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Abstract

Contemporary intensive care units (ICUs) are navigating the challenge of enhancing med-

ical service quality amidst financial and resource constraints. Machine learning models have

surfaced as valuable tools in this context, showcasing notable effectiveness in supporting

healthcare delivery. Despite advancements, a gap remains in real-time medical interventions.

To bridge this gap, we introduce FIDDLE-Rx, a novel, data-driven machine learning ap-

proach designed specifically for real-time medication recommendations in ICUs. This method

leverages the eICU Collaborative Research Database (eICU-CRD) for its analysis, which en-

compasses diverse electronic health records from ICUs (ICU-EHRs) sourced from multiple

critical care centers across the US. FIDDLE-Rx employs the Flexible Data-Driven Pipeline

(FIDDLE) for transforming tabular data into binary matrix representations and standardizes

medication labels using the RxNorm (Rx) API . With the processed dataset, FIDDLE-Rx

applies various machine learning models to forecast the requirements for 238 medications.

Compared with previous studies, FIDDLE-Rx stands out by extending the scope of the re-

search of ICU-EHRs beyond mortality prediction, offering a more comprehensive approach

to enhancing critical care. The experimental results of our models demonstrate high efficacy,

evidenced by their impressive performance across two key metrics: the area under the re-

ceiver operating characteristic curve (AUROC) and the area under the precision-recall curve

(AUPRC). Remarkably, these results were achieved even when the model was trained with just

20% of the database, underlining its strong generalizability. By broadening the scope of ICU-

EHRs research to encompass real-time medication recommendations, FIDDLE-Rx presents

a scalable and effective solution for improving patient care in intensive care environments.
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Chapter 1: Introduction

Electronic health records (EHRs) are a comprehensive digital repository of patient data

compiled during healthcare operations. These records contain a broad spectrum of infor-

mation, including medication histories, diagnoses, laboratory orders and results, procedures,

insurance claims, and other healthcare services [1]. As such, the contexts and objectives of

EHRs are highly variable. Some EHR systems, initially designed for billing purposes [2, 3],

fall short in facilitating clinical workflows. Others, however, are developed for patient moni-

toring [4, 5], aiming to improve diagnosis and treatment and thus provide substantial benefits

for clinical research.

Among all EHRs, those collected in Intensive Care Units (ICU), called ICU-EHRs, are

particularly noteworthy as they provide direct insights into real-time patient care in ICUs.

Nevertheless, ICUs face specific challenges, including (a) financial limitations, (b) resource-

allocation difficulties, and (c) staffing issues, which can affect the quality of care [6]. There-

fore, there has been a focus on investigating data-driven machine learning models to address

clinical challenges [7, 8]. Recent studies have demonstrated the effectiveness of machine

learning techniques applied to such ICU-EHRs for predicting patient mortality within specific

cohorts, including those with cerebral infarction [9], hip fracture [10], lung cancer [11], and

chronic kidney disease [12]. The accuracy of these predictive tasks is contingent upon clini-

cians’ diligent data collection. Therefore, such machine learning tasks rely on the behaviors

and insights of clinicians rather than on physiological signals that may aid clinical decision-

making [13]. Among these studies, the extensive pre-filtering of ICU-EHRs plays a crucial

role in reducing data size, which aids machine learning models in effectively recognizing pat-

terns within the simplified sample distribution. However, this approach limits the models’

applicability to a broader patient population, while mortality prediction alone yields limited
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insights into patient care in critical settings. To conclude, there is an essential requirement to

design machine learning models that go beyond mortality forecasts and can suggest real-time

medical interventions based on ICU-EHRs [14].

Building upon the challenges in ICU operations and the necessity of realizing real-time

medical interventions at ICUs, this study introduces a data-driven deep learning (DL) ap-

proach, FIDDLE-Rx, for treatment recommendation in ICUs. Developed in collaboration

with H. Wang’s work [15], FIDDLE-Rx is designed for the simultaneous prediction of mul-

tiple medications. It leverages the eICU Collaborative Research Database (eICU-CRD), a

substantial database comprising ICU-EHRs from various centers across the US. For dataset

creation, FIDDLE-Rx compiles an extensive dataset with over two million records, integrat-

ing the Flexible Data-Driven Pipeline (FIDDLE) [16] and RxNorm (Rx) API. This dataset

features detailed patient care information and 238 standardized medication labels that stand

for 238 different kinds of medications. Based on the dataset, FIDDLE-Rx builds a series of

different few-shot multi-label medication prediction models to forecast the requirement for

these 238 medications.

In summary, FIDDLE-Rx achieves several key objectives: (a) It forecasts the required

medications for the next four hours, based on an analysis of eight hours of ICU-EHRs from a

patient. (b) It implements a standardized pipeline to associate patients with medication labels,

utilizing the RxNorm API. (c) It demonstrates the effectiveness of data engineering in handling

large-scale datasets for multi-label prediction tasks. (d) It showcases its ability to generalize,

performing few-shot predictions effectively even with limited training sample sizes. The ef-

fectiveness of FIDDLE-Rx is demonstrated by high scores in both the area under the receiver

operating characteristic (AUROC) and the area under the precision-recall curve (AUPRC),

which highlights both its generalizability and its practicality. Thus, FIDDLE-Rx presents a

scalable and effective approach for real-time medication intervention, showing promise for

future use in enhancing patient care in intensive care settings.
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Chapter 2: Technical Approach

This chapter introduces the methods of FIDDLE-Rx, including FIDDLE, data engineer-

ing, model design, model training, and evaluation strategies.

2.1 FIDDLE

In this study, we utilize data from eICU-CRD, encompassing ICU-EHRs of 200,859 pa-

tient admissions across 208 ICU centers in the US, spanning from 2013 to 2015 [4]. This

extensive dataset offers a broad sample distribution, enabling a thorough investigation into the

generalizability of our pipeline.

Figure 2.1: An example demonstrates the transformation of a patient’s heart rate (H.R.) data
into a binary matrix representation. The heart rate measurements within each time window
are processed to calculate the matrix representation of their average, maximum, and minimum
values. Subsequently, these three matrices are concatenated along the feature space axis,
forming the final binary matrix representation.

Before applying machine learning techniques, substantial effort is needed to preprocess

the ICU-EHRs. eICU-CRD comprises 18 structured SQL tables. For example, patient ta-

ble contains demographic information; vitalPeriodic table lists time-series vital signs; lab
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table details laboratory tests; and note table includes physician and nurse assessment docu-

mentation. However, the eICU-CRD presents challenges with missing values and significant

variation in the harmonization of its tables. This inconsistency, particularly with some values

being non-numerical, complicates the application of mathematical analysis. To address this,

FIDDLE [16] is applied to eICU-CRD to combine and transform these tables into a binary

matrix representation. The transformation process includes the following stages:

• Combine tables: To combine all tables, the tabular data in eICU-CRD are converted

to rows with four columns ID, t, vname, and vvalue. The ID is unique for each

patient. t is the timestamp, with t=0 meaning admission time. If t is null, the variable

is time-invariant, such as demographical information. The vname is consistent across

all patients and encodes the variable’s name. The vvalue is either numerical or a

string and must not be null. Variables are classified as numerical or categorical based

on vvalue, where categorical data is one-hot encoded, and numerical data may be

kept as continuous or binned. For handling missing values in this process, imputation

techniques with carry-forward methods [17] are utilized. xi

• Pre-filter: Rows with timestamps C that are outside the observation period [0,)] are

removed, and variables that are rarely shown are also excluded. A threshold, \1⇥100%,

is set to filter out such less frequent variables.

• Transform: Time-invariant variables across all patients are concatenated to form a 2D

matrix of dimensions #⇥3, where # represents the number of patients and 3 the number

of time-invariant features. For time-dependent variables, a 3D matrix with dimensions

# ⇥ ⇡ ⇥ ! is constructed, where ⇡ is the number of time-dependent features and !

the number of timestamps. All variables are converted to a binary representation dur-

ing this transformation to improve their suitability for machine learning applications.

For example, a patient’s heart rate can be encoded into a binary matrix, as shown in

Fig. 2.1. An extra time dimension is added to the time-invariant matrix to facilitate the

concatenation.

4



• Post-filter: After the data transformation, a feature is determined to be less informative

if the frequency of its zero/one values falls below \2 ⇥ 100%. Features meeting this

criterion are excluded to reduce the data size.

In this study, the thresholds \1 and \2 are both set to 0.01. The selection criteria include

patients who are at least 18 years old and have an ICU stay of at least 48 hours. This results in

a total of 77,066 subjects being included in the analysis. Detailed mathematical procedures,

such as the bin size and number of bins used for converting continuous variables into a binary

matrix representation, can be found in [16]. Additionally, to facilitate multi-label medica-

tion prediction, medication-related variables are excluded from the analysis. After applying

FIDDLE, the resulting matrix, " , has dimensions of 77,066 (number of patients) by 1,733

(number of features) by 48 () in hours). Furthermore, in [15], each patient is associated with

238 medication labels (H) for each hour. Thus, H is of shape 77,066 (number of patients) by

238 (binary medication labels) by 48 () in hours).

2.2 Data Engineering

Matrix Dimension Method Corresponding Model

" (77066, 1733, 48) FIDDLE /
"

0 (77066 ⇥ 36, 1733, 8) Sliding Window Transformer, Attention
"

00 (77066 ⇥ 36, 1733, 1) Temporal Aggregation DNN
"

000 (77066 ⇥ 36, 200, 1) PCA DNN, LR, RF, XGBoost
H (77066, 238, 48) Label Generator /
H
0 (77066 ⇥ 36, 238, 1) Temporal Aggregation All Models

Table 2.1: Summary of matrix notations along with their dimensions, methods to derive them,
and the corresponding models in which they are utilized.

Following the FIDDLE approach, more comprehensive data engineering techniques are

applied to " and H to construct the final database. As shown in Fig. 2.2, we use an eight-hour

sliding window operation to matrix " along its temporal axis. This results in an aggregated

matrix "0, which encapsulates the complete time-series information. Concurrently, dataset H
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Figure 2.2: Schematic representation of the data transformation pipeline. The process begins
with matrix " and H, which undergo sequential transformations to yield "0, "00, "000, and H0.
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is processed using a four-hour maximum filter, denoted as MAXC+3
C

value(ID, label, C), com-

mencing from time C = 9. This generates the corresponding label matrix H0. Afterward, we

perform a summation operation across the temporal dimension of matrix "0. By effectively

aggregating the time dimension, it facilitates the use of non-time-series models. In the final

step, we reduce the dimensionality of the feature space to 200 components using principal

component analysis (PCA). This results in a more compact matrix "
000, which accelerates

model training. For detailed information on this process, refer to section 2.3. Finally, dataset

H
0 is aligned with either "0, "00, or "000 to construct a dataset that encapsulates 8-hour sum-

mary features of patients and their corresponding 4-hour medication labels, separated by a

1-hour interval. For details on the application of these matrices in this study, see Table 2.1.

2.3 Principal Component Analysis

Figure 2.3: Transformation from three-dimensional database to two-dimensional space via
PCA, with PC 1 and PC 2 representing the two principal component axes.

Although "00 has already eliminated the time dimension, the feature space dimension of

1,733 is still relatively large, particularly for non-DL models. This scenario motivates the ap-

plication of PCA. PCA is a widely employed technique in data analysis for machine learning,

primarily functioning in dimensionality reduction. Specifically, it distills a multi-dimensional
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dataset into principal components comprising fewer dimensions while capturing the maximum

variance within the data [18]. This procedure is realized through a linear transformation that

identifies the most informative directions of the original data and projects the data onto new

dimensions. In doing so, PCA effectively compresses the dataset and maintains its structural

integrity with minimal information loss. In machine learning applications, the concentrated

variance captured by PCA not only improves computational efficiency but also mitigates over-

fitting, contributing to more generalizable models [19].

Fig. 2.3 illustrates the transformation of a sample three-dimensional database into a two-

dimensional representation using PCA. This research implements a dimensionality reduction

from the initial feature space of 1,733 dimensions down to 200. This reduction not only allows

for more efficient data compression but also improves the ability to recognize patterns within

the data. Such streamlining substantially increases the training speed for non-DL methods,

which employ a separate binary classifier for each medication. Throughout the PCA process,

the model is fitted using the training data, and this fitting is then applied to transform the

validation and test datasets. Details on the train/validation/test splitting strategy can be found

in Section 2.6.1.

2.4 DL Models

In this study, we include three DL models: a transformer, a deep neural network (DNN),

and an attention model. The purpose of incorporating the attention and transformer models

is to evaluate the effectiveness of the self-attention mechanism in pattern recognition of time-

series data. The transformer model builds upon this by employing a sequence of Transformer

encoder blocks containing more comprehensive layers, thus maximizing its capacity to handle

complex data sequences. Additionally, we include a vanilla DNN model to assess the efficacy

of our data engineering approach.

This section aims to explain the transformer model, which was first proposed by A Vaswani

et al. [20]. For comprehensive details on the DNN and attention models, refer to [15].

Figure 2.4 provides an overview of the transformer model. Initially, the input data is
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embedded in a fully connected dense layer with an embedding size of 64. This is followed

by a 2-layer encoder block designed to learn the structure and correlation of the time-series

inputs. Subsequently, the hidden states of the inputs are processed through a multi-label head,

which generates the 238 medication predictions. The following subsections delve into the

mechanisms of each layer.

Figure 2.4: An overview of the architecture of the modified transformer model. The dotted
lines represent residual connections. The term "N Blocks" indicates that the local architecture
is replicated sequentially # times. The symbol � represents a dense layer used for input
embedding.

2.4.1 Multi-head Attention

In the transformer encoder architecture, the attention mechanism is a critical component.

It operates on three primary vectors: Query (&), Key ( ), and Value (+). These vectors are

derived from the input embeddings. The attention function serves to map a query and a set

of key-value pairs to an output. The output is computed as a weighted sum of the values,

where each value’s weight is computed by a compatibility function of the query with the

corresponding key.

The attention weights are computed using the dot product of the Query with the Key:

Attention(&, ,+) = softmax
✓
& 

)

p
3:

◆
+ (2.1)

Here, 3: (3: = 64 in this work) is the dimension of the key vectors. The scaling factor,
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p
3: , stabilizes the variance. The softmax function is

softmax(I8) =
4
I8Õ

 

9=1 4
I 9
, (2.2)

where I8 represents the 8-th element of the input vector z, and  is the total number of ele-

ments in the vector. The softmax function computes the exponential of I8, divided by the sum

of the exponents of all elements in the vector, effectively converting the input values into a

probability distribution.

Additionally, the multi-head architecture enables the model to learn distinct representation

subspaces at various positions. This is achieved by applying the attention mechanism ⌘ times,

where ⌘ is the number of heads.

MultiHead(&, ,+) = Concat(head1, . . . , head⌘),$ (2.3)

where head8 = Attention(&,&

8
, ,

 

8
,+,

+

8
) (2.4)

In the above equations, ,&

8
, , 

8
, and ,+

8
are parameter matrices for the 8-th attention

head, and,$ is the output linear projection matrix. In this study, we set the number of heads

in the model to four for best performance.

2.4.2 Add & Normalize

The Add & Normalize layer, positioned after the multi-head attention and feed-forward

layers, plays a significant role in stabilizing and accelerating the training process.

It consists of residual connections (the "Add" part) and layer normalization (the "Normal-

ize" part). Residual connections, inspired by ResNet [21], allow the output of one layer to

bypass some layers and directly add to a later layer’s output, formulated as F (x) + x where

x is the input and F is the function implemented by the layers. This approach mitigates

the vanishing gradient problem, enabling deeper network architectures. Layer normaliza-

tion, applied after the residual connection, normalizes the inputs across features, defined as
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LN(x) = W
⇣

x�`p
f

2+n

⌘
+ V where ` and f2 are the mean and variance of the features, and W and

V are learnable parameters. Here, n is a small constant added to avoid division by zero. This

normalization stabilizes learning and allows for faster training with higher learning rates.

2.4.3 Feed Forward

The feed-forward layer in the encoder block is a critical component that follows the

multi-head attention layer. This layer is fully connected and consists of two linear trans-

formations with a ReLU activation in between. Mathematically, it can be represented as

FFN(x) = max(0, x,1 + 11),2 + 12, where x is the input to the feed-forward layer, ,1

and,2 are weight matrices, and 11 and 12 are bias vectors. The ReLU (Rectified Linear Unit)

activation function, denoted by max(0, ·), introduces non-linearity into the model and enables

it to learn more complex patterns in the data. Unlike the multi-head attention mechanism that

allows the model to focus on different positions of the input sequence, the feed-forward layer

operates on each position separately and identically. This design choice allows the encoder to

integrate information from different representation subspaces at each position. In this study,

the dimensions of the linear layers are fine-tuned to 64 to achieve optimal performance.

2.4.4 Multi-label Head

The multi-label head of the model is composed of several key components. Initially, a

batch normalization (BN) layer is employed to stabilize the model by normalizing over each

batch. Following this, a one-dimensional global average pooling layer is utilized to effec-

tively eliminate the last dimension by taking the average of all units. This reduction aids in

decreasing the model’s complexity and computational cost. Finally, a dense layer, followed

by a sigmoid classification head, is implemented. This dense layer serves to interpret the

features extracted by previous layers, and the sigmoid classification head is used to generate

the predictions for all medication labels, outputting values between 0 and 1 that represent the

probability of each medication.
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2.5 Non-DL Models

This study uses three non-DL methods – Logistic Regression (LR), Random Forest (RF),

and XGBoost – as baseline models. LR is selected for its simplicity, particularly in linear

contexts. RF, known for handling non-linear data, offers robustness in complex classification

scenarios. XGBoost is included for its high performance and efficiency with diverse datasets.

These models are suitable for binary prediction tasks, allowing for training distinct classifiers

for each medication.

2.5.1 Logistic Regression

Logistic Regression (LR) is a method for predictive analysis that aims at explaining data

and elucidating the association between a single binary dependent variable and one or more

independent variables of varied types, including nominal, ordinal, interval, or ratio-level [22].

The logistic regression model is expressed through the logistic function, which is:

%(. = 1) = 1
1 + 4�(V0+V1-1+V2-2+...+V:-:)

(2.5)

In this formula, %(. = 1) represents the likelihood of the dependent variable being equiv-

alent to a specific case (coded as "1"), given the independent variables. V0 is the intercept,

while V1, V2, . . . , V: are the coefficients of the independent variables -1, -2, . . . , -: . The 4

is the base of natural logarithms. The coefficients are estimated from the training data using

maximum likelihood estimation, delineating both the magnitude and direction of the correla-

tion between the predictor variables and the response variable. The LR model is effective in

situations where the predicted outcome is binary [22].

2.5.2 Random Forest

Random Forest (RF) is an ensemble learning method that constructs multiple decision

trees during training and combines the trees’ output for the final result. This approach lever-

12



ages the strength of multiple decision-making models, enhancing overall predictive accuracy

and reducing the risk of overfitting [23]. Each tree in the RF contributes a vote toward the final

prediction. The outcome is determined by the majority vote across all trees in classification

tasks. This method is particularly effective in handling large datasets with high dimension-

ality of features, as it inherently performs feature selection and provides robustness against

noise [23].

2.5.3 XGBoost

XGBoost, standing for eXtreme Gradient Boosting, is a state-of-the-art implementation

of the gradient boosting algorithm, differing significantly from RF [24]. Unlike RF’s parallel

approach, XGBoost builds one tree at a time, where each tree is designed to correct the errors

made by its predecessors. This is a key aspect of the boosting technique.

Figure 2.5: An illustration of the XGBoost algorithm that demonstrates how it sequentially
builds trees, showcasing the series-like progression of this process.

As shown in Fig. 2.5, the model’s prediction at step C, denoted as �C (G), is updated by the

prediction, 5C (G), from the new decision tree C. The update process is described as:

�C (G) = �C�1(G) + 5C (G), C = 2, 3, 4... (2.6)
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where �C�1(G) is the cumulative prediction up to the previous step. Thus, the final prediction

Ĥ for a given instance G after ) rounds of boosting is the sum of the predictions from all the

trees:

Ĥ(G) = �) (G) =
)’
C=1

5C (G), (2.7)

where ) represents the total number of trees constructed or the number of boosting rounds

completed, and 5C (G) is the output of the CC⌘ tree. XGBoost is designed to focus on learning

residuals, that is, the discrepancies between actual and predicted values in the current model.

It uses these residuals as targets for subsequent trees, thereby iteratively minimizing errors

and enhancing prediction accuracy. Through a gradient-based optimization approach, XG-

Boost methodically reduces the loss function, enabling each new tree to adapt to complex data

patterns more effectively. Additionally, the algorithm incorporates regularization, penalizing

over-complex trees, thereby preventing overfitting.

Through its sequential tree building, combined with gradient descent and regularization,

XGBoost achieves high efficiency and accuracy, particularly in handling large and complex

datasets. Its robustness to overfitting and its computational efficiency make it a powerful tool

for a wide range of problems, including regression, classification, and ranking tasks [24].

2.6 Experiments

This section introduces the methodology adopted for training and evaluating the models in

this study. The computational infrastructure utilized for conducting all experiments comprises

a high-performance server equipped with dual NVIDIA A6000 GPUs, dual AMD EPYC 64-

core CPUs, and 256 GB of RAM, providing robust computational power essential for handling

complex calculations and large datasets.

2.6.1 Model Training

In this study, all DL models are trained for multi-label prediction. In contrast, for the three

non-DL models, 238 binary classifiers are trained, one for each medication. This approach
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is necessitated as the non-DL models do not inherently support multi-label prediction and are

incapable of capturing time-series information effectively. Table 2.1 presents the databases

utilized for each respective model.

Throughout the training process, a fixed 20% of the data is allocated as the test set for eval-

uating model performance, and a fixed 16% is designated as the validation set for fine-tuning.

The remaining 64% is used for training. To examine scaling behavior, eleven percentages on a

logarithmic scale, from as little as 0.12% to the entire 64%, are selected as training sets. With

very small training sets, each medication’s positive examples are seen infrequently, creating

a test set over 150 times larger than the training set. This scenario tests the models’ few-shot

learning capabilities. Five-fold cross-validation is conducted for all models to ensure their

reliability. Please note that the XGBoost model demands significantly more system RAM.

Therefore, for a training size of 64%, this requirement exceeds a reasonable limit, leading to

the exclusion of this experiment. For more details on the training schema, please refer to [15].

2.6.2 Model Evaluation

In this work, all models are evaluated with AUROC and AUPRC scores. These two metrics

are essential in assessing multi-label prediction models, particularly in the context of imbal-

anced datasets [25].

• AUROC: This curve is a graphical representation that plots the true positive rate (TPR)

against the false positive rate (FPR) at various threshold settings. The TPR, also known

as sensitivity or recall, is juxtaposed with the FPR, which is calculated as one minus

the specificity. The AUROC serves as a measure of a model’s capability to differentiate

between classes. An AUROC value of 1 signifies perfect classification, whereas a value

of 0.5 suggests performance equivalent to random guessing.

• AUPRC: The Precision-Recall Curve, on the other hand, plots precision against recall.

Precision is defined as the ratio of true positives to all positive predictions, while recall

is TPR. The AUPRC becomes particularly crucial in scenarios with class imbalances.
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It concentrates on the classifier’s performance in identifying the positive class, thereby

being more sensitive to the detection of rare events. A higher AUPRC value indicates

a more effective model in managing positive class predictions, which is of significant

importance in fields such as medical diagnosis, where the cost of false negatives is

high [26].

For a comprehensive comparison, both AUROC and AUPRC are calculated for each med-

ication across all models.
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Chapter 3: Results

3.1 PCA Dimension Reduction

Figure 3.1: PCA explained variance at various training proportions: (a) illustrates the full
variance range while (b) zooms in on the [0.7, 1.0] segment.

To preserve data integrity and optimize the database size for non-DL models, the number

of principal components is determined to be 200. Fig 3.1 demonstrates that with 200 compo-

nents, the explained variance exceeds 0.925 for all training proportions, and the curve appears

to converge at this point. This indicates that our chosen configuration avoids significant infor-

mation loss, and increasing the component count would only lead to an unnecessary expansion

of the database size.

3.2 Performance over All Medications

Fig. 3.2 presents the performance of all evaluated models in this study, illustrating the

average AUROC and AUPRC scores across different medications and varying training pro-

portions. Notably, all models demonstrate a consistent scaling behavior: both AUROC and

AUPRC scores increase with larger training proportions. The transformer model demonstrat-
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Figure 3.2: Average AUROC and AUPRC scores for all medications across various training
proportions, calculated for each model. For the corresponding database used in each model,
see Table 2.1.

ing the best performance requires a minimum of 10% of the data for training to achieve an

average AUROC of over 0.8. Remarkably, when trained with less than 20% of the dataset, this

model attains an AUROC of 0.88 and an AUPRC of 0.015. These metrics significantly exceed

those of the best baseline model, LR, which achieves an AUROC of 0.77 and an AUPRC of

0.011. In general, non-DL baselines, though trained for each medication, are outperformed

by all DL models. While XGBoost shows enhanced results through gradient boosting and

effective sparse data management, LR consistently delivers superior performance. This is at-

tributed to the prediction problem’s binary nature. Among the four DL models, the attention

model, despite leveraging the "0 database, exhibits limited proficiency in capturing patterns

within this time-series dataset. Furthermore, its performance is notably sensitive to train-

ing size, surpassing non-DL baselines only when utilizing the second-largest training dataset.

The performance of the two DNN models is commendable, even when compared to the top-

performing transformer model. This suggests that the temporal data aggregation and PCA for

dimension reduction effectively reduce data size, enabling faster training while minimizing

information loss.

In this imbalanced dataset, while AUROC scores are decent, AUPRC scores are less than

ideal. This is mainly because the positive frequency does not exceed 0.2% for most medica-

tions beyond the top four frequent. (refer to [15] for details). Hence, for a random classifier,
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the expected AUPRC is just 0.002 [26], indicating that extremely specific patterns are neces-

sary to predict the use of a particular medication. Thus, an AUPRC of 0.01 is effectively five

times better. This scenario is typical in complex critical care settings, where individual patient

assessments are crucial [27, 28]. The difference between the AUROC and the AUPRC sug-

gests that these models possess high sensitivity but acceptable precision. In practical terms,

this means that when the model predicts a medication is needed, it requires further verification

by a clinician. Conversely, if the model indicates no need for a medication, the prediction is

highly reliable. To further examine which medications yield high AUPRC scores, an analysis

of the AUROC and AUPRC scaling curves for the top-five medications is conducted.

3.3 Top-Five Medications

Fig. 3.3 and Fig. 3.4 demonstrate the scaling behavior of AUROC and AUPRC curves, of-

fering a detailed evaluation of the performance of DL and non-DL models for the top five

medications, as ranked by AUPRC scores, respectively. The performance of the top five

medications—sodium chloride, potassium chloride, furosemide, magnesium sulfate, and as-

pirin—remains consistent across all models, though their ranking order may vary.

Across all DL models, top-five medication predictions show that the transformer model

(see Fig. 3.3a) leads in performance. However, this lead is less pronounced compared to

its performance averaged across 238 medications. In comparison with attention models,

the transformer’s AUPRC scores at higher training proportions are even marginally lower

(Fig. 3.3b). Notably, the performance of the DNN models, both with temporal data aggre-

gation and PCA (Figs. 3.3c and 3.3d), only decreases slightly. This further suggests that

data engineering processes are particularly effective for medications that are easier to predict.

These findings imply that for more frequently prescribed medications, complex models may

not be necessary. And this result aligns well with intuitive data analysis principles.

Regarding non-DL models (Fig. 3.4), their performance, even for the top-five medications,

remains unsatisfactory. The AUROC scores do not reach 0.8 at any training proportion. Given

that the DNN with PCA confirms minimal information loss during data engineering, the lower
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(a)

(b)

(c)

(d)

Figure 3.3: The AUROC and AUPRC scores at various training proportions for the top five
medications of all DL models: (a) the transformer model utilizing matrix "0, (b) the attention
model with matrix "0, (c) the DNN model incorporating matrix "00 which applies temporal
aggregation, and (d) the DNN model with matrix "000, employing PCA for dimension reduc-
tion.
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(a)

(b)

(c)

Figure 3.4: The AUROC and AUPRC scores at various training proportions for the top five
medications of all non-DL models: (a) LR, (b) RF, and (c) XGBoost, all employing matrix
"

000.
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performance of non-DL models is mainly due to their inability to learn the underlying patterns

in the database. This establishes that while sophisticated models are not essential for simpler

medication prediction tasks, the use of DL models remains necessary.
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Chapter 4: Conclusion

"What is the expected outcome of the patient?" is an ongoing research topic with notable

progress. However, at the core of our research is the question: "Which medication(s) should

be prescribed?". This question, complex but crucial, sheds light on the potential of DL tech-

niques in supporting real-time decision-making in critical care. To answer this question, we

introduced the FIDDLE-Rx framework, which realizes real-time medication intervention in

resource-limited critical care environments. The FIDDLE-Rx encompasses several key com-

ponents: (a) the FIDDLE model, adept at managing missing data and transforming the tabular

ICU-EHRs into an efficient binary matrix representation; (b) a data engineering phase that

enriches and compresses the dataset at the same time, links medical features with medication

labels, thereby optimizing the database for faster model training and improved performance;

(c) a final phase of training DL and non-DL models to provide actionable insights for clin-

icians; and (d) a scaling behavior analysis to determine the minimal sample size necessary

for large-scale analysis. Utilizing just less than 20% of the database, the transformer model

attains an AUROC of 0.88 and an AUPRC of 0.015. This result significantly outperforms

the best non-DL baseline (LR), which achieves an AUROC of 0.77 and an AUPRC of 0.011.

The gap between AUROC and AUPRC in our models indicates high sensitivity. Practically,

this means model predictions of medication needs should be clinician-reviewed for accuracy,

while their predictions against medication use are highly reliable. This highlights the models’

potential in aiding clinical decisions, especially in preventing unnecessary prescriptions. The

combination of standardized procedures, interpretable data engineering, and promising results

in medication prediction positions FIDDLE-Rx towards few-shot multi-label medication pre-

diction from ICU-EHRs. Further efforts should focus on enhancing the models’ precision to

advance the development of a more sophisticated medication recommendation system.
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