Detecting and Measuring Asymmetric Links in an I[P
Network

Wenyu Jiang
wenyu@cs.columbia.edu
Columbia University, Computer Science Dept.

Technical Report: CUCS-009-99

The rapid growth of the Web has caused a lot of congestion in the Internet. Pinpointing bottle-
necks in a network is very helpful in congestion control and performance tuning. Measuring link
bandwidths can help identifying such bottlenecks. Existing tools for bandwidth measurement like
Pathchar, Bing and Bprobe assume symmetric links. Hence their results will be incomplete or
incorrect in the presence of asymmetric links. It becomes important to consider asymmetric links,
as they are gaining popularity in recent years. Examples are ADSL lines, Cable modems, Satellite
links, and 56K modems. In this paper, we present an algorithm that can measure each hop’s link
bandwidth in both directions in an IP network. Therefore, it is trivial to detect asymmetry of a
link. We performed several experiments to validate our algorithm. We also discuss some factors
that can adversely affect the precision and/or correctness of bandwidth measurement, and suggest
possible solutions.

Additional Key Words and Phrases: Network measurement, bandwidth measurement, asymmetric
link

1. INTRODUCTION

With the exponential growth of the Web, the Internet has seen far more congestion
than in the past. On one hand, protocols such as TCP has been enhanced to adapt
to and avoid congestion. On the other hand, it is valuable to identify bottlenecks
in a network.

A B /\ c D Web
user ISPL \i”"/ 1SP2

Server

Fig. 1. Slow connection to a Web server

For example, when an Internet user perceives a slow connection to a Web server,
as shown in Figure 1, it is usually due to queuing congestion at some locations, or
slow speed of link A, B, C, D, or some links in the Internet.

Link speed can be further divided into raw link bandwidth (its full capacity) and
available link bandwidth (what’s available after sharing). In this paper we focus on
measuring raw link bandwidth.

Various bandwidth estimation tools have been developed. Pathchar [Jacobson
1997] and Bing [Beyssac 1995] measure per hop link bandwidth by analyzing a

packet’s Round Trip Time (RTT) linearity with respect to its size, at a given hop.
Bprobe [Carter and Crovella 1996] and Tcpanaly [Paxon 1997] measures bottleneck
link bandwidth based on packet-pair technique.

These tools assume that the links are symmetric along the network path. While
this was true for most of the Internet a few years ago, recent deployment of ADSL
lines, Cable modems, Satellite links and 56K modems ! is rapidly changing this
assumption. ADSL, Cable modems, and 56K modems are mostly changing end user
connectivity, while Satellite links are particularly useful in building transoceanic
backbones.

Being able to detect and measure asymmetrical links is a very desirable capability.
Imagine a university uses an ADSL line for their Internet connection. At first the
students may feel satisfied about their download speed, but as some of them try to
create their own Web service on it, outside users will likely experience slow access
to these Web pages. If the students or even the outsiders can measure their link
speeds, they will discover the asymmetry in their Internet connection. Then they
can demand the university/corporation to upgrade its Internet service.

As an another example, satellite links are normally unidrectional, with a large
download link and a small or zero upload link. Since satellite links are often used in
building worldwide backbones, such asymmetric property must be considered when
deploying the network service.

Since the above tools embeds no knowledge of asymmetry in a network, their
output will contain only 1 number (instead of 2) for a particular link. Consequently
their results will be incomplete or incorrect 2.

In the next section, we present an algorithm that measures per hop link bandwidth
in both directions. Section 3 shows experiments we performed on asymmetric links
in the real word. Section 4 discusses some factors that may alter the result. Before
conclusion, we compared the above tools in Related Works.

2. THE ALGORITHM

Our algorithm is also based on RTT linearity analysis, like Pathchar and Bing.
Mathematically, it is a combination of the techniques used by Pathchar and the one
used by Bing. We start with an algorithm that computes per hop link bandwidth
assuming link symmetry. It is essentially the same method used by Bing, but we
were not aware of Bing when we developed it. However, we still describe it as a
basis for our final algorithm. Then, we extend it to consider asymmetric links.

2.1 Algorithm 1: Symmetric case

The most common way of measuring RTT is by sending an ICMP echo [Postel
1981b] packet and wait for a reply packet, as in the ping program. That’s also what
we will use in our first algorithm.

Let T; denote the RTT for an ICMP echo/reply packet of B bytes, v; denote the
speed of link between hop ¢ — 1 and hop 4, where i is the number of hops between
sender (hop 0) and receiver (hop).

Then for ¢ = 1, as shown in Figure 2, T; = % + const

156K modem downloads at about 56Kbit/s, and uploads at 33.6Kbit/s
2Pathchar and Tcpanaly are, to some degree, exceptions. We will compare them in Section 5

hop 0 hop l
P . d1 - physical distance between hop 0 and hop 1
S di/cl

cl - propagation speed of medium between hop 0 and hop 1
e.g., light speed in fiber is about 2/3 cO

Bivl B - packet size in bytes

= v1 - link speed between hop 0 and hop 1

T <———— processing delay
T c0 - speed of light in vacuum
Bivl
»_i
= = di/cl

—]

Fig. 2. 1 Hop, symmetric case

where const is a constant that may vary for different i. It is the sum of propaga-
tion delay, processing delay, and queuing delay. Here for simplicity, we assume the
queuing delay is 0 3. The processing delay is a constant because it takes almost the
same number of machine instructions (independent of B) to inspect any ICMP echo
packet and modify it to generate a reply packet. Interrupt service time is relatively
fixed. Further, there is generally no copying overhead from kernel memory * to
Network Interface Card, since DMA is now almost ubiquitous.

hop 0 hop 1 hop2

— d1 - physical distance between hop 0 and hop 1

c1 - propagation speed of medium between hop 0 and hop 1
e.g., light speed in fiber is about 2/3 cO

_
-

.
.

B - packet size in bytes
V1 - link speed between hop 0 and hop 1

similar definition for d2, c2, v2.

processing delay

7
=

Fig. 3. 2 Hop, symmetric case
. R __ 2B , 2B
So, for i = 2, as in Figure 3, Ty = o T 5, tconst

3same if a constant queuing delay is assumed; while there is a lot of statistical techniques to filter

out queuing delay in the real world, it is not the focus of this paper

4however, the copying overhead from user memory to kernel memory is proportional to B. Any
disturbance that depends on B will affect the result. To avoid this problem, tcpdump can be used,
which captures kernel time instead of application time.

: 2B "2
In general, we get: T; = Z — +const =B Z — +const (1)
i=1 % i=1 %

3
. . . 2
Let k; denote the slope of linear function T;(B), then ki = Z = (2)
j=1 7
To obtain k;, we can send many packets of different sizes, which creates many
sample points for function T;(B). Then, a linear regression is all that’s needed to

obtain k; from the sample points.

2 2. 2
So ki—ki—lz(Z;)—(;):;
j=1 "7 j=1 7 !
2
AR

Therefore, Formula (3) is our Algorithm 1, which computes symmetric link band-
widths.

2.2 How asymmetric links affect Formula (3)

Formula (3) does not deal with asymmetric links. In order to derive the algorithm
for asymmetric links, let us first look at the Figure 4 and 5, and see what T;
becomes.

hop O hop 1
i d1 - physical distance from hop 0 to hop 1
di/cl c1 - propagation speed of medium from hop 0 to hop 1
T e.g., light speed in fiber is about 2/3 cO
B/ivl B - packet size in bytes
i v1 - link speed from hop 0 to hop 1
-~-———— processing delay
Bivl’
% dl’, c1’, v1' are similar, but in reverse direction
d1'/cl’

v

Fig. 4. 1 Hop, asymmetric case

Wheni=1, Ty=24+ 2L 4 const

v1 vy

When ¢ = 2, ngﬁ—i—ﬁ—f—ﬁ—l—%—f—const
2

V1 Ul V2

hop 0 hop 1 hop i
1 d1 - physical distance from hop 0 to hop 1
di/cl : i
\\\\\\\\\\\\\ cl - propagation speed of medium from hop 0 to hop 1
N T e.g., light speed in fiber is about 2/3 cO
Bivl B - packet size in bytes
\\\\sssssssss i V1 - link speed from hop 0 to hop 1
T similar definition for d2, c2, v2.
isss\ \\\\\\\ i’cz d1’, c1’, v1’, d2’, c2', v2' are similar, only in reverse directions.
\

2.

is

S
S SN

e processing delay
\\\\\<

_ \\\\\\\i"’ z

\\\‘ d2/c2’

-

BiV1'

=
\\\\\\\\\ o

| - It

Fig. 5.

2 Hop, asymmetric case

In general, we have 7. — Z —)+ const = B Z ") 4 const (4)
Jj=1 vj]
Therefore, k. — zz:(i + i) (5)
Ly
j=1 J
i i—1
1 1 1 1 1
= ki — k1= — TN =T
4 i—1 (Z(vj Z 1)] / ; + U,Z

Jj=1 j=1
If we still use Formula (3) to calculate Vi, We Would get

2 2
ki—kioi 244

V; =

That is, the v; we obtained is the harmonic average of the real v; and v].

3 Algorithm 2 - The final algorithm

also a constant. This means v; is directly solvable.

directions and packet size B, as shown in the left of Figure 6.
the returning packet to have a constant size D, in the right of Figure 6, then the
returning transit time no longer depends on B but only v}, for any 4. Since v} are
constant for any ¢ (link speed do not change on the fly), the returning transit time

Although Formula (6) does not give us what we want, if we know either v; or v/,
the other value becomes easily solvable. Formula (6) # v; because a packet’s RTT
is the sum of transit time in both directions, which depends on link speed in both

If we can force

In an IP network, the most obvious case for a constant-sized returning packet is

B bytes B bytes
EESSSSSS EESSSSSS
B bytes D bytes

Fig. 6. 1 hop, left: B bytes to/from; right: B bytes to, D bytes from

the ICMP time-exceeded message ° [Postel 1981b]. Therefore, our 2nd and final
algorithm is:

(1) send an ICMP echo packet to the ith router with a TTL of 4, this causes a
normal reply packet from the ith router;

(2) also send an ICMP echo packet to ¢ + 1th router with a TTL of 4, then at

ith router, the packet will be bounced back as an ICMP time-exceeded error
packet.
When the ith hop is not really a router, but the end host, there would be no
i + 1th router. So we have to send a UDP packet with a bad destination port
number, forcing an ICMP port unreachable message [Postel 1981b], which also
has a constant size. This was first used by traceroute, and also in Pathchar.

Let T} denote the RTT for the ICMP echo/time exceeded packet.
Then, Figure 7 gives 11 = % + UQ, + const = % + const.
1

hop 0 hop 1
l d1 - physical distance from hop 0 to hop 1

cl - propagation speed of medium from hop 0 to hop 1
e.g., light speed in fiber is about 2/3 cO

B - echo packet size in bytes

i v1 - link speed from hop 0 to hop 1
| = processing delay
DY
d1’, c1’, v1’ are similar, but in reverse direction
d1l'/cl’
l D - ICMP time exceeded packet size in bytes (constant)

Fig. 7. 1 Hop, asymmetric case, with time exceeded packet
i —B_ D B _ D — B B
From Figure 8, we have 1T, = ot o +5+ o +const = =~ + = + const.

SRFC 792 defines that an ICMP time-exceeded message to contain the original packet’s IP
header/options and > 8 bytes of data. But in practice, nearly all implementations use exactly 8
bytes of data. By avoiding the use of IP header options, we easily get a constant-sized packet.

hop 0 hop 1 o
,,p . . . " h Pi d1 - physical distance from hop 0 to hop 1
\\\\\\\\\\\ . . . di/el cl - propagation speed of medium from hop 0 to hop 1
N T e.g., light speed in fiber is about 2/3 cO
\\\\\\\\\\\\\\\\ Bivl B - echo packet size in bytes
\\\\\\\\\\\\ i V1 - speed from hop O to hop 1
: : KN similar definition for d2, c2, v2.
\\\\\\ /c2) —
T \\\\\\\\\\\\\ ~ d1’, c1’,v1’, d2’, c2’, v2' are similar, only in reverse directions.
2 Wiﬁ D - ICMP time exceeded packet size in bytes (constant)
| -— processing delay
. \\ D/v2’
\\\\\\\k\\ d2'/c2
S e %V;

Fig. 8. 2 Hop, asymmetric case, with time exceeded packet

i
In general /_ E D _
g) T _Z(Uj + U')—i—const BZ +const (7)
J=1 J J=1
As we predicted, T} is not dependent upon link speed in the returning direction.

A 1 ill 1
k;:ZU — k] — “_BZ——B — ==
; J J J

7j=1 j=1
1
:>v‘]_k,_k/,1 (8)
Similarly, we have k; — k;—1 = % + Ui, =kl —kl_{+ vl,
1
:>'Uj k _kl = (k/ ;71) (9)

Therefore, Formula (8) and (9) compute the speed of ith link in both directions.

2.4 How to use Algorithm 2 in measurement

To actually measure v; and v}, we need to send packets of different sizes (B), and
measure their RT'Ts T;, T/. To eliminate queuing delay noise, we chose the simplest
approach, i.e., by sending many packets of the same size, and takes its min. Then,
we perform a linear regression for T;(B) and T} (B), which gives us v; and v;.
There are many ways to eliminate queuing delay noise. Pathchar uses ensemble
min [Jacobson 1997]. Although not described in detail, it may mean taking all
the values that are close to the min. We have found that in some cases, such as
ethernet, which is quite stable, ensemble min shows better results, but other times,
like in satellite links, where delay variation is low in percentage but very high in
absolute value, the plain min seems to give better precision. However, a detailed
analysis and critique of these different statistical methods are beyond the scope of

this paper.

3. REAL WORLD EXPERIMENTS

Now, we validate Algorithm 2 by real world tests. We performed tests on 4 kinds of
links. First we show a simple network topology if necessary. Then we present the
ki, ki—1, k], k;_, obtained from linear regression, and finally the result v;, v}. We also
compare them with actual values, if available. Longrightarrow means outgoing,
Longleftarrow means incoming. These directions are from the test initiator’s
perspective. All the k’s have the unit msec/byte.

3.1 Dialup modem, possibly mixed with Ethernet

The first test was done in our lab using a Windows 95 laptop computer with 2
network interfaces: a 14.4kb/s dialup modem, and a 10Mb/s ethernet card. The
routing tables on both end hosts (the laptop and the test initiator) were properly
modified to control the routes. We used PPP as the modem’s link layer protocol.

As shown in Figure 9, 10, 11, machine A, B, C are the test initiator, laptop,
and dialup server, respectively. All 3 machines are connected to the same ethernet.

Although the modem is 14.4kb/s, the Dialup Networking control can only specify
9.6kb/s and 19.2kb/s. This results in a download speed of 19.2kb/s and an upload
link of 14.4kb/s, which is both interesting and useful to our experiment.

(1) Outgoing: PPP Dialup, Incoming: Ethernet

eth ppp 19.2kb/s

e A e T

Fig. 9. Asymmetric link with dialup outgoing and ethernet incoming

In this case, 1 = 2,

k1 = 0.004369, ki = 0.002171, ko = 0.520233, k5, = 0.5160,
1

=0 = e = TEr5szs = 1.946 kB/s (kilo-byte/sec) < 19.46 kb/s ©

1 1 1
= v = k2—k1—(kj—K;) ~ 0.515864—0.513820 _ 0.002035 491.4kB/s = 3.93
Mb/s

(2) Outgoing: Ethernet, Incoming: PPP Dialup

eth eth

Dl v gy

Fig. 10. Asymmetric link with ethernet outgoing and dialup incoming

k1 = 0.004347, k1 = 0.002193, ko = 0.715773, k}, = 0.003932,

6in asynchronous transmission, the most typical configuration is 1 start bit, 1 stop bit, no parity,

which means 10 signaling bits for each data byte. Therefore 1.946 kB/s is equivalent to 19.46 kb/s

1 _ _
— 1)12 = oot = 575 kB/s —14.6 Mb/s
= Uy = grTaz6—000T730 — ooscer — 141 kB/s & 14.1kb/s

(3) Outgoing: PPP Dialup, Incoming: PPP Dialup

eth ppp 19.2kb/s

D) =g

Fig. 11. Asymmetric link with dialup outgoing and incoming

k1 = 0.004348, k! = 0.002176, ks = 1.2274, k} = 0.5160,

— vy = b = 1.946 kB/s < 19.46 kb/s
- _ 1 _ 1 _ , .
= Uy = 7330500513523 — omoozzs — 141 kB/s & 14.1kb/s

Note: Our measured ethernet speed is consistently around 4-5 Mb/s instead of
10 Mb/s. Tt is due to existence of switches in the ethernet. In our lab, in order for
B to send a packet to C via ethernet, it needs to pass through a 10Mb/s switch,
then onto several 100Mb/s switches, and finally reaching host C’s 10Mb/s switch.
So the measured speed will be lower than 5Mb/s, as explained in the next section
how bridges, switches affect the measurements. Also, with the same signal to noise
ratio, a slow PPP link can inject much higher noise in time measurement to an
ethernet, that’s why we got 2 quite different results: 3.9 Mb/s and 4.6 Mb/s. This
is often called noise amplification. (The ideal value should be about 3.67 Mb/s,
which is v1 and v{, because it is known path (A,B) and path (B,C) should pass
through the same switches).

3.2 Cable Modem

Host C below is connected to the Internet via Cable modem service. It has a faster
download speed than upload ”.

hop 0 hop 11 hop 12 hop 13

O O—Cor(e)

Fig. 12. Asymmetric link with Cable modem

k12 = 0.0083, k{5 = 0.00325, k13 = 0.0264, k5 = 0.0060,

—> 113 = ggoz7s = 363.6 kB/s = 2.91 Mb/s

= i3 = Gommr—o003 = o153 = 00-15 kB/s = 521 kb/s

Unfortunately we only know the connection is cable modem, but not its actual
speed. A good guess may be the typical offerings from Cable providers, which is

3Mb/s download and 512 kb/s upload, both peak speed ®.

"Here the download/upload is from host C’s perspective

8 Although, many cable modems are capable of download signaling at 27Mb/s, so again, there
could be hidden bridges behind the hop. Actually, one apparent hidden hop is the 10 Mb/s
ethernet NIC which is always coupled with the cable modem. Of course, we don’t know the real
settings, but at least our results prove the algorithm in principle is working.

10

The author have also made an interesting comparison with Bing. We ran a Bing
test (http://web.cnam.fr/cgi-bin/traceroute.html) on the same cable modem host.
Since Bing uses essentially our Algorithm 1, according to Formula (6), Bing will
measure the harmonic average of v; and vj.

Therefore, we predict Bing’s result to be (557 + 5915) — 1 = 884 kb/s for cable
modem. The actual Bing test gives a range of about 716 to 992 kb/s for cable
modem, and the average is roughly 843kb/s, well in range of expectation.

3.3 ADSL Line

The network path for this case is almost identical to Figure 12. Except ¢ = 15.

k14 = 0.00748, k7, = 0.0038, k15 = 0.1021, k5 = 0.028,

= v15 = Wlm =413 kB/s =331 kb/s

= 5 = goste—o0 = oororr = 142 kB/s = 113.6 kb/s

Again, we don’t know for sure its real speed. From the result, it could have 384
kb/s download and 128 kb/s upload. But it is known in this example that there is
an ATM network hidden behind it, which will cause a lower estimated result.

We have also made an similar comparison test with Bing on the same ADSL host.
our prediction is (137 + 537) " = 170 kb/s. The actual test range is about 164 to
173 kb/s, with an average of about 168 kb/s, nicely fulfilling our prophecy.

3.4 Satellite Link

The Belgium research network has an 8Mb/s unidirectional Satellite link from USA
to Belgium. Unfortunately, we don’t know for sure the speed of returning link. It
could be a 155Mb/s OC-3 ATM link, or a 22Mb/s partial ATM link. Usually test
results for very fast links are un-trustable, since the RTT difference between a min-
sized and max-sized packet would be only a few micro-seconds, approaching the
limit of most operating system clock resolution. Plus, noises like queuing delay
would easily overwhelm the RTT portion attributable to link speed.

The network path is similar to Figure 12, except ¢ = 12.

k11 = 0. 005919 ki, = 0.002582, k12 = 0.007833, ki, = 0.00444,

= ’U12 = 0001858 = 538.2 kB/b = 4.3 Mb/s

= Vi = gor9TI=0.001858. = ogou05s = 178857 kB/s = 143 Mb/s

The results show the satellite link to be 4.3 Mb/s, which is only half of 8Mb/s.
Again there must be a hidden bridge of some sort. If we assume a 10 Mb/s ethernet
is in between, since routers are more likely to have an ethernet interface as opposed
to a satellite one, our predicted result as shown in next section, would be 1/(1/8
+ 1/10) = 4.44 Mb/s, which is very close to 4.3 Mb/s. Of course, it is only a
conjecture.

The result of 143Mb/s may indicate a 155Mb/s ATM link, but since there are
enough noise to disturb the measurement, the only conclusion we can make is it is
a fast link.

4. ISSUES THAT AFFECT LINK SPEED ESTIMATION

There are many factors that can interfere with our algorithm, many of which were
mentioned in Pathchar. Here we classify them into Random distortions, Determin-
istic distortions, and Potential fatal problems.

(1) Random distortions

11

—Noise

The noise issue was also mentioned in Pathchar. In particular for high speed
links above 100Mb/s, even a small noise of 100 us can be devastating. The
noise can come from an imprecise system clock, or queuing delay. The former
can be remedied by better testing equipment, but the latter is much harder.
Queuing delay can easily exceed 100ms or even Isec. Coupled with large
variation in queuing delay, it makes measurements very difficult.

In addition, as we have seen in Section 3.1, it is difficult to precisely mea-
sure a fast link (say ethernet) behind a slow link (say PPP), due to noise
amplification.

(2) Deterministic distortions
—Hidden hops
Examples are ethernet bridges, switches, VSAT hubs [Tanenbaum 1996],
ATM network underneath IP, etc. They increase RTTs by an amount pro-
portionally to packet size B. Therefore it makes the result smaller than the
real value. Let’s say there are m hops inside an IP hop 4, and the link speed
is vsj for j =1, ...,m. Then, our algorithm will compute v; as:

=) (10)
=1 Vi
So, it is easy to see that an extra ethernet bridge, switch or VSAT of the
same speed will cut the result by half.
—Signaling speed vs. Data speed
A 155Mb/s ATM link refers to its signaling speed at the optical/electrical
level, however, due to ATM cell’s small size (48 bytes data, 53 bytes cell),
the actual data speed is about 48/53 of 155Mb/s. Our Algorithm will only
measure data speed.
One way to overcome this problem is mentioned in Bing [Beyssac 1995]: send
packets at small incremental sizes, to detect the small jump in RTT when
an extra cell is used. However, it is hard to say how useful this can be on a
fast link such as OC-3 ATM. The jump, which is about 53*8/155M = 2.74
us, would be barely noticeable, and easily overwhelmed by noise.
A more extreme case is SLIP/PPP dialup link. Nearly all asynchronous links
use 1 start bit, 1 stop bit with no parity, therefore a 14.4kb/s modem will
have a 1.44kB/s data speed. Even worse, we cannot use the above trick for
ATM here, because for SLIP/PPP, the cell is simply 1 byte. This means
we must interpret our results with great care, especially when the measured
speed is slow (on the order of 10kb/s).
—Peculiarity of SLIP and PPP
Both PPP and SLIP have the notion of escape bytes. For instance, SLIP
converts byte 0xcO to Oxdbdc, and Oxdb to Oxdbdb. PPP converts 0x7e to
0x7d5e, and 0x7d to 0x7d5d. Finally, PPP by default escapes all bytes less
than 0x20, e.g., 0x01 becomes 0x7d, 0x21 [Stevens 1994].
This can greatly affect the measurement. Initially our program fills the ICMP
echo packet with mostly bytes of 0. Our results for the PPP test was about
half of the real value. After we changed the filling byte to ‘A’, the results

12

became correct. We also tested Pathchar against our first experiment, which
has a PPP link with 19.2 kb/s download speed. Pathchar consistently re-
ported between 11.2 and 11.4 kb/s, with a 11.3 kb/s average. This implies
Pathchar happened to choose a lot of escape bytes.

(3) Potential fatal Problems

—Asymmetry of paths
Our algorithm can solve asymmetric links, but it assumes the network path
is symmetric. If the returning path is completely different, the result would
clearly be unreliable.
It is difficult to detect such asymmetry. IP’s record route option [Postel
1981a] can only record 9 routers. Traceroute only gives us the path for the
outgoing direction.
The conclusion is there isn’t much we can do about it.

—Multiple paths
This was also mentioned in Pathchar, when there are more than one way
to reach the destination and come back, the measurement again is clearly
questionable.
One possible way to detect this is by analyzing RTT distribution, if multiple
paths do exist, it will show up as several densely distributed regression lines.
However, if there are too many paths available, this method will not scale.

5. RELATED WORKS AND COMPARISONS
5.1 Tcpanaly

Tcpanaly [Paxon 1997] calculates bottleneck link speed by measuring One-way Tran-
sit Time (OTT) as opposed to RTT. Since OTT depends only on links in one di-
rection, it is not affected by asymmetric links. Therefore, it works for asymmetric
links. In order to obtain OTT, it runs tcpdump at both ends. For bottleneck
estimate, the packet pair technique is used, implying only the spacing of OTT is
required and not a globally synchronized clock. Therefore, one can measure an
asymmetric link by running 2 Tcpanaly tests, each in one direction.

However, our algorithm requires only one test initiator, and does not require
human intervention. In contrast, Tcpanaly requires human co-operation at the
other end to run tcpdump, an arrangement not easy to get by. Further more, if
we want to extend Tcpanaly to measure per hop link speed, one needs to measure
a packet’s OTT at each router hop. It means human co-operation is required at
each hop, thereby easily crossing multiple ISP domains. This would add a lot of
political difficulty to perform a successful test.

The advantage of OTT vs. RTT is, as explained in [Paxon 1997], less noise in
measurement. RTT can have some queuing delay noise on the returning path, even
when the returning packet is constant size.

5.2 Pathchar

Pathchar uses RT'T of UDP packets that bounce back as either ICMP time exceeded
packets, or ICMP port unreachable packets. This idea is the same as we used in our
final algorithm, although we used ICMP echo packets (except for the last hop). So,
it can successfully measure outgoing link speed. However, Pathchar didn’t combine

13

its use with ICMP echo/reply packets, that’s why it cannot measure speeds in both
directions. If we run Pathchar from host A to B, and then from B to A, it will give
the results for asymmetric links correctly. This is less demanding than Tcpanaly,
but it is still more restrictive than our algorithm.

5.3 Bing

Bing measures per hop link bandwidth, using essentially our Algorithm 1. We have
already compare our Algorithm 2’s results with Bing’s results, together with our
prediction of Bing’s results. Please see Section 3.2 and 3.3.

5.4 Bprobe

Bprobe measures bottleneck link speed also using packet-pair technique, but it an-
alyzes spacing of RTTs instead of OTTs as in Tcpanaly. We haven’t done any
testing using Bprobe because it is only ported to SGI Irix. The author has access
to an SGI machine, but not with a root account. However, we can predict that
Bprobe will measure the thinner of the two thinnest links in each direction, due to
its packet pair technique.

6. CONCLUSIONS

We describe an algorithm that measures per hop raw link bandwidth where asym-
metric links may exist. The algorithm requires only one end to run the measurement
test. It works by sending ICMP echo packets with different TTLs and different sizes,
to cause sometimes ICMP reply packets and other times ICMP time exceeded pack-
ets. Then we perform linear regression on RT'Ts and packet sizes, one for echo/reply
case, the other for echo/time-exceeded case. This produces 2 linear equations with
2 unknowns, giving an apparent solution.

Our algorithm is very similar to those used by Pathchar and Bing. In fact, math-
ematically, it is a combination of both. However, it was developed independently.

Link bandwidth estimate is not simple. There are many practical issues affecting
the result. Bridges, switches, hubs, peculiarity of PPP/SLIP links, ATM links,
path instability and asymmetry, are all obstacles to good results. We mentioned
some solutions for part of the issues, but there remains a lot of challenge to achieve
good measurement.

REFERENCES

BEyssac, P. 1995. Bing - bandwidth ping.

CARTER, R. L. AND CROVELLA, M. E. 1996. Measuring bottleneck link in packet-switched
networks. Technical Report BU-CS-96-006, Boston University.

JACOBSON, V. 1997. pathchar - a tool to infer characteristics of internet paths. In April
1997 MSRI Workshop (April 1997). Mathematical Sciences Research Institute.

Paxon, V. 1997. Measurements and Analysis of End-to-End Internet Dynamics. Ph. D.
thesis, University of California at Berkeley.

PostTEL, J. 198la. Rfc 791: Ip - the internet protocol.

PostEL, J. 1981b. Rfc 792: Icmp - the internet control and message protocol.

STEVENS, R. 1994. TCP/IP Illustrated, Vol. 1, Chapter 2, pp. 24-27. Addison Wesley.

TANENBAUM, A. S. 1996. Computer Networks, Chapter 2, pp. 165-166. Prentice Hall.

