
Information-based complexity and

information-based optimization

J. F. Traub
Department of Computer Science

Columbia University, New York, NY 10027

A. G. Werschulz
Department of Computer and Information Sciences

Fordham University, New York, NY 10023
Department of Computer Science

Columbia University, New York, NY 10027

Technical Report CUCS-011-99

August 21, 2000

Abstract

This is an article that will appear in the Encyclopedia of Optimization
(Kluwer, 2000). It concerns optimization in two senses. The first is that
informaion-based complexity (IBC) is the study of the minimal computa-
tional resources to solve continuous mathematical problems. The second is
that the computational complexity of optimization problems is one of the
areas studied in IBC. We discuss IBC and information-based optimization
in turn.

This article concerns optimization in two senses. The first is that informa-
tion-based complexity (IBC) is the study of the minimal computational resources
to solve continuous mathematical problems. (Other types of mathematical prob-
lems are also studied; the problems studied by IBC will be characterized later.)
J.F. Traub and A.G. Werschulz [14] provide an expository introduction to the
theory and applications of IBC, with over 400 recent papers and books. A gen-
eral formulation with proofs can be found in J.F. Traub, G.W. Wasilkowski,
and H. Woźniakowski [13].

The second is that the computational complexity of optimization problems
is one of the areas studied in IBC. S.A. Vavasis [16, pg. 135] calls this infor-
mation-based optimization. We will discuss information-based complexity and
information-based optimization in turn.
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1 Information-based complexity

To introduce computational complexity, we first define the model of computa-
tion. The model of computation states which operations are permitted and how
much they cost. The model of computation is based on two assumptions:

1. We can perform arithmetic operations and comparisons on real numbers
at unit cost.

2. We can perform an information operation at cost c. Usually, c� 1.

We comment on these assumptions. The real number model (Assumption 1)
is used as an abstraction of the floating-point model typically used in scientific
computation. Except for the possible effect of roundoff errors and numerical
stability, complexity results will be the same in these two models.

The real number model should be contrasted with the Turing Machine model,
typically used for discrete problems. The cost of an operation in a Turing Ma-
chine model depends on the size of the operands, which is not a good assumption
for floating point numbers. For a full discussion of the pros and cons of the Tur-
ing Machine and real number models see [14, Chapter 8]. Whether the real
number or Turing Machine model is used can make an enormous difference. For
example, L.G. Khachiyan [3] shows that linear programming is polynomial in
the Turing Machine model. In 1982, J.F. Traub and H. Woźniakowski [15]
showed that Khachiyan’s algorithm is not polynomial in the real number model
and conjectured that linear programming is not polynomial in this model. This
conjecture is still open.

The purpose of information operations (Assumption 2) is to replace the
input by a finite set of numbers. For integration, the information operations are
typically function evaluations.

1.1 Computational complexity of high-dimensional inte-
gration

We illustrate some of the important ideas of IBC with the example of high-
dimensional integration.

We wish to compute the integral of a real-valued function f of d variables
over the unit cube in d dimensions. Typically, we have to settle for computing
a numerical approximation with an error ε. To guarantee an ε-approximation
we have to know some global information about the integrand. We assume
that the class F of integrands has smoothness r. One such class is Fr, which
consists of those functions having continuous derivatives of order through r,
these derivatives satisfying a uniform bound.

A real function of a real variable cannot be entered into a digital computer.
We evaluate f at a finite number of points and we call the set of values of f the
local information, for brevity information, about f . An algorithm combines the
function values into a number that approximates the integral.
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In the worst case setting we want to guarantee an error at most ε for ev-
ery f ∈ F . The computational complexity, for brevity complexity, is the least
cost of computing the integral to within ε for every f . We want to stress that
the complexity depends on the problem and ε, but not on the algorithm. Every
possible algorithm, whether or not it is known, and all possible points at which
the integrand is evaluated are permitted to compete when we consider least
possible cost.

It can be shown that if F = Fr, then the complexity of our integration
problem is of order ε−d/r. If r = 0, e.g., if our set of integrands consists of
uniformly bounded continuous functions, the complexity is infinite. That is, it is
impossible to solve the problem to within ε. Let r be positive and in particular
let r = 1. Then the complexity is of order ε−d. Because of the exponential
dependence on d, we say the problem is computationally intractable. This is
sometimes called the curse of dimensionality.

We’ll compare this d-dimensional integration problem with the well-known
Traveling Salesman Problem (TSP), an example of a discrete combinatorial
problem. The input is the location of the n cities and the desired output is the
minimal route; the city locations are usually represented by a finite number of
bits. Therefore the input can be exactly entered into a digital computer. The
complexity of this problem is unknown but conjectured to be exponential in
the number of cities. That is, the problem is conjectured to be computation-
ally intractable and many other combinatorial problems are conjectured to be
intractable.

Most problems in scientific computation which involve multivariate functions
belonging to Fr have been proven computationally intractable in the number
of variables in the worst case setting. These include nonlinear equations [10],
partial differential equations [19], function approximation [7], integral equa-
tions [19], and optimization [5]. Material on the computational complexity of
optimization will be presented in the second half of this article.

Very high dimensional integrals occur in many disciplines. For example,
problems with dimension ranging from the hundreds to the thousands occur in
mathematical finance. Path integrals, which are of great importance in physics,
are infinite-dimensional, and therefore invite high dimensional approximations.
This motivates our interest in breaking the curse of dimensionality. Since this
is a complexity result, we cannot get around it by a clever algorithm. We can
try to break the curse by settling for a stochastic assurance rather than a worst
case deterministic assurance. Examples of stochastic assurance are provided by
the randomized and average case settings which we will consider below. We can
also try to break the curse by changing the class of inputs. A good example of
this occurs in mathematical finance.

1.2 Mathematical finance mathematical finance

The valuation of financial instruments often requires the calculation of very high
dimensional integrals. Dimensions of 360 and higher are not unusual. Further-
more, since the integrals can be very complicated requiring between 105 and 106
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floating point operations per integrand evaluation, it is important to minimize
the number of evaluations. Extensive numerical testing shows that these prob-
lems do not suffer from the curse of dimensionality. A possible explanation is
given by I. Sloan and H. Woźniakowski [11], who show that the curse can be
broken by changing the class of integrands to capture the essence of the math-
ematical finance problem. See [14, Chapter 4] for a survey of high dimensional
integration and mathematical finance.

1.3 General theory

In general, IBC is defined by the assumptions that the information concerning
the mathematical model is

• partial,

• contaminated, and

• priced.

Referring to the integration example, the mathematical input is the inte-
grand and the information is a finite set of function values. It is partial because
the integral cannot be recovered from function values. For a partial differen-
tial equation the mathematical input consists of the functions specifying the
initial value and/or boundary conditions. Generally, the mathematical input
is replaced using a finite number of information operations. These operations
may be functionals on the mathematical input or physical measurements that
are fed into a mathematical model.

In addition to being partial the information is often contaminated by, for
example, round-off or measurement error (L. Plaskota [8]). If the information
is partial or contaminated it is impossible to solve the problem exactly. Finally,
the information is priced. As examples, functions can be costly to evaluate
or information needed for oil exploration models can be obtained by setting off
shocks. With the exception of certain finite-dimensional problems, such as roots
of systems of polynomial equations and problems in numerical linear algebra,
the problems typically encountered in scientific computation have information
that is partial and/or contaminated and priced.

As part of our study of complexity we investigate optimal algorithms, that
is, algorithms whose cost is equal or close to the complexity of the problem.
This has sometimes led to new solution methods. The reason that we can
often obtain the complexity and an optimal algorithm for IBC problems is that
partial and/or contaminated information permits arguments at the information
level. This level does not exist for combinatorial problems where we usually
have to settle for trying to establish a complexity hierarchy and trying to prove
conjectures such as P 6= NP.

A powerful tool at the information level is the notion of the radius of in-
formation, R. The radius of information measures the intrinsic uncertainty of
solving a problem using given information. We can compute an ε-approximation
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if and only if R ≤ ε. The radius depends only on the problem being solved and
the available information; it is independent of the algorithm. The radius of
information is defined in all IBC settings.

2 Information-based optimization

We turn to the application of IBC concepts to information-based optimization.
In their seminal book, A.S. Nemirovsky and D.B. Yudin [5] study a con-

strained optimization problem. They wish to minimize a nonlinear function
subject to nonlinear constraints. Let f = [f0, f1, . . . , fm], where f0 denotes the
objective function and f1, . . . , fm denote constraints. Let F be the product of
m+ 1 copies of Fr. Then

comp(ε) = Θ

((
1
ε

)d/r)
.

Thus this problem suffers from the curse of dimensionality.
Vavasis [16, Chapter 6] reports on the worst-case complexity of minimizing

an objective function with box constraints. He assumes objective functions
defined on the unit cube in d dimensions and takes F as the class of continuous
functions with uniform Lipschitz constant L. For global minimization,

comp(ε) = Θ

((
L

2ε

)d)
.

Thus global minimization is intractable.
In contrast to global minimization, the problem of computing a local mini-

mum is tractable with suitable conditions on F . Let F consist of continuously
differentiable real functions on [0, 1]d whose gradients satisfy a uniform Lipschitz
condition with constant M . Then 4d(M/ε)2 function and gradient evaluations
are sufficient.

As discussed above, there are two ways one can attempt to break the curse of
dimensionality: by settling for a stochastic assurance, or by changing the class
of inputs. For the constrained optimization problem, we first describe changing
the class of functions, and then turn to weakening the assurance.

Nemirovsky and Yudin [5] take F = Fconv to be the class of convex functions
that satisfy a Lipschitz condition with a uniform constant on a bounded convex
set D. Then

comp(ε) = Θ
(

log
1
ε

)
,

where the constant in the Θ-notation depends polynomially on the dimension d
of D and m, the number of constraints. Thus, convexity breaks the curse of
dimensionality.

The worst case deterministic assurance may be weakened to a stochastic
assurance; we report on the randomized and average case settings.
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Nemirovsky and Yudin [5] show that randomization does not break the curse
of dimensionality for computing the minimum value of the nonlinear constrained
problem. G.W. Wasilkowski [17] establishes an even more negative result if an
ε-approximation to the value of x that minimizes f0 is sought. He permits
randomization and shows that for all ε < 1

2 , this problem is unsolvable even if
d = 1.

The results considered so far use a sequential model of computation. One
could also ask about the complexity under a parallel model of computation. If we
have k processors running in parallel, how much can the computation of the min-
imum be sped up? Clearly, the best possible speedup is k. A. Nemirovsky [6]
considers this problem for the case F = Fconv, showing that

comppar(ε, k) = Ω

((
d

ln(2kd)

)1/3

ln
(

1
ε

))
,

where the Ω-constant is independent of k and ε. Hence we find that

comp(ε)
comppar(ε, k)

= O

((
ln(2kd)

d

)1/3
)
,

which is much less than k. Thus parallel computation is not very attractive for
this problem.

The average case setting looks more promising than the randomized setting,
but since it is technically very difficult, the results to date are quite limited.
In the average case setting we want to guarantee that the expected error is at
most ε and we minimize the expected cost.

In the average case setting, an a priori measure must be placed on F . Typi-
cally, this measure is Gaussian; in particular, Wiener measures are used. Since
the distribution of the random variable minx f(x) is difficult to obtain, the av-
erage case analysis of the global optimization problem is very difficult. Only
partial results have been obtained.

Let d = 1 and F ⊂ Cr[0, 1]. Assume that F is endowed with the r-fold
Wiener measure. G.W. Wasilkowski [18] shows that approximately
(ε−1
√

ln ε−1)1/(r+1/2) function evaluations suffice. This is better than the worst
case, where some ε−1/r function values are needed.

Stronger results have been obtained for the case of d = 1 and r = 0, i.e.,
optimization for continuous scalar functions, equipped with the Wiener measure.
K. Ritter [9] considers the case of nonadaptive methods, showing that

compnon(ε) = Θ

((
1
ε

)2
)
.

Moreover, the optimal evaluation points are equidistant knots. More recently,
J.M. Calvin [1] investigates adaptive methods for this problem, showing that
for any δ ∈ (0, 1),

compad(ε) = O

((
1
ε

)1/(1−δ)
)
.
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The study of optimization in the average case setting is a very promising
area for future research. Important open problems include:

• obtaining multivariate results,

• obtaining lower bounds,

• obtaining better upper bounds.

We now restrict our attention to the special optimization problem of linear
programming (LP), which we discuss in the worst case setting.

In 1979, Khachiyan [3] studied an ellipsoid algorithm and proved that LP is
polynomial in the Turing Machine model. In 1982, Traub and Woźniakowski [15]
showed that the cost of this ellipsoid algorithm is not polynomial in the real-
number model, and conjectured that the LP problem is not polynomial in the
real-number model. This nicely illustrates the difference between the cost of an
algorithm and the complexity of a problem, since the result concerning the cost
of the ellipsoid algorithm leaves open the question of problem complexity. The
Traub-Woźniakowski conjecture remains open.

A related open question is whether LP can be solved in strongly polyno-
mial time. (Note that the underlying models of computation are different: the
real-number model versus the Turing Machine model.) This question is also
still open, with results known only for special cases. In 1984, N. Megiddo [4]
showed that LP can be solved in linear time if the number of variables is fixed,
while in 1986, E. Tardos [12] showed that many LP problems that arise from
combinatorial applications can be solved in strongly polynomial time.

We now discuss the computation of fixed points, which we include here be-
cause the result involves ellipsoid methods. The problem is to compute the fixed
point of f(x); that is, to solve the nonlinear equation x = f(x) for any f ∈ F ,
where F is the class of functions on [0, 1]d having a Lipschitz constant of q, with
q ∈ (0, 1).

The simple iteration algorithm xi+1 = f(xi), with x0 = 0, can compute an
ε-approximation with at most

nsi(ε, q) =
⌈

ln 1/ε
ln 1/q

⌉
evaluations of f . Thus the simple iteration algorithm behaves poorly if q is close
to one.

Z. Huang, L. Khachiyan, and K. Sikorski [2] show that an inscribed el-
lipsoid algorithm computes an ε-approximation with

ne(ε, q) = O

(
d

(
ln

1
ε

+ ln
1

1− q

))
function evaluations. Thus their algorithm is excellent for computing fixed
points of functions with q close to unity; that is, almost non-contracting func-
tions.
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