
Abstract—An algorithm is presented which provides an op-
timal solution to the problem of scheduling non-relocatable time
intervals of bandwidth in differentiated services networks.
Simulations found an asymmetry between valuing an interval’s
length and bandwidth requirement. Longer intervals requiring
less resource are favored over shorter intervals requiring more
resource. The optimal algorithm is shown to respond appropri-
ately to price as a mechanism of control whereas the offline
greedy and the online FCFS algorithms do not. The solution
uses integer programming, and it is shown that, except in the
general case, the problem can be solved in polynomial time.

Index terms— Differentiated services, bandwidth manage-
ment, market-based control, scheduling algorithms.

A. INTRODUCTION

In a differentiated services[8][9] or integrated serv-
ices[16] environment, a service provider will allocate a
percentage of its overall bandwidth for use in assured
forwarding[18] or guaranteed service[17]. The provider
provisions access to this limited resource among multiple
price-competing customers. Market-based mechanisms
have been successfully applied to the problem of alloca-
tion and control of resources in large distributed sys-
tems[5][7]. Bandwidth markets as described in [12][3][5]
are such examples.

In this model, each customer requires bandwidth during
a unique time interval that is fixed in time (non-
relocatable) and the bandwidth requirement varies from
customer to customer. As such, each interval is uniquely
priced. The service provider may price each customer’s
requirement based on amount of bandwidth required, the
length of the interval, historical and current demand for
the time frame, and a variety of other variables such as
price competition.

Orthogonal to the question of pricing, service providers
must decide which customers will receive the guaranteed
service. Given a limited amount of bandwidth, in the
presence of previous allocations and overlapping intervals
of various prices, which subset of customers should a

service provider select to service in order to maximize
profits? This paper gives an optimal algorithm for solv-
ing this problem.

B. BANDWIDTH MARKET

Consider an environment in which customers purchase
bandwidth in advance for a specific time interval and
transmission rate1. Customers specify their requirements
as a 4-tuple, bid = (s,e,r,p), where s is the start time of
the interval, e is the end time of the interval, r is the re-
quired transmission rate and p is the price.

In such a competitive environment a service provider
can be queried by many comparative shoppers for the
price associated for their specific intervals. Upon making
their decision, some shoppers may return to the service
provider to purchase the service.

 I2 $1100

 I1 $600 I3 $600

|
T0 T1 T2 T3 T4 T5 T6

 time

Figure 1 Canonical example of overlapping requests.

The problem facing the service provider is deciding
which buyers should be serviced in order to maximize
overall profit. Each provider must make this decision in
the presence of previous allocations and overlapping bids.
For example, take the scenario in Figure 1 where the
buyer list contains three customers I1=(t1,t3,1Mb/s,$600),
I2=(t2,t5,1Mb/s,$1100), I3=(t4,t6,1Mb/s,$600), where the
first and second intervals overlap as well as the second
and third. A service provider with a 1 Mb/s line would
choose to service intervals I1 and I3 since the profit for

1 With futures contracts, payment is made at the time of product delivery.
Here, by the nature of the product, delivery is at a future time, but for our pur-
poses, whether payment is made now or at delivery time is irrelevent.

David Olshefski*, Li Zhangt, Danilo Florissi*, Yechiam Yemini*

 *Columbia University tIBM T. J. Watson Research
 1214 Amsterdam Avenue 30 Saw Mill River Road
 New York, NY, 10027 Hawthorne, NY 10532

An Optimal Algorithm for Scheduling Reservations in a Bandwidth Market

servicing both intervals out weights the profit for servic-
ing only I2. This canonical example is simple but in gen-
eral the decision is non-trivial. If the provider used a
greedy approach by choosing the bid with the highest
price, I2, he would be losing $100.

As reservations are accepted, intervals of bandwidth
become reserved and the problem recurses to the remain-
ing free intervals that the provider has yet to allocate.
For example, if the provider services interval I3 and the
customer for I1 buys from another provider, then the pro-
vider is left with allocating the free intervals T0- T4 and
T6- Tinfinity.

In the general case, it can be assumed that the provider
has a k wide channel to allocate and each interval requires
up to k units of bandwidth. In addition, previous alloca-
tions determine how much bandwidth is left for allocation
at any point in time. Figure 2 depicts the more general
problem.

 new intervals

 k
unallocated

allocated
|
T0 time

Figure 2 General problem.

Not shown in the figure, each interval has a unique
price – deciding which subset of the new intervals to
schedule in order to maximize profits is NP-HARD.

C. RELATED WORK

Cormen et al.[1] describe a similar offline problem
termed the activity-selection problem. In the activity
selection problem, a greedy algorithm is used to select a
maximum-size set of non-overlapping intervals for a sin-
gle resource. Where the greedy algorithm provides an
optimal solution w.r.t. scheduling the most amount of
resource, our problem seeks an optimal solution w.r.t.
maximizing profit.

Work on job scheduling assumes that the intervals
(jobs) to be scheduled can be relocated in time and fo-
cuses on computational measures such as maximizing
utilization, minimizing average completion time, mini-

mizing the number of late jobs, reducing the total late-
ness. For more information on job scheduling algorithms,
see Brucker[2].

Solving the initial problem as defined in Figure 1 is
equivalent to finding the maximum weight independent
set for an interval graph[11]. An interval graph is an un-
directed graph whose nodes have a 1-to-1 correspondence
with a set of intervals of a linearly ordered set (such as
the real line). Two nodes in an interval graph are con-
nected by an edge if and only if their corresponding inter-
vals intersect (ie. overlap). An independent set of a graph
is a subset of nodes, no two of which are adjacent. The
maximum weight independent set on a weighted graph is
the independent set whose member’s weight sum to the
greatest value. In this case, the weight assigned each
node is the profit for the associated interval.

The interval graph for the example in Figure 1 is:

 I1 I3 I2

The independent sets are {I1}, {I 2}, {I 3}, and {I1, I2},
the last of which is the maximum weight independent set.

D. THE SOLUTION

The following briefly describes the formulation of the
solution and leaves further details and an example to the
appendix. The solution is optimal and is based on integer
programming. The basic approach to integer program-
ming is to state the problem as a maximization of

 cTx or ∑
=

n

i

ii

1

xc

Subject to the constraints:

bAx ≤

Where:

x is the n-vector of integer unknowns
cT is the n-vector objective function
A is an mn × matrix
b is an m-vector
n number of elements
m number of constraints

The problem is formulated as follows. Let cj be the
profit received by the provider for scheduling interval Ij

(costp −) and let x represent the decision to schedule an

interval or not: xj = 1 if interval Ij is scheduled and xj = 0
if it is not. The solution to the problem is x and maxi-
mizing cTx chooses from all possible schedules the one
that generates the most profit.

The constraint we wish to satisfy is that the amount of
scheduled bandwidth does not exceed that which is avail-
able for use. Therefore bi is the amount of bandwidth that
is available for scheduling at Ti.

Since intervals are continuous in time between their
own boundary points, we need only use the set of all
boundary points as the test for the constraint. The jth col-
umn in matrix A represents interval Ij and the ith row in A
represents Ti, where T is the list of all boundary points
sorted by time. Aij is the amount of bandwidth required
by interval Ij at Ti. The general integer problem is for-
mulated as:

































































































≤

nn

m

n

mnm

n

x

x

x

c

c

c

MAX
b

b

b

x

x

x

AA

A

AAA

MM

M

M

M

LL

L

L

LL

MM

MMMM

MMM

L

2

1

2

1

2

1

2

1

1

21

11211

,

1

1

1

10

010

010

01

xc

b

x

A

T

Where:











+=

≤∈

=
otherwise0

1

and

jmi

miIT
br

r
ji

j

ijA





=
otherwise

scheduledisif

0

1 j
j

I
x





>
≤

=
miif

miifTi
i

1

atscheduledbetoresourceofamount
b

cj is the profit received for scheduling interval Ij

rj is the amount of resource required to service in-
terval Ij

br is the base unit measure of the resource
n number of intervals

m number of boundary points at which to verify
constraint

The identity matrix that is appended as the lower half of
Aij together with the identity vector appended to b repre-
sents the constraint that an interval be scheduled only
once.

E. SIMULATION RESULTS

Simulations showed an asymmetry between the value
of an interval’s length and its bandwidth requirement. In
all cases, longer intervals were favored over shorter inter-
vals but, surprisingly, customers requiring less bandwidth
where favored over customers requiring more bandwidth.
This “favoritism” is equivalent to pricing: longer intervals
cost less (per time unit) to purchase than shorter inter-
vals. Counter to intuition, the higher the bandwidth re-
quirement, the greater the price per unit.

This inherent aspect of the problem mimics real-life
markets. Producers often prefer to sell in bulk due to
reduced costs. Consumers often prefer to buy in bulk due
to reduced prices. Purchasing a small amount of an item
often requires greater expense relative to the amount of
product being purchased (i.e., you end up paying more
per ounce for a small jar of mouthwash than for the econ-
omy size).

One consequence of this effect would be to entice cus-
tomers in a computation market to purchase larger
chunks of resource, which in turn, reduces fragmentation
of the provider’s resource. This also motivates the exis-
tence of brokers or middlemen, speculators who purchase
large time intervals of services which they then break-up
into smaller pieces and resell for profit. Without the in-
herent higher prices for smaller intervals this kind of
speculation would have much greater risk.

The counter-intuitive effect seen for bandwidth is a re-
sult of the difficulty in getting a good “fit” when sched-
uling a large bandwidth chunk. This is mostly due to the
difference between bandwidth and time. The amount of
time required is proportionally greater than the amount of
bandwidth units required.

The simulations also showed the algorithm responding
appropriately to price and that price can be used as a
mechanism for control. Customers willing to pay more
increase their probability of meeting their requirements.
The offline greedy algorithm and online FCFS, except for
certain cases, are price insensitive, and therefore ineffec-
tive when using price as a mechanism for priority. Unless
otherwise specified, in each simulation the price charged
by the provider for scheduling an interval was equal to
the product of the length of the interval and the bandwidth

requirement ($ per bandwidth unit per second). Thus,
profit equaled utilization.

1st. Single Resource/Single Requirement

This case is the situation where the provider has a sin-
gle channel to allocate and the customers require the en-
tire channel during an interval. Figure 3 shows, that with
the interval length being uniformly distributed between
[1..100], the probability of being scheduled increases
with the length of the interval. Scheduling longer intervals
reduces fragmentation, maximizing utilization (profit).
At the same time, there is a slightly higher probability of
scheduling very small intervals, presumably to fill in the
small fragmentation gaps left between the longer inter-
vals.

Figure 3 Longer intervals favored over shorter intervals.

Figure 4 shows a similar but less pronounced effect
when the interval length is distributed exponentially with
a mean of 25 time units. This is due to the increased
amount of smaller intervals available for scheduling,
which reduces the need to schedule long intervals to avoid
fragmentation.

Figure 4 Larger number of shorter intervals competing against
longer intervals.

In the next experiment, we doubled the price for sched-
uling intervals of length 20-30 time units. This was an
attempt to increase the probability of these intervals being
scheduled, essentially using price as a control mechanism.

Figure 5 Higher prices improve prob. of being scheduled.

As expected, Figure 5 and Figure 6 shows the higher
price for these intervals increased their probability of be-
ing scheduled, at the expense of other intervals. Even
within the range of 20-30 we see that the longer intervals
are favored over shorter ones (and we still see very short
intervals being favored to fill in fragmentation gaps). In
a highly competitive long running simulation, one would
expect to see an impulse spike at 30 and a smaller peak
near 1. Figure 7 further supports this – here we also dou-
bled the price for intervals of length 60-70 as well, which
do better than the 20-30 length intervals.

Figure 6 Exponential distribution shows similar shape.

Figure 7 20-30 and 60-70 are doubled in price – the longer set
is favored over the shorter set.

2nd. Multiple Resource/Single Requirement

In this experiment the service provider allocated a 10x
wide channel among customers each requiring only a 1x
channel. In Figure 8 we again see the sensitivity to price
for intervals of length 20-30, but it is reduced due to the
10 fold increase in the amount of resources and resulting
reduction in competition. Both are reflected in the differ-
ence in utilization as well (see Table 1).

This is an example of the general problem, where the
provider is allocating a 10x channel and each customer
requires an interval between 1 and 100 time units and
between 1 and 10x channels (uniformly distributed).
Figure 9 shows that the effect of favoring longer intervals
is still present but not as strong.

Figure 8 More supply, less competition, less price sensitive

3rd. Multiple Resource/Multiple Requirement

Figure 9 Longer intervals favored, but not as strongly.

Figure 10 shows the probability of being scheduled
given the bandwidth requirement. Intervals requiring less
bandwidth are favored over intervals requiring larger
amounts of bandwidth. This is most likely due to the
problem of “fitting” a large bandwidth chunk into the
schedule along with other intervals.

Figure 10 Lighter bandwidth requirements favored over higher.

Figure 11 and Figure 12 show the results for doubling
the price for all intervals whose length was between 20
and 30 time units and required 6 units of bandwidth.

Figure 11 Intervals of length 20-30 priced higher.

Figure 12 Intervals of 6 bandwidth units priced higher

Both graphs reflect the algorithm’s reaction to the in-
crease in price for this narrow range of customer bids.

F. COMPARISON TO OFFLINE GREEDY

Table 1 compares the optimal solution with results
from a greedy algorithm that selects intervals based on
price. These simulations were similar to those in Section
E except that the price per bandwidth unit per time unit
was randomly chosen for each interval in the range of
[.80, 1.20]. The greedy algorithm by design would tend to
choose longer intervals since it sorted the intervals by
profit then checked for “fit” from the list in a FIFO man-
ner. Table 1 shows the percentage of utilization and av-
erage profit in dollars.

The greedy algorithm is only able to obtain 70-91% of
the profit that the optimal algorithm obtains. Looking at
the results for the simulation similar to that of Figure 7,
the greedy algorithm is able to obtain almost 89% of the
profit of the optimal solution (Figure 13 shows a close
match between the two).

Simulation Optimal Greedy FCFS
Figure 3 92% $150 73% $122 59% $83
Figure 4 93% $150 86% $137 48% $70
Figure 5 86% $197 72% $137 59% $95
Figure 6 85% $205 84% $160 48% $84
Figure 7 76% $258 68% $229 59% $107
Figure 8 79% $1400 69% $1180 59% $938
Figure 9,10 86% $1370 70% $1100 55% $775
Figure 11,12 84% $1415 69% $1110 55% $777

Table 1 Optimal, greedy and FCFS

Figure 13 Optimal vs. greedy in simulation similar to Figure 7.

Figure 14 Same utilization but different profit.

The greedy algorithm was able to obtain 79-99% of the
utilization that the optimal algorithm obtained. For the
simulation in Figure 6, the greedy algorithm obtains
about the same utilization as the optimal algorithm but
with 22% less profit. Figure 14 shows that the greedy
algorithm schedules a higher percentage of longer inter-
vals and a lower percentage of the higher priced intervals
in the range 20-30 time units (note the scale for Figure 14
is different compared to previous figures).

The greedy algorithm is particularly ineffective in the
general case. Figure 15 shows the result corresponding to
the last entry in Table 1. The greedy algorithm produces
the opposite effect compared to the optimal algorithm
with regard to scheduling bandwidth and is insensitive to
price. The same result is obtained with respect to interval
length (not shown). Although the greedy algorithm ob-
tained 78% of the profit and 82% of the utilization that
the optimal algorithm obtained, its insensitivity to price
results in an environment where price could not be used
as a mechanism for control.

Figure 15 PDF for scheduled bandwidth.

G. COMPARISON TO ON-LINE FCFS

There is a subtle distinction between the problem pre-
sented here which is an offline optimization problem and
what is referred to as an online optimization problem. In
our model, the service provider collects a certain amount
of bids before deciding which bids to service. The pro-
vider may accept all bids during a time period or until a
specific deadline. There may be a limit on the number of
bids collected, after which point a decision is made. If
the limit on the number of bids is set at one, the problem
becomes an online decision.

In the online problem, the service provider decides
whether or not to service each incoming bid at the time it
is received. Only past knowledge can be used to aid in
the decision - all bids to arrive in the near future are
strictly unknown. The goal is the same. The service pro-
vider attempts to maximize profits by deciding whether or
not to service a bid when it arrives.

One simple approach to solve the online problem is to
accept a bid if there is enough resources to match its re-
quirements (FCFS). Table 1 includes the utilization and
average profit for online FCFS.

The simulation in Figure 6 shows how FCFS ignores
price posting a 43.5% reduction in utilization but a 59%
reduction in profit. Figure 16 compares FCFS with the
optimal algorithm for the simulation similar to Figure 3.
The FCFS result is the opposite of that for the optimal
algorithm. Since FCFS ignores price, FCFS produces a
similar shape across all simulations. Using results from
the simulations of the optimal algorithm to construct bet-
ter online heuristics than FCFS is left for future work.

Figure 16 FCFS compared to optimal.

H. PERFORMANCE

 All simulations were executed with lp_solve[19] on a
400 Mhz Pentium machine running Windows NT 4.0
using the high resolution timer. The algorithm as simu-
lated in 1st Single Resource/Single Requirement (Figure
3 - Figure 7) took approximately 8 msecs. The simula-
tions in 2nd Multiple Resource/Single Requirement
(Figure 8) took approximately 18.5 msecs. Figure 17
shows the probability density functions of the CPU time
for the simulations in Figure 3 and Figure 8.

The performance time of the algorithm in the general
case (Figure 9 - Figure 12), is about 300 times slower
than the simpler cases previously mentioned. Although
the average time was 6.5 seconds, the worst case was 6
minutes. Figure 18 shows that the performance is less
predictable than the other two simpler cases.

Figure 17 PDF of CPU time for simpler cases.

Figure 18 PDF of CPU time for general case.

This has implications on the use of the algorithm, given
the time scale of the resource being allocated and how far
into the future reservations are being made. Depending

on these constraints, it may be necessary to place a limit
on the computation time, after which a non-optimal but
fast algorithm can be executed to obtain a reasonable re-
sult.

I. CONCLUSION

This paper presented an optimal algorithm for sched-
uling reservations in a differentiated services environ-
ment. The algorithm presented is based on integer pro-
gramming and can be executed in polynomial time for the
single resource/single requirement and multiple re-
source/single requirement cases. Through simulations it
was shown to exhibit the same advantage to buying and
selling in bulk that arise in human markets and was
shown to respond appropriately to price control. One
result was an asymmetry between interval length and
bandwidth requirement: that longer intervals requiring
less bandwidth are favored over shorter intervals requir-
ing more bandwidth.

Simulations showed that a greedy offline algorithm
could perform within 70%-91% of optimal (w.r.t. profit),
and is particularly ineffective in the general case with
respect to treating price as a mechanism of control. An
online FCFS algorithm could obtain anywhere between
41%-67% of optimal and was ineffective w.r.t. price
control under all conditions.

Several other problems could be investigated as follow
on work. Bids could be modified to be a 5-tuple
(s,e,r,p,l) where s is the earliest start time, e is the dead-
line, r is the required transmission rate, p is the price and
l is the length of a continuous interval. In other words,
the start time of the interval can be adjusted within a lim-
ited bounds.

Similar to the previous would be (s,e,t,p) where s is the
earliest start time, e is the deadline, t is the required
transmission rate times the length, and p is the price.
Here, the customer is only asking for a transmission
block – the provider is free to choose the length and
bandwidth of the (continuous) interval which best fits his
schedule and is bounded by s and e.

Finding a solution to the online optimization problem,
determining how long a provider should collect incoming
bids in order to maximize profits, applying the algorithm
to more than one competitive supplier, and customer
strategies is the subject of future research.

J. REFERENCES

[1] T. Cormen, C. Leiserson and R. Livest, Introduction to Algorithms,
McGraw Hill, ISBN 0-262-03141-8

[2] P. Brucker, Scheduling Algorithms, Springer Verlag, ISBN 3-540-
64105-X.

[3] Band-X, http://www.band-x.com
[4] RateXchange, http://www.ratexchange.com
[5] S. Clearwater, Market-Based Control: A Paradigm for Distributed

Resource Allocation, ISBN 9810222548, World Scientific Publishing.
[6] Multiagent Systems on the Net and Agents in E-commerce, Communi-

cations of the ACM, Marc 1999, Vol. 42, No. 3.
[7] Proceedings of the First International Conference on Information and

Computation Economies, ICE-98, ISBN 1-58113-076-7, ACM.
[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An

Architecture for Differentiated Services, RFC 2475, Dec. 1998,
ftp://ftp.isi.edu/in-notes/rfc2475.txt

[9] Y. Bernet, J. Binder, S. Blake, M. Carlson, B. Carpenter, S. Keshav, E.
Davies, B. Ohlman, D. Verma, Z. Wang, W. Weiss, A Framework for
Differentiated Services, Feb. 1999, http://www.ietf.org/internet-
drafts/draft-ietf-diffserv-framework-02.txt

[10] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 1980,
ISBN 0-12-289260-7.

[11] A. Frank, Some Polynomial algorithms for certain graphs and hy-
pergraphs, Proc. 5th British Combin. Conf., Congressus Numerantium No.
XV, Utilitas Math., Winnipeg, MR53 #13500.

[12] F. Reichmeyer, L. Ong, A. Terzis, L. Zhang, R. Yavatkar, A Two-Tier
Resource Management Model for Differentiated Services Networks, Nov
1998, http://www.ietf.org/internet-drafts/draft-rotzy-2-tier-management-
00.txt.

[13] A. Mehra and D. Verna, Architectural Considerations for DiffServ
Servers, Feb. 1999, http://www.ietf.org/internet-drafts/draft-mehra-
diffserv-servers-00.txt

[14] Y. Bernet, D. Durham, F. Reichmeyer, Requirements of Diff-serv
Boundary Routers, Nov. 1998, http://www.ietf.org/internet-drafts/draft-
bernet-diffedge-01.txt.

[15] Nemhauser and Wolsey , Integer and Combinatorial Optimization,
Wiley, 1988.

[16] R. Braden, D. Clark, S. Shenker, Integrated Services in the Internet
Architecture: an Overview, rfc1633, June. 1994, ftp://ftp.isi.edu/in-
notes/rfc1633.txt

[17] S. Shenker, C. Partridge, R. Guerin, Specification of Guaranteed
Quality of Service, rfc2212, Sep. 1997, ftp://ftp.isi.edu/in-
notes/rfc2212.txt

[18] J. Heinanen, T. Finland, F. Baker, W. Weiss and J. Wroclawski ,
Assured Forwarding PHB Group, Feb 1999, ftp://ftp.isi.edu/in-
notes/rfc2597.txt

[19] Eindhoven University of Technology, Department of Electrical Engi-
neering, Information and Communications Systems Group,
ftp://ftp.es.ele.tue.nl/pub/lp_solve

K. APPENDIX I

Further details on the solution presented in Section D
are provided here to give the reader a better understand-
ing of the formulation.

Consider the simple base case: the transmission rate
required by all customers is the same, r, and the service
provider has a single line at rate r in which to allocate.
The integer program for the example in Figure 1 is shown
below. The solution of []101x indicates that the

service provider should accept I1 and I3, but not I2.





















































































≤

3

2

1

3

2

1

600$

1100$

600$

,

1

1

1

1

1

1

100

110

110

011

011

001

x

x

x

MAXIMIZE

x

x

x

xc
b

x

A
T

Notice that each column in A can be described by the
regular expression *0+1+1*0, since each column contains
a sequence of (at least two) 1’s representing the set of
boundary points contained in the interval. Matrices hav-
ing this special structure are referred to as interval matri-
ces. It is known that if A is an interval matrix, then it is
totally unimodular. This means that if b is integral, then
every vertex of the polytope bAx ≤ is integral. There-
fore, it is guaranteed that the linear programming relaxa-
tion of the integer programming problem always has an
integer optimal solution. We can therefore find this opti-
mal solution in polynomial time using interior-point algo-
rithms.

 There is a minor issue concerning whether or not two
adjacent intervals are considered overlapping if they only
share a single boundary point. The formulation above
considers this an overlap and will not schedule two such
intervals together. This can be avoided by simply ensur-
ing that if two intervals overlap, they do so at more than
one point – start points for intervals can be boundary
aligned on a different boundary than what interval end
points are aligned on.

From the base case a slightly more general problem can
be tackled: the service provider now has k resources in
which to allocate. Equivalently, the service provider can
provide service for up to k overlapping customer requests
at any point in time. The integer program is modified by
changing bi to be the number of overlapping intervals that
can be serviced at Ti. Initially bi is set to k, but as inter-
vals are allocated which include Ti, bi is reduced from k.

Allowing the scheduling of overlapping intervals, re-
quires the additional constraint that the same interval is
not scheduled more than once. This is solved by simply
appending the identity matrix to the bottom of A and set

1=ib for mi > , where m is the number of boundary
point constraints.

It should be noted that the new matrix A is an interval
matrix plus an identity matrix. This matrix is not an in-
terval matrix. However, Proposition 2.3 in Nemhauer
and Wolsey[15] states that if A is totally unimodular, and
b, c, d, e are integers, then the polyhedron (b <= Ax <=
c, d <= x <= e) is integral. In our case, the new matrix is
still totally unimodular. Therefore, using linear pro-

gramming algorithms, the problem can still be solved in
polynomial time.

As intervals are allocated, their boundary points be-
come relevant as checkpoints in the problem, therefore
the boundary points of previously allocated intervals are
included in T. This requirement can be shown by an ex-
ample.

 I4 $1000

 I3 $600

|
t0 t3 t4 t6 t7

Figure 19 I3 must be included as a constraint.

Suppose a provider with 1=k resource has allocated
an interval I3=(t4,t6,1Mb/s,$600) and the bid list contains
only one bid, I4=(t3,t7,1Mb/s,$1000). Graphically, this is
depicted in Figure 19. Obviously points t4 and t6 are
needed as constraints to obtain the correct solution.

Referring back to Figure 1, assume the provider starts
with a 4Mb/s line, four times the capacity of the 1Mb/s
base rate (4=k). The integer program now becomes:

































































































≤

3

2

1

3

2

1

600$

1100$

600$

,

1

1

1

4

4

4

4

4

4

100

010

001

100

110

110

011

011

001

x

x

x

MAXIMIZE

x

x

x

xc

b

x

A

T

Which solves to []111x indicating that the service

provider has enough bandwidth to service all three cus-
tomer bids. Now assume that only the counter-offer for
interval I3 is accepted and allocated. This leaves the free
intervals T0-T4 and T6-Tinfinity at an available rate of
4Mb/s and the partially allocated interval T4-T6 at the
rate of 3Mb/s. Assume that the bid list does not change
and the bids for I1 and I2 are still on the bid list when the
provider next decides to check the market. The formula-
tion of the integer program taking the allocation for I3

into account is:











































































≤
2

1

2

1

1100$

600$
,

1

1

3

3

3

4

4

4

10

01

00

10

10

11

11

01

x

x
MAXIMIZE

x

x

xc

b

x

A

T

b4, b5, and b6 are decremented to 3 to reflect that
1Mb/s of the 4Mb/s has already been allocated at T4, T5,
and T6. This solves to []11x indicating that enough

resource is still available to service both I1 and I2.
The general solution obtained in Section D is arrived at

by assuming that customers may have an arbitrary
transmission rate requirement. The integer program is
only slightly modified by changing Aij to be the amount of
resource required by the customer at interval Ij at Ti

rather than the boolean value of 0 or 1 to indicate if the
interval contains Ti (i.e., that interval Ij requires 1Mb/s of
bandwidth at Ti).

Referring to the example suppose that when the pro-
vider revisited the market for the second time, I2 was in-
stead (t2,t5,4 Mb/s,$3100). The problem would be for-
mulated as:











































































≤
2

1

2

1

1100$

600$
,

1

1

3

3

3

4

4

4

10

01

00

40

40

41

41

01

x

x
MAXIMIZE

x

x

xc

b

x

A

T

Which solves to []01x . The previous allocation of I3

prevents the service provider from accepting I2. This
general case formulation does not preserve the interval
matrix property of A, and is therefore, more computa-
tionally intensive to solve.

Notice that in the preceding sections we referred to
profit rather than revenue. This is an important distinc-
tion that allows the algorithm to distinguish between in-
tervals whose price is the same but whose resource con-
sumption is not. Graphically this is depicted in Figure
20. In this case, the service provider would prefer to
schedule I3 since it requires less resource. If cj is set to

costrevenue − , then the algorithm will break ties such
as these by selecting the interval that requires less re-
source.

 I4 $600

 I3 $600

|
t0 t3 t4 t6 t7

Figure 20 Including resource cost as part of profit.

This shows a characteristic of the problem – multiple
optimal solutions may exist which in a sense represent a
tie. Another situation where multiple optimal solutions
may exist for this problem is the following:

 I4 $600

 I3 $200 I5 $400

|
t0 t3 t4 t6 t7

Figure 21 Equally profitable choice.

Scheduling I4 is equally profitable as scheduling both I3

and I5. If the service provider always chose the longer
interval over the two shorter ones a bias would exist pe-
nalizing shorter intervals – shorter intervals would have
to pay more in order to receive equal consideration. To
remove this bias, the service provider needs only to alter-
nate between choices over time. This can be done by
simply adding or subtracting a small fixed tax to each
interval. Decreasing each interval’s profit by a small
amount favors the choice of scheduling fewer but longer
intervals, increasing the profit favors scheduling more
intervals but of shorter length. In actuality, this kind of tie
would probably be so infrequent as to have only a minis-
cule effect on outcome, but is presented here for com-
pleteness.

A simple mechanism can be used with the algorithm
described above to allocate a specific resource (channel)
to a specific scheduled interval – graph coloring[10]. Sort
the list of scheduled intervals by increasing start time.
Allocate the first interval to the set of resources that are
available at the earliest time. Applying this greedy ap-
proach for the rest of the intervals on the list results in a
mapping between resources and intervals that satisfies the
constraints imposed by the algorithm.

