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H. Woźniakowski†

Department of Computer Science
Columbia University, New York, NY 10027

Institute of Applied Mathematics
University of Warsaw, Poland

Technical Report CUCS-004-99

Original version: August 11, 1999
Revised version: August 21, 2000

Abstract

We study the worst case complexity of computingε-approximations of
surface integrals. This problem has two sources of partial information: the
integrandf and the functiong defining the surface. The problem is nonlinear
in its dependence ong. Here, f is an r times continuously differentiable
scalar function ofl variables, andg is ans times continuously differentiable
injective function ofd variables withl components. We must haved ≤ l
ands ≥ 1 for surface integration to be well-defined. Surface integration is
related to the classical integration problem for functions ofd variables that
are min{r, s− 1} times continuously differentiable. This might suggest that
the complexity of surface integration should be2((1/ε)d/min{r,s−1}). Indeed,
this holds whend < l and s = 1, in which case the surface integration
problem has infinite complexity. However, ifd ≤ l ands ≥ 2, we prove that
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the complexity of surface integration isO((1/ε)d/min{r,s}). Furthermore, this
bound is sharp wheneverd < l .

1 Introduction

Surface integration is an important problem of applied mathematics. One example
is the calculation of surface area. In addition, the solutions of many problems (such
as elliptic boundary value problems, see, e.g., Stakgold 1998) can be expressed
as surface integrals. This explains why it is natural to study the complexity of
computing anε-approximation of surface integrals.

A surface integral is defined by two functions. The first is an integrand, which
is a scalar functionf of l variables. The second is a functiong defining the surface.
This functiong depends ond variables, and must havel components. The surface
is well-defined iffg is aC1-injection. Hence, we must haved ≤ l . These functions
f andg may have different smoothness. In this paper, we assume thatf andg are
r ands times continuously differentiable, respectively. Obviously, we must have
r ≥ 0 ands ≥ 1.

The numerical computation of surface integrals involves two sources of par-
tial information, arising from evaluating the functionsf andg at points in their
domains. The surface integration problem is nonlinear in its dependence on the
functiong. However, for a fixedg, the problem is linear in its dependence onf .

A surface integral may be expressed as a classical integral of ad-variate scalar
function, which is min{r, s − 1} times continuously differentiable. The classi-
cal integration problem is a linear problem, and is one of the most-studied prob-
lems in information-based complexity (IBC). In particular, it is known that the
ε-complexity of classical integration ford-variate functions that aret times con-
tinuously differentiable is proportional to(1/ε)d/t ; see Bakhvalov (1959), as well
as the references in Novak (1988), Traub et al. (1988), and Traub and Werschulz
(1998). Thus, it would appear plausible that theε-complexity of surface integration
should be proportional to(1/ε)d/min{r,s−1}.

Surprisingly enough, this is not usually the case. This result holds only when
d < l and s = 1. In this case, the complexity of surface integration becomes
infinite, and so the problem is unsolvable. This is not particularly surprising. In-
deed, the definition of the surface integral involves partial derivatives ofg. Hence
whens = 1, we have the minimal amount of smoothness required for the surface
integral to be well-defined, and so the integrand appearing in the transformed prob-
lem cannot be approximated arbitrarily closely. This is similar to many otherIBC

problems, for which minimal smoothness implies infinite complexity, see, e.g., the
many instances in Traub and Woźniakowski (1980) and Werschulz (1991).
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We now suppose thatd ≤ l ands ≥ 2. Then we prove that theε-complexity
is at most proportional to(1/ε)d/min{r,s}. Note that we haves in the denominator
of the exponent, rather than thes− 1 that we would expect. This surprising re-
sult holds because the surface integral can be expressed as a sum of integrals of
smoother integrands, provided that we do integrations by parts. This technique
yields upper bounds on the error that involve second derivatives ofg; hence these
bounds are of the proper magnitude only whens ≥ 2.

Are these bounds sharp? We give a partial answer in the affirmative. More pre-
cisely, whend < l , we prove that theε-complexity is proportional to(1/ε)d/min{r,s}.
Hence these bounds are sharp in this case.

What happens whend = l? We have only a partial result, for the cased =
l = 1. We find that theε-complexity is proportional to(1/ε)r . Note that this is
independent ofs, the smoothness ofg, and holds even whens = 1. Sharpness of
the upper bound for the cased = l ≥ 2 is an open problem.

As mentioned above, one important instance of the surface integration problem
is the calculation of surface area. One might hope to get better complexity bounds
for the surface area problem, since the integrand is identically one and we only
have one source of partial information, namely the surface itself. Unfortunately,
this is not the case. The proof of the lower bound for surface integration holds for
constant integrands. Hence the complexity of surface area is of the same order as
surface integration.

We pose some open problems.
In this paper, we study what are probably the most commonly-used classes

of smooth functions. An alternative would be to use classes of functions having
bounded mixed derivatives of ordersr ands. In this case, the dependence of com-
plexity ond should be less drastic, by analogy with known results for the classical
integration problem, see, e.g., Temlyakov (1989), as well as the references in Traub
and Werschulz (1998). Modulo logarithmic factors, we expect that the complexity
should be proportional to(1/ε)1/min{r,s}.

This paper concentrates on establishing sharp exponents of 1/ε. In particular,
we have ignored any dependence of2-factors ond andl . As long asd is small,
this dependence is not crucial. However, for larged relative tor ands, we have
the curse of dimension. Hence, surface integration joins the club whose members
are the many computational problems suffering from this curse. As with these
other problems, this curse can be broken by switching to the randomized setting,
since the classical Monte Carlo method can be used. So, the complexity of surface
integration in the randomized setting is at most proportional to(1/ε)2, even for
r = 0 ands= 1. For the classical integration problem, the curse of dimension can
be broken, even in the worst case setting, if we consider integrands from weighted
classes of functions (Sloan and Woźniakowski, 1998). Our hope is that the same
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can be done for surface integration.
We briefly outline this paper. Section 2 contains a precise definition of the

problem for general classes of integrands and surfaces. In Section 3, we establish
relations between the surface and classical integration problems for general classes.
Finally, in Section 4, we turn attention to the classes of smooth functions described
above. We present an algorithm, establish its error bound, and prove its optimality
in the cased < l .

2 Problem formulation

Before describing the problem to be solved, we first recall the definition of surface
integrals; see Edwards (1973, p. 334 ff.) for further discussion. Letd and l be
given positive integers, withd ≤ l . Let I = [0,1] denote the unit interval. For a
C1 injectiong : I d

→ R
l , we say that

6g = { g(x) : x ∈ I d
}

is ad-dimensionalsurfacein Rl .
For any such functiong, thegradient∇g : I d

→ R
l×d is defined by

[(∇g)(x)] i, j = (∂ j gi )(x) for i ∈ {1, . . . , l }, j ∈ {1, . . . ,d}, andx ∈ I d,

where∂ j denotes the partial derivative in thej th coordinate direction andgi is the
i th component ofg.

Define
σg(x) =

√
detA(x) ∀ x ∈ I d,

where
A(x) = [(∇g)(x)]T [(∇g)(x)] ∀ x ∈ I d,

i.e., A(x) = [(ai, j (x)]d
i, j=1 is thed × d matrix having components

ai, j (x) =
l∑

k=1

(∂i gk)(x)(∂ j gk)(x)

for i, j ∈ {1, . . . ,d} andx ∈ I d. Note that whend = l , this simplifies to

σg(x) = |det[(∇g)(x)]| ∀ x ∈ I d,

If f : D f ⊆ R
l
→ R is a measurable function whose domainD f is a superset

of 6g, then ∫
6g

f dσ =
∫

I d
( f B g)σg ≡

∫
I d

f (g(x)) σg(x)dx (2.1)
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is thesurface integral of f over6g.
We now describe the problem to be solved. For givenF × G we want to

approximate thesurface integraloperator

S( f, g) =
∫
6g

f dσ ∀ [ f, g] ∈ F × G.

Here, we assume thatF × G is chosen such that the surface integral operatorS is
well-defined. Observe that the presence ofg means thatS is anonlinearfunctional.
However, for a fixedg, the functionalSdepends linearly onf .

We compute an approximationU ( f, g) to S( f, g) by using information

N( f, g) = [ f (x(1)), . . . , f (x(m)), g(x(m+1)), . . . , g(x(n))] (2.2)

of cardinalitym+ l (n−m), wherex(1), . . . , x(m) ∈ I l andx(m+1), . . . , x(n) ∈ I d.
We also allow adaption. That is, the numbern of evaluations, as well as the sample
pointsx(1), . . . , x(n), may depend on the previously-computed function values of
f andg; for details, see, e.g., Traub et al. (1988, Chapter 2).

Remark.Note that the permissible information is function values off andg. One
could also allow the evaluation of derivatives, as well. We restrict ourselves to
function values alone, as this makes the exposition much simpler. However, it is
easy to see that the results of this paper also hold if arbitrary derivative evaluations
are allowed.

Our approximationU is given by

U ( f, g) = φ
(
N( f, g)

)
(2.3)

for some mappingφ : N(F × G)→ R. We measure the quality of an approxima-
tion U by itsworst case error

e(U ) = sup
[ f,g]∈F×G

|S( f, g)−U ( f, g)| .

The cost of computingU ( f, g) is defined as cost
(
U ( f, g)

)
, which is the weight-

ed sum of the total number of function values off andg, as well as the number of
arithmetic operations and comparisons needed to obtainU ( f, g). More precisely,
we assume that each evaluation off or of gi (wherei ∈ {1, . . . , l }) costsc. The
cost of each arithmetic operation is taken as 1. Then cost

(
U ( f, g)

)
for U of the

form (2.3) isc
(
m+ l (n−m)

)
+ ñ, whereñ is the total number of arithmetic op-

erations and comparisons needed to computeU ( f, g). Herec ≥ 1, and usually it
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is realistic to assume thatc� 1; see once more Traub et al. (1988, Chapter 2) or
Traub and Werschulz (1998, Chapter 2) for details. Then

cost(U ) = sup
[ f,g]∈F×G

cost
(
U ( f, g)

)
is the worst case cost ofU . The ε-complexityof surface integration in the class
F × G is the minimal cost of computing anε-approximation, i.e.,

comp(ε) = inf{ cost(U ) : U such thate(U ) ≤ ε }.

The purpose of this paper is to find sharp estimates of theε-complexity of
surface integration for a number of classesF × G. Our estimates will be sharp
only in terms of the power ofε−1, with constants depending, in particular, ond
andl .

3 Surface and classical integration

We show that the surface integration problem is related to the classical problem of
integration. The latter is defined as an approximation of

Sint( f ) =
∫

I d
f (x)dx, f ∈ H

for some classH of scalar functions defined onI d. Let compint(ε; H) denote theε-
complexity of integration, which is defined analogously to surface integration. The
classical integration problem has been extensively studied and sharp bounds on its
ε-complexity are known for many classesH , see Traub and Werschulz (1998) and
Woźniakowski (1999) for surveys.

Relations between surface and classical integration will be presented by in-
equalities between their complexities. That is, for the given classF × G we will
find corresponding classesH such that theε-complexity of surface integration for
F×G is bounded from below and above by theε-complexity of integration for the
classesH .

We begin with a lower bound. We assume that the identity embedding or pro-
jection function id :Rd

→ R
l , defined as

id(x) = [x1, x2, . . . , xd,0,0, . . . ,0] ∀ x ∈ Rd,

belongs toG. Thenσid(x) ≡ 1 and

S( f, id) = Sint( f B id) ∀ f ∈ F. (3.1)
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Define
H(F) = { f B id : f ∈ F }.

The classH(F) is the natural projection of functions fromF by taking the firstd
variables, which amounts to restricting the domain of the functions toI d. Then (3.1)
yields

comp(ε; F,G) ≥ compint
(
ε; H(F)

)
. (3.2)

This means that surface integration forF × G is not easier than integration for
H(F). Since the assumption id∈ G is quite natural and sharp error estimates
of compint

(
ε; H(F)

)
are known for manyF , we have lower bounds on theε-

complexity of surface integration in these cases.
We now obtain an upper bound. Observe that forh = ( f B g)σg, we may

use (2.1) to see that
S( f, g) = Sint(h).

If evaluating partial derivatives were a permissible information operation, then we
would have been able to computeh(x) by first computinggi (x) and∂ j gi (x) for
1≤ i ≤ l and 1≤ j ≤ d, and then computing the determinant ofA(x). Since only
function evaluations are permissible, we will replace the partial derivatives∂ j gi (x)
by sufficiently-fine difference quotients, obtaining an approximationh̃ to h. The
cost of computing̃h is at most 2l (1+ d) c+γd2l , with an absolute constantγ of
order 1. Hence, an approximation to the surface integralS( f, g) can be obtained
by approximating Sint(h̃), with each evaluation of̃h having cost 2l (1+d) c+γd2l .
The functionh̃ belongs to the class

H(F,G) = { ( f B g)σg : [ f, g] ∈ F × G }.

Hence, the surface integration problem for the classF × G is reduced to the inte-
gration problem for the classH(F,G). Observe that theε-complexity of surface
and classical integration can be written in the formccomp1(ε)+comp2(ε). There-
fore, the replacement ofc by 2l (1+ d)(1+ γd/ c) c changes theε-complexity at
most by a factor 2l (1+ d)(1+ γd/ c). Note that this factor is linear inl and at
most quadratic ind. This yields

comp(ε; F,G) ≤ 2l (1+ d)

(
1+ γ

d

c

)
compint

(
ε; H(F,G)

)
. (3.3)

This means that surface integration forF×G is essentially not harder than integra-
tion for H(F,G). As we shall see later, sharp estimates of compint

(
ε; H(F,G)

)
are known for someF andG, and this allows us to obtain upper bounds on the
ε-complexity of surface integration.
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When are the bounds (3.2) and (3.3) sharp? That is, we would like to know
when theε-complexity of surface integration for the classF × G is essentially
the same as theε-complexity of integration for the classH(F) or for the class
H(F,G). One could expect that the bound (3.2) should not be sharp, sinceg = id
seems like a very easy case for surface integration. After all, the entire difficulty
of surface integration is in its nonlinear dependence ong, and for large enough
classesG we should expect that for someg, surface integrals are harder to approx-
imate than their classical counterparts.

This expectation can be supported by analyzing the upper bound (3.3) for the
classH(F,G). Usually, theε-complexity of integration depends on the smooth-
ness of the integrands. When we switch from functionsf andg to the functionsh,
we may lose some smoothness, since we have differentiatedg. However, if f is
less smooth thang, then the lost smoothness ofg may not be harmful.

Furthermore, there is one case for which the smoothness ofg is irrelevant. (Of
course, we must always have at leastC1 smoothness ofg, so that surface integrals
will be well-defined.) This is the casel = 1, which necessarily implies thatd = 1
andσg(x) = |g′(x)|. Sinceg is C1 andg′(x) 6= 0, we may use the standard change
of variablest = g(x) in (2.1) to conclude that

S( f, g) =
∫ 1

0
f (g(x)) |g′(x)|dx =


∫ g(1)

g(0)
f (t)dt if g(0) < g(1),

−

∫ g(1)

g(0)
f (t)dt if g(0) > g(1).

Hence, surface integration reduces to classical integration in this case. The smooth-
ness ofg is irrelevant. The only dependence ong is through the interval of inte-
gration. For many classesH(F), theε-complexity depends on the length of the
interval of integration, and is finite only for finite lengths. For suchH(F), we
must restrict the classG to functions for whichg(I ) is uniformly bounded for all
g ∈ G.

We illustrate the last point by takingF as the class ofr times continuously dif-
ferentiable functionsf defined on the interval [0,M ] and for which all derivatives
up to orderr are bounded by 1. HereM is a given (large) positive number. To
guarantee thatf B g is well-defined we restrict the classG to functions for which
g(I ) ⊂ [0,M ]. It is known that theε-complexity of this classical integration prob-
lem is2(M1+1/r cε−1/r ), with the big2-factor independent ofM andε (see, e.g.,
Novak, 1988, p. 37).

This also proves that theε-complexity of surface integration is of the same
order. In this case the bound (3.2) is sharp.

8



4 Surface integration for smooth functions

In this section, we study surface integration for classes of smooth functions.
We begin by takingF = Fl ,r,C1 as the class of functionsf : I l

→ R that arer
times continuously differentiable and that satisfy

‖ f ‖Cr (I l ) ≤ C1 (4.1)

for some positiveC1. Here1

‖ f ‖Cr (I l ) = max
|α|≤r
‖Dα f ‖, (4.2)

with ‖ ·‖ denoting the max norm. We takeG = Gd,l ,s,C2,c2 as the class of functions
g : I d

→ I l that ares times continuously differentiable and that satisfy

‖g‖Cs(I d) ≤ C2 (4.3)

for some positiveC2, and for which

min
x∈I d

σg(x) ≥ c2 (4.4)

for some positivec2. Here,

‖g‖Cs(I d) = max
|α|≤s

max
1≤i≤l
‖Dαgi ‖.

For simplicity, we assume thatc2 ≤ 1 ≤ C2, so thatg = id ∈ G. The smoothness
parametersr and s are integers satisfyingr ≥ 0 ands ≥ 1. Observe that the
functions fromF have the common domainI l . The compositionf B g is well-
defined, sinceg(I d) ⊂ I l for all g ∈ G.

Remark.We briefly comment on the conditions that define our classesF andG.
Upper bounds on derivatives, such as (4.1) and (4.3), are typical assumptions
for problems studied by information-based complexity (see, e.g., Traub and Wer-
schulz, 1998, and the references cited therein). Lower bounds on derivatives, such
as (4.4), occur far less often. Since the surface integral is well-defined if we only
require

min
x∈I d

σg(x) > 0, (4.5)

one might ask why we need the constantc2. The first reason is that any lower
bounds we prove will be stronger. That is, since (4.4) implies (4.5), lower bounds

1We use the standard multi-index notation found in (e.g.) Ciarlet (1978, p. 11). In particular, for
a multi-indexα = [α1, α2, . . . , αd] we haveDα f = ∂ |α| f/(∂α1x1 · · · ∂

αd xd).
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established for the case (4.4) will automatically hold for the case (4.5). The second
reason is more important. Whend < l , there is a square root in the definition of the
surface integral. When we compute derivatives ofσρ(x), the value ofσρ(x) appears
in the denominator. The bound (4.4) guarantees that the derivatives ofσρ(x) are
bounded, with the norms‖σg‖Cs−1(I d) for g ∈ Cs(I d) being uniformly bounded
with a bound proportional toC2/c2. However, whend = l , the square root does
not appear in the definition of the surface integral, and so the condition (4.4) could
be replaced by (4.5).

We are ready to find theε-complexity of surface integration for the classF×G.
First, we shall establish an upper bound, which holds for the case thatr ≥ 1 and
s ≥ 2. Later, we shall establish a lower bound for the caser ≥ 0, s ≥ 1, andd < l .

To establish this upper bound, we shall propose an algorithm usingO(n) func-
tion evaluations and having a good error bound. This will require us to construct a
multivariate spline spaceS , which is ad-fold tensor product

S = Sµ(1)⊗ · · · ⊗ Sµ(1).

Here,
1 = {t0 = 0< t1 < . . . < t` < t`+1 = 1},

where

ti =
i

`+ 1
(0≤ i ≤ `+ 1)

with ` = bn1/d
c, is a uniform partition ofI = [0,1], and

µ = max{s− 1,2}.

Moreover,

Sµ(1) =

{
w ∈ Cµ−1(I ) : w

∣∣∣
[ti−1,ti ]

∈ Pµ for 1≤ i ≤ `+ 1

}
is the space of splines having global smoothnessCµ−1 and piecewise polynomial
degreeµ. We emphasize thats ≥ 2 in what follows. If we letQ = 1d, then we see
that functionsz ∈ S areCµ−1(I d) functions, whose restriction to each subcube
K ∈ Q is a polynomial of degree at mostµ in each of the variablesx1, . . . , xd.

We will need a quasi-interpolation operator forS , which will be built from the
quasi-interpolation operator forSµ(1). This latter operator takes the form

(Qw)(τ) =
µ+l∑
j=1

λ j (w)B j (τ ).
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Here, B1, . . . , B`+µ are univariate B-splines of degreeµ, (see Schumaker, 1981,
Section 4.4). Moreover,λ1, . . . , λ`+µ ∈ [C(I )]∗ are dual functionals with respect
to the basis{B1, . . . , B`+µ}. That is,λ1, . . . , λ`+µ are continuous linear functionals
onC(I ) such that

λi (B j ) = δi, j (1≤ i, j ≤ `+ µ).

Furthermore, for anyw ∈ C(I ), the valuesλ1(w), . . . , λ`+µ(w) can be com-
puted usingO(`) evaluations ofw. For further details, see Schumaker (1981,
Section 6.4).

Clearly,Q is a linear projector onto the spaceSµ(1). From Schumaker (1981,
Corollary 6.26), we find that ifw ∈ Ws,∞(I ) andq ∈ {0,1,2}, then

‖w − Qw‖Wq,∞(I ) ≤ C`−(s−q)
‖w(s)‖L∞(I ),

whereC is independent ofw and`.
As in Schultz (1969, pg. 172), for a continuous functionz: I d

→ R, we let
Qi z denote the function obtained by applying the operatorQ to z(x), viewed as a
function of xi , while holding the other variablesx1, . . . , xi−1, xi+1, . . . , xd fixed.
We then let

z= Qd B · · · B Q1z.

denote theS -quasi-interpolant ofz. Note that we can computez usingO(`d) =

O(n) scalar function evaluations. Moreover, using the same method of proof as
Schultz (1969, Theorem 5.8), one can show that ifw ∈ Ws,∞(I d) andq ∈ {0,1,2},
then

‖z− z‖Wq,∞(I d) ≤ C n−(s−q)/d
‖z‖Ws,∞(I d), (4.6)

whereC is independent ofz andn.
Finally, we letV = S l , defining theV -quasi-interpolant of a vector-valued

functionv as
v = (v1, . . . , vl ).

We can now describe our algorithm. For [f, g] ∈ F × G, let h = f B g. Let
h be theS -quasi-interpolant ofh, and letg be theV -quasi-interpolant ofg. We
define our algorithm as

Un( f, g) =
∫

I d
h(x)σg(x)dx.

Note thatUn uses information of cardinalityO(n) about [f, g] ∈ F×G, which
may be written in the form

Nn( f, g) = [ f (g(x(1))), . . . , f (g(x(m))), g(x(1)), . . . , g(x(m))],
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wherem ∼ n. This information is adaptive, since the evaluation points forf
depend on the calculated values ofg. The information cost ofUn, i.e., the cost
of calculatingNn( f, g), is O(cn). We defer a discussion of the combinatory cost
of Un, i.e., the cost of the arithmetic operations required to calculateUn (or at least
a sufficiently precise approximation of same) givenNn( f, g), until later.

We are ready to estimate the error ofUn.

Theorem 4.1. Let r ≥ 1 and s≥ 2. Then

e(Un) = O(n−min{r,s}/d).

The O-factor depends only on the global parameters l, d, r , s, C1, C2 and c2.

Proof. Let [ f, g] ∈ F × G, andh = f B g. Thenh ∈ Cmin{r,s}(I d). Furthermore,
‖h‖Cmin{r,s}(I d) is uniformly bounded by a constant that only depends onC1 andC2.

From (4.6), we have the following error estimates:2

1. Letq ∈ {0,1}. Then

‖h− h‖Wq,∞(I d) ≤ C3 n−(min{r,s}−q)/d
‖h‖Wmin{r,s},∞(I d). (4.7)

2. Letq ∈ {0,1,2}. Then

‖g− g‖Wq,∞(I d) ≤ C4 n−(s−q)/d
‖g‖Ws,∞(I d). (4.8)

We need to show that∣∣∣∣S( f, g)−
∫

I d
h(x)σg(x)dx

∣∣∣∣ = O(n−min{r,s}/d). (4.9)

Observe thathσg − hσg = (h− h)σg + h(σg − σg). Therefore∣∣∣∣S( f, g)−
∫

I d
h(x)σg(x)dx

∣∣∣∣ ≤ |I1| + |I2|, (4.10)

where

I1 =

∫
I d

(
h(x)− h(x)

)
σg(x)dx

and

I2 =

∫
I d

h(x)
(
σg(x)− σg(x)

)
dx.

2Here, and in what follows, all constantsCi will be positive and independent off andg (and,
thus, ofh), and ofn.
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Now
|I1| ≤ ‖h− h‖L∞(I d)‖σg‖L1(I d).

Sinces ≥ 2, the conditions (4.3) and (4.4) definingG imply that there existC5 and
C6 such that‖σg‖L1(I d) ≤ C5 and‖h‖Cmin{r,s}(I d) ≤ C6. Using (4.7), we now see
that

|I1| ≤ C7 n−min{r,s}/d. (4.11)

We turn toI2. We claim that

|I2| ≤ C8 n−s/d. (4.12)

Indeed, consider the matricesAg and Ag defined as in Section 2. They have com-
ponents given by

ai, j =

l∑
k=1

∂i gk ∂ j gk (1≤ i, j ≤ d)

and

ai, j =

l∑
k=1

∂i gk ∂ j gk (1≤ i, j ≤ d),

respectively. Letting

u =
h√

detAg +
√

detAg
,

we have

I2 =

∫
I d

u(x)
(

detAg(x)− detAg(x)
)

dx.

Now
detAg − detAg =

∑
i∈5d

(−1)|i|(ai1,1 . . .aid,d − ai1,1 . . .aid,d),

where5d is the set of all permutations of{1, . . . ,d} and |i| denotes the sign of
i ∈ 5d. Since

ai1,1 . . .aid,d − ai1,1 . . .aid,d =

d∑
k=1

ai1,1 . . .aik−1,k−1(aik,k − aik,k)aik+1,k+1 . . .aid,d,

it follows that

I2 =
∑
i∈5d

(−1)|i|
d∑

k=1

∫
I d

u(x)ai1,1(x) . . .aik−1,k−1(x)

×
(
aik,k(x)− aik,k(x)

)
aik+1,k+1(x) . . .aid,d(x)dx.
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Writing

ai, j − ai, j =

l∑
p=1

∂i (gp − gp) ∂ j gp +

l∑
p=1

∂i gp ∂ j (gp − gp)

we find

I2 =
∑
i∈5d

(−1)|i|
d∑

k=1

l∑
p=1

∫
I d

u(x)ai1,1(x) . . .aik−1,k−1(x)aik+1,k+1(x) . . .aid,d(x)

×
[
∂ik

(
gp(x)− gp(x)

)
∂kgp(x)+ ∂k

(
gp(x)− gp(x)

)
∂ik gp(x)

]
dx.

Let
bi,k,p = u ai1,1 . . .aik−1,k−1 aik+1,k+1 . . .aid,d ∂kgp

and
bi,k,p = u ai1,1 . . .aik−1,k−1 aik+1,k+1 . . .aid,d ∂ik gp.

We find that

I2 =
∑
i∈5d

(−1)|i|
d∑

k=1

l∑
p=1

(∫
I d

bi,k,p(x)∂ik

(
gp(x)− gp(x)

)
dx

+

∫
I d

bi,k,p(x)∂k
(
gp(x)− gp(x)

)
dx

)
.

For j ∈ {1, . . . ,d}, let I d−1
j denote the(d − 1)-dimensional unit cube in the vari-

ablesx1, . . . , x j−1, x j+1, . . . , xd, and let

dxd−1
j = dx1 . . . dxj−1dxj+1 . . . dxd.

Note thatgp, gp ∈ W2,∞(I d), from which we see thatbi,k,p,bi,k,p ∈ W1,∞(I d).
Hence, we can integrate by parts to obtain

I2 =
∑
i∈5d

(−1)|i|
d∑

k=1

l∑
p=1

(∫
I d−1
ik

[
bi,k,p(x)

(
gp(x)− gp(x)

)]xik=1
xik=0 dxd−1

ik

−

∫
I d
(∂ikbi,k,p)(x)

(
gp(x)− gp(x)

)
dx

+

∫
I d−1
k

[
bi,k,p(x)

(
gp(x)− gp(x)

)]xk=1
xk=0 dxd−1

k

−

∫
I d
(∂kbi,k,p)(x)

(
gp(x)− gp(x)

)
dx

)
.

(4.13)
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Let

κ f,g = max
1≤k,p≤l

max
i

max

{
‖bi,k,p‖L1(I d), ‖bi,k,p‖L1(I d),

‖∂ikbi,k,p‖L1(I d), ‖∂kbi,k,p‖L1(I d)

}
.

Using (4.13), we see that there exists a positive constantC9, such that

|I2| ≤ C9 κ f,g max
1≤p≤l

‖gp − gp‖L∞(I d). (4.14)

Sinces ≥ 2, we may use (4.8) to see that there exists a positive constantC10, such
that

κ f,g ≤ C10.

Using this bound and (4.8) in (4.14), we obtain (4.12), as claimed. Finally, using
(4.11) and (4.12), we have (4.9), which establishes the theorem.

So, the algorithmUn, whose information cost isO(cn), provides an approx-
imation whose error isO(n−min{r,s}/d). Let us now discuss the implementation
of Un.

Clearly,Un( f, g) is an integral, whose integrand is a function that has a special
form; its restriction to any subcubeK is the product of a polynomialh and the
square rootσg of a polynomial. If it were not for the presence of this square root, we
would be able to evaluateUn( f, g) exactly by using a quadrature formula having
sufficiently large degree of accuracy. Note that whend = l , the factorσg is the
square root of the square of the Jacobian determinant ofg, which is merely±σg.
HenceUn( f, g) can be evaluated exactly with total costO(cn) whend = l .

What happens whend < l? We consider two cases.
Suppose first thatr ≤ s − 1. Then we can resort to classical techniques.

Recall (see, e.g., Novak, 1988, p. 36) that ifv ∈ Cr (I d), then we can calculate an
approximationI ∗n (v) at costO(cn), for which∫

I d
v(x)dx− I ∗n (v) = O

(
‖v‖Cr (I d)n

−r/d
)
.

So simply take
U ∗n ( f, g) = I ∗n (hσg).

Then we can calculateU ∗n ( f, g) at cost proportional ton. However, sincehσg ∈

Cr (I d) and min{r, s} = r , it now follows that

S( f, g)−U ∗n ( f, g) = O(n−r/d) = O(n−min{r,s}/d).
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Observe thatU ∗n ( f, g) can also be treated as an approximation ofUn( f, g), since

Un( f, g)−U ∗n ( f, g) = O(n−r/d) = O(n−min{r,s}/d).

Now let us consider the caser > s− 1. On each subcubeK ∈ Qn, the quasi-
interpolantg is a polynomial of degreeµ = max{s− 1,3}, and soσg is the square
root of a polynomial having degree 2µ. We handle the square root as follows:

For any index j , let η = detAg(x( j )) and ξ = detAg(x), where Ag =

[∇g ]T [∇g ]. By our assumptions on the classG, we have 0< c2 ≤ ξ, η ≤ C2.
We can expand

√
ξ =

√
η +

µ∑
t=1

βt(η)(ξ − η)
t
+2

(
(ξ − η)µ+1

)
,

where theβ j (·) are well-known functions and the2-constant depends only onc2

andC2.
We now define our algorithm for the caser > s− 1 as

U ∗n ( f, g) =
∑

K∈Qn

U ∗n,K ( f, g),

where

U ∗n,K ( f, g) =
∫

K
h(x)

(√
detAg(x(K ))+

µ∑
t=1

βt
(

detAg(x
(K ))

)
·
(

detAg(x)− detAg(x
(K ))

)t)
dx

for each subcubeK ∈ Qn. Here,x(K ) is any evaluation point inK ; for example, it
might be chosen to be as close as possible to the center ofK .

We then have

Theorem 4.2. Let r ≥ 1 and s ≥ 2. Then U∗n ( f, g) can be calculated in cost
O(cn), and

e(U ∗n ) = O(n−min{r,s}/d).

The O-factors depend only on the global parameters l, d, r , s, C1, C2 and c2.

Proof. Note that detAg(x) is a polynomial inx. Each term of the outer sum can
be calculated exactly with cost independent ofn, since we are integrating polyno-
mials. So, cost(U ∗n ) = O(cn).
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To calculate the error, note that

|e(Un)− e(U ∗n )| ≤ C11

( ∑
K∈Qn

∫
K
|h(x)| |detAg(x

(K ))− detAg(x)|
µ+1 dx

)
.

Now detAg has a uniformly bounded first derivative, so that there is a positive
constantC12 such that

|detAg(x
(K ))− detAg(x)|

µ+1
≤ C12‖x − x(K )‖µ+1

`∞(Rd)
= O(n−s/d),

sinceµ+ 1≥ s. Moreover,h is uniformly bounded. Sincer ands are integers for
which r > s− 1, it follows thatr ≥ s, so thats= min{r, s}. Hence

e(Un)− e(U ∗n ) = O(n−min{r,s}/d).

Using Theorem 4.1, we see thate(U ∗n ) = 2(n
−min{r,s}/d), as required.

We now prove a lower bound that holds for the cased < l . Let

e(n; F,G) = inf{e(U ) : U using information (2.2)}

denote the minimal error for the surface integration problem, over all algorithms
using information of the form (2.2), with fixedn and varyingm. We have

Theorem 4.3. Let d< l.

1. If s= 1, then
e(n; F,G) = �(1).

2. If s≥ 2, then
e(n; F,G) = �(n−min{r,s}/d).

The�-factors depend only on the global parameters l, d, r , s, C1, C2 and c2.

Proof. Using the notation of Section 3, we haveH(F) = Fd,r,C1. Using (3.2) and
the known complexity result (Novak, 1988, p. 37) on classical integration for the
classFd,r,C1, we get a lower bound ofe(n; F,G) = �(n−r/d). Hence it remains to
show that

e(n; F,G) =

{
�(1) if s= 1,

�(n−s/d) if s ≥ 2.
(4.15)

We now takef ≡ C1, which belongs toF , and

g(x) = [ 1
4ax2

1, x2, . . . , xd, x1,0, . . . ,0],
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where

a =

{
0 if s= 1 ors= 2,

1 if s ≥ 3.

We stress that the(d + 1)st component ofg is x1, and thatg is well-defined since
l ≥ d + 1. The functiong is infinitely differentiable and‖g‖Cs(I d) = 1 ≤ C2. It is
easy to check that

σg(x) =
√

1+ 1
4a2x2

1 ≥ 1≥ c2.

Thereforeg ∈ G.
To find a lower bound one(n; F,G)we use the known estimate (see, e.g. Traub

et al., 1988, p. 45)

e(n; F,G) ≥ inf
{

1
2d(N, f ) : N of the form (2.2)

}
,

where

d(N, f ) = sup{ |S( f, g)− S( f, g)| : g ∈ G andN( f, g) = N( f, g) }.

Now choose informationN of the form (2.2), so thatf is evaluated at the
pointsx(1), . . . , x(m) andg is evaluated at the pointsx(m+1), . . . , x(n), where these
evaluation points may have been chosen adaptively. We need to specify a function
g ∈ G satisfyingN( f, g) = N( f, g).

As in Novak (1988), for a positive numberb define

w(x) =

{
b
∏d

j=1

(
x j (1− x j )

)s+1
for x ∈ I d,

0 otherwise.

Note thatw ∈ Cs(Rd) for any positiveb. We chooseb such thatw ∈ Fd,s,1.
Without loss of generality, we suppose thatn − m = 1

2 pd for some integerp.
Divide I d into 2(n−m) = pd cubesA1, . . . , A2(n−m) with mesh-sizep−1. Let y(i )

be the element ofAi with the smallest components. Define

wi (x) = p−sw
(

p
(
x − y(i )

))
. (4.16)

Then the support ofwi is the cubeAi and it is easy to check thatwi ∈ Fd,s,1. Now
choose

z=
∑
i∈J

wi , (4.17)

where J is the set of indicesi of all cubesAi containing nog-evaluation points
x(m+1), . . . , x(n). Since we haven−m such evaluation points and 2(n−m) cubes,
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there are at leastn−m indices inJ. Sincewi ’s have disjoint supports,z ∈ Fd,s,1.
Furthermorez has zero information; that is,z(x( j )) = 0 for j ∈ {m+ 1, . . . ,n}.

We are ready to defineg as

g(x) = [ 1
4ax2

1 +
1
2z(x), x2, . . . , xd, x1,0, . . . ,0].

The functiong belongs toCs(I d) and

‖g‖Cs(I d) = max{12(a+ 1),1} = 1≤ C2.

It is not hard to check that

σg(x) =
√

det
(
I + a(x)a(x)T

)
,

whereI is thed×d identity matrix anda(x) is the column vector of partial deriva-
tives of the first componentg1 of the functiong. The determinant ofI +a(x)a(x)T

is simply 1+
∑d

j=1(∂ j g1)
2(x). Hence,

σg(x) =

√√√√1+ 1
4a2x2

1 +
1
2ax1(∂1z)(x)+ 1

4

d∑
j=1

(∂ j z)2(x) ≥ 1≥ c2.

This proves thatg ∈ G. Obviously,N( f, g) = N( f, g). Therefore

d(N, f ) ≥ |S( f, g)− S( f, g)|, (4.18)

with

S( f, g) = C1

∫
I d

√
1+ 1

4a2x2
1 dx ,

S( f, g) = C1

∫
I d

√√√√1+ 1
4a2x2

1 +
1
2ax1(∂1z)(x)+ 1

4

d∑
j=1

(∂ j z)2(x)dx .
(4.19)

We first consider the cases ≤ 2, so thata = 0. We then have

S( f, g)− S( f, g) = C1

∫
I d

√√√√1+ 1
4

d∑
j=1

(∂ j z)2(x)− 1

 dx

=
1
4C1

∫
I d

∑d
j=1(∂ j z)2(x)√

1+ 1
4

∑d
j=1(∂ j z)2(x)+ 1

dx

≥
C1

2(
√

4+ d + 2)

∫
I d

d∑
j=1

(∂ j z)
2(x)dx.

(4.20)
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Fix an index j . Since the supportsAi of the functionswi are disjoint, the standard
rule for changing variables in multiple integrals imply that∫

I d
(∂ j z)

2(x)dx =
∑
i∈J

∫
Ai

(∂ jwi )
2(x)dx

=
1

p2s

∑
i∈J

∫
Ai

p2(∂ jw)
2
(

p
(
x − y(i )

))
dx

=
1

p2(s−1)+d

∑
i∈J

∫
I d
(∂ jw)

2(x)dx

=
|J|

p2(s−1)+d

∫
I d
(∂ jw)

2(x)dx.

Summing the previous result over the indicesj and recalling that|J| ≥ n−m =
1
2 pd, we find

∫
I d

d∑
j=1

(∂ j z)
2(x)dx ≥

1

2p2(s−1)

∫
I d
|(∇w)(x)|2 dx.

Inserting this result into (4.20) and using (4.18), we see that

d(N, f ) ≥ S( f, g)− S( f, g) = �(p−2(s−1)).

Now if s= 1, we see that
d(N, f ) = �(1),

whereas whens= 2, we may usen ≥ n−m= 1
2 pd to see that

d(N, f ) = �(p−2) = �(n−s/d).

SinceN is arbitrary information of cardinality at mostn, this establishes (4.15) for
s ≤ 2.

We now consider the cases ≥ 3, for which we havea = 1. Let

ζ(x) = 1+ 1
4x2

1 and η(x) = 1
2x1 (∂1z)(x)+ 1

4

d∑
j=1

(∂ j z)
2(x).

Using (4.19), we see that

d(N, f ) ≥ S( f, g)− S( f, g) =
∫

I d

(√
ζ(x)−

√
ζ(x)+ η(x)

)
dx.
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Since
√

1+ x ≤ 1+ 1
2x for all x ≥ −1, we get

d(N, f ) ≥ −
∫

I d

η(x)

2
√
ζ(x)

=
1
4(I1− I2), (4.21)

where

I1 = −

∫
I d

x1√
1+ 1

4x2
1

(∂1z)(x)dx

and

I2 =

∫
I d

∑d
j=1(∂ j z)2(x)

2
√

1+ 1
4x2

1

dx.

Sincez vanishes on the boundary ofI d, we calculateI1 using an integration by
parts, finding that

I1 =

∫
I d
∂1

 x1√
1+ 1

4x2
1

 z(x)dx =
∫

I d

z(x)

(1+ 1
4x2

1)
3/2

dx

≥
(

4
5

)3/2 ∫
I d

z(x)dx =
(

4
5

)3/2∑
i∈J

∫
Ai

wi (x)dx .

But for any indexi , we have∫
Ai

wi (x)dx =
1

ps

∫
Ai

w
(

p
(
x − y(i )

))
dx =

1

ps+d

∫
I d
w(x)dx.

Since|J| ≥ 1
2 pd, we thus find that

I1 ≥
(

4
5

)3/2 1

2ps

∫
I d
w(x)dx. (4.22)

We now look atI2. We find that

|I2| ≤
1
2

d∑
j=1

∫
I d
(∂ j z)

2(x)dx.

From (4.16) and (4.17), it follows that‖∂ j z‖ = O(p−(s−1)). Thus

|I2| = O(p−2(s−1)).

Sinces ≥ 3 implies 2(s− 1) > s, we conclude that

I1− I2 = �(p
−s).
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Usingn ≥ n−m= 1
2 pd we have

d(N, f ) ≥ I1− I2 = �(n
−s/d).

SinceN is arbitrary information of cardinality at mostn, this establishes (4.15) for
s ≥ 3, and completes the proof.

Combining Theorems 4.2 and 4.3, and using the results at the end of Section 3,
we have

Theorem 4.4. The following results hold for the surface integration problem with
F = Fl ,r,C1 and G= Gd,l ,s,C2,c2:

1. Let l= 1, so that d= 1 necessarily. Then

e(n; F,G) = 2(n−r )

and
comp(ε; F,G) = 2(ε−1/r ).

The2-factors depend only on r, C1 and C2.

2. Let l≥ 2.

(a) Suppose that d< l. If r = 0 or s = 1, then there existsε0 > 0 such
that

e(n; F,G) ≥ ε0 ∀n ≥ 0,

and so
comp(ε) = ∞ ∀ ε < ε0.

However, if r≥ 1 and s≥ 2, then

e(n; F,G) = 2(n−min{r,s}/d),

and
comp(ε; F,G) = 2(ε−d/min{r,s}).

The2-factors depend only on d, l, r , s, C1, C2, and c2.

(b) Suppose that d= l. If r ≥ 1 and s≥ 2, then

e(n; F,G) = O(n−min{r,s}/d),

and
comp(ε; F,G) = O(ε−d/min{r,s}).

The O-factors depend only on d, r , s, C1, C2, and c2.

Note that in the cased = l ≥ 2, we have only an upper bound on the complex-
ity of surface integration. It is open whether this bound is sharp.
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