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Abstract

We present the idea of a polycamera which is defined as a tightly packed camera cluster. The cluster

is arranged so as to minimize the overlap between adjecent views. The objective of such clusters

is to be able to image a very large field of view without loss of resolution. Since these clusters

do not have a single viewpoint, analysis is provided on the effects of such non-singularities. We

also present certain conbfigurations for polycameras which cover varying fields of view. We would

like to minimizze the number of sensors required to capture a given field of view. Therefore we

recommend the use of wide-angle sensors as opposed to traditional long focal length sensors.

However, such wide-angle sensors tend to have severe distortions which pull points towards the

optical center. This paper also proposes a method for recovering the distortion parameters without

the use of any calibration objects. Since distortions cause straight lines in the scene to appear as

curves in the image, our algorithm seeks to find the distortion parameters that would map the image

curves to straight lines. The user selects a small set of points along the image curves. Recovery

of the distortion parameters is formulated as the minimization of an objective function which is

designed to explicitly account for noise in the selected image points. Experimental results are

presented for synthetic data with different noise levels as well as for real images. Once calibrated,

the image stream from a wide angle camera can be undistorted in real time using look up tables.

Finally, we apply our distortion correction technique to a polycamera made of four wide-angle

cameras to create a high resolution 360 degree panorama in real-time.

Index Terms — camera calibration, wide-angle lens, radial distortion, decentering distortion, cam-

era clusters, polycamera, single viewpoints constraint, minimum working distance, real-time panoramic

sensor.
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1 Introduction

In many vision applications, such as surveillance, it is desirable to capture the entire region of

interest with as few cameras as possible. Wide-angle cameras help in this regard, but at the cost of

severe image distortions. Wide-angle lenses that adhere to perspective projection would necessitate

the use of prohibitively large image detectors. To work around this problem, wide-angle lenses are

designed to severely bend rays of light around the periphery of the field of view1, thus permitting

the use of a small image detector (say, a CCD). The effects of the resulting image distortions are

clearly visible in Figure 1.

Figure1: Images captured with wide-angle cameras have severe distortions that alter the appearance

of objects in the scene.

If the optics of a wide-angle camera system are knownapriori (i.e. the distortion parameters), then

distortion correction can be easily applied. Unfortunately, such information is seldom revealed by

manufacturers. Furthermore, in mass production, optical characteristics are sure to vary from one

lens to the next. It is therefore desirable to have a simple calibration method for extracting the

distortion parameters. This paper presents such a calibration method.

1Severe bending of light rays typically leads to a non-singular entrance pupil. The resulting locus of pupils in three

dimensions is called adiacaustic[Born and Wolf, 1965]. This implies that, for a wide-angle lens, complete removal

of distortions cannot be achieved. For our purposes, we will assume a small pupil locus that can be approximated by

a single point.

3



Several calibration techniques have been suggested for recovering lens distortion parameters. Tsai

[1987] used known points in 3D space to recover some of the distortion parameters. Goshtasby

[1989] utilized Bezier patches to model the distortions and used a uniform grid placed in front

of the camera as a calibration object. Weng[1992] also used calibration objects to extract all the

distortion parameters. All these methods fall in the category of “stellar” calibration, where objects

with points of known relative coordinates are used.

In contrast, Brown[1971] proposed a “non-metric” approach that does not rely on known scene

points. Instead, it relies on the fact that straight lines in the scene must always perspectively project

to straight lines in the image. An iterative least-squares formulation is used to estimate distortion

parameters which map distorted image curves to straight lines. Brown’s algorithm relies on essen-

tially noiseless image data, which is obtained by imaging plumb-lines suspended against a black

background onto a photographic plate. More recently, Kang[1997] used snakes to represent the

distorted curves instead of discrete points. Becker[1995] used three mutually orthogonal sets of

parallel lines and a vanishing point constraint to recover distortion parameters. In[Stein, 1997],

[1993] and[1995], point correspondences in multiple images are used to estimate radial distortions.

Thus apart from estimating the distortion parameters, one has also to estimate the relative orien-

tation between views. This makes the problem more unstable in the presence of noise. Another

novel approach suggested by Sawhney in[1997] and[1999] is, image based distortion parameter

estimation. This is a direct method and relies solely on multi-image alignment to estimate the

parameters.

Previous work suffers from one or more of the following restrictions: calibration objects need

to be used, not all the distortion parameters are recovered, or the algorithm is highly sensitive

to noise. One exception is the work of Becker[1995]. However, Becker’s constraint (triplets

of orthogonal lines) is less abundant in urban settings than the randomly oriented straight lines we

use. We formulate the estimation of distortion parameters as the minimization of a noise insensitive

objective function via efficient search.

Experimental results with synthetic and real data are presented, which demonstrate the robustness

of the proposed method in the presence of large amounts of noise. In addition, we describe a
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useful application of our calibration technique. We present the notion of a polycamera, which uses

a tight cluster of cameras to capture a large fully connected field of view. Wide-angle cameras are

useful in this context as they minimize the number of cameras needed to cover the desired field of

view. Fewer cameras also facilitate tightly packed clusters, which aid in reducing the effects of a

non-singular viewpoint.

In practice, due to the finite size of cameras, it is not possible to maintain a singular viewpoint.

One exception being the system developed by Nalwa ( see[Nalwa, 1996]), which uses mirrors

along with image sensors to obtain a single viewpoint. Non singular viewpoints lead to disparities

in the projections of the imaged points, which although useful in stereo applications, do not help in

creating smooth mosaics. Although theoretically this disparity vanishes only for points at infinity,

we propose the idea of aminimum working distancebeyond which the disparity falls below a

detectable threshold. Analysis of the minimum working distance for the generic case, as well as

results for a panoramic polycamera are included. Finally, results of a real time high resolution

panoramic sensor we built are presented.

2 Distortion Model

Distortions in lenses can be decomposed into three components: (a) shift of the optical center, (b)

radial distortion, and (c) decentering distortion.

Let the perspective projection of a scene point beq′ (see Figure 2). Due to distortions in the lens,

q′ gets mapped toq. Let (x, y) be the Cartesian and(r, φ) be the polar coordinates ofq. Similarly,

let (x′, y′) be the Cartesian and(r′, φ′) be the polar coordinates ofq′. Also, let the optical centerC

be located at(xp, yp). Then, the Cartesian and polar coordinates are related as:

r =
√
x̄2 + ȳ2 , tan(φ) =

ȳ

x̄
,

where:

x̄ = x− xp , ȳ = y − yp . (1)
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Figure2: q′ is the perspective projection of a scene point onto the image plane. Due to radial and decentering

distortions,q′ gets mapped to the pointq.

2.1 Shift of Optical Center

A shift of the optical center corresponds to a shift of the image detector in a plane perpendicular

to the optical axis. The effect of such a distortion is merely that the image center is no longer

the optical center. Estimating this distortion component amounts to estimatingC = (xp, yp), the

optical center.

2.2 Radial Distortions

There are two kinds of radial distortions in lenses. The one found in most wide angle cameras

tend to pull points radially towards the optical center. This is also referred to asbarrel distortion

[Born and Wolf, 1965]. The other type of distortion tends to push points away from the optical

center along the radial direction and is calledpin-cushion distortion. As can be seen, these effects

are purely radial in direction and solely depend on the distance from the optical center. The radial

distortion present in the pointq can be written as:

∆r(q) =
∞∑
i=1

C2i+1r
2i+1 , (2)

where,C2i+1 are the distortion parameters. As can be seen, only the odd powered terms are used
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to model this distortion[Conrady, 1919]. The higher powered terms tend to contribute lesser to the

effective distortion. We therefore ignore terms higher than the fifth-order as their contribution to

the distortion is negligible in practice[Brown, 1966]. Hence, we have:

∆r(q) ≈ C3r
3 + C5r

5 . (3)

2.3 Decentering Distortions

Decentering distortions are caused by the non-orthogonality of the lens components and the image

detector with respect to the optical axis. All imaging systems have some decentering distortions.

Unlike radial distortions, this distortion component acts tangential to the radial direction. We use

Conrady’s model[Conrady, 1919] for decentering distortion:

∆Tx(q) = [P1r
2(1 + 2 cos2(φ)) + 2P2r

2 sin(φ) cos(φ)] · [1 +
∞∑
i=1

Pi+2r
2i]

∆Ty(q) = [P2r
2(1 + 2 sin2(φ)) + 2P1r

2 sin(φ) cos(φ)] · [1 +
∞∑
i=1

Pi+2r
2i] , (4)

where,Pi are the distortion parameters and∆Tx,∆Ty are the distortions along thex andy direc-

tions, respectively.

The higher-order terms in the above expression are again relatively insignificant. Hence,P1 and

P2 are generally sufficient for modeling decentering[Brown, 1966]:

∆Tx(q) ≈ [P1r
2(1 + 2 cos2(φ)) + 2P2r

2 sin(φ) cos(φ)]

∆Ty(q) ≈ [P2r
2(1 + 2 sin2(φ)) + 2P1r

2 sin(φ) cos(φ)] . (5)

2.4 Complete Distortion Model

The total distortion is modeled as a combination of the above three components:

∆x(q) ≈ cos(φ)[∆r(q)] + ∆Tx(q)

∆y(q) ≈ sin(φ)[∆r(q)] + ∆Ty(q) . (6)
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In order to correct distortions, we thus need to recover the parameters:{C3, C5, P1, P2, xp, yp}.

3 Objective Function Formulation

The constraint used in this paper is that, under perspective projection, straight lines in the scene

should project to straight lines in the image. Consider a set of points in the scene which lie on a

straight line. Their projection onto the image lie on curves. In this setting, an objective function

can be defined which, when minimized, yields the parameters that undistort the curve points to lie

on straight lines.We assume that the user of our calibration method knows which (distorted) image

curves correspond to straight lines in the scene. Based on this knowledge, the user selects points

along these curves. These selected points will be the used to estimate the distortion parameters.

We present three objective functions, namely, sum of squared distances (from straight lines), nor-

malized sum of squared distances and one that explicitly estimates noise in the chosen image

points. The first two are presented mainly to demonstrate that simple objective functions (similar

to ones proposed previously) are highly noise sensitive. In contrast, the third function is designed

to explicitly account for noise in the image points chosen by the user. All our objective functions

are non-linear and are minimized using efficient search algorithms. In what follows, our goal will

be to recover only the radial and decentering distortion parameters. The shift of the optical center

(xp, yp) will be recovered separately in an iterative fashion.

3.1 Sum of Squared Distances (ξ1)

This objective function is similar to the one used in the iterative least-squares method developed

by Brown [1971]. In our approach, during search, a set of (hypothesized) distortion parameters

S = {C3, C5, P1, P2} are applied to the selected image points{q = (x, y)}. This maps the points

to newer points which we hope will be collinear. Lines are fitted to the resulting sets of supposed

collinear points{q′ = (x′, y′)} using a least squares approach. The objective function is then

defined as the sum of the squared distances of the points from their corresponding “best-fit” lines

(see Fig. 3).

Let the points selected by the user along any curve be denoted by the set{q}. On applying the
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Figure3: q is a point selected along the image curve. Applying the current set of hypothesized distortion

parametersS, we get its undistorted location atq′. l represents the best fit line for the set of undistorted

points{q′}. We wish to minimize the distance betweenq′ andl.

hypothesized distortion parameters these points get mapped to the set{q′}. Let the best-fit line

for a set of points{q′} be parameterized by(θ, ρ), whereθ is the angle the line makes with the

horizontal axis andρ is the distance of the line from the image center. Therefore, the error due to

a single pointq is defined as:

e = (x′ sin(θ)− y′ cos(θ) + ρ)2 ,

where:

x′ = x+ ∆x(q) , y′ = y + ∆y(q) . (7)

Let the number of curves selected by the user beL, and the number of points on each linel bePl.

Then the objective function is given by:

ξ1 =
L∑
l=1

Pl∑
p=1

(
x′p,l sin(θl)− y′p,l cos(θl) + ρl

)2
, (8)
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whereθl andρl are the best-fit line parameters corresponding to image curvel and(xp,l, yp,l) is the

pth point on linel.

3.2 Normalized Sum of Squares (ξ2)

Although simple, the above formulation is very sensitive to noise. From the distortion model, it

can be seen that noise is magnified by the higher-order distortion terms inS (in particular, the

third-order and fifth-order terms). As a result, points that lie closer to the image center contribute

less to the error than points farther away. This effect is partially remedied by normalizing the error

e in (7) by the square of the distanceρl of the corresponding linel from the image center. The

modified objective function then is:

ξ2 =
L∑
l=1

Pl∑
p=1

(
x′p,l sin(θl)− y′p,l cos(θl) + ρl

ρl

)2

. (9)

3.3 Explicit Noise Estimation (ξ3)

The objective functionsξ1 and ξ2 are defined in the space of the undistorted points (i.e. after

applyingS). Also the distortion model nonlinearly magnifies noise in the undistorted domain.

Thus an error of a few pixels in the distorted point space could easily map to an error of hundreds of

pixels in the undistorted space. It is therefore more appropriate to formulate an objective function

that uses errors computed in the space of distorted image points.

As shown in Figure 4, letq be the distorted point under consideration andq′ be the “undistorted”

point obtained by applying the set of distortion parametersS. Again, as before,l is the best-fit

line for the points{q′}, which are believed to lie on the same scene line. We now determine (via

search) the point̂q close toq, which when undistorted usingS would lie onl at q̂′ (see Figure 4).

The new error function is defined as:

e = ‖q− q̂‖2 . (10)

Sinceq̂′(x̂′, ŷ′) must lie onl, it must satisfy the constraint:
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Figure4: q is a point selected by the user andq′ is its undistorted location on applying the (hypothesized)

distortion parametersS. l is the “best-fit” line estimated for allq′, which lie on the same scene line.q̂ is

a point close toq such that, its undistorted location̂q′ (obtained by applyingS on q̂) lies onl. We wish to

minimize the distance betweenq andq̂.

x̂′ sin(θ)− ŷ′ cos(θ) + ρ = 0 ,

where:

x̂′ = x̂+ ∆x(q̂) , ŷ′ = ŷ + ∆y(q̂) . (11)

Using all the selected points, the objective function is determined as:

ξ3 =
L∑
l=1

Pl∑
p=1

‖qp,l − q̂p,l‖2 . (12)

We have found this objective function to be much more robust in the presence of noise. Experi-

mental results included in the following sections illustrate this fact.
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4 Minimization of ξ1, ξ2 and ξ3

We now describe the non-linear search algorithms used to recover the distortion parametersS by

minimizing the objective functionsξ1 , ξ2 andξ3. It should be noted that our calibration method is

in no way restricted to the specific search algorithms we have used.

We used a modified simplex search algorithm outlined in[Nelder and Mead, 1965], implemented in

the IMSL library. This implementation requires the user to provide upper and lower bounds on the

parameters to be estimated. The following bounds were used:C3 : (−10−5, 10−5) ,C5 : (−10−9, 10−9),

P1 : (−10−5, 10−5) , P2 :(−10−5, 10−5). These bounds are highly conservative as they include dis-

tortions that are significantly more severe than those found in typical wide-angle imaging systems.

The nonlinear search method also needs a starting seed point to begin its search. We assume that

there are no distortions present initially and hence all the distortion parameters are set to zero.

At each step of the non-linear search, given the set of (hypothesized) parametersS, we must

compute the objective function. Computation ofξ1 andξ2 is straightforward, using a linear least-

squares method to fit the linesl. However, computingξ3 also requires the estimation of the point

q̂ (see (12)), for which there is no closed-form solution.

Hence, we solve for eacĥqp,l by searching the neighborhood ofqp,l for the point which, when

undistorted usingS, lies onl. This requires a2D search (see Figure 4), which is computationally

intensive. For efficiency, we use a1D search along the radial direction, since there always exists

a point in the radial direction of the selected pointq, which lies on the true distorted curve. This

approximation enables a faster estimation of the distortion parameters{C3, C5, P1, P2}. Our cur-

rent implementation takes under30 seconds on a300MHz Pentium II PC to estimate the radial and

decentering distortion parameters.

Note, however, that we did not include the optical centerC(xp, yp), in the non-linear search for the

distortion parametersS. Initial experiments revealed that includingC(xp, yp) can produce unstable

results in the presence of noise due to the higher dimensionality of the search space. This was also

observed by Brown[1971], even though the severity of distortions as well as the noise levels were

much lower. Therefore, we recommend nesting the estimation of{C3, C5, P1, P2} within a coarse-
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to-fine search for the optical center(xp, yp).

5 Synthetic Experiments

To evaluate the robustness of our calibration technique, it is imperative to test it in the presence

of noise. Noise enters the system from three main sources: human error in selecting points in the

image, finite image resolution, and the fact that lines in the scene may not be perfectly straight. It

is difficult to quantify the robustness of any non-metric calibration method using only real images,

due to lack of ground truth. Hence we simulate the imaging process including the distortions to

quantitatively evaluate the robustness of the method.

Points were randomly sampled from synthetically generated lines with random orientations and

positions (see Figure 5(a)). Using known distortion parameters, the sampled points were distorted

(see Figure 5(b)). To simulate erroneous point selection, we added uniform noise in the interval

(−w,+w) to the points (see figure 5(c)). We then used our algorithm to estimate the distortion

parameters from the noisy data and used these parameters to undistort the noiseless image points

(see Figure 5(d)).

Although precise recovery of the distortion parametersS ensures an exact match between the

sampled points (Figure 5 (a)) and the undistorted points (Figure 5 (d)), it is not necessary for

accurate distortion correction. A good measure of accuracy and robustness is the distance between

the true perspective projection of scene points (in Figure 5(a)) and their recovered undistorted

positions (in Figure 5(d)). We tested each objective function using various line setsL of different

orientations and positions , various distortion parametersS and several noise levels in the interval

w = [0, 5] pixels.

Tables 1 (a)-(c) show the errors present in the recovered undistorted points using the sum of squares

(ξ1), normalized sum of squares (ξ2) and the noise estimation method (ξ3), respectively. Errors are

defined as the average of the absolute distances between each of the undistorted points and the

original sampled points. Notice the sharp degradation in accuracy with increasing noise in the

simple sum of squares approach (ξ1) (see Table 1(a)). Althoughξ2 performs better thanξ1 for

certain noise levels, it breaks down for high levels of noise.
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(a) (b)

(c) (d)

Figure5: (a) Points randomly sampled from synthetically generated lines. (b) Known distortions are applied

to the points in (a). (c) Uniformly distributed random noise in the interval (-5 pixels, 5 pixels) is added to

the distorted points in (b). (d) The distortion parameters are recovered from these noisy image points using

the algorithm based on objective functionξ3. These parameters are used to undo the distortions present in

(b). Despite the large amount of noise, the recovery of undistorted image points is found to be accurate and

robust.

In contrastξ3 is much more robust and can yield sub-pixel accuracy even for high noise levels,

as can be seen from Table 1(c). More results obtained by usingξ3 are shown in Table 2. The

interesting fact to be noted is that even for large levels of input noise(w = 5), the resulting

average error is below5 pixels. This is interesting as the undistorting process tends to exaggerate

all errors.
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Distortion Coefficients Average Error (pixels)
L C3 C4 P1 P2 w = 0 w = 1 w = 2 w = 5
#1 10−5 10−9 10−5 10−5 0.000 3.360 13.973 42.521

10−5 10−9 0.000 0.000 0.000 3.264 13.917 42.574
#2 10−5 10−9 10−5 10−5 0.000 12.095 39.567 66.817

10−5 10−9 0.000 0.000 0.000 12.184 39.616 66.849

(a)
Distortion Coefficients Average Error (pixels)
L C3 C5 P1 P2 w = 0 w = 1 w = 2 w = 5
#1 10−5 10−9 10−5 10−5 0.000 0.356 2.473 12.383

10−5 10−9 0.000 0.000 0.000 0.396 2.272 12.373
#2 10−5 10−9 10−5 10−5 0.000 1.618 5.448 28.639

10−5 10−9 0.000 0.000 0.000 1.592 5.550 28.711

(b)
Distortion Coefficients Average Error (pixels)
L C3 C5 P1 P2 w = 0 w = 1 w = 2 w = 5
#1 10−5 10−9 10−5 10−5 0.002 0.363 0.390 0.398

10−5 10−9 0.000 0.00 0.003 0.328 0.273 0.318
#2 10−5 10−9 10−5 10−5 0.008 0.663 0.773 0.502

10−5 10−9 0.000 0.000 0.006 0.529 0.734 0.330

(c)

Table 1: Results on running simulations on the three objective functions: (a) Indicates errors on undistoring

the image samples on usingξ1. (b) Results forξ2. More robust to noise but yet degrades for large noise

levels. (C) Results on usingξ3. Note the striking improvement over bothξ1 andξ2

Distortion Coefficients Average Error (pixels)
L C3 C5 P1 P2 w = 0 w = 1 w = 2 w = 5
#1 10−5 10−9 10−5 10−5 0.002 0.428 0.522 0.391

10−5 10−9 0.000 0.000 0.004 0.344 0.382 0.246
10−5 10−10 0.000 0.000 0.281 0.348 0.579 2.818
10−5 10−10 10−6 10−6 0.007 0.278 0.623 2.782

#2 10−5 10−9 10−5 10−5 0.000 0.151 0.015 0.068
10−5 10−9 0.000 0.000 0.003 0.305 0.339 0.221
10−5 10−10 0.000 0.000 0.029 0.152 0.345 1.591
10−5 10−10 10−6 10−6 0.068 0.192 0.339 1.701

#3 10−5 10−9 10−5 10−5 0.000 0.501 0.574 0.590
10−5 10−9 0.000 0.000 0.007 0.329 0.330 0.337
10−5 10−10 0.000 0.000 0.043 0.444 0.488 2.356
10−5 10−10 10−6 10−6 0.009 0.415 0.645 2.368

Table 2: Detailed experimental results forξ3.
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Distortion Coefficients Average Error (pixels)

L C3 C5 P1 P2 Grid w = 0 w = 1 w = 2
#1 10−5 10−9 10−5 10−5 2 0.002 4.232 9.014

10−5 10−9 10−5 10−5 5 0.002 0.363 10.220
10−5 10−9 10−5 10−5 10 0.002 0.363 0.390

#2 10−5 10−9 10−5 10−5 2 0.008 4.271 3.792
10−5 10−9 10−5 10−5 5 0.008 0.663 12.017
10−5 10−9 10−5 10−5 10 0.008 0.663 0.773

Table 3: Results on estimation of optical center(xp, yp).

As mentioned earlier, recovery of the optical center is implemented as a coarse-to-fine exhaustive

search around the image center. The search for the optical center was done using a 5x5 grid at

resolutions of 10, 5 and 2 pixels. As Table 3 indicates, fine searches in the presence of noise can

result in inaccurate solutions, while coarse searches appear to give better results. It is not surprising

that the search for the optical center is unstable in the presence of decentering distortions as was

previously observed by Brown[1971]. The time taken to recover all six distortion parameters

{C3, C5, P1, P2, xp, yp} is linear in the number of grid points used. The run time for the complete

calibration algorithm for a 5x5 grid is about 20 minutes on a 300 MHz Pentium II machine.

6 Results with Real Images

We tested our algorithm based onξ3 using images taken with two different camera systems. To

test robustness over a wide range of conditions we used a low distortion camera as well as an

inexpensive board camera with severe decentering and radial distortions. The low distortion sensor

is a1/2′′ CCD Sony XC-75 camera with a Computar 3.6mm lens and the high distortion sensor is

a1/3′′ Computar EMH200-L25 CCD board camera with a 2.5mm lens.

The calibration of the sensors was done using a set of about10 lines and a total of about250 points.

The estimated distortion parameters obtained usingξ3 were used to undistort the distorted images

(see figures 6 (a, c) for an example). As can be seen from figures 6(b, d) , straight lines in the scene

map to straight lines in the distortion corrected image.

Furthermore, we can construct lookup tables for each sensor that can be used to generate an undis-

torted image stream in real-time. Since the lookup table essentially represents an image warping

16



function, we have to address issues relating to speed and image quality. The warping function tends

to scale up the image in a nonlinear fashion. This increase in scale factor causes certain pixels in

the output image frame to map to sub pixel locations in the source image. We use nearest neighbor

interpolation here as this is the fastest in terms of real-time performance.

The lookup table uses backward mapping and hence we need to find for each output pixel, its

(a) (b)

(c) (d)

Figure6: (a) Image captured with a Computar 3.6mm lens and a Sony1/2′′ CCD camera (b) Distortion

parameters recovered via the minimization ofξ3 are used to map (a) to a perspective image. (c) Image

produced by a Computar 2.5mm lens and a Computar1/3′′ CCD board camera. (d) Distortion parameters

recovered via the minimization ofξ3 are used to map (c) to perspective image. Notice that, straight lines in

the scene, such as door edges, map to straight lines in the undistorted images.
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source from the distorted image frame. Since there does not exist a closed form solution for the

inverse of the distortion model, we need to search in a nonlinear fashion for the image points

which would act as the source for the corresponding undistorted point. This process although time

consuming needs to be performed only once. Then on, the lookup table can be used to generate an

undistorted video stream in real time.

7 Polycameras

We now describe a natural application for the results we have presented so far in the paper. We

define a polycamera to be a tight cluster of cameras that together capture a large field of view.

Unlike multiple cameras used in stereo for instance, the cameras that comprise a polycamera are

configured to have minimally overlapping fields of view. Due to the finite size of the cameras it is

difficult to configure them so as to have a single viewpoint. We therefore relax the single viewpoint

constraint, but ensure that the individual viewpoints of the cameras are close enough so that the

images they produce can be merged together seamlessly for objects beyond a minimum distance

from the polycamera. We call this distance theminimum working distanceof the polycamera.

In spirit, the idea of using multiple sensors is similar to that of Nalwa’s[Nalwa, 1996], where four

cameras and four planar mirrors are configured to obtain a panoramic field of view as seen from a

single viewpoint. The singular viewpoint is achieved by configuring the mirrors and cameras such

that their centers of projection reflect to the same3D point. This point thereof being the center of

projection for the panoramic sensor. However, this requires careful arrangement of the mirrors and

the cameras, which is avoided in our system.

Another sensor that also uses camera clusters to capture a wider field of view, is that developed by

Immersive Media[Media, 1999] called theDodeca. The Dodeca unlike the sensor developed by

Nalwa, does not use any mirrors. Instead, it uses 11 image sensors arranged on a sphere, tessellated

as a dodecahedron. Each sensor has a small field of view and a long focal length. However, small

field of view sensors, necessitates the use of a large number of such sensors. The effect of this is

a strong deviation from the single viewpoint constraint, thereby increasing the minimum working

distances of the cluster. Also, larger number of sensors necessitate the capability of acquiring and
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processing more video signals.

Given a desirable field of view, we would like to use the least number of cameras to capture it.

Clearly, using perspective imaging systems with relatively long focal lengths will necessitate the

use of a larger number of cameras, as is the case with the Dodeca. We therefore propose the use

of wide-angle imaging systems. Typically, such wide angle sensors have radial and tangential

distortions. For geometrically correct projections and smooth blending between views, we first

have to calibrate the sensors for the distortion parameters. We recommend the calibration method

proposed earlier in the paper, to estimate these parameters. Once calibrated, these sensors can be

used to capture large fields of view.

7.1 Polycamera configurations

The wide fields of view of image sensors like for instance the Computar EMH200-L-25 board

camera are most suitable for polycameras. This sensor has a horizontal field of view of about

115 degrees. We present here configurations in which such wide-angle sensors can be arranged to

provide panoramic, hemispherical and spherical fields of view.

We can arrange six sensors on the sides of a cube, so as to capture a spherical field of view about the

center of the cube. The orientation of each sensor on the cube’s surface is such that the horizontal

and vertical axis of each sensor are orthogonal to those of the adjacent cameras. We assume that

that the sum of the horizontal and vertical fields of view is greater than180 degrees. This ensures

an overlapped view between any two edges of the cube (see figure 7 (a) ). The final projection

could be on a cube or on a sphere. The advantage of this configuration over the Dodeca (see

[Media, 1999]), is the use of fewer sensors while still covering the entire sphere. Smaller fewer

sensors facilitate building a tighter cluster, thus reducing the parallax effect due to non-singular

viewpoints.

Four such sensors can be oriented90 degrees apart to capture a360 degree panoramic field of view.

The115 degree horizontal FOV facilitates adjacent views to have overlapped regions of space of

upto25 degrees. In general any sensor which has a horizontal field of view of over90 degrees can

be used in such a configuration (see figure 7 (b) ), to capture a panoramic field of view.
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Figure7: (a) A Spherical FOV polycamera configured using six wide angle sensors. Each sensor is located

on the sides of a cube, such that their axis are mutually orthogonal. (b) A panoramic polycamera configured

using four wide angle sensors. Each camera has a horizontal field of view of over90 degrees, ensuring a

complete field of view of360 degree.(c) Three wide angle sensors arranged on the sides of a pyramid. In

the above three configurations, the normals on the surface indicate the viewing direction of each sensor.
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This configuration uses 3 image sensors arranged on the sides of a pyramid. Depending on the filed

of view of the individual sensors, a complete hemisphere to a partial hemisphere may be captured.

The advantage of this configuration is that if a single channel sensor is used, then the three signals

can be coupled together as one 3-channel signal. This facilitates the use of a single frame grabber

thus reducing the computational power needed to acquire and process the signals. Figure 7 (c)

illustrates this configuration.
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Figure8: Schematic showing two cameras centered atC1 andC2, imaging the scene pointQ. the pointQ

is imaged at the pointsq1 andq2, respectively. The distances to the closes edge of the corresponding images

are thenw1 andw2 respectively. These distances are used to weight the contribution of a pixel’s intensity.

7.2 Blending multiple views

When stitching together multiple views, it is possible for more than one view to contribute to a

single pixel along view boundaries and regions of overlap. This can be handled by either arbitrarily

selecting any one view to be the source or by more sophisticated methods. The first, more simpler

method, could result in severe visual artifacts due to the different gains of the sensors, across such

view boundaries. We therefore utilize a method suggested by Szeliski[1996] for blending the

multiple views with seamless transitions between views. The intensity of the resulting pixel is
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defined as the weighted sum of the intensities of the pixels in the respective views. The weights

are based on the closeness of the pixel to the view’s image boundary. The closer a pixel is to its

boundary the lesser is its contribution. This gives seamless transitions between views.

Consider the case ofN sensors imaging a scene pointQ. Let any sensorCi image the pointQ at

qi. Let wi be the corresponding shortest distance to any edge of the image (see figure 8). If the

intensity of the imaged pointqi is given byIqi, then the resulting image intensity on the projection

surface is:

I =

∑N
i=0(wi · Iqi)∑N
i=0(wi)

(13)
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Figure 9: Two camerasC1 andC2, image the scene pointQ at pointsq1 and q2, respectively. Their

projections onto the surfaceS (assuming pure rotation between views) arep1 andp2 respectively.p1 andp2

are obtained by intersecting rays parallel tor1 andr2, denoted asr′1 andr′2 with S. Q should ideally project

ontoS atp. The distance ofQ fromO, at which the disparity betweenp1 andp2 fall below some threshold

is theminimum working distance.
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Figure 10: Segment of panorama clearly showing disparity in image points for close up objects. The

ghosting effect within the dotted region, is due to the scene points being close and at a distance lesser than

the minimum working distance. The disparity is very conspicuous at the corner of the monitor .

8 Non-Singular viewpoints and the Minimum Working Distance

Projection onto any surface requires a single center of projectionO. The finite size of each indi-

vidual sensor causes the polycamera to have a non-singular viewpoint. Due to the sampling nature

of the sensors, there is a minimum distance which we call “minimum working distance”, beyond

which the non singularity of viewpoints has negligible effect. Below this distance, disparities be-

tween projections from multiple views would be large. Figure 9 shows the disparity of a pointQ

when projected from two views, centered atC1 andC2. Blending multiple views of such scene

points, results in a ghosting effect which is clearly demonstrated in figure 10. It should however be

noted that the working distance depends on the resolution of the projection surface. Thus reducing

resolution will result in a decrease of the minimum working distance.

We now consider the problem of estimating the minimum working distance given a cluster of

cameras. The issue is pertinent when we try to blend the various views onto a single surface of

projection. At the minimum working distance we would like the disparity between projections

from pairs of views to lie below some preset threshold level (ε). Thus for more than two sensors

imaging the same point in space, we define the working distance as the maximum distance on
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considering all sensors.

Consider a point on the projection surfacep = (x, y). This corresponds to a ray direction given

by the pan and tilt angles (φ, θ). For a pointQ in space along this ray to have negligible disparity,

it should lie at a distanced which is the minimum working distance fromO. In rectangular co-

ordinates the pointQ is given by:

Q =
(
X Y Z 1

)T
=



d · cos(θ) · cos(φ)

d · sin(θ)

d · cos(θ) · sin(φ)

1


(14)

Consider a cameraCi in whose field of viewQ lies. If we represent it’s camera matrix (extrinsic

parameters such as rotation and translation ) byDi, and letPi be the perspective projection matrix.

Then cameraCi imagesQ at:

qi = Pi ·Di ·Q (15)

Let P(·) be a mapping of a point on the image onto the surface of projection (see figure 9). Thus

the imaged pointqi would be projected onto the surface at:

pi = P(qi) (16)

Disparity between the projections of two views is guaranteed to lie belowε by the constraint:

‖pi − p‖ =
ε

2
(17)

The distanced which satisfies the above constraint is the minimum working distance along the

ray direction (φ, θ). To estimate the minimum working distance for the entire cluster, we need to

estimated for all ray direction which project onto the surface. The maximum distance along all

ray directions represents the bounding sphere of minimum working distance.
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Figure11: A panoramic polycamera configured using four1/3′′ CCD Computar EMH200-L25 board cam-

eras with 2.5mm lenses. Each camera has a horizontal field of view of about115 degrees, ensuring a

complete field of view of360 degree.

9 A Real-time Panoramic Polycamera

Figure 11 shows the polycamera we developed based on design described earlier. The complete

sensor is enclosed in a cylinder that is7 cm tall and7.5 cm in diameter. It houses 4 Computar

EMH200-L25 board cameras with 2.5mm lenses placed approximately90 degrees apart. Each

camera has about115 degree field of view horizontally and thus ensures overlap between adjacent

views as well as a complete360 degree field of view.

9.1 Minimum working Distance

Figure 12 illustrates the minimum working distance varying across a panorama generated using the

four camera panoramic polycamera. Larger working distances are represented by brighter points

and nearer distances by darker points. As expected, the distance is minimal along the camera’s

optical axis and increases as we progress along any direction tangential to this axis. There is a

sharp change of the working distance at the overlapped regions on the panorama as we consider

the maximum of the two working distances in regions of overlap.

This simulation was run assuming the four sensors were in the same plane and precisely90 degrees

apart. Each was assumed to be displaced from the center of projection of the panorama by0.01m.
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Figure12: The minimum distance map. This map shows the minimum distance a way from the center of the

panorama (cylinder) that a point in space has to be f or a projection error of less than half a pixel. Brighter

regions correspond to regions on the panorama where the point has to be further away.

The minimum working distance was estimated to be approximately4.0m.

9.2 Panorama generation

Prior to blending adjacent views we need to undistort the image streams. We therefore calibrate

each camera using the proposed method (objective functionξ3). The estimated distortion param-

eters are used to create look-up tables for the 4 sensors which map points from the undistorted
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Figure13: The Panoramic projection model. A pointq in the image is projected along the ray, originating

at the center of projectionC. The intersection of this ray direction with the cylinderS at p, represents its

panoramic projection.φ andθ are the pan and azimuthal angles estimated fromq. R is the radius of the

cylinder.
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Figure14: Panoramic video stream generated using the polycamera shown in Figure 11. The panorama is

computed using a look-up table, which is constructed taking into account the relative orientations of the four

wide-angle cameras as well as their distortion parameters.

space to the source (distorted) space. Point correspondences in overlapping views are used to es-

timate relative orientation (assumed to be purely rotational) between two sensors. Each pixel on

the panorama, represented by a cylinder (see figure 13), maps to at most two camera views. This

mapping being time invariant, needs to be computed only once. We again use a look-up table to

represent the panoramic projection.

To account for the differences in the gains of the four cameras, the blending algorithm described

earlier was used. The mapping from individual views to the panorama as well as the blending

weights in the overlap regions are stored in the look-up table. Four video streams are captured

simultaneously using four Matrox boards that reside in a 400 MHz Pentium-II PC. The look-up ta-

ble us used to create a 1000x480 panorama. Displayed of the panorama is done using Direct-Draw

technology at approximately15 frames a second. Figure 14 shows a snap-shot of the panoramic

video produced by this polycamera system.

10 Conclusion

In this paper we have proposed a new method to calibrate imaging systems for radial and decen-

tering distortions. Most of the prior methods either relied on calibration objects or on virtually

noiseless data. We propose a method that is much more robust in the presence of noise. The con-

straint used in our approach is that straight lines in the scene should map to straight lines in the

image if perspective projection is assumed. The only requirement of the algorithm, is that the user
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indicate which points in the image, lie on straight lines in the scene. This requirement is easy to

satisfy as straight lines are abundant in urban scenes.

The method uses an objective function, which when minimized, yields the lens distortion param-

eters. This objective function has been defined in the space of distorted points as opposed to

defining it in the undistorted space, so as to minimize any nonlinear exaggeration of errors due to

noise. This makes it robust to high levels of noise.

Synthetic as well as experiments with real images are provided to demonstrate the robustness of

this technique. Noise levels of upto5 pixels have been simulated and results indicate low error

levels in parameter estimation under these circumstances (see tables 1(c), 2 and 3).

We also have proposed the idea of apolycamerawhich we define as a closely packed camera

cluster. Due to the finite size of each sensor it is very difficult to adhere to the single viewpoint

constraint. We can however relax this constraint due to the sampling nature of the image detector.

Beyond some distance from the camera cluster, the effect of a non-singular viewpoint falls below

a detectable threshold. We define this distance to be the “minimum working distance”. Analysis

of the minimum working distance and its estimation for the generic case of a multi-sensor cluster

is provided. We also propose certain configurations in which polycameras could be constructed so

as to capture various large fields of view ranging from panoramic to a spherical field of view.

Finally, results are presented for one such panoramic polycamera built using four wide angle sen-

sors. Simulating the camera cluster, the estimated minimum working distance has been found to

be about4.0 meters. Since each sensor used in this polycamera has severe distortions, we first

estimate the distortion parameters using the proposed method. The undistorted image streams are

then projected onto a panorama in real time to generate a360 degree panorama at15Hz. This high

speed processing is possible by using precomputed look-up tables, and DirectDraw technology for

fast rendering of the panorama.
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