif-
ferent platforms.

We estimated the incremental time spent developing each
file system, assuming 8 hour work days, and using our source
commit logs and change logs. We estimated the time it took
us to develop Wrapfs, Basefs, and the example file systems.
Then we measured the time it took us to develop each of these
file systems using the FiST language.

6FreeBSD’s Unionfs is 4863 lines long, which is 50% larger than our
Unionfs (3232 lines). FreeBSD’s Unionfs is 2221 lines longer than their
Nullfs, while ours is only 481 lines longer than our Basefs. Unfortunately,
the stacking infrastructure in FreeBSD is currently broken, so we were un-
able to compare the performance of our stacking to FreeBSD’s.

File In Time given Wrapfs From
System FiST Basefs Wrapfs / FiST Scratch
Basefs 0 0 0 48
Wrapfs 0.1 22 0 0.0 70
Snoopfs 0.1 0.5 0.5 5.0 8.5
Cryptfs 2 25 2 1.0 73
Aclfs 0.2 3 3 15.0 48.5
Unionfs 1 2 7 7.0 55

Table 2:Average number of days per platform to develop various
file systems using C or using FiST, the increment given Basefs or
Wrapfs, and the time reduction factor.

For most file systems, incremental time savings are a fac-
tor of 5–15 because hand writing C code for each platform
can be time consuming, while FiST provides this as part of
the base templates and the additional library code that comes
with Basefs. For Cryptfs, however, there are no time sav-
ings per platform, because the vast majority of the code for
Cryptfs is in implementing the four encoding and decoding
functions, which are implemented in C code in the Additional
C Code section of the FiST file. The average per platform re-
duction in development time across the four file systems is a
factor of seven in using FiST versus Wrapfs templates.

When taking into account multiple platforms, the time sav-
ings become more significant, since FiST code is written only
once. Given our three platforms, accumulated savings range
from 3–45 times.

5.3 Performance

To evaluate the performance of file systems written using
FiST, we tested each of the example file systems by mount-
ing it on top of a disk based native file system and run-
ning benchmarks in the mounted file system. We conducted
measurements for Linux 2.3, Solaris 2.6, and FreeBSD 3.3.
The native file systems used were ext2, ufs, and ffs, respec-
tively. We measured the performance of our file systems us-
ing two methods: (1) compiling a large package (am-utils-
6.0, 50,000 lines of C code), and (2) micro-benchmarks in-
tended to isolate the impact of each file system. The micro-
benchmarks included a series of recursive copies (cp -r),
recursive removals (rm -rf), recursive find, and “find-grep”
(find /mnt -print| xargs greppattern). Each benchmark was
run once to warm up the cache, after which we took 10 new
measurements and averaged them. The standard deviation
for our measurements was less than 2% of the mean. We ran
all tests on the same machine: a P5/90, 64MB RAM, and a
Quantum Fireball 4.35GB IDE hard disk.

The most important performance metric is the basic over-
head imposed by our templates. The overhead of Basefs over
the file systems it mounts on is just 0.8–2.1%. This mini-
mum overhead is below the 3–10% degradation previously
reported for null-layer stacking[6, 19].

Compared to Basefs, Wrapfs also manipulates file names
and file data. These extra data copies add another 4.2–4.9%
overhead over Basefs. This added overhead was part of the
Wrapfs, but is not incurred in Basefs unless the file systems
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derived from it require file data or file name manipulations.
The performance of individual file systems can vary

greatly depending on the operating system in question. Com-
pared to Basefs, the performance of Snoopfs on Linux is less
than 1%; on Solaris and FreeBSD, Snoopfs adds another 5%
overhead. The reason for the latter is that Snoopfs has to per-
form an additional LOOKUP operation each time it has to
find the owner of a file (evaluating $0.owner in Section 4.1).
Running this additional LOOKUP is the only VFS API on
these two platforms that can provide this information. On
Linux, however, finding the owner is a simple dereferencing
of a field in the inode structure, because the Linux VFS pro-
vides such information automatically.

The performance of individual file systems can also vary
much depending on the actual actions defined in the FiST
Rules and Additional C Code sections, since they allow
developers to write arbitrarily complex code. For exam-
ple, the overhead added by Cryptfs over Basefs is 9.1–
22.9%, and is due substantially to the cost of the Blowfish
encryption[24, 25]. When testing Aclfs, we ran half of the
tests as the owner of the test directories, and the rest as a
user authorized (in the.acl file) to access these directories.
Aclfs adds an overhead of 3–5% over Basefs, more than 80%
of which is incurred when reading.acl files and repeat-
ing lookups. To benchmark Unionfs using the large com-
pile benchmark, we copied half of the files in the am-utils
package to the first branch, and the all of them to the second
branch. That way about half the files would have to be looked
up a second time (after not being found on the first branch).
Unionfs’s overhead over Basefs is 3.2–7.7%.

Finally, since we did not change the VFS, and all of our
stacking work is in the templates, there is no overhead on the
rest of the system; performance of native file systems (NFS,
FFS, etc.) is unaffected when our stacking is not used.

6 Related Work

Rosenthal first implemented stacking in SunOS 4.1 in the
early 1990s[15]. A few other works followed his, such as
further prototypes for extensible file systems in SunOS[19],
and the Ficus layered file system[3, 5]. Webber implemented
file system interface extensions that allow user-level file
servers[21]. Unfortunately, these implementations required
modifications to either existing file systems or the rest of the
kernel, limiting their portability significantly, and affecting
the performance of native file systems. FiST achieves porta-
bility using a minimal stackable base file system, Basefs,
which can be ported to another platform in 1–3 weeks. No
changes need to be made to existing kernels or file systems,
and there is no performance penalty for native file systems.

Newer Unix operating systems, such as the HURD[2],
Spring[11], and the Exokernel[8] have an extensible file sys-
tem interface. The HURD is a set of servers running under
the Mach 3.0 microkernel[1] that collectively provide a Unix-
like environment. HURD translators are programs that can
be attached to a pathname and perform specialized services

when that pathname is accessed. Writing translators entails
implementing a well defined file access interface and filling
in stub operations for reading files, creating directories, list-
ing directory contents, etc.

Sun Microsystems Laboratories built Spring, an object-
oriented research operating system[11]. Spring was designed
as a set of cooperating servers on top of a microkernel. It
provides generic modules that offer services useful for a file
system: caching, coherency, I/O, memory mapping, object
naming, and security. Writing a file system for Spring in-
volves defining the operations to be applied on the objects.
Operations not defined are inherited from their parent object.
One work that resulted from Spring is the Solaris MC (Multi-
Computer) File System[10]. It borrowed the object-oriented
interfaces from Spring and integrated them with the existing
Solaris vnode interface to provide a distributed file system
infrastructure through a specialProxy File System. Solaris
MC provides all of Spring’s benefits, while requiring little or
no change to existing file systems; those can be ported gradu-
ally over time. Solaris MC was designed to perform well in a
closely coupled cluster environment (not a general network)
and requires high performance networks and nodes.

The Exokernel is an extensible operating system that
comes with XN, a low-level in-kernel stable storage
system[8]. XN allows users to describe the on-disk data
structures and the methods to implement them (along with
file system libraries called libFSes). The Exokernel requires
significant porting work to each new platform, but then it can
run many unmodified applications.

The main disadvantages of the HURD, Spring, and the Ex-
okernel are that they are not portable enough, not sufficiently
developed or stable, or they are not available for general use.
In comparison, FiST provides portable stacking on widely
available operating systems. Finally, none of the related ex-
tensible file systems come with a high-level language that
developers can use to describe file systems.

7 Conclusions

The main contribution of this work is the FiST language
which can describe stackable file systems. From a single
FiST description we generate code for different platforms.
We achieved this portability because FiST uses an API that
combines common features from several vnode interfaces.
FiST saves its developers from dealing with many kernel in-
ternals, and lets developers concentrate on the core issues of
the file system they are developing. FiST reduces the learn-
ing curve involved in writing file systems, by enabling non-
experts to write file systems more easily.

The most significant savings FiST offers is in reduced de-
velopment and porting time. The average time it took us
to develop a stackable file system using FiST was at least
seven times faster than when we wrote the code using Basefs.
These savings multiple for each platform to which FiST is
ported. We showed how FiST descriptions are more con-
cise than hand-written C code: 5–8 times smaller for average
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stackable file systems, and as much as 33 times smaller for
more complex ones. FiST generates file system modules that
run in the kernel, thus benefiting from increased performance
over user level file servers. The minimum overhead imposed
by our stacking infrastructure is 1–2%.

FiST can be ported to other Unix platforms in 1–3 weeks,
assuming the developers have access to kernel sources. The
benefits of FiST are increased each time it is ported to a new
platform: existing file systems described with FiST can be
used on the new platform without modification.

7.1 Future Work

The FiST language is fairly portable, and its API maps well
to NFS’s protocol calls[13]. We plan for fistgen to generate
user-level NFS-based code, using one of several user-level
NFS servers as a base template. While user-level file servers
are slower, they are more portable and easier to debug.

We also plan to port our system to Windows NT. NT has
a different file system interface than Unix’s vnode interface.
NT’s I/O subsystem defines its file system interface. NTFil-
ter Driversare optional software modules that can be inserted
above or below existing file systems[12]. Their task is to in-
tercept and possibly extend file system functionality. One
example of an NT filter driver is its virus signature detector.
It is possible to emulate file system stacking under NT. Our
estimates are that porting Basefs to NT is possible, but will
take 2–3 months, not 1–3 weeks as we predict for Unix ports.

Other features we plan to support include the ability to
handle file systems that change file sizes (compression) and
be able to specify more complex data structures and lists of
structures in FiST auxiliary files. Finally, we are exploring
layer collapsing in FiST: a method to generate one file system
that merges the functionality from several FiST descriptions,
thus saving the per-layer stacking overheads.
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