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ABSTRACT then provide the answer to our query. The web contains millions
Text documents often contain valuable structured data that isof pages whose text hides data that would be best exploited in
hidden in regular English sentences. This data is best exploitedstructured form. If we could build structured tables from the
if available as a relational table that we could use for answering information hidden in unstructured text, then we would be able
precise queries or for running data mining tasks. We explore ato run more complex queries and analysis over these tables, and
technique for extracting such tables from document collections report precise results.

that requires only a handful of training examples from users. ) .
These examples are used to generate extraction patterns, that il this paper we develop thBnowballsystem for extracting
turn result in new tuples being extracted from the document col- Structured data from plain-text documents witlmimal human
lection. We build on this idea and present @mowballsystem. ~ Participation Our techniques build on the ideas and general ap-
Snowbalintroduces novel strategies for generating patterns andProach introduced by Brin [2], which we describe next.

extracting tuples from plain-text documents. At each iteration ) _

of the extraction procesSnowbalevaluates the quality of these ~ D/PRE: Dual lterative Pattern Expansion To extract a struc-

patterns and tuples without human intervention, and keeps onlytureQrelatlon (or table) from a collection of HTML documen'ts,

the most reliable ones for the next iteration. In this paper we also Bnq mtroduce'd the DIPRE mthod [2]. DIPRE works bestin an

develop a scalable evaluation methodology and metrics for ourEnvironment like t,he World-Wide Web, vyhere the tahlples

task, and present a thorough experimental evaluatidnofv- to be. extracted Wl_II tend to appear in u'nlform cor_1texts repeat-
edly in the collection documents (i.e., in the available HTML

ball and comparable techniques over a collection of more than , , i
300,000 newspaper documents. pages). DIPRE exploits this redundancy and inherent structure
' in the collection to extract the target relation with minimal train-

KEYWORDS: Textdatabases, information extraction, bootstrapping. ing from a user. In fact, DIPRE requires that the user just pro-
vide a handful of valid tuples of the target relation, with no other

1 INTRODUCTION training. (This is in contrast to the way traditional information
Text documents often hide valuatsgructured dataFor exam-  extraction systems operate.) We describe the DIPRE method,
ple, a collection of newspaper articles might contain information \which forms the basis for th8nowballsystem that we present
on thelocation of the headquarters of a number mfjaniza- in Section 2.

tions If we need to find the location of the headquarters of, say,
Microsoft, we could try and use traditional information-retrieval As in the rest of the paper, we focus the presentation on the
techniques for finding documents that contain the answer to ourorganization-location scenario defined above. Hence, in this
guery [15, 14]. Alternatively, we could answer such a query context DIPRE’s goal is to extract a table with all the organization-
more precisely if we somehow had availabléaadle listing all location tuples that appear in a given document collection. Ini-
the organization-location pairs that are mentioned in our docu- tially, we provide DIPRE with a handful of instances of valid
ment collection. Atuple< o, £ > in such table would indicate  organization-location pairs. For example, we may indicate that
that the headquarters of organizatierare in location/, and  <Microsoft, Redmond> s a valid pair, meaning that Mi-
that this information was present in a document in our collec- crosoftis an organization whose headquarters are located in Red-
tion. Tuple <Microsoft, Redmond > in our table would mond. Similarly, we provide DIPRE with a few other exam-
ples, as Table 1 shows. In addition, the user provides a general
regular expression that the entities must match. For example,
a potential organization value must match a regular expression
[A—Z0-9][A—Za—20-9.,: #!?;&]{4,45}[A—Za—20-9].
This regular expression says that an organization must begin ei-
ther with a capital letter (e.g., Microsoft), or with a number,
(e.g., 3Com), and be followed by four to 45 characters, end-
ing in a letter or a number. This is all the training that DIPRE
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requires from the user. <STRING1>'s headquarters in <STRING2>
<STRING2>-based <STRING1>

Organization | Location of Headquarters <STRING1>, <STRING2>
MICROSOFT| REDMOND Figure 2: Initial DIPRE patterns. <STRING1>
EXXON IRVING and <STRING2> are regular expressions that would
IBM ARMONK match an organization and a location, respectively.
BOEING SEATTLE
INTEL SANTA CLARA

providing a handful of initial seed tuples and specifying the
general pattern that the elements of the extracted tuples must
match. By acquiring additional training examples automatically,

Table 1: User-provided example tuples for DIPRE.

Computer servers adlicrosoft’s headquarters iRedmond... DIPRE aims at capturing most of the tuples mentioned in the
Exxon, Irving , said it will boost its stake in the... collection. A key assumption behind this method is that the ta-
In midafternoon trading, shares lo¥ing -basedExxon fell ... ble to be extracted appears redundantly in the document collec-
TheArmonk -basedBM has introduced a new line ... tion in question. As a result of this assumption, the patterns that
..operate fronBoeings headquarters iSeattle DIPRE generates need not be overly general to caueey
Intel, Santa Clara, cut prices of its Pentium... instanceof an organization-location tuple. Instead, a more crit-
Figure 1: Occurrences of the initial example tuples in ical goal is to discard patterns that are not selective enough, and
text documents. that may generate invalid tuples. (To combat this problem, [2]

suggests assigning weights to patterns and tuples, and notes a
After this initial training phase, DIPRE looks for instances of potential relationship of this problem to Latent Semantic Index-
the example organizations and locations in the text documentsing [7].) In effect, a system based on the DIPRE method will
Some occurrences of the example tuples in documents are listegherform reasonably well even if certain instances of a tuple are
in Figure 1. Then, DIPRE examines the text that surrounds themissed, as long as the system captures one such instance.
initial tuples. For example, DIPRE inspects the context sur-

rounding Microsoft and Redmond. icdmputer servers Related Work Brin’s DIPRE method and ounowbalkystem
at Microsoft ’s headquarters in Redmond’tocon-  that we introduce in this paper both address issues that have
struct a pattern<STRING1>’s headquarters in long been the subject of information extraction research. Our

<STRING2>" Other possible patterns are listed in Figure 2. task, though, is different in that we do not attempt to extedict

the relevant information from each document, which has been
the goal of traditional information extraction systems [10]. One
of the major challenges in information extraction is the neces-
sary amount of manual labor involved in training the system for
each new task. This challenge has been addressed in different
ways. One approach is to build a powerful and intuitive graphi-
cal user interface for training the system, so that domain experts
can quickly adopt the system feach new task [16]. Neverthe-
less, these systems still require substantial expert manual labor
to port the system to each new domain. In contr&spwball

and DIPRE require only a handful of example tuples for each
new scenario.

The DIPRE algorithm for generating the patterns is described in
detail in [2]. Briefly, the algorithm represents an occurrence
of a seed tuple as a seven-tuple: o, ¢, order, url,

left, middle, right >, whereurl is the URL of the
source document where o, £ > was found,order is 1 if

o appeared beforéand 0 otherwise, anigft , middle , and
right are the parts of the context that surrounds the occur-
rence of< o, £ > in the document. A pattern (represented
as a five tuplecorder, urlprefix, left, middle,

right >) is created by grouping together occurrences that all
have equalmiddle string andorder , and then setting the

urlprefix , left , andright of the pattern to the longest

common substrings of all therl , left , andright  strings,  Another approach is to train the system over a largeually
respectively. The patterns are then filtered by requiring that eaChtaggedcorpus, where the system can apply machine learning
pattern be supported by more then one seed tuple, andrthat techniques to generate extraction patterns [8]. The difficulty
prefix ,left |, middle ,andright all be non-empty. with this approach is the need for a large tagged corpus, which
Finally, after generating a number of patterns from the initial 29N involves a significantamount of manual labor to create. To

seed tuples, DIPRE scans the available documents in search gfombat this problem, some methods have been proposed to use

segments of text that match the patterns. As a result of this pro-&n Untagged corpus for training. [12] describes generating ex-
{{action patterns automatically by using the training corpus that

cess, DIPRE generates new tuples and uses them as the ne ) :
“seed” DIPRE starts the process all over again by searching,conS'StS of sets of documents, which were manually separated

for these new tuples in the documents to identify new promising into the relevant vs. irrelevant set for the topic. This approach
patterns. requires less manual labor than to tag the documents, but never-

theless the effort involved is substantial. [5] describes machine
As we have seen, unlike most machine-learning systems forlearning techniques for creating a knowledge base from the web,
information extraction, DIPRE requires no training other than consisting of classes of entities and relations, by exploiting the
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content of the documents, as well as the link structure of the2 THE SNOWBALLSYSTEM

web. Their method requires training over a large set of web In this section we present tfBnowballsystem, which develops
pages, with relevant document segments manually labeled, akey components of the basic DIPRE method that we described
well as a large training set of page-to-page relations. in the previous section. As Figure 3 shows, 8re@wballarchi-
tecture follows the general DIPRE outline. However, we will
see thatSnowballintroduces key ideas that result in substan-
tially better performance. More specificalBnowbalpresents a

Finally, a number of systems use unlabeled examples for train-
ing. This direction of research is closest to our work. Specif-

ically, the approach.we are fpllowing falls into Fhe broad cat- novel technique to generate patterns and extract tuples from text
egory _Of bootstrapplng technlqges. Bootstrap_pmg has been aTHocuments, which we describe in Sections 2.1 and 2.2. Also,
attractive alternative in automatic text processing. [17] demon- g o halintroduces a strategy for evaluating the quality of the
strates a bootstrapping technique for disambiguating senses Ofatterns and the tuples that are generated in each iteration of the
words by starting with a small set of seed collocations for each g, 4 ction process (Section 2.3). Only those tuples and patterns
word (e.g., seed collocation “life” to disambiguate the biological , ¢ are regarded as being “sufficiently reliable” will be kept by
sense of the noun .plant ), and iteratively plassmes the occur- Snowbalfor the following iterations of the system (Section 2.3).
rences of the word into one of the appropriate senses. [4] US€Srhese new strategies for generation and filtering of patterns and

bootstrapping to classify named entities in text. They exploit 565 improve the quality of the extracted tables significantly,
two orthogonal features for classifying named entities, i.e., the as the experimental evaluation in Section 5 will show.
spelling of the entity itself (e.g., having a suffix “Corp.”), and the

context in which the entity occurs. They present an algorithm .
. . . Seed E— d O f Seed |
that classifies named entities with higbcuracy. [13] presents Toples [Fm coreeee Tum]
a bootstrapping technique to extract patterns to recognize and
classify named entities in text. [1] present a methodology and —
L . Seed | Tag E
theoretical framework for combining unlabeled examples with [ Cenerate New Tu'”s]

labeled examples to boost performance of a learning algorithm
for classifying web pages. While the underlying principle of
using the systems’ output to generate the training input for the -— [ Generate Extraction Patterns ]

next iteration is the same for all of these approaches, the tasks
are different enough to require specialized methodologies.

Figure 3: The main components of Snowball

Our Contributions ~ As we have discussed, [2] describes a method _
for extracting relations from the web using bootstrapping. Our 2-1 Generating Patterns

Snowbalbkystem, which we present in this paper, builds on DIPREAS we observed in Section 1, a crucial step in the table extraction
Our main contributions include: process is the generation of patterns that will be used to find new

tuples in the documents. Ideally, we would like patterns both to

:/VTechn|quefhfor gen::ratmg dpattﬁtrnf anofl extra(;;ung tutphles: Fe selective so that they do not generate incorrect tuples, and
€ propose the use ot hamed-entitytags for anchonng the searcy, o highcoverage so that they identify many new tuples.

of new tuples in the documents. Also, we develop a new strat- In this section, we introduce a novel way of generating such

egy for defining and representing patterns that is at the same f f | n ment collection
time flexible, so that we capture most of the tuples that are hid- patterns from a set of seed tuples and a document co '

den in the text in our collection, and selective, so that we do not Snowbalis initially given a handful of example tuples. For ev-
generate invalid tuples (Sections 2.1 and 2.2). ery such organization-location tupte o, ¢ >, Snowballfinds

e Strategies for evaluating patterns and tuples: Since the segments of text in the document collection wheead¢ occur
amount of training thaBnowballrequires is minimal, itis cru-  close to each other, just as DIPRE does, and analyzes the text
cial that the patterns and tuples that are generated during the exthat “connects’o and/ to generate patterns. A key improve-
traction process be evaluated. This wagowballwill be able ment of Snowballfrom the basic DIPRE method is th&how-

to eliminate unreliable tuples and patterns from further consid- pall’'s patterns include named-entity tags. An example of such
eration. We develop strategies for estimating the reliability of a pattern isLOCATION>-based <ORGANIZATION>. This

the extracted patterns and tuples (Section 2.3). pattern will not match any pair of strings connected by “-based.”
e Evaluation methodology and metrics: Evaluating systems  Instead,<LOCATION>will only match a string identified by
like Snowballand DIPRE is challenging: these systems are de- a tagger as an entity of tydgdOCATION Similarly, <ORGA-
signed to work over large document collections, so manually NIZATION> will only match a string identified by a tagger as
inspecting all documents to build the “perfect” table that should an entity of typeORGANIZATION To understand the impact
be extracted is just not feasible. We introduce a scalable evaluaof using named-entity tags in tt@nowballpatterns, consider
tion methodology and associated metrics (Section 3), which wethe patterrcSTRING2>-based <STRING1> . This pattern
use in Sections 4 and 5 for large-scale experiments over collec-matches the text surrounding correct organization-location tu-
tions of training and test documents. These collections have aples (e.g., “the Armonk-based IBM has introduced...”). Unfor-
total of over 300,000 real documents. tunately, this pattern will also match any strings connected by “-
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based,” like tomputer-based learning "or “alcohol- later in this section.

-based solvents. " This might result in the inclusion of

invalid tuples<learning, computer > and<solvents, Definition 1 A Snowball patterms a 5-tuple<left, tagl,

alcohol > in our organization-location table. When used to mjddle, tag2, right> ,Wheretagl andtag2 are named-
generate patterns, these tuples may in turn result in wrong patentity tags, andeft , middle , andright are vectors asso-
terns. ciating weights with terms.

In contrast, by using the version of the same pattern that in- .

volves named-entity tags;LOCATION>-based <ORGANI- An example of &nowbalpatternis the 5-tuple{<the, 0.2 >},
ZATION>, we have a better chance of avoiding this kind of LOCATION, {<-, 0.5 >, <based, 0.5 >}, .
spurious matches. Figure 4 shows additional patternsinaty- ~ ORGANIZATION, {}>. This pattern will match strings like

ball might generate, based on the examples in Figure 1, whichth€ Irving-based Exxon Corporation,” where the word “the”
involve named-entity tags. (left context) precedes a locatiginving), which is in turn fol-

lowed by the strings “-" and “based” (middle context) and an

<ORGANIZATION>'s headquarters in <LOCATION> organization. What appears to the right of the organization in
<LOCATION>-based <ORGANIZATION> the string is unimportantin this case, hence the empty right con-
<ORGANIZATION>, <LOCATION> text in the pattern. Slight variations of the given string will also

match the pattern to a smaller extent. (We introduce a notion of
“degree of match” later in this section.) For example, a string

A key step in generating and later matching patterns like the one ...she said. Redond-based Microsoft reportedly...” wﬁll tend
above is finding whereORGANIZATION>and<LOCATION> to matgh our example pattern, even When.the location, Red-
entities occur in the text. For thi§nowballuses a state-of- ~Mond. is not peceded by any of the terms in the left context
the-art named-entity tagger, The MITRE Corporation’s Alembic (i.e., “the”). This extra flexibility results in better coverage of
Workbench [6]. In addition tdORGANIZATIONand LOCA-  the patterns.

TION entities, Alembic can identifPERSONentities, and can 14 match text portions with our 5-tuple representation of pat-
be trained to recognize other kinds of entities. (See Section 6gmg Snowballalso associates a 5-tuple with each document
for further discussion.) portion that contains two named entities with the correct tag
Once the entities in the text documents are tag§edwbaltan (i-e., LOCATIONand ORGANIZATIONIn our scenario). Af-
ignore unwanted entities (e.PERSOMN), focus on occurrences  t€r |dent|fy|ng two such entities in a strirk Snowballgreates

of LOCATIONand ORGANIZATIONentities (Figure 5), and ~ three weight vectorss, 75, andms from S by analyzing the
analyze the context that surroureach pair of such eities to left, right, and middle contexts around the named entities, re-

check if they are connected by the right words and hence matchSPectively.s has a non-zero weight femch term in they-term
our patterns. window to the left of the leftmost named entity i) for some

predefined window sizes. Similarly,»s has a non-zero weight
To define patterns preciselfgnowbaltould follow DIPRE'’s ap- for each term in thev-term window to the right of the rightmost
proach, and have a pattern consist dé#a , amiddle , and named entity in5. Finally, ms has a non-zero weight faach
aright  string. An occurrence of a@RGANIZATIONand a term in between the two named entitiesSn The weight of a
LOCATIONentity would be regarded as a match for a patternif term in each vector is a function of the frequency of the term
the text surrounding the entities matches the three strings in then the corresponding context. These vectors are scaled so their
pattern exactly. As we will see, this approach results in some-norm s one. Finally, they are multiplied by a scaling factor to in-
what selective patterns (i.e., most of these patterns tend not tadicate each vector’s relative importance. From our experiments
generate invalid tuples), yet it suffers from limited coverage (i.e., with English-language documents, we have found the middle
these patterns might not capture all instances of valid tuples).context as the most indicative of the relationship between the el-
Hence,Snowballrepresents the context around ORGANI- ements of the tuple. Hence we will typically assign the terms in
ZATION andLOCATIONentities in the patterns in a more flex-  the middle vector higher weights than the left and right vectors.

ible way. As a result, minor variations such as an extra comma ) )
or a determiner will not stop us from matching contexts that are AAfter extracting the S-tuple representation of strfygSnowball

otherwise very close to our patterns. More specificéiyow- matches it against.the 5—tup]e pattern by taking the inner product
ball represents the left, middle, and right “contexts” associated ©f the corresponding left, middle, and right vectors.

with a pattern analogously as how the vector-space model of in-
formation retrieval represents documents and queries [15, 14].
Thus, theleft , middle , andright contexts are three vec-
tors associating weights (i.e., numbers between 0 and 1) with
terms (i.e., arbitrary strings of non-space characters). These Match(ip,ts) =
weights indicate the importance of each term in the cpoed- { lp-ls+mp-ms—+rp-rs if the tags match
ing context. We describe how to compute these weight vectors

Figure 4: Patterns that exploit named-entity tags.

Definition 2 The degree of match/atch(tp,ts) between two
5-tuplestp =< Ilp, t1, mp, t2, rp > (with tagst; and¢s) and
ts =<ls, 1y, ms,th, rs > (with tagst| andt}) is defined as:

0 otherwise
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</[ENAMEX> has introduced a new line...

The <ENAMEX TYPE=LOCATION>Armonk</ENAMEX>-based <ENAMEX TYPE= ORGANIZATION>IBM

</ENAMEX>, cut prices of its Pentium...

<ENAMEX TYPE=ORGANIZATION>Intel</ENAMEX>,

<ENAMEX TYPE= LOCATION>Santa Clara,

Figure 5: Portions of a document where  LOCATIONand O

In order to generate a patter@nowballgroups occurrences of
known tuples in documents, if the contexts surrounding the tu-
ples are “similar enough.” More preciselynowballgenerates

RGANIZATIONentities occur near each other.

actually add to the table that it is constructing. This filtering pro-
cess will become clear in the next section, where we address the
crucial issue of how to evaluate candidate tuples and patterns.

a 5-tuple for each string where a seed tuple occurs, and thensyp GenerateTuples(Patterns)

clusters these 5-tuples using a simple single-pass clustering al- foreach text

gorithm [9], using theMatch function defined above to com-
pute the similarity between the vectors, with minimum similar-
ity thresholdr,;,,. Theleft vectors in the 5-tuples of clus-
ters are represented bycantroid/,. Similarly, we collapse
themiddle andright vectors intorm, andr;, respectively.
These three centroids, together with the original tags (which are
the same for all the 5-tuples in the cluster), for@reowbalbat-
tern< I,,tq,m;, ta, 7, >, which will be later used to find new
tuples in the document collection. Figure 6 shows the complete
algorithm for computing patterns using clustering. (We will ex-
plain Line (3) in Section 2.3.)

sub GeneratePatterns

foreach (< 0sced;lscea >, Str) in Occurrences
1) ts =<ls, t1,mq, t2, 7. > = makeOccurrence(str);
(2) cluster best = FindClosestCluster( ts, Tsim),;
if(best)
bestAdd( ts);
best.UpdateCentroid( ts);
best. AddTuple( < 0sced, £sced >);
else
CreateNewCluster( < 0sced, lscea >, ts);
(3)Patterns = FilterPatterns( Clusters, Tsup);

return Patterns;

Figure 6: Clustering algorithm for generating patterns
from tuple occurrences in the text documents.

2.2 Generating Tuples

After generating patterns (Section 2.$powballscans the col-
lection to discover new tuples. The basic algorithm is outlined
in Figure 7.

Snowbalffirst identifies sentences that include an organization

_segment in corpus
{<o, > <l t1,me,ta,rs >} =
= CreateOccurrence(text
Te = <o,f >
SimBest = 01
foreach p in Patterns
sim Match(< L, b1, mq, ta, 72 >, p);
if ( stm > Tam)
UpdatePatternSelectivity(
if( sim > Simpest)

@

_segment);

@)

(3) p, e
SiMBest = $1M;
PBest = P,
if( SimBest > Teim)
CandidateTuples
= SimBest;
return CandidateTuples;

[Tc].Patterns  [Ppest] =

Figure 7: Algorithm for extracting new tuples using a
set of patterns.

2.3 Evaluating Patterns and Tuples

Generating good patterns is challenging. For example, we may
generate a pattera{}, ORGANIZATION, <", 1>,
LOCATION, {}>fromtextoccurrences like “Intel, Santa Clara,
announced...” This pattern will be matched by any string that
includes an organization followed by a comma, followed by a
location. Unfortunately, a sentence “It's a great time to invest in
Microsoft, New York-based analyst Jane Smith said” will then
generate a tupleMicrosoft, New York> , which would

be incorrect because Microsoft’s ltepuarters are in Redmond.

In summary, the pattern above is not selective, since it might
generate incorrect tupleSnowballwill try to identify such pat-
terns and not trust them, and instead focus on other more se-
lective patterns. Under our redundancy assumption that tuples

and a location, as determined by the named-entity tagger. For eeur in different contexts in our collectio®nowballcan af-

given text segment, with an associated organizasiand loca-
tion £, Snowballgenerates the 5-tupte=< I, t1, m¢, to, re >.
A candidate tuple< o, £ > is generated if there is a pattefn
such thatMatch(t,tp) > Toim, Wherer,;,, is the clustering
similarity threshold of Section 2.1.

ford to not use the less selective pattern above and still be able
to extract the tupleintel, Santa Clara> from our ex-
ample in Section 1 through a different, more selective pattern.
Estimating theselectivityof the patterns, so that we do not trust
patterns that tend to generate wrong tuples, is one of the prob-
lems that we address in this section. We can weigtstiavball

Each candidate tuple will then have a number of patterns thatpatterns based on their selectivity, and trust the tuples that they
helped generate it, each with an associated degree of matchgenerate accordingly. Thus, a pattern that is not selective will

Snowballses this information, together with information about have a low weight. The tuples generated by such a pattern will

the selectivity of the patterns, to decide what candidate tuples tobe discarded, unless they are supported by selective patterns.
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Organization Location of Headquarters Definition 3 Theconfidenceof a patternP is:

3COM CORP SANTA CLARA P.positive

3M MINNEAPOLIS Conf(P) = (Ppositive + Paregalivg)

AIR CHINA BEIJING -posutrve T Lneg

FEDERAL EXPRESS CORP MEMPHIS where P.positive is the number of positive matches foand
FRUIT JELLIES APPLE P.negative is the number of negative matches.

MERRILL LYNCH & CO NEW YORK

NETSCAPE MOUNTAIN VIEW As an example, consider the pattétrs <ORGANIZATION>,
NINTENDO CORP TOKYO <LOCATION> referred to in the previous section. Assume that

this pattern only matches the three lines of text below:
Table 2: Some tuples discovered during  Snowbalk P y

first iteration. . .
“Exxon, Irving , said”

“Intel, Santa Clara, cut prices”
“invest inMicrosoft, New York-based analyst Jane Smith said”

The case for tuples is analogous. Consider for example the can- ' . . .
. ) . The first two lines generate candidate tuptésxxon, Irvin
didate tuples in Table 2, which were generated duf@mgpw- 9 p g =

ball's first iterati It is clear that not all of th tuol ; and <Intel, Santa Clara >, which we already knew
als first iteration. 11 1S clear that not alt ot Inese tuples are ¢, previous iterations of the system. The third line generates
valid. For example, the tupleFruit Jellies, Apple>

is invalid. and ted b Alembici vt éuple<Microsoft, New York >. The locationin this tuple
‘|‘S|nva’|, +an was.genera“e 'ecau'se" embicincorrectly tagge conflicts withthe location in tupleMicrosoft, Redmond >,
Apple” as a location and “Fruit Jellies” as an organization. So

. ' hence this last line is considered a negative example. Then, pat-
if we use all of these tuples as the new seed tuples for the neXtternP has confidenc€’on f(P) = -2 g 66% P P

Snowbaliteration, we may generate extraneous patterns that in 2+1

turn might result in even more wrong tuples in the next itera- Our definition of confidence of a pattern above is only one among
tion. We have explored different pruning schemes to select themany possibilities. An alternative that we evaluate experimen-
new seed tuples that are likely to be valid. We only keep tuples tally in Section 5 is to account for a pattern’s coverage in addi-
with high confidence The confidence of the tuple is a function tion to its selectivity. For this, we adopt a metric originally pro-
of the selectivity and the number of the patterns that generatedposed by Riloff [12] to evaluate extraction patterns generated by
it. Intuitively, the confidence of a tuple will be high if itis gen-  the Autoslog-TS information extraction system according to the
erated by several highly selective patterns. formulaRlog F (p) = relevance rate(p)-log,(frequency(p)).

We can defin€'on fri.,r (p) Of patternp similarly.

The pattern and tuple evaluation is the key part of our system,
and is responsible for most of the improvement over the DIPRE
scheme. As an initial filter, we eliminate all pattesugpported

by fewer tharr,.,, seed tuples (Step (3) in the algorithm in Fig-
ure 6). We experimentally evaluated alternative methods for
definingr,., and concluded that a simple static value for, Pattern confidences are defined to have values between 0 and
works well. In addition to the filter based on the number of seed 1. Therefore, we normalize th€on fri.,r values by dividing
tuples that generated the patterns, we computedhestivityof them by the largest confidence value of any pattern.

each patternin Step (3) of the algorithmin Figure 7. In that step,
the call to functionJpdatePatternSelectivity checks
each candidate tuple=< o, ¢ > generated by the pattern in
question. If there is a high confidence tuple=< o, ¢ > gen-
erated during an earlier iteration of the system for the same orga
nizationoe as int, then this function compares locatiofiand?’.

Definition 4 TheRlogFconfidence of patterpis:

p.positive .
C = -1 .posit
onfriogr (P) (p.positive + p.negative) o8 (p-positive)

Having scored the patterns, we are now able to evaluate the new
candidate tuples. Recall that for each tuple we store the set of
patterns that produced it, together with the measure of similarity
_between the context in which the tuple occurred, and the match-
ing pattern. Consider a candidate tupland the set of patterns

If the two locations are the same, then the tupieconsidered £ = {F:} that were used to generéte For simplicity assume

a positivematch for the pattern. Otherwise, the matciméga-  that”' matched each of the patters perfectly, i.e., with de-
tive. Intuitively, the candidate tuple that a pattern generates for 97€€ Of match equal to one. Let us assume for the moment that
the “known” organizations should match the locations of these W& know the probability’rob( P;) with which each patteri;
organizations. Otherwise, the confidence in this pattern will be 9€nerates valid tuples. If these probabilities are independent of
low. Note that this confidence computation assumes that orga-82ch other, then the prokiity that 7'is valid, Prob(T), can be
nization is a key for the relation that we are extracting (i.e., two calculated as:

different tuples in a valid instance of the relation cannot agree Prob(T) = 1— Prob(All Patterns Fired Incorrectly)

on the organization attribute). Estimating the confidence of the 1P|

Snoyvballpatterns for relations Without such a single-attribute - 1_ H (1— Prob(P))

key is part of our future work (Section 6). o
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Conf middle right
1 <based, 0.53 > <, 001 >
Our confidence metriconf(P;) was designed to be a rough <in, 053 >
estimate ofProb( P;), the probability of patter®; generating a <, 042 > <s, 042 >
valid tuple. We also account for the cases whEteas occurred 0.69 | < headquarters, 0.42 >
in contexts that did not match our patterns perfectly. For this, <in, 0.12 >
we scale eactConf(P;) term by the degree of match of the 0.61 <( 093 > <), 012 >

corresponding pattern and context:
Table 3: Actual patterns discoveredby ~ Snowball (For

Definition 5 Th nfidenceof ndi g is: all three of these patterns, the left vectors are empty,
efinition 5 Theconfidenceof a candidate tupld' is tagl= ORGANIZATIONand tag2= LOCATION)

Pl
Conf(T) =1—[] (1 — {Conf(P:) - Match(C;, P;)})
i=0 3 EVALUATION METHODOLOGY AND METRICS
whereP = {P;} is the set of patterns that generatédand C; The goal ofSnowballis to extract as many valid tuples as pos-
is the context associated with an occurrencd'dhat matched  Sible from the text collection. As we have discussed, we do not
P attempt to capture eveigstanceof such tuples. Instead, we ex-

ploit the fact that these tuples will tend to appear multiple times

For example, suppose that we just generated a tyscape, in the types of collections that we consid.er. As I.ong as we cap-
Mountain View> using the patternsKORGANIZATION>, ture one instance of such a tuple, we will consider our system
<LOCATION= and “<ORGANIZATION> of <LOCATION>" to be successful for that tuple. Our system extracts tuples from
These patterns have been found to have confidences of 0.5 an@! ©f the documents in the collection and combines them into
0.6, which means that individually, these patterns are almost asOn€ able. To evaluate this task, we adapt the recall and preci-
likely to generate valid tuples as they are to generate invalid tu- SI°N Metrics from information retrieval to quantify how accu-

ples. However, the confidence of the tuple that is generated byfat€ and comprehensive ocombined table of tuples [15, 14].
bothof these patterns is: Our metric for evaluating the performance of an extraction sys-

tem over a collection of document3 is based on determining
Conf(Thew) =1-((1—-0.5)-(1—-06))=1—-0.5-0.4=0.8 Ideal, the set of all the tuples that appear in the collectidn
(Section 3.1). After identifyinddeal, we compare it against
the tuples produced by the systextracted using the adapted
precision and recall metrics (Section 3.2).

Note that when we described the calculation of the pattern con-
fidence, we ignored any confidence values from previous itera-
tions ofSnowball To control the learning rate of the system, we

set the new confidence of the pattern as: 3.1 Methodology for Creating the  Ideal Set

Conf (P) = Conf ., (P) Waypdate+ Conf ,1q(P)-(1—=Wypdate) For small text cqllections, we could inspect all documents man-
ually and compile thédeal table by hand. Unfortunately, this

The parametelV/, ,qa:. can be used to control the speed of leam- o\ 41,ation approach does not scale, and becomes infeasible for

ing from new examples. #,pqa:c < 0.5 thenthe systemin ef- 0 king of large collections over whicBnowballis designed

fect trusts new examples less on each iteration, which will lead to operate. To address this problem, we start by considering a

to more conservative patterns and have a damping effect. Foljarge nublicly available directory of organizations provided on

our experiments we S&¥pqare = 0.5. the “Hoover’s Online” web site Although the directory does

Similarly, we often rediscover tuples that we have already ex- NOt COver every prganization there is, it is Ia.rge enough for our
tracted on previous iterations. In this case, we also set the newPUrPOSes, covering over 13,000 mostly publicly traded corpora-

confidence of the tuple as: tions. From this well structured directory, we generate a table of
organization-location pairs. Unfortunately, we cannot use this
Conf(T) = Conf 0 (1) Wupdate+ Conf 514(T)-(1=Waupdate ) table as is, since some of the organizations in it might not occur

After determining the confidence of the candidate tuples using &t &l in the text collection that we use in our experiments.

the definition aboveSnowballdiscards all tuples with low con-

fidence. These tuples could add noise into the pattern generqmnijed table above, we need to keep only the tuples that have
ation process, which would in turn introduce more invalid tu- o organization mentioned together with their location in the
ples, degrading the performance of the system. The set of tU-qjection. To find all such instances, we identify all the vari-
ples to use as the seed in the n&towballiteration is then — 445ns of each organization name in the Hoover's table as they
Seed = {T|Conf(T) > =}, wherer, is some prespecified 5y annear in the collection, and then check if the headquarters
threshold. of the test organization are mentioned nearby.

To determine the target set of tupleteal from the Hoover’s-

For illustration purposes, Table 3 lists three representative pat-
terns thaSnowballextracted from the document collection that
we describe in Section 4.1. Lhttp://www.hoovers.com

For this task, we generate a list of all organization-location pairs
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that occur in the same line of text in our collection. We then use new collection. Indeed, our system is specifically designed for
Whirl [3], a research tool developed at AT&T Research Labora- large collections, where it is not possible for a human to man-
tories for integrating similar textual information, to match each ually examine any significant portion of the collection. In this
organization name, as it occurs in the collection, to the organi- sense, the sampling technique is inferior toldieal metric that
zation in the Hoover's table. For example, “Microsoft,” “Mi-  we proposed. However, by sampling the extracted table we can
crosoft Corporation,” and “Microsoft Corp.” are all references detect invalid tuples whose organization is not mentioned in the
to the same organization (“Microsoft”), and if the company’s lo- Hoover’s directory that we used to determlideal, for example.
cation (“Redmond”), is mentioned in the same line vétty of Similarly, we can detect invalid tuples that result from named-
variations of the organization name, the tugMicrosoft, entity tagging errors. Hence, we also report precision estimates
Redmond>should be counted as occurring in the collection and using sampling in Section 5.
hence it will be included in thideal table.

3.3 Matching Location and Organization Names
3.2 The Ideal Metric _ A problem with calculating th&deal metric above is introduced
Now that we have created theeal table, we can use itto eval-  py the proliferation of variants of organization names. We com-
uate the quality of th&nowballoutput, theExtractedtable. If bine all variations into one, by usingself-joinof the Extracted
the initial directory of organizations from Hoover’s contained all {gpje with itself. We use Whirl to match the organization names
possible organizations, then we could just measure what frac-tg each other, to create the taBletracted; We pick an arbitrary
tion of the tuples irExtractedare inldeal (precision) and what  \5riation of the organization name,, as the “standard,” and
fraction of the tuples indeal are inExtracted(recall). Unfortu- pick a location,fime., from the set of matching organization-
nately, a large collection will contain many more tuples that are |gcation tuples, with the highest confidence value. We then in-

contained in any single manually compiled directory. (In oures- gert the tuplec o, £,,40 > into theExtracted’table.
timate, our training collection contains more then 80,000 valid

organization-location tuples.) If we just calculated precision as Similarly, we need to decide when the location extracted for an
above, all the valid tuples extracted Bypowball which are not organization is correct. For example, our system might con-
contained in outdeal set, will unfairly lower the reported value  clude that California is the location of the headquarters of In-
of precision for the system. tel. This answer is correct, although not as specific as could
be. Our scoring system will in fact consider a tugiintel,
California > as correct. Specifically, we consider tupte

o, £ > to be valid if (a) organizatiom is based in the U.S. and

£ is the city or state wheres headquarters are based; or (b) or-

H !/ / ! H H
mat;:h;}ng tUplféT V\/_<d o ’E'b> r'}” the %xtr?ctggtablg (if any), ho 9anizatiom is based outside of U.S. arids the city or country
such thab = o'. (We describe how to deal with variationsinthe  \nore s headquarters are based,

organization names in Section 3.3.) Using these values, we now
create a new tuple o, ¢, ¢ > and include it in thelointable. 4 EXPERIMENTAL SETTING
d.We describe the training and text collections that we used for

experiments in Section 4.1. We also enumerate the different ex-
traction methods that we compare experimentally (Section 4.2).

To address this problem we create a new tal@, as the join
of tablesldeal and Extractedon a unique key (i.e., organiza-
tion). For each tupld =< o, ¢ > in theldealtable, we find a

Given the tablédealand thelointable that we have just create
we can define recall and precision more formally. We define
Recallas:
Yo" [t = 4]
R ] = == = 7
ced |Ideal|

where f; = /] is lverson notation that is equal to 1 if the test
value{; matches the extracted valée and O otherwise. Thus,
the sum in the numerator is the numbercofrect tuples of the
Ideal set that we extracted, which we divide by the size of the
Ideal table to obtain our recall. Similarly, we defifrrecision

as: oo
'_ozn Ez -
ZZ-O [ z] . 100% (2) . .
|Join| Both Snowballand DIPRE rely on tuples appearing multiple

, ) . ] o times in the document collection at hand. To analyze how “re-
An alternative to using ourdeal metric to estimate precision  gundant” the training and test collections are, we report in Ta-
could be to sample the extracted table, and check each value itye 5 the number of tuples in tHeeal set for each frequency
the sample tuples by hand. (Similarly, we could estimate the re-|eve|. For example, 5455 organizations in theal set are men-

call of the system by sampling documents in the collection, and tjoned in the training collection, and 3787 of them are mentioned
checking how many of the tuples mentioned in those documentsj,, the same line of text with their location at least once. So,

the system discovers.) This evaluation method is time consum-
ing, potentially error-prone, and will have to be redonedach 2hitp://www.ldc.upenn.edu

4.1 Training and Test Collections

Our experiments use large collections of real newspapers from
the North American News Text Corpus, available from LB.C
This corpus includes articles from Los Angeles Times, The Wall
Street Journal, and The New York Times for 1994 to 1997. We
splitthe corpus into two collections: training and test. Tra@-

ing collection consists of 178,000 documents, all from 1996.
The test collection is composed of 142,000 documents, from
1995 and 1997 (Table 4).

- 100% (1)

Precision =
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Collection | Document Source Documents| Year
The New York Times | 96,000 1996
Training | The Wall Street Journal 56,000 1996
Los Angeles Times 26,000 1996
The New York Times | 44,000 1995
The Wall Street Journal 43,000 1995
Test Los Angeles Times 35,000 1995
Los Angeles Times 20,000 1997

Table 4: The document collections used for experi-
ments.

if we wanted to evaluate how our system performs on extract-
ing tuples that occur at least once in the training collection, the
Ideal set that we will create for this evaluation will contain 3787
tuples.

Organization-Location Pairs
Occurrences | Training Collection| Test Collection
0 5455 4642
1 3787 3411
2 2774 2184
5 1321 909
10 593 389

Table 5: Occurrence statistics of the test tuples in the
experiment collections.

The first row of Table 5, corresponding to zero occurrences, de-
serves further explanation. If we wanted to evaluate the perfor-
mance of our system oall the organizations that were men-
tioned in the corpus, even if the appropriate location never oc-
curred near its organization name anywhere in the collection, we
would include all these organizations in ddeal set. So, if the
system attempts to “guess” the value of the location for such an
organization, any value that the system extracts will automati-
cally be considered wrong in our evaluation.

4.2 Evaluating Alternative Techniques

We comparednowballwith two other techniques, tHgaseline
method and our implementation of the DIPRE method. These
two methods require minimal or no training input from the user,
and hence are comparable wiimowballin this respect. In

contrast, state-of-the-art information extraction systems require

substantial manual labor to train the system, or to create a hand
tagged training corpus.

The first methodBaseling is based purely on the frequency of
co-occurrence of the organization and the location. Specifically,
Baselinereports the location that co-occurs in the same line with
each organization most often as the digpaarters for this orga-
nization. Baselineuses as input lines of text in the collection,

tagged with the Alembic named entity tagger, and creates an in-

9

The second method is our implementation of DIPRE, which we
described in Section 1. We did not have access to the original
implementation, so we had to reimplement it. After testing our
implementation on the “author-title” task, which is to the best
of our knowledge the only application of the DIPRE method
reported in the literature[2], we had to make some modifica-
tions, motivated by the nature of our collections. The original
DIPRE implementation, useslprefixto restrict pattern genera-
tion and application. Since all of our documents came from just
three sources, DIPRE was not able to use this feature, which
was originally intended to generate patterns that would apply
only to the documents with the URLs that match thiorefix

of each pattern. The secd, and more important, modification
had to do with the fact that DIPRE was designed to extract tu-
ples from HTML-marked data, which is inherently more struc-
tured than the plain text that we used for experiments. With-
out HTML tags, DIPRE could not find occurrences of the seed
tuples in plain text that were surrounded by exactly the same,
non-empty, left, middle, and right contexts. To solve this prob-
lem, we used the named entity tagger to pre-tag the input to
DIPRE. This way, all the organizations and locations were con-
sistently surrounded by named entity tags. DIPRE could incor-
porate these tags as part of the surrounding context, and generate
patterns that take advantage of these named-entity tagauBe

the original DIPRE implementation had very low recall (hav-
ing no access to the namedtigy tags), the results we report
for DIPRE arenotfor the original DIPRE implementation, but
are rather results achieved by using the DIPRE method together
with named-entity tags.

4.3 Snowball

As we described in Section 2, the baSloowballprocess re-
quires finding occurrences of the seed tuples in the corpus. For
efficiency, we have indexed our collections using the Glimpse
search engine [11], which supports boolean queries. Our scheme
is to issue a boolean “AND” query farach seed tuple, requir-
ing all elements of the tuple to be present in the same text seg-
ment. For example, a querpicrosoft AND Redmond "

will be issued to find all the contexts in which the seed tuple
<Microsoft, Redmond> appears in the collection. In our
experiments we required the tuple elements to occur in the same
line of text, but our approach can be used to retrieve occurrences
of the example tuples within arbitrary text segments.

Once these example occurrences are retriésadyballcan act
differently based on a number of parameters. We have attempted
to determine the best combination of parameters by running the
Snowbalkystem on the training corpus. Some of the parameters
we experimented with include:

¢ Use of Punctuation We experimented with discarding punc-
tuation and other non-alphanumeric characters from the contexts
surrounding the entities. Our hypothesis was that punctuation

dex of the organizations and locations that occur in the samemay just add noise but carry little content to help extract tu-

line. Then,Baselinesimply selects the most frequent location
for each organization. Despite its simplicity, the method works
surprisingly well in this setting.

ples. We report results f@nowballandSnowball-Plainwhere
Snowballuses punctuation, ar@howball-Plairdiscards it.
e Choice of Pattern Scoring Strategies:We tried variations
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on the basic framework for weighing patterns, as described in| Parameter| Value | Description

Section 2, with or without using thiRlogF metric described in Tsim 0.6 minimum degree of match (Section 2.1)
[12]. We will refer to the strategies that use tRebgFmetric as T 0.8 minimum tuple confidence (Section 2.3)
“RlogF-*" . Additionally, we can normalize both patterns and | .., 2 minimum pattern support (Section 2.1)
tuples by dividing by the largest value of each. The normalized | I,,,,. 3 number of iterations osnowball
strategies will be referred to &Norm” , and the not normal- Woniddie 0.6 weight for themiddlecontext (Section 2.1
ized ones asRaw”. Thus, we have a list of four strategies: | W, 0.2 weight for theleft context (Section 2.1)
Raw RlogF, Norm andRlogF-Norm The choice of the weight- Wieight 0.2 weight for theright context (Section 2.1)

ing strategy can have a significant eﬂ‘ec? on the quality of new Table 6: Parameter values used for evaluating ~ Snow-
seed tuples that we use to start the next iteration of the system. 51 on the test collection.

¢ Choice of Pattern Similarity Threshold (7s;,,,): This thresh-

old controls how flexible the patterns are, both during the pattern

generation stage (i.e., how similar the occurrences of the exam-€xt vectors of each pattern. Among the pattern scoring strate-
ple tuples have to be in order to be grouped into one cluster),gies,RlogF-Normperformed the best in terms of precision and
as well as during the tuple extraction stage, wherg controls  recall, producing enough new seed tuples to alfwewballto

the minimum similarity between the context surrounding the po- sustain an acceptable rate of acquiring new patterns. In Sec-

tential tuple and a pattern, determining whether a tuple will be tion 5.2 we report results on the tables extracted after one itera-
generated. tion of the various techniques. As we will see, the performance

e Choice of Tuple Confidence Threshold£,): This threshold ~ of DIPRE tends to deteriorate after one iteration, while that of
determines the minimum confidence a tuple must have to be in-Snowbalremains stable.

| in th rt the next iteration.
cluded in the seed set to start the next iteratio 52 TestPhase

5 EXPERIMENTAL RESULTS As_, we discgssed, the only input .to tl‘.ﬁ@owballsystem during
this evaluation on the test collection were the five seed tuples of
Table 1. All the extraction patterns were learned from scratch by
running theSnowballsystem using the operational parameters
listed in Table 6, which worked best on the training collection.

In this section, we experimentally compare the performance of
Snowballand the alternative techniques that we discussed in
Section 4.2. Our experiments use the training and test collec-

tions of Section 4.1. In Section 5.1 we use the training collec- .
: X . The RlogF-Normmetric was used to score patterns for gener-
tion to determine the test settings for theowbalparameters of . ; X

ating the set of seed tuples for the next iteration. The results

Section 4.3. Then, in Section 5.2 we compare the performanceare renorted in Figure 9. The plot shows the performance of the
of Snowball DIPRE, andBaselineon the test collection. P 9 ' b P

systems as we attempt to extract test tuples that are mentioned
more times in the corpus. As we can s&mowballperforms
increasingly well as the number of times that the test tuples are
required to be mentioned in the collectionis increased. Also, no-
tice that while DIPRE has better precision tiamowbalbn the

5.1 Training Phase

Figure 8 summarizes the experimental results on the training
collection. As discussed in Section 3, we consider tupléggal

in dlffe.rent groups, based on their number of occurrences in theo-occurrence level (72% vs. 67% fSnowbal), Snowballhas
collection. (DIPRE an&nowballassume a scenario where tu-

ples occur redundantly in the collection.) Figure 8 () reports at all occurrence levels significantly higher recall than DIPRE
: ' : . andBaselinedo. This is consistent with the training results.
the average recall of the techniques as a function of the mini-
mum number of times that a tuple must appear in the training We attempted to determine if we could remedy DIPRE’s low
collection in order to be included ildeal For example, if we  recall by unning it for more iterations. Unfortunately, after the
focus only on tuples that occur two or more times in the training first iteration both recall and precision decreased. Figure 10 also
collection and defintdealaccordinglyBaselineachieves anav-  demonstrates th&nowbalis stablein a sense that it converges
erageRecallof around 70% whil&nowbalk value is highestat  to some reasonable values, while DIPRE quickly diverges. The
80% (Figure 8 (a)). From this figure, we can see that the averagereason for DIPRE'’s behavior is that DIPRE has no way of se-
recall of DIPRE andSnowbalimproves as we require tuples to  |ecting reliable tuples as the seed for its next iteration, while
occur more times in the collection. This is consistent with the Snowbaltakes advantage of the tuple confidence metric for this.
design principles underlying DIPRE ar&howballtailored to We report data for only two iterations for tiS@mowball-Plairbe-
collections with redundancy. Figure 8 (a) also shows that it is cause it converged after iteration 2 (i.e., it did not produce any
important to use punctuation in the extraction process: the re-new seed tuples).
call of Snowbalis more than twice as high as that®fowball-
Plain. Figure 8 (b) reports the average precision values for the As discussed in Section 3.2, we complete our evaluation of the
various techniques. precision of the extraction systems by manually examining a

sample of their output. For this, we randomly selected 100 tu-
We ran experiments on the training collection to determine opti- ples from each of the extracted tables, and manually checked
mal values fotr,;,, , 74, Tsup, and the optimal weight distribution ~ whether each of these tuples was a valid organization-location
Wiert, Wiiidaie, andW45, for the left, middle, and right con-  pair or not. We separate the errors into three categories: errors
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Figure 9: Recall (a) and precision (b) of Baseline DIPRE, Snowballand Snowball-Plaintest collection).

100
80 tooooo-oo e r————
= BO f--mmm e m o e T oo
X}
I Sy g
Baseline & B0 - BEazeline
20 |—=—DFRE | T . —=— DIFFE
—— Snowball-Flain A0 ) e Sniowball-Flain
—— Snaowball —— Snowball
0 T T 40 T
0 1 Herations Z 3 0 1 Herations Z 3
(a) (b)

Figure 10: Recall (a) and precision (b) of Baseline DIPRE, Snowballand Snowball-Plairas a function of the number of
iterations ( Idealtuples with occurrence > 2; test collection).



Columbia University Computer Science Department Technical Report CUCS-03288iber1 999

due to mistagging a location and assigning it to a valid organi-
zation (“Location” error), errors due to including a non-existing
organization (“Organization” error), and errors due to deducing
an incorrect relationship between a valid organization and loca-
tion (“Relationship” error). These different types of errors are
significant because they highlight different “culprits”: the “Lo-
cation” and “Organization” errors could be prevented if we had

12

6 CONCLUSIONS AND FUTURE WORK

This paper presentSnowball a system for extracting relations
from large collections of plain-text documents that requires min-
imal training for each new scenario. We intiuced novel strate-
gies for generating extraction patterns mowbal] as well as
techniques for evaluating the quality of the patterns and tuples
generated at each step of the extraction process. Our large-scale

a perfect named-entity tagger, whereas the “Relationship” errorsexperimental evaluation of our system shows that the new tech-

are wholly the extraction system’s fault (Table 7).

The last column in Table 7H;4.4;) is precision, calculated by
ignoring the “Organization” errors and computing the fraction
of valid organizations for which a correct location was found.

nigues produce high-quality tableaccording to the scalable
evaluation methodology that we introduce in this paper. Our
experiments involved over 300,000 newspaper articles.

We only evaluated our techniques on plain text documents, and
it would require future work to adopt our methodology to HTML

These values, in effect, correspond to the values of precision Weyata. While HTML tags can be naturally incorporated Btmw-

would have calculated if oudeal table included all the valid

organizations in the random samples. These figures, however

ball’s pattern representation, it is problematic to extract named-
entity tags from arbitrary HTML documents. In effect, state-of-

do not capture invalid tuples generated due to improper taggingthe—art taggers rely on textual clues from the text surrounding

of a string as an organization. From our manual inspection of a
random sample of 100 tuples frosach extracted table, we ob-

each etity, which may be absent in HTML documents that rely
on visual formatting to convey information, for example. Han-

served that DIPRE’s sample contained 74 correct tuples and 26d|ing arbitrary HTML documents is an important part of our

incorrect ones.Snowbalk sample contained 52 correct tuples
and 48 incorrect tuples, whiBaselinehas a majority of incor-

rect tuples (25 vs. 75). As we can see from the breakup of the

errors in the table, virtually all cdBnowbalk errors are tagging
related (i.e., “Location” or “Organization” errors). If we prune
the Snowbalk final output to only include those tupleéswith
Conf(t) > 0.8 = 1, then most of these spurious tuples disap-
pear. In effect, from a random sample of 100 tuples from this
pruned table, 93 tuples are valid and only 7 are invalid. Further-
more, none of the invalid tuples are due to “Relationship” errors
(third row of Table 7).

So far, the results that we have reported$oowballare based

future work. On a related note, we have assumed throughout
that the attributes of the relation we extract (i.e., organization
and location) correspond to named entities that our tagger can
identify accurately. As we mentioned, namedigrtaggers like
Alembic can be extended so that they learn to recognize entities
that are distinct in a context-independent way (e.g., numbers,
dates, proper names). For some other attributes, we will need
to extendSnowballso that its pattern generation and matching
could be anchored around, say, a noun phrase as opposed to a
named entity as in this paper. In the future, we will also general-
ize Snowballto relations of more than two attributes. Finally, a
crucial open problem is how to generalize our tuple and pattern
evaluation strategy of Section 2.3 so that it does not rely on an

on a table that contains all the “candidate” tuples generated dur-attribute being a key for the relation.

ing Snowbalk last iteration. As we saw in Table 7, the precision
of Snowbalk answer varies dramatically if we prune this table
using the tuple confidence thresheijd Of course, this last-step
pruning is likely to result in lower recall values. In Figure 11 we
explore the tradeoff between precision and recall for different
values of this last-step pruning threshold. A user who is inter-
ested in high-precision tables might want to use high values for
thisthreshold, while a user who is interested in high-recall tables
might want to use lower values of the threshold. For example,
by settingr, = 0.4 and filtering theExtractedtable accordingly,

we estimate the absolute precisionSriowbalk output to be
76% and recall to be 45%, both of which are higher than the
corresponding metrics of DIPRE’s output.

In summary, botlsnowbalbnd DIPRE exhibit significantly higher
precision tharBaseline In effect, Baselinetends to generate
many tuples, which results in high recall at the expense of low
precision.Snowbalk recall is at least as high as thatRdiseline

for most of the tests, with higher precision valu&nowbalk
recall is generally higher than DIPRE’s, while the precision of
both techniques is comparable.
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