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Abstract

We present the idea of a polycamera which is defined as a tightly packed camera cluster. The cluster
is arranged so as to minimize the overlap between adjecent views. The objective of such clusters
is to be able to image a very large field of view without loss of resolution. Since these clusters
do not have a single viewpoint, analysis is provided on the effects of such non-singularities. We
also present certain conbfigurations for polycameras which cover varying fields of view. We would
like to minimizze the number of sensors required to capture a given field of view. Therefore we
recommend the use of wide-angle sensors as opposed to traditional long focal length sensors.
However, such wide-angle sensors tend to have severe distortions which pull points towards the
optical center. This paper also proposes a method for recovering the distortion parameters without
the use of any calibration objects. Since distortions cause straight lines in the scene to appear as
curves in the image, our algorithm seeks to find the distortion parameters that would map the image
curves to straight lines. The user selects a small set of points along the image curves. Recovery
of the distortion parameters is formulated as the minimization of an objective function which is
designed to explicitly account for noise in the selected image points. Experimental results are
presented for synthetic data with different noise levels as well as for real images. Once calibrated,
the image stream from a wide angle camera can be undistorted in real time using look up tables.
Finally, we apply our distortion correction technique to a polycamera made of four wide-angle

cameras to create a high resolution 360 degree panorama in real-time.

Index Terms — camera calibration, wide-angle lens, radial distortion, decentering distortion, cam-
era clusters, polycamera, single viewpoints constraint, minimum working distance, real-time panoramic

Ssensaor.



1 Introduction

In many vision applications, such as surveillance, it is desirable to capture the entire region of
interest with as few cameras as possible. Wide-angle cameras help in this regard, but at the cost of
severe image distortions. Wide-angle lenses that adhere to perspective projection would necessitate
the use of prohibitively large image detectors. To work around this problem, wide-angle lenses are
designed to severely bend rays of light around the periphery of the field of views permitting

the use of a small image detector (say, a CCD). The effects of the resulting image distortions are

clearly visible in Figure 1.

Figurel: Images captured with wide-angle cameras have severe distortions that alter the appearance

of objects in the scene.

If the optics of a wide-angle camera system are knapiori (i.e. the distortion parameters), then
distortion correction can be easily applied. Unfortunately, such information is seldom revealed by
manufacturers. Furthermore, in mass production, optical characteristics are sure to vary from one
lens to the next. It is therefore desirable to have a simple calibration method for extracting the

distortion parameters. This paper presents such a calibration method.

1Severe bending of light rays typically leads to a non-singular entrance pupil. The resulting locus of pupils in three
dimensions is called diacaustic[Born and Wolf, 196k This implies that, for a wide-angle lens, complete removal
of distortions cannot be achieved. For our purposes, we will assume a small pupil locus that can be approximated by

a single point.



Several calibration techniques have been suggested for recovering lens distortion parameters. Tsai
[1987 used known points in 3D space to recover some of the distortion parameters. Goshtasby
[1989 utilized Bezier patches to model the distortions and used a uniform grid placed in front

of the camera as a calibration object. Wéh§97 also used calibration objects to extract all the
distortion parameters. All these methods fall in the category of “stellar” calibration, where objects

with points of known relative coordinates are used.

In contrast, Browr{1971] proposed a “non-metric” approach that does not rely on known scene
points. Instead, it relies on the fact that straight lines in the scene must always perspectively project
to straight lines in the image. An iterative least-squares formulation is used to estimate distortion
parameters which map distorted image curves to straight lines. Brown’s algorithm relies on essen-
tially noiseless image data, which is obtained by imaging plumb-lines suspended against a black
background onto a photographic plate. More recently, Kd®97 used snakes to represent the
distorted curves instead of discrete points. Bed#®94 used three mutually orthogonal sets of
parallel lines and a vanishing point constraint to recover distortion parameteStein, 1997,

[199d and[1999, point correspondences in multiple images are used to estimate radial distortions.
Thus apart from estimating the distortion parameters, one has also to estimate the relative orien-
tation between views. This makes the problem more unstable in the presence of noise. Another
novel approach suggested by Sawhnef1i@97 and[1999 is, image based distortion parameter
estimation. This is a direct method and relies solely on multi-image alignment to estimate the

parameters.

Previous work suffers from one or more of the following restrictions: calibration objects need
to be used, not all the distortion parameters are recovered, or the algorithm is highly sensitive
to noise. One exception is the work of Beck@@95. However, Becker's constraint (triplets

of orthogonal lines) is less abundant in urban settings than the randomly oriented straight lines we
use. We formulate the estimation of distortion parameters as the minimization of a noise insensitive

objective function via efficient search.

Experimental results with synthetic and real data are presented, which demonstrate the robustness

of the proposed method in the presence of large amounts of noise. In addition, we describe a



useful application of our calibration technique. We present the notion of a polycamera, which uses
a tight cluster of cameras to capture a large fully connected field of view. Wide-angle cameras are
useful in this context as they minimize the number of cameras needed to cover the desired field of
view. Fewer cameras also facilitate tightly packed clusters, which aid in reducing the effects of a

non-singular viewpoint.

In practice, due to the finite size of cameras, it is not possible to maintain a singular viewpoint.
One exception being the system developed by Nalwa (Nakva, 1996), which uses mirrors
along with image sensors to obtain a single viewpoint. Non singular viewpoints lead to disparities
in the projections of the imaged points, which although useful in stereo applications, do not help in
creating smooth mosaics. Although theoretically this disparity vanishes only for points at infinity,
we propose the idea of minimum working distancbeyond which the disparity falls below a
detectable threshold. Analysis of the minimum working distance for the generic case, as well as
results for a panoramic polycamera are included. Finally, results of a real time high resolution

panoramic sensor we built are presented.

2 Distortion Model

Distortions in lenses can be decomposed into three components: (a) shift of the optical center, (b)

radial distortion, and (c) decentering distortion.

Let the perspective projection of a scene pointbésee Figure 2). Due to distortions in the lens,
q’ gets mapped tq. Let (x, y) be the Cartesian arld, ¢) be the polar coordinates gf Similarly,
let (2, y') be the Cartesian and’, ¢’) be the polar coordinates qf. Also, let the optical centet’

be located atzx,, y,). Then, the Cartesian and polar coordinates are related as:

— (]
r=4/2?>+ 9% , tan(¢) = =,
V2 + 7 (¢) ==
where:
T=0—7p , Y=Y — Yp- 1)



Figure2: ¢’ is the perspective projection of a scene point onto the image plane. Due to radial and decentering

distortions,q’ gets mapped to the point

2.1 Shift of Optical Center

A shift of the optical center corresponds to a shift of the image detector in a plane perpendicular
to the optical axis. The effect of such a distortion is merely that the image center is no longer
the optical center. Estimating this distortion component amounts to estintatiagz,, v,,), the

optical center.

2.2 Radial Distortions

There are two kinds of radial distortions in lenses. The one found in most wide angle cameras
tend to pull points radially towards the optical center. This is also referred barasl| distortion

[Born and Wolf, 1965 The other type of distortion tends to push points away from the optical
center along the radial direction and is calf@d-cushion distortionAs can be seen, these effects

are purely radial in direction and solely depend on the distance from the optical center. The radial

distortion present in the poikfcan be written as:

Ar(q) = Z Coipr® ™, (2)

i=1

where,(Cs; 1 are the distortion parameters. As can be seen, only the odd powered terms are used



to model this distortiofiConrady, 191R The higher powered terms tend to contribute lesser to the
effective distortion. We therefore ignore terms higher than the fifth-order as their contribution to

the distortion is negligible in practid@rown, 1966. Hence, we have:

Ar(q) = Csr® + Cs1° . 3)

2.3 Decentering Distortions

Decentering distortions are caused by the non-orthogonality of the lens components and the image
detector with respect to the optical axis. All imaging systems have some decentering distortions.
Unlike radial distortions, this distortion component acts tangential to the radial direction. We use

Conrady’s modelConrady, 191Pfor decentering distortion:

AT,(q) = [Pir*(1+2cos?(¢)) + 2Pr?sin(¢) cos(¢)] - [1 + i Py yor?]
AT (q) = [Pr®*(1+ 2sin*(¢)) 4 2Pir” sin(¢) cos(¢)] - [1 + i Pyor®], 4)

=1
where, P, are the distortion parameters and’,, AT, are the distortions along theandy direc-

tions, respectively.

The higher-order terms in the above expression are again relatively insignificant. Hieraoel

P, are generally sufficient for modeling decenteriBgown, 1966:

AT, (q) ~ [Pir?(1 +2cos?*(¢)) + 2Pyr? sin(e) cos(¢)]

AT,(q) ~ [Por*(1+ 2sin*(¢)) + 2Pyr? sin(¢) cos(¢)] . (5)

2.4 Complete Distortion Model

The total distortion is modeled as a combination of the above three components:

Azx(q) = cos(¢)[Ar(q)] + AT.(q)
Ay(q) =~ sin(¢)[Ar(q)] + AT,(q). (6)

7



In order to correct distortions, we thus need to recover the paraméteysts, Py, P, z,, Yy }-

3 Objective Function Formulation

The constraint used in this paper is that, under perspective projection, straight lines in the scene
should project to straight lines in the image. Consider a set of points in the scene which lie on a
straight line. Their projection onto the image lie on curves. In this setting, an objective function
can be defined which, when minimized, yields the parameters that undistort the curve points to lie
on straight lines.We assume that the user of our calibration method knows which (distorted) image
curves correspond to straight lines in the scene. Based on this knowledge, the user selects points

along these curves. These selected points will be the used to estimate the distortion parameters.

We present three objective functions, namely, sum of squared distances (from straight lines), nor-
malized sum of squared distances and one that explicitly estimates noise in the chosen image
points. The first two are presented mainly to demonstrate that simple objective functions (similar
to ones proposed previously) are highly noise sensitive. In contrast, the third function is designed
to explicitly account for noise in the image points chosen by the user. All our objective functions
are non-linear and are minimized using efficient search algorithms. In what follows, our goal will
be to recover only the radial and decentering distortion parameters. The shift of the optical center

(xp, y,) Will be recovered separately in an iterative fashion.

3.1 Sum of Squared Distancest()

This objective function is similar to the one used in the iterative least-squares method developed
by Brown[1971]. In our approach, during search, a set of (hypothesized) distortion parameters
S = {Cs, Cs, Py, P} are applied to the selected image poifis= (z,y)}. This maps the points

to newer points which we hope will be collinear. Lines are fitted to the resulting sets of supposed
collinear points{q’ = (2/,3’)} using a least squares approach. The objective function is then
defined as the sum of the squared distances of the points from their corresponding “best-fit” lines

(see Fig. 3).

Let the points selected by the user along any curve be denoted by the}se®n applying the
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Figure 3: q is a point selected along the image curve. Applying the current set of hypothesized distortion
parametersS, we get its undistorted location gt. 1 represents the best fit line for the set of undistorted

points{q'}. We wish to minimize the distance betwegrandl.

hypothesized distortion parameters these points get mapped to thg setet the best-fit line
for a set of pointq'} be parameterized bly, p), whered is the angle the line makes with the
horizontal axis ang is the distance of the line from the image center. Therefore, the error due to

a single poing is defined as:

e = ('sin(6) — y' cos(0) + p)* |

where:
' =x+Ax(q), ¥=y+Ay(q). (7)

Let the number of curves selected by the usef.pand the number of points on each linee F,.

Then the objective function is given by:

L P

& = Z Z (x;%l sin(6;) — ?J;;,z cos(6;) + p1)2 , (8)

=1p=1



whered, andp, are the best-fit line parameters corresponding to image ¢amne(z, ;, y,;) is the

p'" point on linel.

3.2 Normalized Sum of Squaresg,)

Although simple, the above formulation is very sensitive to noise. From the distortion model, it
can be seen that noise is magnified by the higher-order distortion terggimparticular, the
third-order and fifth-order terms). As a result, points that lie closer to the image center contribute
less to the error than points farther away. This effect is partially remedied by normalizing the error
e in (7) by the square of the distanpeof the corresponding linéfrom the image center. The

modified objective function then is:

L P (x;J sin(6;) — y;’l cos(6;) + pl>2 ©

Pl

3.3 Explicit Noise Estimation ¢3)

The objective functiong; and &, are defined in the space of the undistorted points (i.e. after
applying S). Also the distortion model nonlinearly magnifies noise in the undistorted domain.
Thus an error of a few pixels in the distorted point space could easily map to an error of hundreds of
pixels in the undistorted space. It is therefore more appropriate to formulate an objective function

that uses errors computed in the space of distorted image points.

As shown in Figure 4, leq be the distorted point under consideration ghte the “undistorted”
point obtained by applying the set of distortion paramefersAgain, as before] is the best-fit
line for the points{q’}, which are believed to lie on the same scene line. We now determine (via
search) the poing close toq, which when undistorted using would lie on/ atq’ (see Figure 4).

The new error function is defined as:
e=lla—q|*. (10)

Sinced' (', 9') must lie onl, it must satisfy the constraint:

10
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Figure4: q is a point selected by the user aq(is its undistorted location on applying the (hypothesized)
distortion parameter§. [ is the “best-fit” line estimated for atf’, which lie on the same scene ling.is
a point close tay such that, its undistorted locatid@i (obtained by applying on q) lies oni. We wish to

minimize the distance betweepandq.

' sin(f) — ¢ cos(0) +p =10,

where:

P =3+ A0(@) , 7=+ Ay(@) . (12)

Using all the selected points, the objective function is determined as:

L P

§ = ZZ HQPJ - 6117,l||2 . (12)

=1p=1

We have found this objective function to be much more robust in the presence of noise. Experi-

mental results included in the following sections illustrate this fact.
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4 Minimization of &, & and &3

We now describe the non-linear search algorithms used to recover the distortion parahisters
minimizing the objective functiong; , & and&s. It should be noted that our calibration method is

in no way restricted to the specific search algorithms we have used.

We used a modified simplex search algorithm outlinddNielder and Mead, 19¢5implemented in

the IMSL library. This implementation requires the user to provide upper and lower bounds on the
parameters to be estimated. The following bounds were ggd{—107°,107°), C5 : (—1072,1077),

Py :(—107°,107°), P :(—107°,107°). These bounds are highly conservative as they include dis-
tortions that are significantly more severe than those found in typical wide-angle imaging systems.
The nonlinear search method also needs a starting seed point to begin its search. We assume that

there are no distortions present initially and hence all the distortion parameters are set to zero.

At each step of the non-linear search, given the set of (hypothesized) parafigi®es must
compute the objective function. Computationépfand¢, is straightforward, using a linear least-
squares method to fit the linésHowever, computings; also requires the estimation of the point

q (see (2)), for which there is no closed-form solution.

Hence, we solve for eaaly,; by searching the neighborhood @f; for the point which, when
undistorted using, lies onl. This requires & D search (see Figure 4), which is computationally
intensive. For efficiency, we useld search along the radial direction, since there always exists
a point in the radial direction of the selected paipntwhich lies on the true distorted curve. This
approximation enables a faster estimation of the distortion param{eters’s, P, P»}. Our cur-
rentimplementation takes und#r seconds on 800MHz Pentium Il PC to estimate the radial and

decentering distortion parameters.

Note, however, that we did not include the optical centér,,, y,), in the non-linear search for the
distortion parametessS. Initial experiments revealed that includiagz,, y,) can produce unstable
results in the presence of noise due to the higher dimensionality of the search space. This was also
observed by Browh1971], even though the severity of distortions as well as the noise levels were

much lower. Therefore, we recommend nesting the estimati¢a'9fCs, P, P»} within a coarse-

12



to-fine search for the optical center,, y,).

5 Synthetic Experiments

To evaluate the robustness of our calibration technique, it is imperative to test it in the presence
of noise. Noise enters the system from three main sources: human error in selecting points in the
image, finite image resolution, and the fact that lines in the scene may not be perfectly straight. It
is difficult to quantify the robustness of any non-metric calibration method using only real images,
due to lack of ground truth. Hence we simulate the imaging process including the distortions to

guantitatively evaluate the robustness of the method.

Points were randomly sampled from synthetically generated lines with random orientations and
positions (see Figure 5(a)). Using known distortion parameters, the sampled points were distorted
(see Figure 5(b)). To simulate erroneous point selection, we added uniform noise in the interval
(—w, +w) to the points (see figure 5(c)). We then used our algorithm to estimate the distortion
parameters from the noisy data and used these parameters to undistort the noiseless image points

(see Figure 5(d)).

Although precise recovery of the distortion paramet8rensures an exact match between the
sampled points (Figure 5 (a)) and the undistorted points (Figure 5 (d)), it is not necessary for
accurate distortion correction. A good measure of accuracy and robustness is the distance between
the true perspective projection of scene points (in Figure 5(a)) and their recovered undistorted
positions (in Figure 5(d)). We tested each objective function using various lin€ setdifferent
orientations and positions , various distortion paramefesad several noise levels in the interval

w = [0, 5] pixels.

Tables 1 (a)-(c) show the errors present in the recovered undistorted points using the sum of squares
(&1), normalized sum of square$ ) and the noise estimation methad)( respectively. Errors are
defined as the average of the absolute distances between each of the undistorted points and the
original sampled points. Notice the sharp degradation in accuracy with increasing noise in the
simple sum of squares approadh)((see Table 1(a)). Although, performs better thag; for

certain noise levels, it breaks down for high levels of noise.

13
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Figure5: (a) Points randomly sampled from synthetically generated lines. (b) Known distortions are applied
to the points in (a). (c) Uniformly distributed random noise in the interval (-5 pixels, 5 pixels) is added to
the distorted points in (b). (d) The distortion parameters are recovered from these noisy image points using
the algorithm based on objective function These parameters are used to undo the distortions present in
(b). Despite the large amount of noise, the recovery of undistorted image points is found to be accurate and

robust.

In contrasté; is much more robust and can yield sub-pixel accuracy even for high noise levels,
as can be seen from Table 1(c). More results obtained by @siage shown in Table 2. The
interesting fact to be noted is that even for large levels of input npise= 5), the resulting
average error is below pixels. This is interesting as the undistorting process tends to exaggerate

all errors.
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Distortion Coefficients Average Error (pixels)
L|C3 | Cy| P P lw=0lw=1lw=2|w=5
#1/107°1107?] 107> | 107> | 0.000| 3.360|13.973 42.521
107°1107210.000 | 0.000| 0.000| 3.264 |13.91742.574
#2/107°[107?[ 10~ | 10~ | 0.000| 12.095 39.567 66.817
107511072 0.000 | 0.000 | 0.000| 12.184 39.616 66.849

a)
Distortion Coefficients Average Error (pixels)
L 03 05 P1 PQ w=0lw=1lw=2w=>5
#1/107°[1077] 10~° | 10~ | 0.000| 0.356| 2.473/12.383
10721077 10.000 | 0.000 | 0.000| 0.396| 2.272|12.373
#2/107°[1077]10=° | 10 | 0.000| 1.618| 5.448]| 28.639
10~°1107210.000 | 0.000 | 0.000| 1.592| 5.550| 28.711

(b)

Distortion Coefficients Average Error (pixels)
L|Cy| Cs | P P lw=0lw=1lw=2w=>5
#1/107°107?/10=° | 107> | 0.002| 0.363| 0.390| 0.398

51107210.000| 0.00 | 0.003| 0.328 0.273| 0.318
#2/107°[107?/107° | 107> | 0.008| 0.663| 0.773] 0.502
107°1107210.000 | 0.000 | 0.006| 0.529| 0.734| 0.330

(©)

Table 1: Results on running simulations on the three objective functions: (a) Indicates errors on undistoring

the image samples on usigg. (b) Results forg,. More robust to noise but yet degrades for large noise

levels. (C) Results on usir@. Note the striking improvement over baghandés

Distortion Coefficients Average Error (pixels)

Cs P P w=0lw=1w=2w=5
1077 | 107° [ 107> | 0.002| 0.428| 0.522| 0.391
1079 10.000 | 0.000 | 0.004| 0.344 0.382| 0.246
10-1910.000 [ 0.000 | 0.281| 0.348| 0.579| 2.818
10711 107% ] 107° | 0.007| 0.278| 0.623| 2.782
1072 [ 107 [ 107> | 0.000] 0.151| 0.015| 0.068
1079 10.000 | 0.000 | 0.003| 0.305| 0.339| 0.221
1071910.000 | 0.000 | 0.029| 0.152| 0.345 1.591
107191 107% | 1075 | 0.068| 0.192| 0.339| 1.701
1079 1 107> | 107> | 0.000| 0.501| 0.574| 0.590
1072 10.000|0.000 | 0.007| 0.329| 0.330| 0.337
1071910.000|0.000 | 0.043| 0.444| 0.488| 2.356
10711 107% | 10-° | 0.009| 0.415| 0.645| 2.368

L
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Table 2: Detailed experimental results f6s.
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| Distortion Coefficients | Average Error (pixels) |
L Cs Cs P P> Grid | w=0 | w=1| w=2
#1 | 10~° 10—° 10—° 10—° 2 0.002 4,232 9.014
10—5 10—9 10—2 10—2 5 0.002 0.363 | 10.220
10—5 109 10—° 10—° 10 0.002 0.363 0.390
#2 | 10~° 10—° 10—° 10—° 2 0.008 4271 3.792
10—5 10—9 10—2 10—2 5 0.008 0.663 | 12.017
1072 | 1072 | 1075 | 107° 10 | 0.008 | 0.663 | 0.773

Table 3: Results on estimation of optical centet,, y,).

As mentioned earlier, recovery of the optical center is implemented as a coarse-to-fine exhaustive
search around the image center. The search for the optical center was done using a 5x5 grid at
resolutions of 10, 5 and 2 pixels. As Table 3 indicates, fine searches in the presence of noise can
resultin inaccurate solutions, while coarse searches appear to give better results. It is not surprising
that the search for the optical center is unstable in the presence of decentering distortions as was
previously observed by Brow[1971]. The time taken to recover all six distortion parameters
{Cs,C5, Pr, Py, x,, y,} i linear in the number of grid points used. The run time for the complete

calibration algorithm for a 5x5 grid is about 20 minutes on a 300 MHz Pentium Il machine.

6 Results with Real Images

We tested our algorithm based ¢nusing images taken with two different camera systems. To
test robustness over a wide range of conditions we used a low distortion camera as well as an
inexpensive board camera with severe decentering and radial distortions. The low distortion sensor
isal/2” CCD Sony XC-75 camera with a Computar 3.6mm lens and the high distortion sensor is

al/3” Computar EMH200-L25 CCD board camera with a 2.5mm lens.

The calibration of the sensors was done using a set of didduntes and a total of abo@b0 points.
The estimated distortion parameters obtained u&§jnvgere used to undistort the distorted images
(see figures 6 (a, ¢) for an example). As can be seen from figures 6(b, d) , straight lines in the scene

map to straight lines in the distortion corrected image.

Furthermore, we can construct lookup tables for each sensor that can be used to generate an undis-

torted image stream in real-time. Since the lookup table essentially represents an image warping

16



function, we have to address issues relating to speed and image quality. The warping function tends
to scale up the image in a nonlinear fashion. This increase in scale factor causes certain pixels in
the output image frame to map to sub pixel locations in the source image. We use nearest neighbor

interpolation here as this is the fastest in terms of real-time performance.

The lookup table uses backward mapping and hence we need to find for each output pixel, its

(b)

() (d)

Figure 6: (a) Image captured with a Computar 3.6mm lens and a 3¢a% CCD camera (b) Distortion
parameters recovered via the minimization{gfare used to map (a) to a perspective image. (c) Image
produced by a Computar 2.5mm lens and a Compuytaf CCD board camera. (d) Distortion parameters
recovered via the minimization gf are used to map (c) to perspective image. Notice that, straight lines in

the scene, such as door edges, map to straight lines in the undistorted images.

17



source from the distorted image frame. Since there does not exist a closed form solution for the
inverse of the distortion model, we need to search in a nonlinear fashion for the image points
which would act as the source for the corresponding undistorted point. This process although time
consuming needs to be performed only once. Then on, the lookup table can be used to generate an

undistorted video stream in real time.

7 Polycameras

We now describe a natural application for the results we have presented so far in the paper. We
define a polycamera to be a tight cluster of cameras that together capture a large field of view.
Unlike multiple cameras used in stereo for instance, the cameras that comprise a polycamera are
configured to have minimally overlapping fields of view. Due to the finite size of the cameras it is
difficult to configure them so as to have a single viewpoint. We therefore relax the single viewpoint
constraint, but ensure that the individual viewpoints of the cameras are close enough so that the
images they produce can be merged together seamlessly for objects beyond a minimum distance

from the polycamera. We call this distance thmimum working distancef the polycamera.

In spirit, the idea of using multiple sensors is similar to that of NalWsslwa, 1996, where four
cameras and four planar mirrors are configured to obtain a panoramic field of view as seen from a
single viewpoint. The singular viewpoint is achieved by configuring the mirrors and cameras such
that their centers of projection reflect to the saiepoint. This point thereof being the center of
projection for the panoramic sensor. However, this requires careful arrangement of the mirrors and

the cameras, which is avoided in our system.

Another sensor that also uses camera clusters to capture a wider field of view, is that developed by
Immersive MedidMedia, 1999 called theDodeca The Dodeca unlike the sensor developed by
Nalwa, does not use any mirrors. Instead, it uses 11 image sensors arranged on a sphere, tessellated
as a dodecahedron. Each sensor has a small field of view and a long focal length. However, small
field of view sensors, necessitates the use of a large number of such sensors. The effect of this is
a strong deviation from the single viewpoint constraint, thereby increasing the minimum working

distances of the cluster. Also, larger number of sensors necessitate the capability of acquiring and

18



processing more video signals.

Given a desirable field of view, we would like to use the least number of cameras to capture it.
Clearly, using perspective imaging systems with relatively long focal lengths will necessitate the
use of a larger number of cameras, as is the case with the Dodeca. We therefore propose the use
of wide-angle imaging systems. Typically, such wide angle sensors have radial and tangential
distortions. For geometrically correct projections and smooth blending between views, we first
have to calibrate the sensors for the distortion parameters. We recommend the calibration method
proposed earlier in the paper, to estimate these parameters. Once calibrated, these sensors can be

used to capture large fields of view.

7.1 Polycamera configurations

The wide fields of view of image sensors like for instance the Computar EMH200-L-25 board
camera are most suitable for polycameras. This sensor has a horizontal field of view of about
115 degrees. We present here configurations in which such wide-angle sensors can be arranged to

provide panoramic, hemispherical and spherical fields of view.

We can arrange six sensors on the sides of a cube, so as to capture a spherical field of view about the
center of the cube. The orientation of each sensor on the cube’s surface is such that the horizontal
and vertical axis of each sensor are orthogonal to those of the adjacent cameras. We assume that
that the sum of the horizontal and vertical fields of view is greater t8ardegrees. This ensures

an overlapped view between any two edges of the cube (see figure 7 (a) ). The final projection
could be on a cube or on a sphere. The advantage of this configuration over the Dodeca (see
[Media, 1999), is the use of fewer sensors while still covering the entire sphere. Smaller fewer
sensors facilitate building a tighter cluster, thus reducing the parallax effect due to non-singular

viewpoints.

Four such sensors can be oriend@dlegrees apart to captur@@) degree panoramic field of view.
The 115 degree horizontal FOV facilitates adjacent views to have overlapped regions of space of
upto25 degrees. In general any sensor which has a horizontal field of view of0wEgrees can

be used in such a configuration (see figure 7 (b) ), to capture a panoramic field of view.
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Figure7: (a) A Spherical FOV polycamera configured using six wide angle sensors. Each sensor is located
on the sides of a cube, such that their axis are mutually orthogonal. (b) A panoramic polycamera configured
using four wide angle sensors. Each camera has a horizontal field of view of(degrees, ensuring a
complete field of view oB60 degree.(c) Three wide angle sensors arranged on the sides of a pyramid. In

the above three configurations, the normals on the surface indicate the viewing direction of each sensor.
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This configuration uses 3 image sensors arranged on the sides of a pyramid. Depending on the filed
of view of the individual sensors, a complete hemisphere to a partial hemisphere may be captured.

The advantage of this configuration is that if a single channel sensor is used, then the three signals
can be coupled together as one 3-channel signal. This facilitates the use of a single frame grabber
thus reducing the computational power needed to acquire and process the signals. Figure 7 (c)

illustrates this configuration.
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Figure8: Schematic showing two cameras centeredaandCs, imaging the scene poidp. the pointQ
is imaged at the pointg andqg-, respectively. The distances to the closes edge of the corresponding images

are therw, andws respectively. These distances are used to weight the contribution of a pixel’s intensity.

7.2 Blending multiple views

When stitching together multiple views, it is possible for more than one view to contribute to a
single pixel along view boundaries and regions of overlap. This can be handled by either arbitrarily
selecting any one view to be the source or by more sophisticated methods. The first, more simpler
method, could result in severe visual artifacts due to the different gains of the sensors, across such
view boundaries. We therefore utilize a method suggested by SzEi88H for blending the

multiple views with seamless transitions between views. The intensity of the resulting pixel is
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defined as the weighted sum of the intensities of the pixels in the respective views. The weights
are based on the closeness of the pixel to the view’s image boundary. The closer a pixel is to its

boundary the lesser is its contribution. This gives seamless transitions between views.

Consider the case df sensors imaging a scene poipt Let any sensof’; image the point) at
q;- Letw; be the corresponding shortest distance to any edge of the image (see figure 8). If the
intensity of the imaged poin is given by!,,, then the resulting image intensity on the projection

surface is:

Zi]\iO(wi)

(13)

Figure 9: Two cameras”; and C,, image the scene poir@ at pointsq; and g2, respectively. Their
projections onto the surface (assuming pure rotation between views) pr@andp, respectivelyp; andps

are obtained by intersecting rays parallel-{@ndr., denoted as] andr) with S. @ should ideally project
onto S atp. The distance of) from O, at which the disparity betwean andp, fall below some threshold

is theminimum working distance
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Figure 10: Segment of panorama clearly showing disparity in image points for close up objects. The
ghosting effect within the dotted region, is due to the scene points being close and at a distance lesser than

the minimum working distance. The disparity is very conspicuous at the corner of the monitor .

8 Non-Singular viewpoints and the Minimum Working Distance

Projection onto any surface requires a single center of projectionhe finite size of each indi-

vidual sensor causes the polycamera to have a non-singular viewpoint. Due to the sampling nature
of the sensors, there is a minimum distance which we call “minimum working distance”, beyond
which the non singularity of viewpoints has negligible effect. Below this distance, disparities be-
tween projections from multiple views would be large. Figure 9 shows the disparity of a@oint
when projected from two views, centered@tandC,. Blending multiple views of such scene
points, results in a ghosting effect which is clearly demonstrated in figure 10. It should however be
noted that the working distance depends on the resolution of the projection surface. Thus reducing

resolution will result in a decrease of the minimum working distance.

We now consider the problem of estimating the minimum working distance given a cluster of
cameras. The issue is pertinent when we try to blend the various views onto a single surface of
projection. At the minimum working distance we would like the disparity between projections
from pairs of views to lie below some preset threshold lewel Thus for more than two sensors

imaging the same point in space, we define the working distance as the maximum distance on
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considering all sensors.

Consider a point on the projection surfgee= (x,y). This corresponds to a ray direction given
by the pan and tilt angleg)(6). For a point() in space along this ray to have negligible disparity,
it should lie at a distancé which is the minimum working distance from. In rectangular co-

ordinates the poird) is given by:

d - cos(0) - cos(¢)
T d - sin(0)
@ ( AR > - d - cos(0) - sin(¢) a4

1

Consider a camer@; in whose field of view() lies. If we represent it's camera matrix (extrinsic
parameters such as rotation and translation phyand letP; be the perspective projection matrix.

Then camer@’; images( at:

g =P Di-Q (15)

Let P(-) be a mapping of a point on the image onto the surface of projection (see figure 9). Thus

the imaged poing; would be projected onto the surface at:
pi = P(q) (16)
Disparity between the projections of two views is guaranteed to lie beloynthe constraint:

€
, = — 17
Ipi — pl| 5 17)

The distancel which satisfies the above constraint is the minimum working distance along the
ray direction ¢, #). To estimate the minimum working distance for the entire cluster, we need to
estimated for all ray direction which project onto the surface. The maximum distance along all

ray directions represents the bounding sphere of minimum working distance.
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Figurell: A panoramic polycamera configured using fays” CCD Computar EMH200-L25 board cam-
eras with 2.5mm lenses. Each camera has a horizontal field of view of abdudegrees, ensuring a

complete field of view oB60 degree.

9 A Real-time Panoramic Polycamera

Figure 11 shows the polycamera we developed based on design described earlier. The complete
sensor is enclosed in a cylinder thatriem tall and7.5 cm in diameter. It houses 4 Computar
EMH200-L25 board cameras with 2.5mm lenses placed approxim@i@etiegrees apart. Each
camera has about 5 degree field of view horizontally and thus ensures overlap between adjacent

views as well as a comples&0 degree field of view.

9.1 Minimum working Distance

Figure 12 illustrates the minimum working distance varying across a panorama generated using the
four camera panoramic polycamera. Larger working distances are represented by brighter points
and nearer distances by darker points. As expected, the distance is minimal along the camera’s
optical axis and increases as we progress along any direction tangential to this axis. There is a
sharp change of the working distance at the overlapped regions on the panorama as we consider

the maximum of the two working distances in regions of overlap.

This simulation was run assuming the four sensors were in the same plane and pgedsegirees

apart. Each was assumed to be displaced from the center of projection of the panofafiaty
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Figurel2: The minimum distance map. This map shows the minimum distance a way from the center of the
panorama (cylinder) that a point in space has to be f or a projection error of less than half a pixel. Brighter

regions correspond to regions on the panorama where the point has to be further away.

The minimum working distance was estimated to be approximatety.
9.2 Panorama generation
Prior to blending adjacent views we need to undistort the image streams. We therefore calibrate

each camera using the proposed method (objective fungf)ormhe estimated distortion param-

eters are used to create look-up tables for the 4 sensors which map points from the undistorted

Figure13: The Panoramic projection model. A poigtin the image is projected along the ray, originating
at the center of projectio®. The intersection of this ray direction with the cylindemat p, represents its
panoramic projection¢ and#@ are the pan and azimuthal angles estimated fepriR is the radius of the

cylinder.
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Figure 14: Panoramic video stream generated using the polycamera shown in Figure 11. The panorama is
computed using a look-up table, which is constructed taking into account the relative orientations of the four

wide-angle cameras as well as their distortion parameters.

space to the source (distorted) space. Point correspondences in overlapping views are used to es-
timate relative orientation (assumed to be purely rotational) between two sensors. Each pixel on
the panorama, represented by a cylinder (see figure 13), maps to at most two camera views. This
mapping being time invariant, needs to be computed only once. We again use a look-up table to

represent the panoramic projection.

To account for the differences in the gains of the four cameras, the blending algorithm described
earlier was used. The mapping from individual views to the panorama as well as the blending
weights in the overlap regions are stored in the look-up table. Four video streams are captured
simultaneously using four Matrox boards that reside in a 400 MHz Pentium-I1l PC. The look-up ta-
ble us used to create a 1000x480 panorama. Displayed of the panorama is done using Direct-Draw
technology at approximatelys frames a second. Figure 14 shows a snap-shot of the panoramic

video produced by this polycamera system.

10 Conclusion

In this paper we have proposed a new method to calibrate imaging systems for radial and decen-
tering distortions. Most of the prior methods either relied on calibration objects or on virtually
noiseless data. We propose a method that is much more robust in the presence of noise. The con-
straint used in our approach is that straight lines in the scene should map to straight lines in the

image if perspective projection is assumed. The only requirement of the algorithm, is that the user
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indicate which points in the image, lie on straight lines in the scene. This requirement is easy to

satisfy as straight lines are abundant in urban scenes.

The method uses an objective function, which when minimized, yields the lens distortion param-
eters. This objective function has been defined in the space of distorted points as opposed to
defining it in the undistorted space, so as to minimize any nonlinear exaggeration of errors due to

noise. This makes it robust to high levels of noise.

Synthetic as well as experiments with real images are provided to demonstrate the robustness of
this technique. Noise levels of upfopixels have been simulated and results indicate low error

levels in parameter estimation under these circumstances (see tables 1(c), 2 and 3).

We also have proposed the idea opalycamerawhich we define as a closely packed camera
cluster. Due to the finite size of each sensor it is very difficult to adhere to the single viewpoint
constraint. We can however relax this constraint due to the sampling nature of the image detector.
Beyond some distance from the camera cluster, the effect of a non-singular viewpoint falls below
a detectable threshold. We define this distance to be the “minimum working distance”. Analysis
of the minimum working distance and its estimation for the generic case of a multi-sensor cluster
is provided. We also propose certain configurations in which polycameras could be constructed so

as to capture various large fields of view ranging from panoramic to a spherical field of view.

Finally, results are presented for one such panoramic polycamera built using four wide angle sen-
sors. Simulating the camera cluster, the estimated minimum working distance has been found to
be aboutd.0 meters. Since each sensor used in this polycamera has severe distortions, we first
estimate the distortion parameters using the proposed method. The undistorted image streams are
then projected onto a panorama in real time to generaé@ degree panorama &5Hz. This high

speed processing is possible by using precomputed look-up tables, and DirectDraw technology for

fast rendering of the panorama.
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