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Abstract

We study the worst case complexity of computirgpproximations of
surface integrals. This problem has two sources of partial information: the
integrandf and the functiorgy defining the surface. The problem is nonlinear
in its dependence og. Here, f is anr times continuously differentiable
scalar function of variables, andj is ans times continuously differentiable
injective function ofd variables withl components. We must haek < |
ands > 1 for surface integration to be well-defined. Surface integration is
related to the classical integration problem for functionsl efariables that
are mirr, s — 1} times continuously differentiable. This might suggest that
the complexity of surface integration should®é(1/¢)d/ Mnir.s—11) |ndeed,
this holds wherd < | ands = 1, in which case the surface integration
problem has infinite complexity. However,df< | ands > 2, we prove that
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the complexity of surface integration@((1/¢)%/ ™nir-shy - Furthermore, this
bound is sharp whenevdr< I.

1 Introduction

Surface integration is an important problem of applied mathematics. One example
is the calculation of surface area. In addition, the solutions of many problems (such
as elliptic boundary value problems, see, e.g., Stakgold 1998) can be expressed
as surface integrals. This explains why it is natural to study the complexity of
computing are-approximation of surface integrals.

A surface integral is defined by two functions. The first is an integrand, which
is a scalar functiorf of | variables. The second is a functigmlefining the surface.

This functiong depends onl variables, and must haveomponents. The surface

is well-defined iffg is aC*-injection. Hence, we must hade< |. These functions

f andg may have different smoothness. In this paper, we assumd thatlg are

r ands times continuously differentiable, respectively. Obviously, we must have
r > 0ands > 1.

The numerical computation of surface integrals involves two sources of par-
tial information, arising from evaluating the functiorisand g at points in their
domains. The surface integration problem is nonlinear in its dependence on the
functiong. However, for a fixedy, the problem is linear in its dependence bn

A surface integral may be expressed as a classical integral-obaiate scalar
function, which is migr, s — 1} times continuously differentiable. The classi-
cal integration problem is a linear problem, and is one of the most-studied prob-
lems in information-based complexitysC). In particular, it is known that the
e-complexity of classical integration fat-variate functions that aretimes con-
tinuously differentiable is proportional td/s)%t; see Bakhvalov (1959), as well
as the references in Novak (1988), Traub et al. (1988), and Traub and Werschulz
(1998). Thus, it would appear plausible that ¢heomplexity of surface integration
should be proportional t¢l/g)d/ mintrs—1},

Surprisingly enough, this is not usually the case. This result holds only when
d < | ands = 1. In this case, the complexity of surface integration becomes
infinite, and so the problem is unsolvable. This is not particularly surprising. In-
deed, the definition of the surface integral involves partial derivatives éfence
whens = 1, we have the minimal amount of smoothness required for the surface
integral to be well-defined, and so the integrand appearing in the transformed prob-
lem cannot be approximated arbitrarily closely. This is similar to many oder
problems, for which minimal smoothness implies infinite complexity, see, e.g., the
many instances in Traub and Wgdakowski (1980) and Werschulz (1991).



We now suppose that < | ands > 2. Then we prove that the.complexity
is at most proportional t¢1/¢)% ™nirsl Note that we have in the denominator
of the exponent, rather than tlse- 1 that we would expect. This surprising re-
sult holds because the surface integral can be expressed as a sum of integrals of
smoother integrands, provided that we do integrations by parts. This technique
yields upper bounds on the error that involve second derivativgs leénce these
bounds are of the proper magnitude only wisen 2.

Are these bounds sharp? We give a partial answer in the affirmative. More pre-
cisely, wherd < |, we prove that the-complexity is proportional tg1/¢)%/ ™},

Hence these bounds are sharp in this case.

What happens whed = [? We have only a partial result, for the cate=
| = 1. We find that the-complexity is proportional t@l/¢)". Note that this is
independent o$, the smoothness @f, and holds even whesi= 1. Sharpness of
the upper bound for the cade=| > 2 is an open problem.

As mentioned above, one important instance of the surface integration problem
is the calculation of surface area. One might hope to get better complexity bounds
for the surface area problem, since the integrand is identically one and we only
have one source of partial information, namely the surface itself. Unfortunately,
this is not the case. The proof of the lower bound for surface integration holds for
constant integrands. Hence the complexity of surface area is of the same order as
surface integration.

We pose some open problems.

In this paper, we study what are probably the most commonly-used classes
of smooth functions. An alternative would be to use classes of functions having
bounded mixed derivatives of orderands. In this case, the dependence of com-
plexity ond should be less drastic, by analogy with known results for the classical
integration problem, see, e.g., Temlyakov (1989), as well as the references in Traub
and Werschulz (1998). Modulo logarithmic factors, we expect that the complexity
should be proportional tal/g)% Minir.s},

This paper concentrates on establishing sharp exponenyg ofriLparticular,
we have ignored any dependencemfactors ond andl. As long asd is small,
this dependence is not crucial. However, for lacgeelative tor ands, we have
the curse of dimension. Hence, surface integration joins the club whose members
are the many computational problems suffering from this curse. As with these
other problems, this curse can be broken by switching to the randomized setting,
since the classical Monte Carlo method can be used. So, the complexity of surface
integration in the randomized setting is at most proportionaflje)?, even for
r = 0 ands = 1. For the classical integration problem, the curse of dimension can
be broken, even in the worst case setting, if we consider integrands from weighted
classes of functions (Sloan and ¥wakowski, 1998). Our hope is that the same
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can be done for surface integration.

We briefly outline this paper. Section 2 contains a precise definition of the
problem for general classes of integrands and surfaces. In Section 3, we establish
relations between the surface and classical integration problems for general classes.
Finally, in Section 4, we turn attention to the classes of smooth functions described
above. We present an algorithm, establish its error bound, and prove its optimality
in the casal </I.

2 Problem formulation

Before describing the problem to be solved, we first recall the definition of surface
integrals; see Edwards (1973, p. 334 ff.) for further discussion.dLand| be
given positive integers, witld < |. Let | = [0, 1] denote the unit interval. For a
Clinjectiong: 19 — R', we say that
Ty={gx) :xel%}

is ad-dimensionaburfacein R'.

For any such functiog, thegradientvg: 19 — R'*4 is defined by

[(VOX)]i,j = (3j9)(X) fori e{l,...,1},je{1,...,d},andx € 19,

whered; denotes the partial derivative in thén coordinate direction angl is the
ith component o§.
Define

og(X) = detA(x)  V¥xeld
where
AX) = [(VOI' (VO] ¥x el
i.e., AX) = [(a ;(0]_, is thed x d matrix having components

|
3, (%) = Y (39 (X) (3G (%)

k=1
fori,je{l,...,d}andx € 19, Note that wherd = I, this simplifies to
og(X) = |det[(Vg)(x)]| vxeld,

If f: D; € R' — R is a measurable function whose doma&in is a superset
of 34, then

fdo = /,d(f 0 g)og = /m f(9(x)) og(x) dx (2.1)

g
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is thesurface integral of f ovek,.
We now describe the problem to be solved. For giverx G we want to
approximate theurface integrabperator

S(f,g) = f do V[f,gl € F x G.

2g

Here, we assume th&t x G is chosen such that the surface integral operatisr
well-defined. Observe that the presencg ofeans thaSis anonlinearfunctional.
However, for a fixedy, the functionalS depends linearly orf .

We compute an approximatian( f, g) to S(f, g) by using information

N(f, @) =[fxD), ..., fx™), gx™D), ..., g(x™)] (2.2)

of cardinalitym + 1 (n — m), wherex®, ..., x™ ¢ | andx™D . x™ ¢ |9,

We also allow adaption. That is, the numinesf evaluations, as well as the sample
pointsx®, ..., x™ may depend on the previously-computed function values of
f andg; for details, see, e.g., Traub et al. (1988, Chapter 2).

Remark.Note that the permissible information is function valued cindg. One

could also allow the evaluation of derivatives, as well. We restrict ourselves to
function values alone, as this makes the exposition much simpler. However, it is
easy to see that the results of this paper also hold if arbitrary derivative evaluations
are allowed. O

Our approximatior is given by

Uf,9) =¢(N(f,9) (2.3)

for some mapping: N(F x G) — R. We measure the quality of an approxima-
tion U by itsworst case error

eU)= sup |[S(f,9)—U(f, 09].
[f.g]leFxG

The cost of computing ( f, g) is defined as cogt) (f, g)), which is the weight-
ed sum of the total number of function valuesfoéndg, as well as the number of
arithmetic operations and comparisons needed to ohtéain g). More precisely,
we assume that each evaluationfobr of g; (wherei € {1,...,1}) costsc. The
cost of each arithmetic operation is taken as 1. Then(tbést, g)) for U of the
form (2.3) isc(m + | (n — m)) + A, wherefi is the total number of arithmetic op-
erations and comparisons needed to computé g). Herec > 1, and usually it



is realistic to assume that>>> 1; see once more Traub et al. (1988, Chapter 2) or
Traub and Werschulz (1998, Chapter 2) for details. Then

costU) = sup cost(U(f,q))
[f.glcFxG

is the worst case cost &f. The e-complexityof surface integration in the class
F x G is the minimal cost of computing anapproximation, i.e.,

comple) = inf{cos(U) : U such thaeU) < ¢}.

The purpose of this paper is to find sharp estimates ofsthemplexity of
surface integration for a number of clasgesx G. Our estimates will be sharp
only in terms of the power of 1, with constants depending, in particular, dn
andl.

3 Surface and classical integration

We show that the surface integration problem is related to the classical problem of
integration. The latter is defined as an approximation of

S’”t(f):/ f (x)dx, feH
|d

for some clas$i of scalar functions defined df. Let comp"(e; H) denote the-
complexity of integration, which is defined analogously to surface integration. The
classical integration problem has been extensively studied and sharp bounds on its
g-complexity are known for many classkl see Traub and Werschulz (1998) and
Wozniakowski (1999) for surveys.

Relations between surface and classical integration will be presented by in-
equalities between their complexities. That is, for the given drassG we will
find corresponding classé$ such that the-complexity of surface integration for
F x G is bounded from below and above by #heomplexity of integration for the
classeH.

We begin with a lower bound. We assume that the identity embedding or pro-
jection function id :-RY — R!, defined as

id(X) = [X1, X2, ..., %3, 0,0,...,0]  VxeRY,
belongs tdG. Thenoijg(x) = 1 and

S(f,id) =S™(foid)  VfeF. (3.1)



Define
HF)={foid: f e F}.

The classH (F) is the natural projection of functions frof by taking the firsd
variables, which amounts to restricting the domain of the functioh$.tdhen (3.1)
yields

compe; F, G) > comp™ (g; H(F)). (3.2)

This means that surface integration ferx G is not easier than integration for
H(F). Since the assumption id G is quite natural and sharp error estimates
of comp™ (&; H(F)) are known for manyF, we have lower bounds on the
complexity of surface integration in these cases.
We now obtain an upper bound. Observe thatioe= (f o g)oy, we may
use (2.1) to see that
S(f, g) = S™(h).

If evaluating partial derivatives were a permissible information operation, then we
would have been able to computéx) by first computingg; (x) and d;g; (x) for

1<i <landl< j <d, andthen computing the determinantAx). Since only
function evaluations are permissible, we will replace the partial derivaij\gex)

by sufficiently-fine difference quotients, obtaining an approximaltido h. The

cost of computind is at most 2(1 + d) c+yd?l, with an absolute constapt of
order 1. Hence, an approximation to the surface inte§¢&) g) can be obtained

by approximating 8'(h), with each evaluation df having cost P(1+d) c+yd?.

The functionh belongs to the class

H(F,G)={(foQloy:[f,gle F xG}.

Hence, the surface integration problem for the class G is reduced to the inte-
gration problem for the cladd (F, G). Observe that the-complexity of surface
and classical integration can be written in the faroomp, (¢) + comp,(¢). There-
fore, the replacement afby 2 (1 + d)(1 + yd/ c¢) c changes the-complexity at
most by a factor B1 + d)(1 + yd/c). Note that this factor is linear ihand at
most quadratic irdl. This yields

compe; F,G) <21(1+d) (l—i- y%) compg™ (e: H(F, G)). (3.3)

This means that surface integration fox G is essentially not harder than integra-
tion for H(F, G). As we shall see later, sharp estimates of dﬁ‘rfq:z H(F, G))

are known for somd= and G, and this allows us to obtain upper bounds on the
g-complexity of surface integration.



When are the bounds (3.2) and (3.3) sharp? That is, we would like to know
when thes-complexity of surface integration for the claBsx G is essentially
the same as the-complexity of integration for the clasd (F) or for the class
H(F, G). One could expect that the bound (3.2) should not be sharp, giacl
seems like a very easy case for surface integration. After all, the entire difficulty
of surface integration is in its nonlinear dependencegpand for large enough
classess we should expect that for songe surface integrals are harder to approx-
imate than their classical counterparts.

This expectation can be supported by analyzing the upper bound (3.3) for the
classH (F, G). Usually, thes-complexity of integration depends on the smooth-
ness of the integrands. When we switch from functiérendg to the functionsh,
we may lose some smoothness, since we have differentiptétbwever, if f is
less smooth thag, then the lost smoothness @inay not be harmful.

Furthermore, there is one case for which the smoothnegssafrelevant. (Of
course, we must always have at le@stsmoothness af, so that surface integrals
will be well-defined.) This is the case= 1, which necessarily implies thdt= 1
andog(x) = |g'(x)|. Sinceg is C* andg'(x) # 0, we may use the standard change
of variablest = g(x) in (2.1) to conclude that

9
1 fdt if g(0) < g(@),
S(f.g) = f F(g00) 1900 dx = {990
0 — f(t)dt if g(0) > g(1).
9(0)

Hence, surface integration reduces to classical integration in this case. The smooth-
ness ofg is irrelevant. The only dependence gns through the interval of inte-
gration. For many classdd (F), the e-complexity depends on the length of the
interval of integration, and is finite only for finite lengths. For sugdliF), we
must restrict the class to functions for whichg(l) is uniformly bounded for all
geG.

We illustrate the last point by taking as the class af times continuously dif-
ferentiable functiond defined on the interval [Q0M] and for which all derivatives
up to orderr are bounded by 1. Her®l is a given (large) positive number. To
guarantee thaf o g is well-defined we restrict the clags to functions for which
g(l) c [0, M]. Itis known that thes-complexity of this classical integration prob-
lem is® (MY ce~Y/"), with the big®-factor independent dl ande (see, e.g.,
Novak, 1988, p. 37).

This also proves that the-complexity of surface integration is of the same
order. In this case the bound (3.2) is sharp.



4 Surface integration for smooth functions

In this section, we study surface integration for classes of smooth functions.
We begin by taking= = Fi ¢, as the class of functions: 1I' — R that arer
times continuously differentiable and that satisfy

I fllcray <Co (4.1)
for some positiveC,. Heré

Ifllcran = mgfll DUt (4.2)

with || - || denoting the max norm. We tak& = Ggq, s c,.c, @s the class of functions
g: 19 — 1! that ares times continuously differentiable and that satisfy

9llcsady < Ca (4.3)
for some positiveC,, and for which

minog(X) > ¢ (4.4)
xeld

for some positives,. Here,

sdy = max max| D%g;||.
Iglicsqe) = max max|| D*g |
For simplicity, we assume that < 1 < C,, so thatg = id € G. The smoothness
parameters ands are integers satisfying > 0 ands > 1. Observe that the
functions fromF have the common domail. The compositionf o g is well-
defined, sincg(1%) c I' forallg € G.

Remark.We briefly comment on the conditions that define our classesd G.
Upper bounds on derivatives, such as (4.1) and (4.3), are typical assumptions
for problems studied by information-based complexity (see, e.g., Traub and Wer-
schulz, 1998, and the references cited therein). Lower bounds on derivatives, such
as (4.4), occur far less often. Since the surface integral is well-defined if we only
require

minog(X) > 0, (4.5)

xeld

one might ask why we need the constaat The first reason is that any lower
bounds we prove will be stronger. That is, since (4.4) implies (4.5), lower bounds

1We use the standard multi-index notation found in (e.g.) Ciarlet (1978, p. 11). In particular, for
a multi-indexa = [a1, a2, . . ., ag] we haveD? f = 91l f/(3%1xy - - - 9% xg).



established for the case (4.4) will automatically hold for the case (4.5). The second
reason is more important. When< |, there is a square root in the definition of the
surface integral. When we compute derivatives i), the value ob, (x) appears

in the denominator. The bound (4.4) guarantees that the derivatives>of are
bounded, with the normgoyg|lcs-1j0) for g € C5(I 4) being uniformly bounded

with a bound proportional t&€,/c,. However, wherd = |, the square root does
not appear in the definition of the surface integral, and so the condition (4.4) could
be replaced by (4.5). O

We are ready to find the.complexity of surface integration for the class G.
First, we shall establish an upper bound, which holds for the case that and
s > 2. Later, we shall establish a lower bound for the gase0,s > 1, andd < |.
To establish this upper bound, we shall propose an algorithm @{ngfunc-
tion evaluations and having a good error bound. This will require us to construct a
multivariate spline space”’, which is ad-fold tensor product

S =8(A)® - ®S,(A).
Here,

A={t0=0<t1< <tg <t@+1=1},

where .

[
= ——
T 41
with ¢ = [nY9], is a uniform partition of = [0, 1], and

O<i<et+1

w=maxs—1,2}.

Moreover,

@(A):{wecﬂ‘l(l):w ePMfor1§i§E+1}

[ti—1.t]

is the space of splines having global smoothr@ss® and piecewise polynomial
degreeu. We emphasize that> 2 in what follows. If we let2 = AY, then we see
that functionsz e . areC*~1(19) functions, whose restriction to each subcube
K e 2 is a polynomial of degree at mogtin each of the variables,, ..., Xq.

We will need a quasi-interpolation operator f&t, which will be built from the
quasi-interpolation operator f&, (A). This latter operator takes the form

At

(Qw)(T) = > Xj(w)Bj(1).

j=1
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Here, By, ..., B4, are univariate B-splines of degreg (see Schumaker, 1981,
Section 4.4). Moreoveny, ..., A, € [C(1)]* are dual functionals with respect
to the basigBa, ..., Byy,). ThatisAq, ..., A, are continuous linear functionals
onC(l) such that

Ai(Bj) =48 A=<i,j<t+uw).

Furthermore, for anyw € C(l), the valuesii(w), ..., Ay, (w) can be com-
puted usingO(¢) evaluations ofw. For further details, see Schumaker (1981,
Section 6.4).

Clearly, Q is a linear projector onto the spagg(A). From Schumaker (1981,
Corollary 6.26), we find that ifv € W5*°(1) andq € {0, 1, 2}, then

lw — Qwllwacy < CLSPw® L a),

whereC is independent ofy and?.

As in Schultz (1969, pg. 172), for a continuous functimnl ¢ — R, we let
Qi z denote the function obtained by applying the oper&dp z(x), viewed as a
function of x;, while holding the other variables, ..., Xi_1, Xi+1, ..., Xq fixed.
We then let

Z=Quo---0Qiz.

denote the-quasi-interpolant oz. Note that we can compuusing O (¢%) =
O(n) scalar function evaluations. Moreover, using the same method of proof as
Schultz (1969, Theorem 5.8), one can show that WS> (%) andq € {0, 1, 2},
then
1Z = Zllwaeqdy < C NSzl yen e, (4.6)

whereC is independent of andn.
Finally, we let¥ = ., defining the? -quasi-interpolant of a vector-valued
functionv as
U= (01,...,7).

We can now describe our algorithm. Fdr, p] € F x G, leth = f o g. Let
h be the.”-quasi-interpolant oh, and letg be the? -quasi-interpolant o). We
define our algorithm as

Un(f,g) = f h(x)og(X) dx.
|d

Note thatU,, uses information of cardinalit@) (n) about [f, g] € F x G, which
may be written in the form

No(f, @) =[f(@xP)), ..., f@@x™), gxD), ..., gx™)],
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wherem ~ n. This information is adaptive, since the evaluation points for
depend on the calculated valuesmf The information cost o, i.e., the cost
of calculatingN,( f, g), is O(cn). We defer a discussion of the combinatory cost
of Uy, i.e., the cost of the arithmetic operations required to calclat@r at least
a sufficiently precise approximation of same) givy( f, g), until later.

We are ready to estimate the errolgy.

Theorem 4.1. Letr > 1and s> 2. Then
e(Un) — O(n7 min{r,s}/d).
The O-factor depends only on the global parameters|, d, r,s0zand 6.

Proof. Let [f,g] € F x G, andh = f o g. Thenh e C™""s}(|9). Furthermore,
[[hlminsi (1 0y is uniformly bounded by a constant that only depend€pandCo.
From (4.6), we have the following error estimafes:

1. Letqg € {0, 1}. Then
[h— HHWQ»OO(M) <GCs n_(min{r’S}_q)/d||h||wmin(r,s}~oo(|d)- 4.7)
2. Letq € {0, 1, 2}. Then
19 — Gllwasas, < Can™ V)i gllysc ). (4.8)
We need to show that

‘S<f, ) — / h(X)og(x) dx| = O(n~minir.si/dy, (4.9)
|d

Observe thahog — hog = (h — h)og + h(oq — o). Therefore

‘S(f, g)—f h(X)ag(x) dx| < [11] + [I2], (4.10)
|d

where

I, = /m (h(x) — h(x))og(x) dx
and

l, = /| | h(x)(og(x) — og(x)) dx.

2Here, and in what follows, all constar® will be positive and independent df andg (and,
thus, ofh), and ofn.
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Now 3
1] < [Ih = hil g llogll,gd-

Sinces > 2, the conditions (4.3) and (4.4) defini@imply that there exis€s and
Ce such thatl|ogl|,, ey < Cs and||h||cminrsiay < Cs. Using (4.7), we now see
that .

11| < C7n~minirsi/d, (4.11)

We turn tol,. We claim that
12| < Cgn~¥/1. (4.12)

Indeed, consider the matricég and Ay defined as in Section 2. They have com-
ponents given by

!
aj=) dGkdo (1<i,j<d

k=1
and |
&= 4090 (L=<ij=d,
k=1
respectively. Letting

h
4= JdetAg + /detAg’
we have
I, = /d u(x)(detAg(x) — detAg(x)) dx.
|
Now
detAg — detAg = Z(—l)“l(ail,]_ .. 8iyd — Eil,l .. -éid,d)»
ielly
whereTIly is the set of all permutations ¢1, ..., d} and|i| denotes the sign of

i € I1y. Since

d
8;1---8gd— &ip1---8igd = Zail,l e Qi k-1 k — A k)@ ki1 - - - Bigds
k=1

it follows that

d
|2 = Z(—]_)Iil Z [d U(X)ail,l(x) . aikflyk_l(x)

ielly k=1

X (@i k(X) — @iy k(X)) ik 1(X) - . - Big,a (X) AX.

13



Writing

| |
aj—a;=) 0(dp—Tp) dgp+ Y 8Tpd;(Gp—Tp)
=1

p=1

we find

=Y (- 1)"'22 / UOOE, 100) - By k10081 k4 1(X) - .- Big.a(X)

ielly k=1 p=1

x [3, (9p(X) — Gp(X)) BkGp(X) + 3k (Ip(X) — Tp(X)) 3, Gp(X)] dXx

Let
Dikp=UQ 1. . @i} 1 k18 1,k+1---ig.d KTp
and B
Dikp=U& 1. @i\ k-1 1k+l---gd % Tp-
We find that
[
I, = Z(—l)"' > (/ bi k. p ()i, (Gp(X) — Tp(X)) dX
ielly k=1 p=1
+ /d Bi,k,p(x)ak(gp(x) — §p(X)) dX)-
|
Forj e{1,...,d}, let IJ-"*1 denote thgd — 1)-dimensional unit cube in the vari-
ablesxy, ..., Xj_1, Xj41, ..., Xq, and let

dx! ™t =dxg ... dxj_1dXjpa. .. dxg.

Note thatg,, §, € W2>(19), from which we see that . bixp € W (19).
Hence, we can integrate by parts to obtain

=Y (- 1)"'22( / Bk p 0 (9p) — gp<x))]x'k‘1d>qk

ielly k=1 p=1

— | @i bik p)X)(Gp(X) — Fp(X)) dX
./|d kp) (¥)(Gp Gp(x)) (4.13)

+f|d_1 [Biic.p 09 (8p 00 — Tp(0)) [y dxg~*

k

- /|d (kb1 k. p) (X¥) (gp(X) — (X)) dX>~
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Let

1<k, p=<

Kfg = nlzapxl miaX maX{||bi,k,p|||_1(|d)» 101k, pllLycrays

||3ikbi,k,p||L1(|d), ||ak6i,k,p||L1(Id)}-
Using (4.13), we see that there exists a positive con§lgrguch that
[I2] < Cokig max 19p — TpllLca- (4.14)

Sinces > 2, we may use (4.8) to see that there exists a positive corSigrguch
that
kg < Cio.

Using this bound and (4.8) in (4.14), we obtain (4.12), as claimed. Finally, using
(4.11) and (4.12), we have (4.9), which establishes the theorem. O

So, the algorithnJ,,, whose information cost i®(cn), provides an approx-
imation whose error i€ (n~™nirsl/d)y - | et us now discuss the implementation
of Uy.

Clearly,Un(f, g) is an integral, whose integrand is a function that has a special
form; its restriction to any subcubié is the product of a polynomidi and the
square rootrg of a polynomial. If it were not for the presence of this square root, we
would be able to evaluatd, ( f, g) exactly by using a quadrature formula having
sufficiently large degree of accuracy. Note that whles- |, the factorog is the
square root of the square of the Jacobian determinagtf which is merely+oyg.
HenceU,(f, g) can be evaluated exactly with total c&3tcn) whend =1.

What happens wheth < |? We consider two cases.

Suppose first that < s — 1. Then we can resort to classical techniques.
Recall (see, e.g., Novak, 1988, p. 36) that i& C' (19), then we can calculate an
approximationl ¥ (v) at costO(cn), for which

/m v(X)dx — 11 (v) = o(||v||cr(,d)n*r/d).

So simply take
Ui (f.9) = I3 (hoy).

Then we can calculatg;;( f, g) at cost proportional tm. However, sincdioy €
C' (19 and mir(r, s} = r, it now follows that

S(f,g) — U (f, g) = O(n~"/) = O(n~-mnirsi/dy,
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Observe that; ( f, g) can also be treated as an approximatiobgff, g), since
Un(f,0) — U:(f, g = O(n—f/d) — o~ min{r,s}/d).

Now let us consider the case> s — 1. On each subcubl¢ € 2,, the quasi-
interpolantg is a polynomial of degreg = max{s — 1, 3}, and sy is the square
root of a polynomial having degree:2 We handle the square root as follows:

For any indexj, let n = detAg(x) and& = detAg(x), where Ay =
[Vg]"[Vg]. By our assumptions on the clag we have O< ¢, < £, < C..
We can expand

"
VE=Vn+) BmE —mt+0(E —prth,
t=1

where theg; (-) are well-known functions and th@-constant depends only an
andC..
We now define our algorithm for the case- s— 1 as

Ur(f.g) = > Ur(f.0),

Ke2,

where

Ur(f,o)= [ h detAg(xK))+
(£, 9) fK(x>(,/eAg<x )

Z Br(detAg(x™))) - (detAg(x) — detAg(x(K)))t> dx

t=1

=

for each subcub& e 2,. Here,xX) is any evaluation point it ; for example, it
might be chosen to be as close as possible to the cenkér of
We then have

Theorem 4.2. Letr > 1and s> 2. Then U (f, g) can be calculated in cost
O(cn), and
e(U,;") — O(I"I_ min{r,s}/d)‘

The O-factors depend only on the global parameters|, d, r,;s0zand 6.

Proof. Note that defAg(x) is a polynomial inx. Each term of the outer sum can
be calculated exactly with cost independenhp$ince we are integrating polyno-
mials. So, cost)) = O(cn).



To calculate the error, note that
le(Un) — e(U)] < cn( > / Ih(x)| | detAg(x"™)) — detAg<x>|“+1dx).
Ke2, K

Now detAg has a uniformly bounded first derivative, so that there is a positive
constantCy» such that

| detAg(x"™) — detAg()"** < Craflx — X(K)||2L;él%d) = O(n~/9),

sincepx + 1 > s. Moreoverh is uniformly bounded. Sinceands are integers for
whichr > s— 1, it follows thatr > s, so thats = min{r, s}. Hence

e(Uy) — e(U;) = O(n~minir.si/dy,
Using Theorem 4.1, we see thet);") = @ (n~—mn"si/d) "as required. O
We now prove a lower bound that holds for the cdse |. Let
e(n; F, G) =inf{e(U) : U using information (2.2)

denote the minimal error for the surface integration problem, over all algorithms
using information of the form (2.2), with fixed and varyingm. We have

Theorem 4.3. Letd < I.

1. If s=1, then
en; F,G) =Q@).

2. If s> 2, then _
e(n; F, G) = Q(n~™nns/d),

TheQ-factors depend only on the global parameters|, d, r, §,& and 6.

Proof. Using the notation of Section 3, we hak(F) = Fy, c,. Using (3.2) and
the known complexity result (Novak, 1988, p. 37) on classical integration for the
classFq . c,, we get a lower bound @(n; F, G) = Q(n~"/%). Hence it remains to
show that

Q1) ifs=1,

en; F,G) = )
( ) Q=Y ifs>2

(4.15)

We now takef = C;, which belongs td-, and

1 2
g(x) = [zax], X2, ..., Xd, X1, 0, ..., 0],
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where

4 0 ifs=1lors=2,
|1 ifs>a3.

We stress that théd + 1)st component of) is x;, and thatg is well-defined since
| > d + 1. The functiong is infinitely differentiable andg/cs ¢y =1 < Co. Itis

easy to check that
og(X) = /14 3a2x? > 1> c,.
Thereforeg € G.

To find a lower bound or(n; F, G) we use the known estimate (see, e.g. Traub
etal., 1988, p. 45)

e(n; F, G) > inf{ 2d(N, f) : N of the form (2.2)} ,
where

Now choose informatiorN of the form (2.2), so thaff is evaluated at the
pointsxM, ... x™ andg is evaluated at the pointg™?b ... x™ where these
evaluation points may have been chosen adaptively. We need to specify a function
g € G satisfyingN(f,g) = N(f, g).

As in Novak (1988), for a positive numbbrdefine

d s+l
w(X) = bnj=l (Xj(l_xj)) fOt’Xe.Id,
0 otherwise

Note thatw e CS(RY) for any positiveb. We chooseb such thatw € Fys1.
Without loss of generality, we suppose that- m = %pd for some integem.
Divide | ¢ into 2(n —m) = p cubesAy, ..., Ayn_m with mesh-sizep~2. Lety®
be the element o, with the smallest components. Define

wi (X) = p*sw(p(x — y“))>. (4.16)

Then the support ob; is the cubeA; and it is easy to check that € Fys1. Now
choose

2= w. (4.17)
ied
where J is the set of indices of all cubesA; containing nog-evaluation points
x™D - x™, Since we hava — m such evaluation points andr2— m) cubes,

18



there are at least — mindices inJ. Sincew;’s have disjoint supports, € Fys1.
Furthermorez has zero information; that ig(x")) =0 forj e (m+1,...,n}.
We are ready to defing as

g(x) = [3ax? + 3z(x), X, ..., Xa, X1, 0, ..., O].
The functiong belongs taC3(1%) and
IGllcsqey = max{3(@+ 1), 1} = 1 < C,.

It is not hard to check that

og(x) = \/det(l +aax)T).

wherel is thed x d identity matrix anda(x) is the column vector of partial deriva-
tives of the first componerg, of the functiong. The determinant of +a(x)a(x)"
is simply 14 Z?Zl(ajgl)z(x). Hence,

d
og(X) = J 14 3222 + Jax (312 (%) + § D _(022(x) = 1> ¢,.
j=1

This proves thag € G. Obviously,N(f, g) = N(f, g). Therefore
d(N, f) > |S(f,9) — S(f, 9)I, (4.18)

sct.o)=Ca [ \/1+ Janxtax,

d (4.19)
S(f,9) = le J 14 a2 + Jax(12)(X) + § > _(0;22(x) dX.
1d

j=1

with

We first consider the case< 2, so thata = 0. We then have

d
S(f.9) - S(f.g) = le (J 143 0,220 - 1) dx
|d

j=1

_ig, / BRICIEIRED
4
o1+ Z‘,-taa; 2200 +1

d
Z2(«/4+ +2)/ Z(a,z) 00 dx

19
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Fix an indexj. Since the supportd; of the functionsw; are disjoint, the standard
rule for changing variables in multiple integrals imply that

/(ajz)z(x)dx=z (3 wi)?(x) dx
| d

ieJ A

== Z/ P (alw) m)) X

|eJ

= p2(s 1)+d Z/ (81“)) () dx

ied
= 1)+d/ (@jw)?(x) dx.

Summing the previous result over the indigeand recalling thafJ| > n—m =
2p9, we find

d
1
/Id jX_;(ajz)z(x)dx > 205D /m [(Vw)(X)|? dX.

Inserting this result into (4.20) and using (4.18), we see that
d(N, f) > S(f,g9) — S(f,g) = Q(p—Z(s—l))'

Now if s = 1, we see that
d(N, f)=Q@),

whereas whes = 2, we may us@& > n—m= %pd to see that
d(N, f) = Q(p?) = ™9,

SinceN is arbitrary information of cardinality at most this establishes (4.15) for
s< 2.
We now consider the case> 3, for which we havea = 1. Let

d
(00 =1+3xF and 700 = 3% (01200 + 5 Y _(9;2*(X).
j=1

Using (4.19), we see that

d(N. f) > S(f.g) - S(f. ) = /. (VE00 = Ve0o +n00) dx
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Sincev1+x <1+ %x forall x > —1, we get

d(N, f) > —/Id 217/(;%() =1(l1— 1), (4.21)
where
L = —/ L(alz)(x)dx
1d \/r%le
and

Y _13;22(%) iy

1
19 2,/1+ 2x2

Sincez vanishes on the boundary of, we calculatel; using an integration by
parts, finding that

Iy =

Z(X)

zZ(X)dx = _—
) @ (L+ Ix2)32

X1
|1:/ 01| ———
. (\/1+%x%)

= (0 [ zax= (Y [ woodx.

ied

But for any index , we have

/Ai wi (X) dx = é/ﬁ w(p(x—y(”)>dx: psl+d /Idw(x)dx.

Since|J| > 1 p¢, we thus find that

1
> (4)% 2 |, m00dX (4.22)

We now look atl,. We find that

d
12l < %Z/d@jz)z(x)dx.
j=17!

From (4.16) and (4.17), it follows thg®;z|| = O(p~©~). Thus
12] = O(p~2¢7M).
Sinces > 3 implies 4s — 1) > s, we conclude that

i — 12 =Q(p~®).
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Usingn >n—m= %pd we have
d(N, f) > I; — I, = Q(n™¥9).

SinceN is arbitrary information of cardinality at most this establishes (4.15) for
s > 3, and completes the proof. O

Combining Theorems 4.2 and 4.3, and using the results at the end of Section 3,
we have

Theorem 4.4. The following results hold for the surface integration problem with
F == F|)r’C1 and G= Gd’|’S’C2,C2:

1. Letl =1, so that d= 1 necessarily. Then
e F,G) =0n")

and
compe; F, G) = O~ Y").

The®-factors depend only onr,Gand G.

2. Letl> 2.
(@) Suppose thatd< I. Ifr = 0 or s = 1, then there exists; > 0 such
that
e(n; F,G) > ¢ Vn>0,
and so

comple) = oo Ve < &
However, ifr> 1 and s> 2, then
e(n: F, G) = ©(n~ "),

and |
compe; F,G) = @(s‘d/ mln{r,s}).

The®-factors depend only on d, I, r, s ,0C,, and G.
(b) Supposethate=|l. Ifr > 1and s> 2, then

e(n; F, G) = O(n~mnirsi/dy,

and |
compe; F, G) = O(g~9/minlrshy

The O-factors depend onlyon d, r, s;,©,, and 6.

Note that in the casg = | > 2, we have only an upper bound on the complex-
ity of surface integration. It is open whether this bound is sharp.
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