
MINIMALIST: An Environment for the Synthesis,

Veri�cation and Testability of Burst-Mode Asynchronous

Machines

Columbia University Computer Science Dept.

Tech Report #CUCS-020-99

Robert M. Fuhrer* Steven M. Nowick� Michael Theobald*
Niraj K. Jhay Bill Linz Luis Plana*

*Dept. of Computer Sci.
Columbia University
New York, NY 10027

yDept. of Electrical Eng.
Princeton University
Princeton, NJ 08540

zDept. of Elec. & Comp. Eng.
Univ. of Calif. at San Diego

La Jolla, CA 92093

July 26, 1999

Abstract

Minimalist is a new extensible environment for the synthesis and veri�cation of burst-mode asyn-
chronous �nite-state machines. Minimalist embodies a complete technology-independent synthesis
path, with state-of-the-art exact and heuristic asynchronous synthesis algorithms, e.g. optimal state
assignment (Chasm), two-level hazard-free logic minimization (Hfmin, Espresso-HF, and Impymin),
and synthesis-for-testability. Unlike other asynchronous synthesis packages, Minimalist also o�ers
many options: literal vs. product optimization, single- vs. multi-output logic minimization, using vs.
not using fed-back outputs as state variables, and exploring varied code lengths during state assignment,
thus allowing the designer to explore trade-o�s and select the implementation style which best suits the
application. Minimalist benchmark results demonstrate its ability to produce implementations with an
average of 34% and up to 48% less area, and an average of 11% and up to 37% better performance, than
the best existing package [38]. Our synthesis-for-testability method guarantees 100% testability under
both stuck-at and robust path delay fault models, requiring little or no overhead. Minimalist also fea-
tures both command-line and graphic user interfaces, and supports extension via well-de�ned interfaces
for adding new tools. As such, it is easily augmented to form a complete path to technology-dependent
logic.

1 Introduction

While asynchronous circuits have undergone a renaissance driven by signi�cant renewed interest in the last
decade, their promises � reduced power, increased performance, and robustness � have only begun to
be fully realized [38][6][21][16][29][15][18][31][19]. Although several of these methods have been e�ective,
several synthesis steps still lack optimal solutions or practical tools. Likewise, a lack of well-integrated and
extensible environments within which to embed these tools leaves designers without a smooth synthesis

�This research was funded in part by NSF CAREER Award MIP-9501880, NSF RIA grant MIP-9308810, NSF grant CCR-
97-34803, by a supplement to NSF MIP-9501880 for CAD software tool development and by an Alfred P. Sloan Research
Fellowship.

1

path. By contrast, the synchronous community possesses a wealth of such tools and environments, both
commercial and academic [10], which bene�t both researchers and end-users.

Thus, Minimalist makes contributions on several fronts:

� An integrated synthesis path consisting of state-of-the-art asynchronous synthesis algorithms:

� Chasm, the �rst general optimal state encoding tool for asynchronous machines, providing both
exact and �xed-length modes, and which can produce exactly-minimum output logic, a key
parameter in asynchronous system performance

� Hfmin, the only exact hazard-free symbolic two-level logic minimizer, supporting both single-
and multi-output implementations

� Impymin, a new implicit exact hazard-free two-level logic minimizer, capable of solving all avail-
able benchmark problems in under 15 minutes, including several previously unsolvable problems

� Espresso-HF, a very fast new heuristic hazard-free two-level logic minimizer, which typically
produces optimal or near-optimal results in under 3 seconds

� Synthesis for testability, yielding 100%-testable multi-level implementations under either stuck-
at or robust path delay fault models, with little or no area overhead

� In contrast to existing synthesis paths, Minimalist provides a single synthesis path able to produce
implementations in a variety of styles (e.g., single-output vs. multi-output, using vs. not using fed-
back outputs as state variables, exploring various state code lengths) under various cost functions,
allowing the exploration of design trade-o�s

� The �rst complete and practical technology-independent synthesis path for burst-mode circuits using
fast optimal algorithms

� An easily-usable environment with a software framework which can readily incorporate new tools

Minimalist currently supports widely-used plain burst-mode [22][32] speci�cations. Extended burst-mode
speci�cations [42] will be supported in a forthcoming release.

2 Background and Overview

2.1 Asynchronous Synthesis

Asynchronous controller synthesis follows a �ow similar to that of synchronous synthesis; however, it
presents unique problems requiring signi�cantly di�erent solution methods. Like synchronous synthesis,
the synthesis trajectory is divided for tractability's sake into several steps: state minimization, state encod-
ing, two-level logic minimization, multi-level transformation, synthesis for testability, and so on. Each of
these steps can be modeled roughly after its synchronous counterpart, but poses additional complications.
We now review each step, outlining the basic problems unique to asynchronous synthesis.

The task of state minimization is to �nd a minimum-cardinality closed state cover for the original
burst-mode speci�cation. The result is a reduced machine realizing the original speci�cation [13]. As with
synchronous machines, this problem can be solved by �rst forming a set of compatibles and then forming
a binate covering problem expressing the two basic sets of constraints (coverage and closure) [12]. Asyn-
chronous machines, however, require di�erent forms of compatible in order to be assured of the existence
of a hazard-free logic implementation [23].

2

State encoding produces a set of binary codes for the symbolic states of the reduced machine. For
synchronous machines, all encodings which distinguish the states are valid; however, typically this is per-
formed judiciously, so as to minimize logic area [9], improve performance, or reduce power consumption.
By contrast, asynchronous machines must be encoded so as to avoid critical races [35]. Further, if optimal
logic is to be obtained, logic hazards [36][24] must be taken into account [11].

Finally, to ensure correct operation, two-level logic minimization for burst-mode asynchronous machines
must also take care to avoid logic hazards. Recent developments in this area include exact multi-valued-input
(i.e., mvi)/multi-output minimization [11], fast heuristic minimization [33], and exact implicit minimiza-
tion [34].

An additional issue facing asynchronous synthesis is the potential for using fed-back outputs to reduce
the number of state variables and the overall implementation complexity. In this machine implementation

style, primary outputs are fed back as additional input variables, which help to identify the machine's
present state, thereby reducing the need for distinct state variables. The loading on the outputs may be
minimal (only a short path to a feedback bu�er is added to its fan-out), but the savings in overall logic
complexity can be dramatic. Care must be taken, however, in various synthesis steps, in order to ensure
that the use of fed-back outputs does not introduce hazards or critical races.

2.2 Burst-Mode Speci�cations

Minimalist addresses the class of asynchronous controller speci�cations known as burst-mode, a gener-
alization of the traditional multiple-input change (MIC) mode [36]. Burst-mode was �rst formalized by
Nowick [22], who also developed Uclock, a systematic synthesis method for hazard-free implementations.
This speci�cation style is based on more ad-hoc methods used earlier by Davis et al.. [8].

Burst-mode machines allow multiple inputs to change concurrently, but, unlike MIC machines, in any
order and at any time. This relaxation considerably reduces the timing constraints placed on the environ-
ment, but nonetheless allows economical and high-performance implementations. In particular, applying
Nowick's method for exact two-level hazard-free logic minimization [25] yields low-area, high-performance
circuits.

Burst-mode has been successfully used by both academia and commercial interests to design and im-
plement a number of signi�cant circuits, for example, at Stanford, UCSD, HP, AMD and Intel.

The speci�cations are most easily illustrated by example. A burst-mode speci�cation for a distributed
mutual-exclusion controller with 3 inputs and 3 outputs is shown in Figure 1. The unique starting state (S0)
is indicated by a 'v', and initial input and output values are either explicitly speci�ed or (as in the �gure)
default to 0. Each arc is labelled with a set of input and output transitions, known as bursts, separated by
a '/'. Rising transitions are denoted by a '+'; falling transitions, by a '-'.

The operation of a burst-mode machine is as follows. Starting in a given state, the machine remains
stable in that state until a complete input burst arrives. Individual inputs within that burst may arrive in
any order and at any time. Once the last input arrives, the burst is complete. The machine then generates
the corresponding output burst, if any, and moves to the speci�ed next state. The environment allows the
machine to settle, and the next cycle begins.

Figure 1 illustrates burst-mode operation. For example, consider the transition from S2 to S0, with
corresponding input and output bursts LIN-,RIN- and LOUT-, respectively. As a result, when in S2, if the
pair of input changes LIN- and RIN- arrive at any order, and within any time window, the machine responds
with a falling edge on LOUT and a transition to S0.

Burst-mode speci�cations must obey two important restrictions. First, input bursts must not be empty;
in the absence of input changes, the machine remains stable in its current state. Second, the so-called
maximal set property stipulates that no arc leaving a given state may possess an input burst that is a
subset of any other arc leaving that state. This property guarantees that, at all times, the machine can

3

S0

S4

S5 S7
LIN+ /

LOUT+

UIN+ /
UOUT+

S6

S2

LIN+ /
ROUT+

S3 S1

LIN-, RIN- /
LOUT-

UIN- , RIN- /
UOUT-

UOUT+, ROUT-
RIN+ /

UIN- /
UOUT-

LOUT-
LIN- /

ROUT+
UIN+ /

LIN
RIN
UIN

INPUTS:
LOUT
ROUT
UOUT

OUTPUTS:

RIN+ /
LOUT+,ROUT-

DME-FAST-E:
Distributed Mutual Exclusion

Figure 1: Burst-mode speci�cation for a distributed mutual-exclusion controller

4

name DME_FAST_E

input LIN 0

input RIN 0

input UIN 0

output LOUT 0

output ROUT 0

output UOUT 0

0 1 LIN+ | ROUT+

0 3 UIN+ | ROUT+

1 2 RIN+ | LOUT+ ROUT-

2 0 LIN- RIN- | LOUT-

3 4 RIN+ | UOUT+ ROUT-

4 5 UIN- RIN- | UOUT-

5 6 UIN+ | UOUT+

5 7 LIN+ | LOUT+

6 5 UIN- | UOUT-

7 0 LIN- | LOUT-

Figure 2: Textual (.bms) burst-mode speci�cation for DME-FAST-E

unambiguously decide whether to follow a transition or remain stable.
It is important to understand that, in a given burst-mode speci�cation, any unspeci�ed input combi-

nations are forbidden. For example, the input burst RIN+ in state S0 in the speci�cation of Figure 1 is
prohibited. In other words, the surrounding circuitry must never generate that input combination. Any
such combinations can thus be treated as don't-cares, and used to optimize the machine's implementation.

It is also conventional to adhere to a simple constraint, in order to ensure that the burst-mode speci�ca-
tion can be properly synthesized1. Each state must have a unique entry point, i.e., a unique set of input and
output values upon entry. In other words, each state has a single total state that is the destination of one
or more transitions. Note that this property is not necessary for proper burst-mode operation. However,
it tends to produce machines which are more easily minimized, and which are more easily proven to have
hazard-free implementations.

An equivalent textual burst-mode speci�cation (as used by Minimalist and Meat [7]) appears in
Figure 2, and an equivalent �ow table in Figure 3.

It is easy to see from Figure 3 that burst-mode speci�cations frequently o�er signi�cant opportunity for
state minimization. This due to the unique entry point criterion, which generally results in states which
bind the output and next-state functions in only a few input columns.

2.3 Previous Work

We now brie�y review two previous burst-mode asynchronous synthesis systems, and compare them to
Minimalist.

The Uclock [23] system is a nearly complete path from plain burst-mode speci�cations to two-level
logic. It incorporates a safe, exact state minimization algorithm, and the �rst exact hazard-free single-
output logic minimization algorithm [24]. Unlike Minimalist, however, it o�ers no automated method for

1This is in fact a su�cient, but not necessary, constraint.

5

Inputs: LIN, RIN, UIN;

Outputs: LOUT, ROUT, UOUT;

#Sn: 000 001 011 010 110 111 101 100

S0: S0,000 S3,010 -,--- -,--- -,--- -,--- -,--- S1,010;

S1: -,--- -,--- -,--- -,--- S2,100 -,--- -,--- S1,010;

S2: S0,000 -,--- -,--- S2,100 S2,100 -,--- -,--- S2,100;

S3: -,--- S3,010 S4,001 -,--- -,--- -,--- -,--- -,---;

S4: S5,000 S4,001 S4,001 S4,001 -,--- -,--- -,--- -,---;

S5: S5,000 S6,001 -,--- -,--- -,--- -,--- -,--- S7,100;

S6: S5,000 S6,001 -,--- -,--- -,--- -,--- -,--- -,---;

S7: S0,000 -,--- -,--- -,--- -,--- -,--- -,--- S7,100;

Figure 3: Asynchronous �ow table for DME-FAST-E

state encoding or multi-output logic minimization. 2 Further, its Lisp implementation and slow algorithms
for state minimization and logic minimization severely limit its usefulness. Finally, it does not allow fed-back
outputs, missing an opportunity to signi�cantly reduce implementation complexity.

The 3D system, presented in [38][40][39], also synthesizes two-level implementations, but accepts ex-
tended burst-mode speci�cations � a larger class of speci�cations than either Uclock or Minimalist
(at present) handle. Unlike Uclock, 3D uses fed-back outputs; unlike Minimalist, their use is not an
option: it is required. In contrast to Minimalist, it uses heuristic greedy state minimization and encoding
algorithms. It also always performs exact single-output logic minimization (using Hfmin [11]), to pro-
duce reasonably high-performance implementations. Even so, none of its methods (save Hfmin) o�ers any
guarantee of optimality; benchmarks show that Minimalist's algorithms give better results.

Finally, whereas both Uclock and 3D support only a single implementation style and one cost function,
Minimalist supports multiple implementation styles and cost functions. Minimalist thus allows designers
to explore various trade-o�s and choose the implementation which best suits their application.

2.4 Comparative Overview: MINIMALIST vs. Previous Tools

The following table provides an overview of the choices available in the most important dimensions of the
solution space for Minimalist and the two competing burst-mode synthesis toolkits, 3D and Uclock.
Each dimension is correlated with the relevant operating mode or tool option, which will be de�ned later
in this paper.

synthesis pkg fed-back outputs state-min code length type of logic cost func
(machine impl style) (constr. sat. mode) (logic impl. style)

Uclock non-fed-back only exact one solution single-output only products

3D fed-back only heuristic one solution single-output only literalsy

Minimalist both both many solutions single-, multi-output, both
(varied code length) or output-disjoint

y In the original 3D implementation, the sole cost function was product count.

2In practice, critical race-free codes for Uclock were produced either manually, or using auxiliary programs.

6

3 MINIMALIST Framework

The Minimalist framework consists of several key pieces: core data structures, a class and algorithm
library, and an extensible interpreter, implemented in roughly 45,000 lines of C++ (including several of the
core tools, e.g. Hfmin and Chasm).

The Minimalist framework incorporates a simple set of C++ classes to represent the original burst-
mode speci�cation. Early synthesis steps such as state minimization and state encoding simply transform
or place annotations on these structures. As a result, additional steps or transformations are easily accom-
modated.

To assist in implementing new synthesis algorithms, Minimalist o�ers class libraries for manipulating
both asynchronous burst-mode speci�cations, two-level logic (hazard- and non-hazard-free), dichotomies,
unate and binate covering problem instances, arbitrary-length bitstrings, and the like. To facilitate inter-
facing to external programs, a small number of basic translators to common formats (e.g. Berkeley PLA
or BLIF) is incorporated.

Finally, Minimalist provides a shell-like interpreter, extensible with commands written in C or C++.
The interpreter supports user-de�ned shell functions, on-line help, command- and �lename-completion,
variables, control constructs (loops, conditionals), arithmetic, external process invocation, input/output
redirection, and the like. Also, functionality can be augmented by dynamically-loaded code, without having
to re-link the executable.

The result is a uniquely �exible, potent context for integrating synthesis tools, that we �nd lacking in
existing packages [23][38].

4 MINIMALIST Tools

The following sections describe the set of synthesis, veri�cation and testability tools currently incorporated
into the Minimalist toolkit. Work is currently under way to integrate other existing high-quality tools
such as technology mapping [14, 1, 2] and timing analysis [4], taking advantage of Minimalist's plug-in
framework. With these additions, Minimalist will o�er an even more capable path for asynchronous
synthesis and veri�cation.

4.1 State Minimization

Minimalist includes two new and very e�cient algorithms for exact state minimization. In contrast,
the 3D method uses a heuristic greedy minimization algorithm. Therefore, in this section, we will focus
on a more direct comparison: the Minimalist exact algorithms and an earlier exact state minimization
algorithm found in Uclock.

Minimalist improves signi�cantly on Uclock's state minimization approach in two ways � (i) by
allowing outputs to be fed back as inputs, and (ii) by dramatically reducing run-time complexity.

Minimalist o�ers two new exact state minimization algorithms: 1) for implementations without fed-
back outputs (loosely based on Uclock's method), and 2) for implementations with fed-back outputs.
The latter is the �rst exact algorithm for state minimization that handles fed-back outputs. Thus, it
supports two machine implementation styles. As mentioned earlier, fed-back outputs can dramatically
reduce the implementation's logic complexity.3 In particular, their use allows merging certain states which
would otherwise be incompatible. Minimalist makes use of this fact by relaxing Uclock's compatibility
relation. In fact, several benchmark speci�cations collapse into a single state using the new relation, whereas
Uclock's relation results in 2 or more states.

3See the benchmark results.

7

Second, Minimalist improves run-time by several orders of magnitude over the Uclock method.
Uclock uses an expensive algorithm to generate maximal compatibles. In contrast, Minimalist uses a
simple transformation which allows it to generate maximal compatibles using a fast unate prime generation
algorithm instead. In addition, both Uclock andMinimalist (currently) approximate the binate covering
step by a unate one followed by a closure check4. Uclock, however, employs Petrick's method to solve
the unate problem, while Minimalist employs a state-of-the-art tool, mincov [27]. The combination
of these two algorithmic enhancements reduce the run-time of state minimization by two or more orders
of magnitude. To date we have encountered only one speci�cation for which state minimization requires
more than a few seconds, whereas run-times of many minutes were common for Uclock. For such large
speci�cations, both of Minimalist's algorithms also feature an approximate mode which further reduces
run-time.

4.2 CHASM

For state encoding, Minimalist uses Chasm (Coding for Hazard-free Asynchronous StateMachines), the
�rst exact method for input encoding of multiple-input change asynchronous machines. Chasm has many
operating modes. One highlight is that its �exact mode� can be used to produce exactly optimum two-

level output logic, over all critical race-free encodings, thus optimizing the key performance parameter for
asynchronous networks (output latency). Its approximate mode also gives signi�cant reductions in overall
implementation cost.

Chasm, as reported in [11], loosely follows the �ow of the Kiss [9] method for input encoding of
synchronous machines. Several signi�cant modi�cations are required to handle asynchronous machines.
There are three steps. First, symbolic hazard-free logic minimization is performed. Second, a set of encoding
constraints is generated, which properly subsumes both the classic synchronous Kiss (�face embedding�)
optimality constraints as well as asynchronous critical race-free [35] constraints. The constraints are in the
form of generalized dichotomies [35] (not face embedding constraints). Finally, the constraints are solved.
For constraint solution, Chasm has two modes: (i) an exact mode, which uses dichot [30], and (ii) an
approximate mode, using Nova's [37] simulated annealing engine. The approximate mode, as in Nova,
attempts to solve as many constraints as possible, under the restriction of a �xed code length; it has the
advantage that it may reduce next-state logic complexity.

For Minimalist, Chasm has been extended in several new ways.
First, Chasm is now being applied to implementations with fed-back outputs. Speci�cally, we have

proven that Chasm requires no modi�cation to properly encode implementations with fed-back outputs.
A modi�ed functional speci�cation is provided as input, which simply identi�es the primary outputs as
fed-back inputs. The symbolic two-level logic minimizer then forms a symbolic cover on this new function.

Second, Chasm can now target three logic implementation styles: (i) multi-output (where outputs
and next-state may share products), (ii) output-disjoint (where products are shared among outputs, but
not between outputs and next-state), and (iii) single-output (where no product terms are shared between
any output functions). The motivation is that the �single-output style� is most suitable for performance-
optimal designs: each output is individually optimized. Note that, in asynchronous machines (unlike
synchronous), output latency is often the key parameter to overall system performance in a network of
interacting machines. The �multi-output style� is most suitable for area-optimal designs, since it uses
maximal sharing of logic. Finally, the �output-disjoint style� is a balanced compromise.

For modes (ii) and (iii), a novel feature of Chasm is that it produces exactly optimum two-level output

logic, over all critical race-free encodings. This result holds, because the optimal output-only state encoding
problem is a true �input encoding problem�, unlike the general optimal state encoding problem (which is

4We have yet to see the closure check fail, due in part to the manner in which the set of state compatibles is re�ned to a
partition.

8

an approximation).
Finally, Chasm targets two distinct cost functions: (i) product cardinality, and (ii) literal count, at the

symbolic level. It does the latter by performing weighted unate covering during symbolic logic minimization.
This technique is only a heuristic, however, because the literal count of the �nal binary cover can only be
estimated. In practice, the heuristic nonetheless yields signi�cant reduction in literal count.

4.3 HFMIN

After state minimization and encoding, Minimalist performs two-level hazard-free logic minimization.
This step is normally performed using Hfmin, the �rst exact multi-output symbolic hazard-free two-level
logic minimization tool.

Hfmin, as reported in [11], uses Espresso to generate ordinary prime implicants, then re�nes them as
needed to dynamic hazard-free (DHF) primes [24], and �nally, performs a unate covering step using Min-
cov [28], covering required cubes[24] in lieu of minterms. Hfmin's use of such highly-optimized algorithms
for sub-steps allows it to readily handle most minimization problems we have encountered.

Hfmin has also been enhanced for Minimalist with the ability to produce output-disjoint5 and single-
output covers, and the ability to minimize literal count. Output-disjoint and single-output covers are
formed by generating a suitable set of prime implicants before DHF re�nement takes place. The rest of the
algorithm proceeds unchanged.

To minimize literal count, Hfmin performs a weighted unate covering step where prime implicants
are assigned weights according to their literal count. In addition, Hfmin now supports a limited post-
processing step that further reduces literal count. This step is similar in spirit to the make-sparse operation
of Espresso [28]. A single pass is made over each selected prime implicant, removing output literals as long
as the result remains a valid (hazard-free) cover. The input portion is then expanded, if possible. Unlike
make-sparse, our current method makes no guarantee that the resulting product is maximally expanded.
Nonetheless, despite its simplicity, the operation often yields signi�cant reductions in literal count.

Hfmin is now widely used in several other burst-mode CAD packages, including the 3D method [38]
and ACK [16]. It has also been used as part of the asynchronous tool suite at Intel Corporation, where
it has been applied in the design of a high-speed experimental asynchronous Instruction-Length Decoder
(see [5]).

4.4 ESPRESSO-HF

For very large problems which Hfmin is unable to solve in reasonable time, Minimalist o�ers Espresso-
HF [33], a new fast heuristic two-level logic minimizer. Espresso-HF uses an algorithm loosely based on
Espresso (but substantially di�erent from it), to solve problems with up to 32 inputs and 33 outputs. On
benchmark examples, Espresso-HF can �nd very good covers � at most 3% larger than a minimum-size
cover � in less than 105 seconds. For typical examples, Espresso-HF obtains an exact or near-exact
result in under 3 seconds.

Currently, Espresso-HF only implements multi-output minimization targetting product cardinality,
and so it is normally used only for designs which exceed Hfmin's capacity. However, output-disjoint or
single-output minimization can easily be implemented by a trivial modi�cation of the code, and will be
available in future releases of Minimalist.

4.5 IMPYMIN

Impymin [34] is a new state-of-the-art fully-implicit exact two-level hazard-free logic minimizer. It greatly
exceeds the capacity of previous exact tools (e.g. Hfmin), minimizing very large multi-output functions,

5products are shared among outputs, but not between outputs and next-state

9

including some for which no exact result had previously been obtained. Run-times are typically under 16
seconds. The most di�cult problem available, with 32 inputs and 33 outputs, had never before been solved
exactly, but required only 813 seconds using Impymin.

Both Espresso-HF and Impymin can solve all currently-available benchmark examples, including
several which have not been previously solved. For larger examples that can be solved by Hfmin, these
two minimizers are typically several orders of magnitude faster.

4.6 Synthesis-for-Testability

Minimalist incorporates a recent method [26] for synthesis-for-testability targetting multi-level logic. The
method produces circuits that are both hazard-free and 100% testable under either stuck-at or robust path
delay fault models, with little or no overhead. First, it uses a novel two-level hazard-free logic minimization
algorithm which minimizes the number of redundant cubes, as well as the number of non-prime cubes.
(The tool currently operates only in single-output mode.) This helps maximize testability without using
additional inputs. If not yet completely testable, the circuit is converted to a multi-level form which is
completely testable (if possible). If still not completely testable (rarely the case), controllable inputs are
added, yielding 100% testable logic. Finally, hazard- and testability-preserving multi-level transformations
are used to reduce the area of the resulting circuit. The area overhead is typically zero, and in all cases is
less than 10% [26].

4.7 Veri�er

Minimalist features a simple tool to verify that a given logic implementation (produced by any method)
realizes the speci�ed burst-mode behaviour, independent of the particular state merges or encoding which
have been performed. The veri�er simulates the implementation's response to each speci�ed input burst,
and compares it to the speci�cation; any mismatches of output or state at the end of the burst and any logic
hazards are reported. Although each burst is considered only once, the analysis that is performed accounts
for all possible interleavings of individual input changes. Since the veri�er needs to traverse each edge in
the speci�cation's state graph only once, this tool is eminently practical even for very large speci�cations
� the time required is never more than a few seconds. Currently, veri�cation of only two-level AND/OR
implementations is provided. However, the framework allows for veri�cation of multi-level implementations
as well (using the 9-valued algebra developed by Kung [17]), which will be completely supported in the near
future. Also, the current version of the veri�er does not detect output changes made after partial input
bursts. Finally, being a purely combinational veri�er, it does not verify the one-sided timing constraints
also needed to ensure correct operation [3]. Such a capability may be added in a future release.

5 A Synthesis Session

$ MinShell # Start the MINIMALIST shell
minimalist> help # Show list of commands

assign-states break call cd

continue define echo expr

for help if impymin-logic

make-testable min-logic min-states pwd

quit read-spec set set-encoding

set-state-cover show-encoding show-logic source

verify-logic while write-flow write-instant

write-spec write-symbolic write-trans

minimalist> pwd # Show current directory
/u/minimalist/demo

10

minimalist> ls # Run 'ls'
bin ex lib

minimalist> ls ex
dme-e dram-ctrl pe-send-ifc scripts stetson

dme-fast-e hp-ir pscsi scsi-iccd92

minimalist> cd ex/dme-e # Move to another directory

minimalist> ls
dme-e.bms

minimalist> help read-spec # Show syntax of 'read-spec'
read-spec [-v] <file> [<spec-var>]

Read the Burst-Mode specification in <file> and store it in <spec-var>,

or, if <spec-var> is not specified, 'theSpec'.

minimalist> read-spec dme-e.bms # Read the Burst-Mode speci�cation
Specification passed validity check.

Specification has 3 inputs, 3 outputs, and 8 states.

minimalist> plot_graph dme-e.bms
[... a window displays the burst-mode graph; press Ctrl-Q or the Quit button to dismiss it ...]

minimalist> min-states # Perform state minimization
*** Performing state minimization... ***

State cover: { { S0 S1 S4 }, { S2 S3 }, { S5 S6 S7 } }

Machine has 3 states after minimization.

minimalist> assign-states -F # Assign states with a CRF encoding
No encoding style specified; defaulting to critical race-free

*** Performing state assignment... ***

Invoking 'chasm' as 'chasm -C DME_E-F.func DME_E-F.trans'

*** Machine encoded by CHASM ***

State S0': 11

State S1': 10

State S2': 00

minimalist> min-logic -F -L # Produce the logic implementation
*** Performing logic minimization... ***

Invoking 'hfmin' as 'hfmin -P -C -l -S -o DME_E-FL.sol DME_E-FL.pla DME_E-FL.btrans'

*** Final PLA ***

PLA file for machine DME_E-FL

.i 8

.o 5

.ilb LIN RIN UIN LOUT_i ROUT_i UOUT_i Y0 Y1

.ob y0 y1 LOUT ROUT UOUT

.type fr

.p 7

10-----1 00010

-01----1 00010

-0-----1 01000

10-----0 10100

00----1- 11000

--0---1- 10000

-01----0 00001

.e

Number of products: 7 Total number of literals: 28

11

Number of products implementing outputs: 4 Literals in products implementing outputs: 17

Literals in products implementing next-state: 16 Average literals per output: 5.66667

Result stored in 'DME_E-FL.sol'.

minimalist> verify-logic -F -L # Verify the implementation
Using logic implementation stored in 'DME_E-FL.sol'.

*** Starting Burst-Mode machine simulation. ***

*** Implementation verified successfully! ***

minimalist> plot_graph DME_E-FL.sol # Display the implementation
[... a window displays the 2-level logic; press Ctrl-Q or the Quit button to dismiss it ...]

Run the above synthesis steps using a script

minimalist> source ../scripts/script-FBO.MOL-CRF dme-e.bms
[... same results as above, without interaction ...]

minimalist> quit

6 Results

This section compares synthesis results using Minimalist to those using the preeminent burst-mode asyn-
chronous synthesis paths, namely 3D [38] and Uclock [23]. We highlight Minimalist's unique ability to
support various cost metrics and implementation styles by showing several di�erent experiments. For each,
we indicate the cost function which we target, and the corresponding settings of Minimalist's modes.

6.1 Experimental Set-up

The benchmark suite consists of 23 burst-mode circuits, including several industrial designs, as well as
a number of large asynchronous machines (e.g., see sc-control and oscsi). The circuits it-control,
rf-control, sc-control, and sd-control are part of a low-power infrared controller designed at HP Labs
as part of the Stetson project [20]. pe-send-ifc and sbuf-xxx-ctl, also from HP Labs, are part of a high-
performance adaptive routing chip, used in the May�y parallel processing system [32]. Several others (e.g.
the scsi-xxx and pscsi-xxx suites) come from a high-performance asynchronous SCSI controller designed
by Yun while at AMD [41]. A DRAM controller circuit for Motorola 68K processors [38], dram-ctrl,
completes the suite.

All Minimalist results are the best of a very small number of trials using �xed-length encodings.
Generally, near-minimum code lengths are used. Here, minimum length refers to the smallest length
su�cient for a critical-race free encoding, which is necessary to ensure correct operation. However, as
demonstrated below, a trade-o� exists, whereby signi�cantly wider encodings sometimes o�er better output
logic at the expense of added next-state logic complexity. Hence, the results below occasionally make use
of longer codes.

Run-times for the complete synthesis path are comparable for all tools (Minimalist, 3D, and Uclock),
ranging from under 1 second to several minutes for the largest designs.

6.2 Performance-Oriented Comparison with 3D

The �rst experiment (shown in Table 1) shows synthesis results using both Minimalist and 3D for a
performance-oriented implementation.

For asynchronous burst-mode machines, the metric that best approximates performance is output la-
tency. In an asynchronous system, unlike synchronous, the input-to-output latency typically determines
a machine's performance, as well as overall system performance. State changes are not bound to a clock
period, and in practice are usually non-critical (see [20]).

12

define syn_FBO_so_lit { specFile codeLen } { # Single-output, optimize lit count

read-spec $specFile

min-states -F

assign-states -F -s -L -O -l $codeLen

min-logic -F -s -L

verify-logic -F -s -L

}

call syn_FBO_so_lit dram-ctrl.bms $codeLen

Figure 4: Performance-oriented synthesis script for Minimalist

Based on the above observation, we now indicate the settings of the various modes of Minimalist
for this experiment. In the context of technology-independent two-level logic, the cost function that most
reasonably approximates output latency is the average number of literals per output. When comparing
two results for the same machine (so that the number of outputs is �xed), this cost is equivalent to total
output literal count, so this is used instead.

Roughly half of the Minimalist results in this set of runs make use of the fed-back output machine

implementation style. Table 1 identi�es the particular style chosen for each design in the column labelled
'FBO'. Minimalist is directed to use the single-output logic implementation style, and the literal count
cost function. This combination of modes best minimizes average output literal count. This cost function
also allows for a fair comparison to 3D, which produces single-output logic with minimal literal count.
Finally, the encoding step uses �xed-length constraint satisfaction mode, attempted under several
code lengths.

TheMinimalist script in Figure 4 summarizes the selected modes. The script is parameterized by code
length, using the variable $codeLen, and proceeds as follows. First, the speci�cation is read from a �le and
checked for validity. Next, the machine is subjected to exact state minimization using fed-back outputs.6

The states are encoded using Chasm, with the fed-back output ('-F'), single-output ('-s'), literal-count
('-L'), and �xed-length ('-l') �ags. The �nal two-level logic is then synthesized using Hfmin, again passing
the single-output and literal-count �ags. Finally, the resulting logic is veri�ed using the algorithm sketched
in Section 4. The script was run in batch mode several times. The run having the lowest output literal
count over 1-3 code lengths near the minimum is reported.

The 3D results were obtained using the 3D tool on the Unix platform. UnlikeMinimalist, 3D embodies
a hard-wired synthesis path, and produces a single deterministic result. Speci�cally, 3D �rst performs
heuristic state minimization, followed by heuristic state encoding, and �nally, exact two-level single-output
logic synthesis using Hfmin, targetting total literal count. Thus, a single run for each design gives the
reported (and the only possible) result.

Table 1 summarizes the comparison. Minimalist synthesis results demonstrate an average reduction of
11% in output literals, with the best being a 37% reduction for sd-control. In exchange for Minimalist's
simpli�cation in output logic, an increase in total literal count is occasionally observed (see for example
pe-send-ifc and pscsi-tsend). However, Minimalist also frequently achieves a reduction in total literal

count as well, with larger designs such as stetson-p1 and oscsi among the most impressive gains (38%
and 25%, respectively).

Clearly, Minimalist's gains come in part from its ability to explore wider encodings. In fact, in 12 of
the 23 designs, the best result is seen at a longer code length than 3D uses. The greatest improvement
overall, in sd-control, is seen at a signi�cantly longer code length � 7 bits for Minimalist vs. 3 bits for
3D. For two designs, Minimalist chooses a shorter encoding than 3D: dram-ctrl (whose 0-bit encoding
is enabled by the use of fed-back outputs), and oscsi (where 3D curiously uses 7 bits, despite no gain

6A nearly identical script exists in which all steps do not make use of fed-back outputs.

13

in output literals and a considerable increase in overall logic complexity). For the remaining examples,
Minimalist achieved its best result at the same code length as 3D.

6.3 Area-Oriented Comparison with 3D

Our second experiment (also shown in Table 1) shows the results of an area-oriented comparison of
Minimalist and 3D.

The cost metric that best approximates area for technology-independent two-level logic is total literal
count; hence, total literal count is used in this comparison.

Based on the above observation, we now indicate the settings of the various modes of Minimalist
for this experiment. The vast majority of the Minimalist results in this set of runs use the fed-back
output machine implementation style. Again, the table identi�es the particular style chosen for each
design. Throughout, Minimalist is directed to use the multi-output logic implementation style, and
the literal count cost function, which best minimizes total literal count. Finally, the encoding step uses
�xed-length constraint satisfaction mode.

These runs were obtained using a script identical to that of Figure 4, but using the multi-output logic
implementation style. In particular, the single-output ('-s') �ag was removed from the state encoding
and logic minimization steps. Again, the cost function used was total literal count.

As shown in Table 1, Minimalist's term-sharing across outputs and next-state provides for signi�cant
reductions in total area. Minimalist's results for the area-targetted run show an average reduction of
33% in total literal count over 3D, the best being 48% for sc-control. For all designs, Minimalist
achieved strictly better results than 3D. Although these runs did not target product count directly, they
o�er similarly dramatic reductions by that metric as well. An average of 42% improvement is observed, the
best being 57% for sc-control. Again, Minimalist's results are strictly better than 3D in every case.

Unlike the performance-targetted runs, the code length used by Minimalist rarely exceeded that of
3D (only 3 times out of 23 designs), and never by more than 1 bit. In fact, Minimalist uses slightly fewer

total state bits over the entire benchmark suite than does 3D, by roughly 5%.

6.4 Area-Oriented Comparison with UCLOCK

The �nal comparison, in Table 2, shows synthesis results for Uclock (as reported in [11]) andMinimalist.
For a fair and interesting comparison, we plugged some of the Minimalist tools into the Uclock path,

to isolate and highlight two di�erences: (i) machine implementation style (choice of fed-back vs. no fed-back
outputs), and (ii) state minimization algorithms. Even though Uclock does not use any optimal state
assignment algorithms, we attached Chasm and Hfmin as a back end, to isolate these front-end di�erences.
We also limited Minimalist to the only logic minimization modes that are available in Uclock: the cost
function is product cardinality, and the logic implementation style is multi-output.

Table 2 shows the experimental results. In both Minimalist and the �improved� Uclock, reported
results are the best of several �xed-length trials at or near the minimum code length. The majority of the
Minimalist results use the fed-back output machine implementation style.

Not surprisingly, manyMinimalist and Uclock results are nearly identical, since the operating modes
are very similar. However, Minimalist's use of fed-back outputs results in signi�cant gains in several cases
(e.g., dram-ctrl and scsi-isend-bm). In addition, Minimalist obtains synthesis results in several cases
where Uclock failed to complete, again due in part to Minimalist's more capable state minimization
method.

A performance-oriented comparison to Uclock (like the above comparison to 3D) is possible, but is
omitted, due to space considerations.

14

3
D

M
IN
IM
A
L
IS
T

p
er
fo
rm
a
n
ce
(s
in
g
le
-o
u
tp
u
t)

a
re
a
(m
u
lt
i-
o
u
tp
u
t)

d
e
si
g
n

i/
s/
o

co
d
el
en

p
ro
d
s

li
ts

o
u
tl
it
s

F
B
O

co
d
el
en

p
ro
d
s

li
ts

o
u
tl
it
s

F
B
O

co
d
el
en

p
ro
d
s

li
ts

d
ra
m
-c
tr
l

7
/
1
2
/
6

1

2
1

7
1

5
7

p

0

1
7

5
7

5
7

p

0

1
4

5
1

p
sc
si
-i
rc
v

4
/
6
/
3

2

1
3

4
4

3
0

3

1
4

4
6

2
6
*

3

1
0

3
8
*

p
sc
si
-t
rc
v

4
/
6
/
3

1

1
0

3
5

3
0

2

1
3

4
3

2
7

p

1

7

3
0

p
sc
si
-i
se
n
d

4
/
9
/
3

4

3
1

1
0
5

4
4

6

3
1

1
1
1

3
8

p

3

1
8

6
7

p
sc
si
-t
se
n
d

4
/
1
0
/
3

4

2
2

7
7

4
1

7

3
1

1
1
6

3
5

p

3

1
8

6
6

p
sc
si
-t
rc
v
-b
m

4
/
7
/
4

2

1
8

5
8

4
5

p

2

1
7

5
8

4
3

p

2

1
1

4
5

p
sc
si
-t
se
n
d
-b
m

4
/
1
0
/
4

3

2
4

8
6

4
3

7

3
1

1
1
8

4
3

p

3

1
6

6
3

sb
u
f-
re
a
d
-c
tl

3
/
7
/
3

1

7

2
2

1
7

2

9

2
6

1
5

p

1

6

2
1

sb
u
f-
se
n
d
-c
tl

3
/
8
/
3

2

1
7

5
1

3
2

3

1
4

4
1

2
4

2

1
1

3
6

p
e-
se
n
d
-i
fc

5
/
1
1
/
3

2

2
4

8
9

5
6

5

3
2

1
3
6

5
5

p

3

1
8

8
8

sc
si
-i
se
n
d
-b
m

5
/
1
0
/
4

2

2
6

8
7

5
9

p

2

2
3

7
6

5
6

p

2

1
7

6
3

sc
si
-i
se
n
d
-c
sm

5
/
8
/
4

2

2
2

6
6

4
4

2

1
8

5
3

4
1

2

1
2

4
9

sc
si
-t
rc
v
-b
m

5
/
1
0
/
4

2

2
4

7
8

5
0

p

2

2
2

7
1

5
0

p

2

1
7

6
4

sc
si
-t
rc
v
-c
sm

5
/
8
/
4

2

2
1

6
4

4
2

2

1
8

5
2

4
0

2

1
2

4
6

sc
si
-t
se
n
d
-b
m

5
/
1
1
/
4

2

2
8

9
2

6
7

4

2
4

8
6

4
8

3

1
9

7
5

sc
si
-t
se
n
d
-c
sm

5
/
1
0
/
4

2

2
0

5
7

4
1

6

2
4

7
5

3
4

p

2

1
4

5
2

it
-c
o
n
tr
o
l

5
/
1
0
/
7

1

2
1

7
3

5
6

p

1

1
9

6
8

5
6

p

1

1
3

5
4

rf
-c
o
n
tr
o
l

6
/
1
2
/
5

2

1
2

4
4

3
4

5

1
5

6
7

3
0

p

2

1
1

4
3

sc
-c
o
n
tr
o
l

1
3
/
3
3
/
1
4

3

1
2
2

5
1
2

3
0
1

p

3

9
3

3
5
9

2
7
5

p

3

5
3

2
6
7

sd
-c
o
n
tr
o
l

8
/
2
7
/
1
2

4

5
0

2
1
7

1
5
5

p

7

4
3

1
6
0

9
8

p

4

2
8

1
2
5

st
et
so
n
-p
1

1
3
/
3
3
/
1
4

3

8
7

3
7
1

2
0
9

p

3

6
1

2
3
2

1
7
9

p

3

4
5

1
9
9

st
et
so
n
-p
2

8
/
2
5
/
1
2

4

4
6

1
9
4

1
4
8

p

4

4
5

1
7
7

1
3
0

p

4

3
0

1
4
0

o
sc
si

1
0
/
4
5
/
5

7

1
2
9

5
2
9

1
8
7

p

4

8
9

3
9
5

1
8
5

p

4

6
5

3
3
4

T
o
ta
l

5
8

7
9
5

3
0
2
2

1
7
8
8

8
2

7
0
3

2
6
2
3

1
5
8
5

5
5

4
6
5

2
0
1
6

D
i�
w
r
t
3
D

-

-

-

-

+
4
1
.4
%

-1
1
.6
%

-1
3
.2
%

-1
1
.4
%

-5
.2
%

-4
1
.5
%

-3
3
.3
%

Table 1: A comparison of Minimalist and 3D synthesis results
15

UCLOCK MINIMALIST

design in/state/out codelen prods lits FBO codelen prods lits

dram-ctrl 7/12/6 2 22 -
p

0 14 71
pscsi-ircv 4/6/3 2 9 - 2 9 41
pscsi-trcv 4/6/3 1 10 -

p
1 7 32

pscsi-isend 4/9/3 3 17 -
p

3 17 80
pscsi-tsend 4/10/3 3 18 -

p
3 16 86

pscsi-trcv-bm 4/7/4 2 12 -
p

2 12 53
pscsi-tsend-bm 4/10/4 y y -

p
3 16 84

sbuf-read-ctl 3/7/3 2 7 -
p

1 6 23
sbuf-send-ctl 3/8/3 2 11 - 2 11 47
pe-send-ifc 5/11/3 3 18 -

p
3 18 118

scsi-isend-bm 5/10/4 2 21 -
p

2 15 92
scsi-isend-csm 5/8/4 2 12 -

p
2 12 62

scsi-trcv-bm 5/10/4 2 18 - 2 18 99
scsi-trcv-csm 5/8/4 2 12 - 2 12 61
scsi-tsend-bm 5/11/4 3 17 - 3 17 101
scsi-tsend-csm 5/10/4 2 14 -

p
2 13 77

it-control 5/10/7 3 15 -
p

1 13 61
rf-control 6/12/5 3 13 -

p
2 11 45

sc-control 13/33/14 y y -
p

4 56 458
sd-control 8/27/12 5 29 -

p
4 28 182

stetson-p1 13/33/14 4 53 -
p

3 42 317
stetson-p2 8/25/12 4 31 - 4 28 173

oscsi 10/45/5 y y -
p

4 64 487

Total 52 359=359+??? - 55 461=325+136 200
Di� wrt UCLOCK - - - +5.8% -9.5% -

y Failed to complete within a reasonable time

Table 2: An area-oriented comparison of Minimalist and Uclock

16

design in/state/out codelen outprods outlits nsprods nslits totprods totlits

scsi-tsend-csm 5/10/4 3 14 37 9 24 23 61
� � 4 14 36 7 26 21 62
� � 5 13 35 10 34 23 69
� � 6 13 34 11 41 24 75

Table 3: E�ect of varying code length on synthesis results for a single design

6.5 Exploring Varying Code Lengths

This section brie�y shows the e�ect on the synthesis results for a single design when varying code length
in Minimalist.

Because a simple cost metric often fails to capture an application's cost completely, Minimalist better
assists the designer in �nding the point which best �ts the application, by providing the opportunity to
explore trade-o�s. For example, Table 3 shows an interesting trade-o� involving code length, arising from
two competing tendencies. Output logic tends to improve, while next-state logic tends to grow, with
increasing code length.

For these runs, a single design (scsi-tsend-csm) is synthesized using the performance-oriented script,
but targetting the fed-back output machine implementation style. Code length is varied from 3 (the minimum
needed to ensure a critical race-free encoding) to 6 (one less than the code length resulting when Chasm
uses its exact, rather than its �xed-length, mode).

As the results show, the output logic complexity decreases as the code length increases, in exchange
for a more expensive next-state implementation. This re�ects the fact that Chasm's input encoding
model is exact for outputs, but is only approximate for next-state. Speci�cally, the �xed-length constraint
satisfaction method favors neither output nor next-state constraints [11]. Thus, longer codes tend to
satisfy a greater number of both kinds of constraints. So, output logic complexity decreases, because the
corresponding constraints precisely model logic optimality. However, the next-state, whose constraints are
less accurate, experiences an increase in logic complexity.

Without the ability to explore such trade-o�s, a designer is forced to choose whatever single point in the
solution space the synthesis path chooses. For example, suppose a synthesis path always chose to minimize
output literal count. Given the results in Table 3, this would force the designer to accept an 8% decrease
in output logic complexity, in exchange for a 71% increase in next-state logic complexity, which might be
intolerable. Minimalist's ability to explore such trade-o�s is unique among burst-mode synthesis toolkits.

7 Conclusion

Minimalist distinguishes itself in several respects. First, it integrates a suite of state-of-the-art algorithms
for asynchronous burst-mode synthesis. Second, benchmark results demonstrate the e�ectiveness of the
synthesis path on a large number of examples. Third, its support for multiple implementation styles and
cost functions allows it to accommodate a variety of applications. In particular, the Minimalist tool chain
provides well-optimized implementations using fed-back outputs which are guaranteed correct. Finally,
its software framework provides both a potent end-user environment and the extensibility to allow it to
encompass technology-dependent synthesis and other down-stream tasks. In short,Minimalist represents a
�rst-of-a-kind environment for asynchronous synthesis, with signi�cant contributions in algorithms, quality
of results, and extensibility.

17

References

[1] P. A. Beerel, K. Y. Yun, and W. C. Chou. Optimizing average-case delay in technology mapping
of burst-mode circuits. In Proc. International Symposium on Advanced Research in Asynchronous

Circuits and Systems. IEEE Computer Society Press, March 1996.

[2] Peter A. Beerel, Wei chun Chou, and Kenneth Y. Yun. A heuristic covering technique for optimizing
average-case delay in the technology mapping of asynchronous burst-mode circuits. In Proc. European

Design Automation Conference (EURO-DAC), September 1996.

[3] Supratik Chakraborty, David L. Dill, Kenneth Y. Yun, and Kun-Yung Chang. Timing analysis for ex-
tended burst-mode circuits. In Proc. International Symposium on Advanced Research in Asynchronous

Circuits and Systems. IEEE Computer Society Press, April 1997.

[4] Supratik Chakraborty, Kenneth Y. Yun, and David L. Dill. Practical timing analysis of asynchronous
systems using time separation of events. In Proc. IEEE Custom Integrated Circuits Conference, May
1998.

[5] W.-C. Chou, P.A. Beerel, R. Ginosar, R. Kol, C.J. Myers, S. Rotem, K. Stevens, and K.Y. Yun.
Average-case optimized technology mapping of one-hot domino circuits. In Proc. Int. Symp. Adv.

Research in Async. Ckts. and Sys., pages 80�91, March 1998.

[6] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing petri nets from state-based
models. In ICCAD, pages 164�171, 1995.

[7] A. Davis, B. Coates, and K. Stevens. Automatic synthesis of fast compact self-timed control circuits. In
1993 IFIP Working Conference on Asynchronous Design Methodologies, Manchester, England, March
1993.

[8] A. L. Davis. A data-driven machine architecture suitable for VLSI implementation. In Proceedings of

the Caltech Conference on Very Large Scale Integration, pages 479�494, January 1979.

[9] G. De Micheli, R.K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for �nite state
machines. IEEE Trans. on CAD, CAD-4(3):269�285, July 1985.

[10] E.M. Sentovich et al. Sequential circuit design using synthesis and optimization. In Proc. Int. Conf.

Computer Design, October 1992.

[11] R.M. Fuhrer, B. Lin, and S.M. Nowick. Symbolic hazard-free minimization and encoding of asyn-
chronous �nite state machines. In ICCAD, 1995.

[12] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in incompletely
speci�ed sequential networks. IEEE TEC, EC-14:350�359, June 1965.

[13] J. Hartmanis and R.E. Stearns. Algebraic Structure Theory of Sequential Machines. Prentice-Hall,
1966.

[14] K. W. James and K. Y. Yun. Average-case optimized transistor-level technology mapping of extended
burst-mode circuits. In Proc. International Symposium on Advanced Research in Asynchronous Circuits

and Systems, pages 70�79, 1998.

[15] Michael Kishinevsky, Alex Kondratyev, Alexander Taubin, and Victor Varshavsky. Concurrent Hard-
ware: The Theory and Practice of Self-Timed Design. Series in Parallel Computing. John Wiley &
Sons, 1994.

18

[16] Prabhakar Kudva, Ganesh Gopalakrishnan, and Hans Jacobson. A technique for synthesizing dis-
tributed burst-mode circuits. In DAC, 1996.

[17] D.S. Kung. Hazard-non-increasing gate-level optimization algorithms. In ICCAD, 1992.

[18] Luciano Lavagno and Alberto Sangiovanni-Vincentelli. Algorithms for Synthesis and Testing of Asyn-

chronous Circuits. Kluwer Academic Publishers, 1993.

[19] B. Lin and S. Devadas. Synthesis of hazard-free multi-level logic under multiple-input changes from
binary decision diagrams. IEEE Transactions on CAD, 14(8):974�985, August 1995.

[20] A. Marshall, B. Coates, and P. Siegel. The design of an asynchronous communications chip. Design

and Test, June 1994.

[21] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng. Automatic synthesis and veri�cation of gate-level
timed circuits. Technical Report CSL-TR-94-652, Stanford University, January 1995.

[22] S.M. Nowick. Automatic synthesis of burst-mode asynchronous controllers. Technical report, Stanford
University, 1993. Ph.D. Thesis.

[23] S.M. Nowick and B. Coates. Uclock: Automated design of high-performance unclocked state machines.
In ICCD, 1994.

[24] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free logic with multiple-input
changes. In ICCAD, 1992.

[25] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free logic with multiple-input
changes. IEEE Transactions on CAD, 14(8):986�997, August 1995.

[26] S.M. Nowick, N.K. Jha, and F. Cheng. Synthesis of asynchronous circuits for stuck-at and robust path
delay fault testability. In VLSI-Design-1995, January 1995.

[27] R. Rudell. Logic synthesis for VLSI design. Technical Report UCB/ERL M89/49, Berkeley, 1989.

[28] R. Rudell and A. Sangiovanni-Vincentelli. Multiple valued minimization for PLA optimization. IEEE
Trans. on CAD, CAD-6(5):727�750, Sept. 1987.

[29] J. Rutten and M. Berkelaar. Improved state assignments for burst mode �nite state machines. In
Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems. IEEE
Computer Society Press, April 1997.

[30] A. Saldanha, T. Villa, R.K. Brayton, and A. Sangiovanni-Vincentelli. A framework for satisfying input
and output encoding constraints. In DAC, 1991.

[31] M. Sawasaki, C. Ykman, and B. Lin. Externally hazard-free implementations of asynchronous control
circuits. IEEE Trans. on CAD, CAD-16(6), August 1997.

[32] K.S. Stevens, S.V. Robison, and A.L. Davis. The post o�ce - communication support for distributed
ensemble architectures. In Sixth International Conference on Distributed Computing Systems, 1986.

[33] M. Theobald and S.M. Nowick. Espresso-hf: A heuristic hazard-free minimizer for two-level logic. In
DAC, June 1996.

[34] M. Theobald and S.M. Nowick. An implicit method for hazard-free two-level logic minimization. In
Proc. Int. Symp. Adv. Research in Async. Ckts. and Sys., March 1998.

19

[35] J.H. Tracey. Internal state assignments for asynchronous sequential machines. IEEE Trans. on Elec.

Comp., EC-15:551�560, August 1966.

[36] S.H. Unger. Asynchronous Sequential Switching Circuits. New York: Wiley-Interscience, 1969.

[37] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment of �nite state machines for optimal
two-level logic implementations. In DAC, pages 327�332, 1989.

[38] K. Yun, D. Dill, and S.M. Nowick. Synthesis of 3D asynchronous state machines. In ICCD, 1992.

[39] Kenneth Y. Yun. Synthesis of Asynchronous Controllers for Heterogeneous Systems. PhD thesis,
Stanford University, August 1994.

[40] K.Y. Yun and D.L. Dill. Automatic synthesis of 3D asynchronous �nite-state machines. In ICCAD,
1992.

[41] K.Y. Yun and D.L. Dill. A high-performance asynchronous scsi controller. In ICCD, 1995.

[42] K.Y. Yun, D.L. Dill, and S.M. Nowick. Practical generalizations of asynchronous state machines. In
EDAC, 1993.

20

