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Abstract

Deep reinforcement learning has recently achieved state-of-the-art results for robotic control.

Robots are now beginning to operate in unknown and highly nonlinear environments, ex-

panding their usefulness for everyday tasks. In contrast, classical control theory is not suitable

for these unknown, nonlinear environments. However, it retains an immense advantage over

traditional deep reinforcement learning: guaranteed satisfaction of hard constraints, which is

critically important for the performance and safety of robots.

This thesis introduces Koopman Constrained Policy Optimization (KCPO), combining im-

plicitly differentiable model predictive control with a deep Koopman autoencoder. KCPO

brings new optimality guarantees to robot learning in unknown and nonlinear dynamical

systems.

The use of KCPO is demonstrated in Simple Pendulum and Cartpole with continuous state

and action spaces and unknown environments. KCPO is shown to be able to train policies

end-to-end with hard box constraints on controls. Compared to several baseline methods,

KCPO exhibits superior generalization to constraints that were not part of its training.
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1 Introduction

The more constraints one imposes, the more one frees one’s

self of the chains that shackle the spirit.

—Igor Stravinsky [Str39]

In this thesis, I have sought a method for generating box-constrained motion plans for robots,

bounding controls between an upper and lower limit. Box constrained controls have a num-

ber of real-world applications, including the rotor acceleration in a quadrotor or the torque of

the many actuators in a quadruped as it engages in locomotion. Serious damage to the robots

or to surrounding humans and property could result if either of these robots were to exceed

their physical limits.

One way to accomplish this goal is through model-based optimal control, the use of a math-

ematical model of a system’s dynamics to influence a system’s state trajectory and achieve an

objective. There are many challenges to building and using models for the environments in

which robots typically operate.

To narrow the scope of this thesis from tackling both control and perception at once, two

assumptions have been made to help streamline focus solely on realistically challenging con-

ditions of the environments for robotic control:

1. The environment is always fully observable and deterministic, eliminating perception

as an issue.

2. Robots typically operate in unknown environments with nonlinear dynamics, making

control difficult.

Due to the second assumption, the problem of real-world control presents difficulties due to

nonlinearity and an unknown physical model. In order to achieve optimal control, it becomes

necessary to do system identification, or data-driven estimation of a mathematical model char-

acterizing a system’s dynamics. The linear quadratic regulator (LQR) of classical control the-

ory is only available for linear dynamical systems. Trajectory optimization for nonlinear dy-

namical systems is thus usually dealt with via local linearization, which for any given point in

state space produces a linear approximation of the overall nonlinear system. Convergence to

optimal trajectories with these trajectory optimization algorithms is usually quite sensitive to

initialization due to nonconvexity.

Koopman operator theory is an alternative path via global linearization: every point in state

space shares one linear model of the dynamics [Bru]. It is possible to employ functions that

“lift” from the original state space, where the dynamics are nonlinear and difficult to both

model and control, to a new space where a linear model becomes sufficient to characterize the
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1 Introduction

dynamics for the entire space. Crucially, once the dynamics have been linearized globally, the

strong guarantees of optimality from classical control theory become available for use.

Koopman operator theory has recently been put to use in many domains in robotics, includ-

ing rigid-body and soft-body robotics [WTL23]. This thesis focuses on one approach to apply

Koopman operator theory, a neural network architecture called a Koopman autoencoder that

learns the lifting functions and linear operator from data [LKB18]. While the first Koopman

autoencoders focused on simply predicting dynamics, some later works have used these au-

toencoders for optimal control with great success [KM18] [YWK22] [HEK22].

Concurrently with the recent Koopman optimal control work, differentiable mathematical

optimization methods have been introduced in recent years. Mathematical optimization is

an inseparable part of the training of neural policies, but pioneering work from [Amo+18]

introduced the use of differentiable convex optimization layers inside neural network archi-

tectures for a variety of applications, from quadratic programming to constrained trajectory

optimization.

The principal contribution of this work has been to harness Koopman autoencoders’ lin-

earized dynamics model together with differentiable trajectory optimization for end-to-end

trainable constrained policy learning.

1.1 Outline

In the Background, the mathematical framework needed to understand the motivation be-

hind and machinery underlying the method is provided. The method is explained in detail in

the Method section, and it is tested and analyzed rigorously with imitation learning experi-

ments in the Experiments & Results section. The thesis concludes with some remarks on the

insights gathered from the results as well as promising future directions.

1.2 Notation

Within this thesis, sets are indicated with blackboard bold (e.g. R is the set of real numbers),

vectors are indicated with bold, lowercase letters (e.g. k ∈ Rn
), matrices and tensors are

indicated with bold, capital letters (e.g. M ∈ Rm×m
is anm×m-dimensional matrix). All

other variables may be assumed to be scalars unless otherwise indicated in the text.

ẋ and
dx
dt both refer to the first-order derivative of x with respect to time t. The former is

Newton’s notation, and the latter is Leibniz’s.
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2 Background

2.1 Dynamical Systems

Beginning with the work of Henri Poincaré on celestial mechanics and the three-body prob-

lem, mathematicians have studied the so-called dynamical systems. Dynamical systems are

equations that describe the behavior of time-evolutionary processes [Lay]. They are exceed-

ingly useful mathematical models and have seen applications in many fields; of particular in-

terest to this thesis is their application to robotics, where the interaction of a robot with an

environment can be viewed as dynamical system. Much of the presentation that follows is

inspired by [Bru] and [Had22].

Dynamical systems take the general form:

ẋ(t) = f(x(t),u(t), t;β) (2.1)

where x(t) is the vector representing the state of a system at timestep t; for instance, the

position and velocity of an object.

f is a vector field (a vector-valued function) for how x evolves over time. For every point in

state space, f provides the derivative of state change.

Dynamics may differ depending on time t, meaning dynamics functions can be time-varying.

In contrast, time-invariant dynamical systems lack a dependency on time; time-invariant dy-

namics is a subset of time-varying dynamics.

u(t) represents actuation or control; it is an external intervention to perturb the naturally

evolving state of the system. When modeling physics, actuation usually corresponds to force

or torque. In this work, we study only systems that have actuation, but not all systems do.

A system without actuation is autonomous (it does not depend on an independent variable),

while a system with actuation is non-autonomous.

β represents any remaining parameters of the system that cannot be controlled and may not

be modeled in the state space, but that nevertheless impact the dynamics of the system. For

instance, the mass of an object may be considered a parameter of the system, even as it cannot

be controlled.

For reasons of readability, β is omitted unless necessary, and we assume time-invariance, sim-

plifying 2.1 to

3



2 Background

ẋ(t) = f(x(t),u(t)) (2.2)

As we continue to introduce definitions and analyze properties of dynamical systems, we will

for now omit actuation, further simplifying:

ẋ(t) = f(x(t))

2.1.1 Discrete-Time Dynamical Systems

A discrete-time version of the continuous dynamics described above consists of the following

expression:

xt+1 = F (xt) (2.3)

Note that F is not a vector field, as seen in the continuous-time case. Instead, it is a so-called

map from the state vector at one timestep to the next. Repeated application of this function

advances the dynamics.

Discrete-time dynamics can be shown to be equivalent to continuous-time dynamics via the

following integral expression corresponding to a flow map:

Ft(xt0) = xt0 +

∫ t0+k

t0

f(xt) dt (2.4)

For the goal of data-driven methods for control in unknown systems, modeling a system in

discrete-time with a map is more appropriate than a vector field, as data are frequently pre-

sented in discretely sampled trajectories.

2.1.2 Linear Dynamical Systems

Within the family of dynamical systems, linear dynamical systems are a particularly useful set

because much of classical control theory concerns the control of linear dynamical systems. A

continuous-time, time-invariant linear dynamical system without actuation has the following

form:

ẋ = Ax (2.5)

The dynamics of the above system are characterized by the eigenvalues and eigenvectors de-

rived by the spectral decomposition (or eigendecomposition) of A:

A = TDT−1
(2.6)

4



2.1 Dynamical Systems

Where T and D contain the eigenvectors and eigenvalues λi of A, respectively.

In the more general Jordan decomposition, D will be a diagonal block matrix with Jordan
blocks, which is known as the Jordan normal form of D [HJ13]:

D =

J1

.
.
.

JN

 (2.7)

where Jk is the Jordan block corresponding to the kth eigenvalue:

Jk =


Ck I

Ck
.
.
.

.
.
. I

Ck

 (2.8)

The above block matrix contains the identity matrix I andCk, a real-valued matrix represent-

ing the kth complex-conjugate eigenvalue pair ak ± ibk:

Ck =

[
ak bk
−bk ak

]
(2.9)

In the context of a linear dynamical system, the solution for a linear dynamical system is as

follows, using eigendecomposition 2.1.2 and integrating 2.5:

x(t) = eAtx(0) = TeDtT−1x(0) (2.10)

Euler’s formula [Eul48], e±ix = cosx ± i sinx, gives us a new Ck for complex-conjugate

eigenvalue ak ± ibk:

e(a±ib)t = eat±ibt = eate±ibt = eat(cosx± i sinx) (2.11)

Ck = eat
[
cos(bt) sin(bt)
− sin(bt) cos(bt)

]
(2.12)

The geometric intuition for this new Ck, tailor-made for the Jordan normal form of a linear

dynamical system, is that it is a rotation matrix scaled by an exponential decay (or growth)

term, rotating clockwise around the eigenspace’s complex plane. The degree to which the

amplitude of rotation decays towards or grows away from a fixed point is determined by a.

If a > 0, there is growth away from a fixed point. If a < 0, there is decay toward a fixed
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point. Finally, if a = 0, there is neither growth nor decay. A phase portrait of a decaying

linear dynamical system (a < 0) is in Figure 2.1. Due to this geometric intuition, it is often

simpler to interpret the behavior of a linear system than that of a nonlinear system.

Figure 2.1: A phase portrait of a linear dynamical system that decays towards a fixed point at 0 due to

a < 0 in Equation 2.12. Created using the Desmos online graphing tool [Kas].

Discretizing this continuous-time formulation with a discrete timestep ∆t, we obtain:

xt = eA∆tx0 = TeD∆tT−1x0 (2.13)

Correspondingly, the discrete Ci is:

Ci = ea∆t

[
cos(b∆t) sin(b∆t)
− sin(b∆t) cos(b∆t)

]
(2.14)

Section 2.5 will introduce a solution to the central challenge of predicting and controlling

a nonlinear dynamical system, such as a robot interacting with an environment. This is the

Koopman autoencoder [LKB18], which can accurately predict these challenging dynamics.

This prediction strategy is made possible by using the Jordan sub-block of Equation 2.14 to

encode input states from a discrete nonlinear dynamical system into a new coordinate sys-

tem, in the Jordan normal form of Equation 2.7. This dynamics encoding and Koopman

autoencoder together comprise key components of the KCPO architecture.
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2.2 Optimal Control

2.2 Optimal Control

Mathematicians have long studied the properties of linear dynamical systems and developed

classical control methods to obtain globally optimal actuation. Some of these methods are

analytical, while others can guarantee convergence to globally optimal solutions through iter-

ative numerical optimization [Teda]. KCPO’s trajectory optimization exemplifies the iterative

approach.

2.2.1 Model Predictive Control with Linear Quadratic Regulator

KCPO uses the basic Linear Quadratic Regulator (LQR) as a foundation for its trajectory op-

timization method. The discrete-time finite-horizon unconstrained Linear Quadratic Regu-

lator (LQR) possesses an analytical solution to finding the optimal control trajectory τ⋆1:T =
{x,u}1:T from a starting state x0 to a goal or reference state xr with a finite horizon T .

Following [Amo+18], the problem formulation of LQR is as follows:

τ⋆1:T = argmin
τ1:T

T∑
t=1

1

2
τ⊤t Ctτt + c⊤t τt (2.15)

s.t. x1 = xinit

xt+1 = Ftτt + ft

This problem formulation captures the desire to find a state-control trajectory that minimizes

distance to a goal state over time using the minimum control possible while respecting linear

time-varying dynamics constraints. The cost and dynamics can be potentially time-varying

throughout the trajectory, which is notated by temporal subscript t in the objective function.

Concretely, this problem formulation could be used to characterize a quadrotor flying to-

wards a goal location from a starting location. KCPO extends this problem formulation by

introducing additional box constraints in Section 2.6.1.

Importantly, the solution to this problem can be expected to yield a globally optimal state-

control trajectory because the problem’s formulation is an instance of the more general class

of convex problems [Teda].

This problem formulation of Equation 2.15 is classically minimized by recursively solving the

discrete algebraic Riccati equation (DARE) backward from the last timestep [Teda]. Metaphor-

ically, this is a “tail-wags-dog” optimization: the optimization proceeds from the goal state at

the last timestep in the horizon and work backward to the first timestep to determine what

control trajectory would be necessary to reach that goal. Another term for this approach is

value iteration, a kind of dynamic programming where the overall problem of computing the

optimal control at the starting timestep depends recursively on sub-problems computing op-

timal controls proceeding into the future. Pseudo-code of the Forward and Backward Passes

of Linear Quadratic Regulator is presented in Algorithms 1 and 2 respectively. The backward

pass does value iteration to compute the gain matrix and biasKt andkt, and the forward pass

uses these gains to compute controls [Teda].
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2 Background

Algorithm 1 Linear Quadratic Regulator: Backward Pass, as presented in [Sal18]

T ∈ Z+ is the finite horizon length

x ∈ Rn
is a state vector

u ∈ Rm
is a control vector

C ∈ RT×n+m×n+m
and c ∈ RT×n+m

are the objective terms. Each Ct must be positive

semi-definite

F ∈ RT×n×n+m
and f ∈ RT×n

are the dynamics constraint terms

1: for t = T to 1 do
2: Qt = Ct + F⊤

t Vt+1Ft

3: qt = ct + F⊤
t Vt+1ft + F⊤

t vt+1

4: Kt = −Q−1
ut,ut

Qut,xt

5: kt = −Q−1
ut,ut

qut

6: Vt = Qxt,xt +Qxt,utKt +K⊤
t Qut,xt +K⊤

t Qut,utKt

7: vt = qxt +Qxt,utkt +K⊤
t Qut +K⊤

t Qut,utkt

8: end for
9: returnK1:T ,k1:T

and the forward pass applies forward the gain matrix and bias computed in the backward pass.

Algorithm 2 Linear Quadratic Regulator: Forward Pass, as presented in [Sal18]

T ∈ Z+ is the finite horizon length

x ∈ Rn
is a state vector

xinit ∈ R is the initial state vector

u ∈ Rm
is a control vector

C ∈ RT×n+m×n+m
andc ∈ RT×n+m

are objective terms. Cmust be positive semi-definite

F ∈ RT×n×n+m
and f ∈ RT×n

are dynamics constraint terms

1: x1 = xinit

2: for t = 1 to T do
3: u⋆

t = Ktxt + kt

4: xt+1 = Ftτt + ft
5: end for
6: return u⋆

1:T

Problematically, the time complexity for solving DARE scales linearly with the horizon T ,

which becomes intractable as the limit of the horizon approaches infinity.

In practice, model predictive control (MPC), also known as receding horizon control, provides

a tractable solution for a finite horizon. MPC selects u∗
1 at our current timestep using a finite

horizon and re-solves DARE from scratch in the next timestep, this time advancing the lim-

ited horizon forward also by a timestep [Tedb].

2.2.2 Challenges for Control of Nonlinear Dynamical Systems

Linear dynamical systems have the very attractive property that globally optimal controls are

available, but one challenge is that real-world dynamics are frequently nonlinear. Another

8
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challenge is that dynamics are often unknown — usually, only time series data is available, not

the equations that produced the data. These two major challenges can be addressed through

the use of Koopman autoencoders.

2.3 KoopmanOperator Theory

As in the Dynamical Systems section, we derive much of this introduction to Koopman Op-

erator Theory from [Bru].

Due to the attractive properties of linear dynamical systems, much of the existing body of

work for control of nonlinear dynamical systems focuses on locally linearizing around a point.

While this approach is taken by widely used algorithms such as Iterative Linear Quadratic

Regulator [TMT14] and the Sparse Nonlinear OPTimizer (SNOPT) [GMS05], it is unlikely

to yield globally optimal control, because the approximation error of the linearized dynamics

grows tremendously beyond the small region around the linearization point. In addition, the

nonconvex problem formulations these algorithms are designed to solve typically require a

warm start initialization, stymieing their practical use. Engineers using these algorithms must

therefore rely on expert knowledge to initialize as close as possible to the optimal solution.

Koopman operator theory offers hope that it may be feasible to extend the benefits of existing

linear control theory techniques to nonlinear dynamical systems. In 1931, Bernard Koopman

showed that it is possible to diffeomorphically
1

lift an original state x, which has nonlinear

dynamics, into a new space with linear dynamics. The Koopman operator is a linear operator

2
that completely characterizes the original nonlinear dynamics. The implication is that in

this newly lifted space, classical linear control techniques like LQR could be used.

For many decades after Koopman’s discovery, an immense obstacle to the practical use of

his operator for dynamics prediction or control applications was that its diffeomorphism is

infinite-dimensional: a Hilbert space
3

of measurement functions g(x), also called observ-
ables, which requires a suitably infinite-dimensional Koopman operator. This is an obstacle

indeed, as LQR only applies to finite-dimensional matrices. Thus, many researchers have

focused on how to approximate Koopman operators with finite-dimensional matrices and

also approximate the Koopman operator’s true infinite-dimensional Hilbert space with finite-

dimensional approximations.

The following sections will review data-driven techniques that have been employed to approx-

imate a subset of the Koopman operator’s eigenvalues and eigenfunctions and a correspond-

ing subspace of the full Hilbert space. This approximate operator would enable the use of

globally optimal LQR technique for control of nonlinear physical systems.

1

a diffeomorphism is a differentiable, invertible mapping from a smooth manifold to another smooth manifold

— in the context of Koopman operator theory, the first smooth manifold is the original nonlinear dynamical

system, and the second smooth manifold is a linear dynamical system.

2

an operator is a general term for a function mapping from elements in one space to another; a matrix is an

example of an operator.

3

a Hilbert space is the infinite-dimensional generalization of the finite-dimensional vector space for which linear

algebra was originally developed.

9



2 Background

2.3.1 DynamicMode Decomposition

Dynamic Mode Decomposition (DMD) is one of the simplest approaches to the problem of

approximating the infinite-dimensional Koopman operator with a finite-dimensional one.

DMD takes snapshots of data and arranges them into time-lagged matrices X ∈ Rm×n
and

X′ ∈ Rm×n
: one matrix starts with snapshot x1 and ends at snapshot xn, while the other

matrix starts with snapshot x2 and ends with snapshot xn+1.

X =

 | | |
x1 x2 · · · xn

| | |

 (2.16a)

X′ =

 | | |
x2 x3 · · · xn+1

| | |

 (2.16b)

DMD then applies least squares linear regression to the problem AX = X′
to find a low-

dimensional operatorA that approximates the true infinite-dimensional Koopman operator

that characterizes the dynamics.

However, this method has significant limitations. Using least squares regression is prone to

overfitting, so DMD is not robust to noise and cannot generalize well beyond its training data.

2.3.2 Extended DynamicMode Decomposition

One major improvement upon the basic DMD algorithm is Extended Dynamic Mode De-

composition (eDMD), which extends DMD by introducing nonlinear measurements of the

data prior to constructing the time-lagged matrices and performing least squares regression.

X =

 | | |
ψ(x1) ψ(x2) · · · ψ(xn)
| | |

 (2.17a)

X′ =

 | | |
ψ(x2) ψ(x3) · · · ψ(xn+1)
| | |

 (2.17b)

eDMD has turned out to be much more effective than DMD because it is able to model

more complicated systems: when the limit of the number of snapshots approaches infinity,

eDMD’s A converges to the actual infinite-dimensional Koopman operator.

Yet this convergence property only holds true if the measurement functions are closed under

the Koopman operator, a property called Koopman invariance. For some problems, expert

knowledge that a particular set of observables will be effective and span a Koopman invari-

ant subspace is available. Prior works have usually seen these observables take the form of

monomials [Bru+16].

10



2.4 Deep Neural Networks

Since expert knowledge is not always sufficient or even available, recent work has shown that

deep neural networks can effectively learn observables from scratch [Bru] [YWK22] [Had22]

[Li+20]. Before exploring these works, we will review the theory of deep neural networks and

their backpropagation training procedure.

2.4 Deep Neural Networks

Artificial neural networks (or just “neural networks” when context is clear) are algorithms

inspired by the metaphor of biological neurons in the brain. However, the artificial neural

network as a mathematical model is typically much simpler than a real biological neural net-

work. A multilayer perceptron (MLP), a commonly used neural network architecture type,

comprises weight matrices, bias vectors, and nonlinear activation functions. Sets of weights,

biases, and activation functions are segregated together into layers. The activation functions

could be any kind of nonlinearity, from sine to the hyperbolic tangent function. [GBC16a]

Using an MLP requires matrix-vector multiplication and addition, where an input vector is

successively multiplied by weight matrices, added to bias vectors, and then passed through

a nonlinear activation function element-wise. The output is known as an activation vector.

This is

a(l) = σ(W(l)a(l−1) + b(l)) (2.18)

where σ is the nonlinear activation function and a(l−1)
is the activation vector from a previ-

ous layer.

Activation vectors are passed from layer to layer until reaching the end of the neural network,

producing an output vector. Some output layers have activation functions, while others do

not, depending on the application and intent of the designer of a particular neural network

architecture.

A feedforward neural network connects its layers to each other in only one direction, while

a recurrent neural network can feed back into itself. This distinction becomes important for

later sections where the Koopman autoencoder and other recurrent neural networks are dis-

cussed. Recurrent neural networks are often used for tasks involving prediction [HS97].

[HSW89] proved a Universal Approximation Theorem showing that a multi-layer neural net-

work with at least one hidden layer is a universal approximator of any function, from the

XOR logic gate to image classification. Despite the result that any function may be approx-

imated by a neural network with at least one hidden layer, the theorem carries no hint as to

how to find the perfect parameters for that neural network. Deep learning, the training of

neural networks with more than one hidden layer, empirically has enabled the discovery of

quality parameters for a vast variety of applications. The motivation for training deep neural

networks is their demonstrably superior learning ability compared to shallower neural net-

works [GBC16a].
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2.4.1 Backpropagation and the Chain Rule

Although other algorithms are also used (such as neuroevolution [GM21]), MLPs are gener-

ally trained using backpropagation, an application of the chain rule from calculus with gradi-
ent descent, a first-order optimization method [GBC16b]. Let us assume that scalar-valued loss

function ℓ(o) represents how optimally our neural network achieves the objective, whereo is

the neural network’s output activation vector. The forward pass is the computation of ℓ(o)
by propagating the input vector through the MLP’s layers and passing the activation vector

of one layer to the next in the manner of Equation 2.18. After the forward pass, the MLP can

be trained by backpropagating the gradient of the loss function ℓ(a)with respect to the MLP

parameters W and b to those same parameters. Recall the chain rule,

∂f(g(x))

∂x
=
∂f

∂g

∂g

∂x
(2.19)

Computing ∇Wℓ(o) and ∇bℓ(o), the gradients of the loss function with respect to the

weights and biases respectively, takes place by applying the chain rule to Equation 2.18. The

backpropagation algorithm combines the chain rule with memoization
4

as a performance

optimization to eliminate redundant computations.

After computing∇Wℓ(o) and∇bℓ(o), because a gradient is the direction and rate of steep-

est ascent, gradient descent applies the gradients to their respective parameters with a small

step size or learning rate and move toward a local minimum of the loss function:

θ ← θ − α∇θℓ(o) (2.20)

where α is the step size and θ is a parameters vectors containing the weights and biases of the

neural network.

2.4.2 Constrained Policy Optimization

This section situates KCPO within a constrained policy learning formalism.

Markov Decision Processes & Policy Optimization

Constrained policy learning, of which KCPO is an example, is a subfield of reinforcement

learning (RL) and optimal control (OC), which both seek to model agents that act optimally

in an environment. Mathematically, this idea of an optimal agent within an environment can

be formulated as a Markov decision process (MDP), a tuple (X ,U , Tu, R) [Lev21].

X is the set of states the environment and agent can inhabit, and U is the set of controls an

agent can exert on the environment. Tu(x,x
′) = Pr(xt+1 = x′ | xt = x,ut = u)

is the transition function, which outputs the likelihood that the action u in the state x at

timestep twill transition to the statex′
at timestep t+1. R(xt,ut,xt+1) is a reward function

4memoization is a type of caching that stores the return values of functions (in this case, the activation vector

a(l)
of each layer) so they do not need to be redundantly computed again and again [Cor+09]
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2.4 Deep Neural Networks

determining the immediate reward provided to the agent at state xt+1 when the agent acts

with control ut and state xt.

MDPs are characterized by the Markov property assumption [SB20a]. This property assumes

that the past may be decoupled from the future, such that the present contains all the informa-

tion necessary to accurately model the future. The MDP framework enforces this assumption

with a transition function that explicitly expressesxt+1’s sole dependency onxt andut. This

simplification permits agents to make efficient decisions without holding every past event in

memory.

Based on [Tedc] and [Ach+17]’s definitions, policy optimization is the process of optimizing (or

learning) a parameter vector θ to parameterize a policy πθ(ut | xt) to model the distribution

over controlsU that maximizes discounted expected reward given current state xt, where the

discount factor is γ ≤ 1:

J(θ) = Eτ∼πθ

[∑
t

γtR(xt,ut,xt+1)

]
(2.21)

θ∗ = argmax
θ

J(θ) (2.22)

where J(θ) is the objective, otherwise known as the value function, which measures the ex-

pected discounted reward if controls generated by policy πθ are followed after starting at an

initial state x0.

The policy gradient is defined as∇J(θ) and may be used to solve Equation 2.22.

Note that πθ(ut | xt) could be a neural network trained with a combination of the policy

gradient method and backpropagation.

There are two classes of policy optimization methods, model-free and model-based, although

hybrid methods do exist. Model-based methods rely on a state-transition probability function

Tu(x,x
′), while model-free methods do not do so explicitly. The method discussed in this

thesis, KCPO, is model-based, because it trains a Koopman operator as a model of the world

[SB20b].

There is also a distinction between online and offline training. Online training optimizes the

agent’s policy by making the agent engage with the environment directly. For offline train-

ing, data are first generated from the environment and subsequently used to train the policy

[Lev+20]. While nothing precludes KCPO from being trained online, this thesis reports only

offline imitation learning experiments.

ReflexNet

Not all neural network-based policies are strictly of the formπθ(xt | ut). [Kur+22] introduce

a highly effective neural network architecture trained to imitate an expert, with access to a
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classical controller and the true dynamics. Their architecture is a multilayer perceptron that

takes in the initial state and outputs the entire trajectory at once:

u1:T = πθ(x0) (2.23)

This is unlike a typical policy architecture that maps one-to-one from a single state to a single

control:

ut = πθ(xt) (2.24)

In other words, the input and output dimensions for the constrained version of the archi-

tecture are nx and nu · T respectively, where nu is the dimension of a single control for one

timestep, and T is the total number of timesteps in the trajectory.

The architecture is referred to as the ReflexNet because the paper describes their model as

mimicking reflexive movements in animals, where reflexive movements can be thought of as

full trajectories generated in response to a single stimulus.

Because [Kur+22] find that the ReflexNet architecture of 2.23 has better performance than

the traditional policy network architecture of 2.24, we use it as a baseline in Section 4.

ConstrainedMarkov Decision Process & Constrained Policy Optimization

Constrained Policy Optimization (CPO), as originally published by [Ach+17], refers to a spe-

cific neural network-based constrained policy learning method. But in this thesis, we invoke

a more general constrained policy optimization, referring to any approach of optimizing a pol-

icy’s parameters such that the policy respects constraints. KCPO performs constrained policy

optimization, optimizing a policy that respects hard box constraints (e.g., torque limits of a

quadrotor) during both training and inference.

A constrained Markov decision process (CMDP) augments the MDP tuple with constraint

functions Ci(xt,ut,xt+1) ≤ di and a feasible set, C. This set contains all the state-control

transitions that are feasible (do not violate the constraints). Auxiliary objective functions

JCi(θ) measure the expected discounted return of policy πθ with respect to constraint Ci:

JCi(θ) = Eτ∼πθ

[∑
t γ

tCi(xt,ut,xt+1)
]

. While the objective J(θ) is to be maximized,

these auxiliary objective functions are to be minimized during constrained policy optimiza-

tion.

Given a discrete-time environment with a continuous action and state space and a determin-

istic transition function, the constrained policy optimization problem can be formulated as

θ∗ = argmax
θ

J(θ) (2.25)

s.t. JCi(θ) ≤ di
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The specific Constrained Policy Optimization outlined in [Ach+17] optimizes a neural policy

πθ(u | x) parameterizing a conditional probability distribution over actions U conditioned

on states X . The optimization method is model-free and combines the policy gradient with

the trust region method. The trust region method follows the intuition that an update to a

policy’s parameters should keep the new policy within the feasible neighborhood (or “trust

region”) surrounding the existing policy in parameter space. If the updated policy is feasible,

then the update is accepted, and the trust region’s radius expands; if the updated policy is

infeasible, then the update is rejected, and the trust region’s radius shrinks. Thus, the training

process itself is constrained.

There are two constraints that CPO minimizes with its trust region method during training.

The first constraint minimizes the average Kullback-Leibler divergence D̄KL(πk+1 || πk) =
E[DKL(πθk+1

(u | x) || πθk(u | x)] between the old policy πk and the new policy πk+1,

restricting within a tolerable amount ϵ how much information
5

is lost if the new policy’s

probability distribution replaces the old. I.e., this first constraint restricts how dissimilar the

new policy’s distribution can be from the old policy’s distribution. The second constraint

is that the new policy πk’s violation of constraint functions Ci(xt,ut) ≤ di, where di is a

separate violation tolerance assigned to each constraint functionCi.

The output of CPO is a policy that approximately solves Equation 2.25 because, like Koop-

man Differentiable Predictive Control, constraints cannot be guaranteed to always be satisfied

by the policy’s controls. A CPO-trained policy does not ever solve a constraint optimization

problem directly — at best, it is statistically unlikely to violate constraints.

Although the CMDP has a stochastic transition function in its most general form, the envi-

ronment’s dynamics are assumed to be only deterministic within this thesis. Stochastic ex-

tensions to KCPO are addressed briefly in 5.

There have been many more methods besides CPO proposed for neural net-based constrained

policy optimization in recent years, all of which to the best of our knowledge rely on similar

methods of policies that are statistically likely to satisfy constraints after training. This family

of methods is known as probabilistic constraint satisfaction, rather than hard constraint satis-

faction. An extensive survey of these methods may be found in [Gu+22]. Of these methods,

one significant inspiration has been [Amo+18], which forms the foundational inspiration of

this thesis. An in-depth overview of the work of [Amo+18] can be found in Section 2.6.

2.5 Koopman Autoencoders

Koopman autoencoders like those used in KCPO combine Koopman operator theory with

the traditional autoencoder neural network architecture to learn observables and the Koop-

man operator simultaneously from data. Below, the usual autoencoder architecture is sum-

marized before moving on to the specific Koopman variant that inspired the one used for

KCPO.

5Information is a measure of the degree to which an event reduces uncertainty about the state of a random

variable [Sha48]. In the case of CPO, the random variable is the policy’s output control.
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An autoencoder is a deep neural network with encoderφ and decoderφ−1
modules that mir-

ror each other: the former learns to encode its inputx into a representation z, while the latter

seeks to reconstruct the original input by decoding the representation. The architecture can

be trained using backpropagation, as most neural networks are, with a reconstruction loss

function ∥x− φ−1(φ(x))∥, which measures the difference between the originally observed

data and the reconstruction from the decoder. Due to its special structure, the architecture

can learn hidden variables that are representative of its input. In other words, from a prob-

abilistic perspective, it is designed to infer the latent variables z = φ(x) that condition the

observed variables (the input x) [GBC16c].

An undercomplete autoencoder has a bottleneck between the encoder and decoder, with fewer

dimensions in this latent space than in the observed space, contrasting with the overcomplete
autoencoder, having greater dimensions in the latent space than in the observed. A bottleneck

is useful for distilling the original observation into the most essential information needed for

reconstruction [GBC16c]. This compression is very useful for applications such as computer

vision. But in the context of Koopman operator approximation, the high dimensionality of

an overcomplete autoencoder turns out to be much more germane to modeling the infinite-

dimensional Hilbert space that a Koopman operator resides in.

Thus, the standard Koopman autoencoder is overcomplete, parameterizing latent variables

L, a matrix between the encoder and decoder that also serves as the finite-dimensional ap-

proximation of the true infinite-dimensional Koopman operator [LKB18]. The encoder and

decoder from this perspective are learning the diffeomorphism from the original state space

(which has nonlinear dynamics), to a latent state space (with linear dynamics). Because the

main goal of the Koopman autoencoder is prediction rather than reconstruction, a predic-

tion loss ∥φ(xt+1)−Lφ(xt)∥ is preferred to train the autoencoder. The Koopman autoen-

coder is typically used to predict an entire trajectory, not just one step ahead, by iteratively

applying L. Others have therefore used a k-step prediction loss function during training:

∥φ(xt+k)−Lkφ(xt)∥. This design has been useful for predicting many dynamical systems,

from natural phenomena like fluid flows to the rigid-body dynamics of robotics [Aze+21]

[MWK19].

[LKB18] describes a variant of the basic Koopman autoencoder design, utilizing an auxiliary

neural network to contextually generate a conditional Koopman operator Lxt , where the

operator is conditioned on the initial state xt from which prediction begins, xt+1:t+k (see

Figure 2.3). This variant allows the latent space to use significantly fewer dimensions, making

this autoencoder undercomplete with fewer parameters. For example, [LKB18] successfully

use a 2-dimensional latent space to model the Simple Pendulum (see Figure 2.2). In contrast,

[YWK22] use a basic Koopman autoencoder with a 200-dimensional latent space.

In this thesis, [LKB18]’s variant is used because it requires fewer parameters and theoretically

has more accurate prediction than the basic version. This is important because the control

performance that concerns KCPO is tied directly to prediction accuracy. The basic Koop-

man autoencoder harms prediction accuracy by using a global operatorL everywhere in state

space, because any global operator ought to have infinite dimensions for a true diffeomor-

phism. Koopman operator theory insists that a finite operator is likely limited. By contrast,
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2.5 Koopman Autoencoders

Figure 2.2: Pendulum Environment

instead of a finitely sized operator with a discrete set of eigenvalues, Lusch et al. point out

that their auxiliary network can learn the entire continuous spectrum of L’s eigenvalues.

This auxiliary network parameterizes the Jordan normal form of the Koopman matrix using

Equation 2.14 discussed in the Section 2.1.2.

Figure 2.3: Koopman autoencoder with continuous spectrum auxiliary network for autonomous sys-

tems, used with permission from [LKB18]

2.5.1 Koopman Autoencoders for Control

While the Koopman autoencoder architecture began with dynamics prediction, its use for

control has exploded in recent years.
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[YWK22] were the first to use a Koopman autoencoder for optimal control in an end-to-end

trainable architecture, and their work directly inspired KCPO. Their method used a Koop-

man autoencoder with unconstrained, analytically solved LQR embedded within a Koopman
policy. They treated the Koopman policy component as a black box neural component and

trained it within a reinforcement learning framework. Because this thesis additionally intro-

duces constraints on top of optimizing an objective, KCPO relies on a different approach to

achieve end-to-end differentiability. However, the spirit of the two methods is similar.

Unlike [YWK22], typical approaches to using Koopman autoencoders for optimal control

often do not make possible end-to-end training. Instead, dynamics models are often first

pre-trained to minimize prediction error. These dynamics models are then used within MPC

under the assumption that low prediction error results in a low control error. Examples of this

second approach to Koopman optimal control include [Li+20], [HEK22], [Wei+22], [Kin+22],

and [SM22].

[Li+20]’s Compositional Koopman Operator (CKO) is able to model and control the dy-

namics of rigid bodies. Uniquely, the compositional aspect of the operator is that it is a block

matrix with several copies of the operator, one for each body in the rigid body in the system

with the assumption that all the bodies will have identical physics.

One obstacle that the authors of CKO faced was their choice of a “metric” cost function

for MPC, meaning that their cost function was the identity matrix In. Because CKO is not

trained end-to-end and does not learn the cost function, there can be a mismatch between the

cost function used for minimizing control error and the learned latent Koopman space that

is optimized for minimizing prediction error. Thus, CKO is trained with a so-called metric
loss, which penalizes the Koopman autoencoder such that it encodes latent state embedding

vectors that are the same Euclidean distance from each other as their original corresponding

state vectors are from each other.

|xα − xβ| = |zα − zβ| (2.26)

Equation 2.26 shows how CKO’s metric loss ensures that x states are the same distance from

each other as the z latent states (encoded versions of x).

Taking note of the difficulty that CKO faces with its cost function, we designed the KCPO

method to learn a cost function that is always valid, or positive semi-definite, by construction.

This will be covered in more detail in the Method section.

Deep Stochastic Koopman Operator (DeSKO) takes advantage of Koopman operator the-

ory’s linearization to analyze how to provide robust control in a stochastic environment,

which is an exciting development in the literature due to Koopman operator theory’s original

use-case for predicting deterministic dynamics [HEK22]. Unlike the typical autoencoder de-

sign that has a nonlinear decoder, DeSKO uses a linear decoder in order to make their stochas-

tic control analysis possible.

[SM22] similarly stretch the definition of the Koopman operator, concatenating the original

state vectorxwith the encoder’s latent vector z: [x, z]. After several steps of prediction, there
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2.5 Koopman Autoencoders

is no nonlinear decoder becausex can be taken from that concatenated vector directly, a linear

decoder where the decoder is simply the identity matrix.

Because Koopman operator theory suggests that a nonlinear decoder is required for perfect

reconstruction from latent Koopman space, it can be expected that these approaches severely

damage the prediction error with an infinite horizon prediction. However, for the purposes

of control with MPC, a perfect model may not be required because the model needs only to

predict a finite and short number of steps ahead.

Besides these works, the use of a linear decoder also appears in a paper on EDMD-based op-

timal control [KM18]. The benefit of using a linear decoding is that the architecture does

not require a cost function in the latent Koopman space and can penalize directly in state

space, instead of learning a special cost function as in KCPO. Although KCPO’s approach

does come at a cost of extra implementation complexity, this trade-off was chosen in order

for KCPO to optimize its control objective without compromising on Koopman operator

accuracy at longer horizons.

[Wei+22]’s Koopman Q-Learning is one prior work that uses Koopman operator theory to aid

reinforcement learning. Contrasting with [YWK22], which is also a reinforcement learning

work using Koopman operator theory, Koopman Q-Learning is model-free and not trained

end-to-end with backpropagation. Unlike the model-based methods presented in this thesis

and [YWK22], Koopman Q-Learning relies on the Koopman autoencoder to discover useful

symmetries for data augmentation during offline training.

[Kin+22] introduces Koopman-Based Differentiable Predictive Control, a Koopman-based

extension of a previous work by the authors called Neural Differentiable Predictive Control

[Drg+22]. Koopman-Based Differentiable Predictive Control, like the work presented in this

thesis, is focused on constrained model-based policy optimization with a differentiable lin-

ear Koopman operator as its model, but it enforces constraints softly using a variation on the

penalty method: the outputs of the constraint functions are heavily penalized in the loss func-

tion as the policy’s neural network is trained via policy gradient. In other words, this method’s

constraints are not hard, meaning that the policy is always permitted to violate the constraints

at any time. Statistically speaking, after training, the policy is highly likely to satisfy the con-

straints during inference, but there is no guarantee. KCPO has no such limitation, which is

an asset in safety-critical online training. Indeed, the authors of Koopman-Based Differen-

tiable Predictive Control themselves state their method should be trained offline. Like many

of the other methods mentioned, and unlike [YWK22], the weights of the autoencoder are

pre-trained for prediction and frozen throughout training on the control task.

None of the above actuated Koopman autoencoder architectures use [LKB18]’s auxiliary net-

work to parameterize their Koopman operator eigenspectrum. Instead, they each use a com-

mon operator for the entire state space. In practice, this requires very high dimensionality in

the latent space, resulting in the overcomplete autoencoder design. To the best of our knowl-

edge, KCPO’s autoencoder is the first Koopman autoencoder design to extend [LKB18]’s aux-

iliary network design from dynamics prediction to control tasks.
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2.6 Implicit Differentiation ofModel Predictive

Control

The focus of this thesis is on MPC with box-constrained control constraints for safe torques.

KCPO relies on a method known as Box-DDP to enforce these box constraints.

2.6.1 Control-Limited Differential Dynamic Programming

(Box-DDP)

Box-DDP solves a trajectory optimization problem with nonconvex cost function c(τt), non-

convex dynamics f(τt), and box constraints u and u:

τ⋆1:T = argmin
τ1:T

T∑
t=1

c(τt) (2.27)

s.t. x1 = xinit

xt+1 = f(τt)

u ≤ u ≤ u

[Amo+18], whose work KCPO builds upon, uses an implementation of MPC with box-constrained

controls. This is achieved via a modified version of the Control-Limited Differential Dynamic

Programming heuristic (also known as Box-DDP) [TMT14].

Box-DDP and its general family of trajectory optimization methods are known as the so-called

indirect trajectory optimization methods. They contrast with the direct trajectory optimiza-

tion methods, which optimize and constrain the entire trajectory holistically by considering

both states and controls as decision variables to optimize. Instead, indirect trajectory opti-

mization methods only consider controls as decision variables to optimize, indirectly enforc-

ing dynamics constraints on the controls by simulating forward rollouts of the controls with

the environment. These methods are attractive because they ensure trajectories correspond-

ing to decision variables are always feasible (i.e. they respect dynamics constraints) throughout

optimization [Jac].

Differential Dynamic Programming (DDP), which is itself a modification on Iterative Lin-

ear Quadratic Programming (iLQR), are indirect methods. Like LQR, they are value iter-

ation methods that break down the entire trajectory optimization problem into individual

timesteps that each depend on each other. If the last timestep is fully optimized with respect

to the objective, then the penultimate timestep can use that result itself to be optimized. This

piecemeal, tail-wags-dog optimization process proceeds all the way to the first timestep.

However, iLQR and DDP broaden LQR’s usefulness, since LQR can only optimize trajec-

tory with respect to a quadratic cost function and can further only optimize trajectories re-

specting dynamics constraints provided that the dynamics constraints are linear. With iLQR

and DDP, trajectories can be optimized with respect to arbitrary nonconvex cost functions

and nonconvex dynamics constraints.
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If the dynamics function is once-differentiable and nonlinear, and the cost function is twice-

differentiable and not quadratic, iLQR linearizes the nonlinear dynamics function using

first-order Taylor expansions and quadratizes the cost function using a second-order Taylor

expansion. As the Taylor series for any function is an infinite sum that exactly equals that

function, iLQR and DDP use this fact to approximate the function by truncating its corre-

sponding infinite Taylor series to a finite sum of a few terms.

Figure 2.4: Taylor series expansion. Licensed under Creative Commons: [Ika]

The nonlinear dynamics function can be approximated with a linear function using the first-

order Taylor expansion for the dynamics centered around the initialization τ̂1:T [Sal18].

f(τt) ≈ f(τ̂t) +∇τtf(τ̂t)(τt − τ̂t) (2.28)

c(τt) ≈ c(τ̂t) +∇τtc(τ̂t)(τt − τ̂t) +
1

2
(τt − τ̂t)∇2

τtc(τ̂t)(τt − τ̂t) (2.29)
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Based on the truncated Taylor expansions of Equations 2.28 and 2.29 (see Figure 2.4), the

original nonconvex problem can be reformulated as an LQR problem formulation with a

quadratic objective and linear dynamics:

τ⋆1:T = argmin
τ1:T

T∑
t=1

1

2
τ⊤t Ctτt + c⊤t τt (2.30)

s.t. x1 = xinit

xt+1 = Ftτt + ft

Ft = ∇τtf(τ̂t)

ft = f(τt)− Ftτt

Ct = ∇2
τtc(τ̂t)

ct = ∇τtc(τ̂t)−C⊤τt

With this new formulation, the iLQR algorithm is described in Algorithm 3.

Algorithm 3 Iterative Linear Quadratic Regulator, as presented in [Sal18]

T ∈ Z+ is the finite horizon length

x ∈ Rn
is a state vector

xinit ∈ R is the initial state vector

u ∈ Rm
is a control vector

C ∈ RT×n+m×n+m
and c ∈ RT×n+m

are objective terms. C must be positive semi-

definite

F ∈ RT×n×n+m
and f ∈ RT×n

are dynamics constraint terms

1: Generate random control sequence û1:T

2: Create rollout with true dynamics and û1:T to get x̂1:T , giving a τ̂1:T initialization

3: while unconverged do
4: δxt = xt − x̂t

5: δut = ut − ût

6: Kt,kt ← LQR backward pass with F, f ,C, c, and δx and δut

7: Run LQR forward pass with true nonlinear dynamics andut = ût+Kt(δxt)+kt

8: Update τ̂t using states and controls from forward pass

9: end while
10: return u⋆

1:T

After quadratizing the cost function and linearizing the dynamics constraints with a state-

control trajectory initialization, iLQR applies LQR iteratively to polish the trajectory. This

iteration is necessary because unlike LQR, iLQR does not provide an exact analytical expres-

sion for the optimal solution to the trajectory optimization problem. In practice, the forward

pass update step may overshoot the true solution u∗
1:T due to cost and dynamics approxima-

tion error. Therefore, the forward pass is usually amended with a line search, but this detail

is not pertinent to explain the underlying mechanism of the algorithm.
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DDP is a variant of iLQR that assumes a twice-differentiable dynamics function and uses a

second-order Taylor expansion for dynamics linearization, but these methods are otherwise

quite similar and have roughly the same rate of convergence to optimal trajectories [Tedc].

Because the experiments reported in this thesis involve navigation to goal states, the cost func-

tion is already quadratic in distance from current state to goal state. Thus, quadratization of

the cost function for the use-case in this thesis is unnecessary. Following [Amo+18], the objec-

tive function c(τt) for weighted distance from current τt to goal τg , or c(τt) = ∥w ◦ (τt −
τg)∥22 withw being the weighting, becomes in quadratic form

c(τt) =
1

2
τ⊤t diag(w)τt − (

√
w ◦ τg)⊤τt (2.31)

where diag(w) is a diagonal matrix with w filling its entries. In other words, Ct = diag(w)
and ct = −(

√
w ◦ τg). Box-DDP either expects a quadratic objective or will quadratize

the objective itself, motivating the use of a quadratic form of the objective to preempt the

Box-DDP solver and save computation.

In addition, dynamics are already linear after Koopmanization, rendering linearization un-

necessary. The reason for using Box-DDP despite having a quadratic cost function and linear

dynamics via a Koopman operator is because of the primary goal of KCPO: constraints.

Box-DDP uses a quadratic program solver to introduce box constraints into the DDP method.

In the backward pass of DDP’s Riccati recursion, Box-DDP employs a heuristic where each

backward step in the recursion is constrained one at a time. Recalling that Box-DDP is an

indirect method, the downside of this approach is that it does not apply box constraints to

the entire trajectory holistically. A direct method would, by contrast, apply box constraints

everywhere simultaneously; hypothetically, box constraints imposed at the beginning of the

trajectory ought to impact the optimization of later timesteps in the trajectory. Thus, Box-

DDP is unlikely to result in an optimal trajectory when applied just once.

However, with repeated iterations, Box-DDP will converge to a trajectory that is optimal with

respect to the objective and box constraints. Again, being an indirect method, Box-DDP’s

trajectories already implicitly satisfy the dynamics constraints.

Note that [Amo+18]’s implementation of Box-DDP actually uses first-order linearization in-

stead of the second-order linearization called for by the original Box-DDP. However, in keep-

ing with [Amo+18]’s terminology, “Box-DDP” will be used to refer to the first-order iLQR

version within this text.

Readers are encouraged to return to the backward pass pseudocode for Iterative Linear Quadratic

Regulator algorithm. The significant change in a box-constrained iterative linear quadratic

regulator from the original unconstrained version is the introduction of box constraints (lower

boundsu and upper boundsu) in the backward pass at Line 4. These constraints are enforced

only one timestep at a time as the loop steps backwards, instead of holistically as in a direct

trajectory optimization method. A numerical quadratic program solver is typically used to

enforce these constraints instead of using the analytical formulas of the unconstrained ver-

sion.
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2 Background

Although linearization and quadratization are not needed for KCPO, linearization is still re-

quired to generate a dataset from a Box-DDP-based expert for imitation learning experiments,

where the expert has access to the true nonlinear dynamics functions. This topic will be re-

visited in Section 4.

2.6.2 Implicit Differentiation ofModel Predictive Control

In practice, most constrained MPC solvers are not explicitly differentiable, making it chal-

lenging to use them to train policies with hard constraints. Following [Amo+18] and [KD],

let us treat a constrained MPC solver as a function z⋆(x), with x being the input state and

z⋆ being the optimal outputs (both the optimal primal variables and optimal dual variables).

In practice, z⋆(x) does not easily admit an explicit definition in terms of its independent

variable x. A consequence of lacking such a definition is that the Jacobian
∂z⋆(x)
∂x cannot

be computed using the typical automatic differentiation pipeline. Unlike a function such as

sin(α), for which the derivative can be easily computed as cos(α), z⋆(x) is a black box. One

could compute
∂z⋆(x)
∂x by programming an MPC solver with differentiable operations and

unrolling all the operations into a differentiable computational graph. But computing that

Jacobian via unrolling is prohibitively slow in practice because it often requires hundreds of

iterations for an MPC solver to reach a fixed point solution.

Fortunately, the Implicit Function Theorem (IFT) provides an alternative differentiation method

[KP02]. The constrained MPC solver may be considered to be an implicit function g(x, z⋆),

which parameterizes a new function in terms of both the independent and dependent vari-

able. Intuitively, our choice of g(x, z⋆) is an optimality function where suboptimal inputs

u will result in g(x,u) > 0, but the root g(x, z⋆) = 0 exists for the fixed point solution to

the MPC optimization.

With this implicit formulation of the constrained MPC solver function,
∂g(x,z⋆)

∂x can be solved
for, under the condition that g(x, z⋆) = 0. First, let us define the optimality function, which

is at a root at MPC’s optimal fixed point z⋆, satisfying the aforementioned condition.

g(x, z⋆(x)) = 0 (2.32)

In the next step of the theorem, both sides may be differentiated w.r.t. x.

∂g(x, z⋆(x))

∂x
= 0 (2.33)

The chain rule expands the partial derivative of 2.33 into two new partial derivatives, each

w.r.t. x. Because g(x, z⋆) is a multivariate function, both terms must be summed together.

∂g(x, z⋆)

∂x
+
∂g(x, z⋆)

∂z⋆
∂z⋆(x)

∂x
= 0 (2.34)
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2.6 Implicit Differentiation of Model Predictive Control

Because this differentiation takes place at a root, a linear system of equations can be set up,

and
∂z⋆(x)
∂x can be solved.

∂z⋆(x)

∂x
= −

(
∂g(x, z⋆)

∂z⋆

)−1∂g(x, z⋆)

∂x
(2.35)

The IFT has provided an analytical path to compute
∂z⋆(x)
∂x entirely in terms of g(x, z∗)

instead of z⋆(x). With IFT, the MPC solver’s black box becomes transparent and available

for use within a differentiable constrained policy training pipeline.
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3 Koopman Constrained Policy

Optimization

3.1 Forward Pass: Combining Koopman Autoencoders

with DifferentiableMPC

Koopman Constrained Policy Optimization combines the Koopman Autoencoder of [LKB18]

with the implicitly differentiable MPC of [Amo+18] to optimize a policy that provably re-

spects hard box constraints while maximizing control performance, solving Equation 2.27.

This combination of [LKB18]’s Koopman autoencoder with [Amo+18]’s implicitly differen-

tiable MPC overcomes a great prior drawback of the original differentiable MPC: “Some-

times the controller does not run for long enough to reach a fixed point [. . . ], or a fixed point

doesn’t exist, which often happens when using neural networks to approximate the dynam-

ics.” The requirement for fixed point solutions to trajectory optimization arises inherently

and unavoidably in [Amo+18]’s use the IFT to differentiate through MPC.

Unfortunately, if using neural networks for the dynamics of MPC, [Amo+18]’s algorithm was

very unlikely to reach these required fixed points due to the strong nonconvexity introduced

by the nonlinear neural network-based dynamics. If neural networks cannot be used in MPC,

then that limits the scope of applicability for differentiable MPC to tasks such as system iden-

tification, where the physics equations are a white box save for a few parameters.

The Koopman autoencoder addresses this issue by producing entirely linear dynamics with-

out any Taylor expansion. With linear dynamics, constrained MPC optimization provably

converges to a fixed point, assuming the feasible set is nonempty. We enable end-to-end train-

ing in the forward pass of the KCPO algorithm, shown below, by a composition of the Koop-

man autoencoder and implicitly differentiable MPC.

The positive semi-definiteness of the cost function is a critical assumption for the feasibility

of the trajectory optimization problem, otherwise a solution will likely not exist. To ensure

that the cost matrix C for the KCPO algorithm is positive semi-definite, the auxiliary neu-

ral network that outputs the parameters for the cost function (AuxiliaryCostNN in 3.1)

generates the lower triangle of C’s Cholesky decomposition: C = LL⊤
. In other words, the

cost function C generated by AuxiliaryCostNN is positive semi-definite by construction

[GF96].
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3 Koopman Constrained Policy Optimization

Algorithm 4 Koopman Constrained Policy Optimization

x ∈ Rn
is a state vector

u ∈ Rm
is a control vector

u,u ∈ Rm
are the lower and upper bound box constraints on controls

C ∈ RT×n+m×n+m
and c ∈ RT×n+m

are quadratic cost terms. C must be positive semi-

definite

F ∈ RT×n×n+m
and f ∈ RT×n

are affine dynamics cost terms

1: functionKCPO(x1:T ,u,u; θ)

2: C, c← AuxiliaryCostNN(x1; θ)
3: F, f ← AuxiliaryDynamicsNN(x1; θ)
4: z1:T ← Encoder(x1:T ; θ)
5: u⋆

1:T ← DifferentiableMPCT,u,u(z1,C, c,F, f) ▷ Implicitly differentiable

6: x̂1:T ← Decoder(z1:T ; θ)
7: return u⋆

1:T , x̂1:T

8: end function

3.2 Backpropagation

Training KCPO requires backpropagating through a task-specific policy loss and an autoen-

coding reconstruction loss. Taking cues from the prior work by [YWK22] on training uncon-

strained Koopman policies, who note that prediction loss surprisingly damages the overall

task accuracy, the training procedure of KCPO does not have a prediction loss. This is unlike

prior works that usually use a prediction loss, minimizing the difference between the Koop-

man Autoencoder’s predictions of future observations and actual observations in the future.

ℓ = ℓ
policy

(u⋆
1:T ) + ℓreconstr(x̂1:T ) (3.1)

The gradient of the reconstruction loss,∇θℓreconstr is backpropagated through KCPO(xinit; θ)
in the typical manner with explicit differentiation.

However,∇θℓpolicy
is backpropagated through KCPO(xinit; θ) in two parts. First, lines 2−4

(using the neural networks) are differentiated explicitly, while line5 is differentiated implicitly,

because the differentiable MPC solver relies on the IFT.

Using the chain rule, the PyTorch library seamlessly connects the derivative of the MPC layer

w.r.t. the loss to the derivative of the previous layers w.r.t. their inputs and parameters, even

as those layers are being differentiated using different methods (implicit and explicit, respec-

tively) [Pas+19].

3.3 Stable Training

[Amo+18] acknowledge two stability problems in training for certain tasks.

First, as previously mentioned, there are occasions during training when MPC optimization

fails to reach a fixed point for some or all samples in a batch. In that case, Amos et al. pro-
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3.3 Stable Training

grammed their training procedure to detach from the ruined, unconverged samples to prevent

spoiling of the training with a runtime exception.

Second, for a task involving simultaneous system identification and cost function learning

when imitating an expert policy, training could not converge. The authors found that cycling

between training the cost function parameters and training their system parameters was the

only path to solve the task. Even the method of detaching unconverged samples could not

help.

Koopman Constrained Policy Optimization addresses both of these instability problems by

eliminating the nonconvexity of the dynamics, again thanks to Koopman operator theory:

linearity means that MPC always converges. When MPC always converges to a fixed point,

arbitrarily large and complex sets of parameters — such as those of a neural network with its

many weight matrices — may be trained with batch gradient descent.
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4 Experiments & Results

Given the motivation behind the development of KCPO, it is important to be able to evalu-

ate whether the method can train with hard box constraints enforced for the entire episode.

Training without hard constraints enforced from the start could be disastrously unsafe for

policies trained online in risky control environments like nuclear power plants.

Also critical is the model’s ability to generalize to new constraints once trained. Because train-

ing a neural network for complicated control tasks can be an expensive endeavor both com-

putationally and monetarily, an appealing feature of KCPO would be training on one set of

constraints and running with a different set as requirements change. In other words, box con-

straints, not environments with alternate dynamics constraints, are the focus of generalization

in these experiments.

For these reasons, the experimental setup of [Amo+18] has been slightly modified. The train-

ing environments used are the classic Simple Pendulum and Cartpole (see Figures 2.2 and 4.1).

The former environment is fully actuated, while the latter environment is underactuated and

thus more difficult to solve.

Figure 4.1: Cartpole Environment

4.1 Baselines

The KCPO’s efficacy is evaluated by comparing against two baseline methods.
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4 Experiments & Results

4.1.1 RecurrentNeural Network

The first baseline is inspired by the baseline of [Amo+18], a recurrent neural network (RNN)

based on the Long Short-Term Memory (LSTM) cell [HS97] (see Figure 4.2). The trajectory’s

initial state is given to the RNN and recurrently fed back its output until a full trajectory has

been generated. The LSTM cell was first introduced by [HS97] to address a stability issue that

occurs during training of recurrent neural networks known as the exploding (or vanishing)
gradient problem. The LSTM cell has special “forgetting gates” (orange and lime green in

Figure 4.2) that determine which parts of the recurrent memory to remember or forget, fixing

the exploding gradient problem.

Where this baseline version differs with the original baseline is that it has an activation func-

tion in the form of the hyperbolic tangent (frequently abbreviated to tanh) that ensures box

constraints are satisfied. This activation function is described in more detail in Section 4.1.3

and can be viewed in Figure 4.3.

Figure 4.2: LSTM-Based RNN. Licensed under Creative Commons: [Che]

4.1.2 ReflexNet

The second baseline is inspired by [Kur+22]’s ReflexNet (see Section 2.4.2), but it is modified

to enforce hard constraints.

Like the RNN baseline, the constrained ReflexNet architecture is capped at its end with the

squashing activation function, again to impose box constraints.
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4.1 Baselines

Figure 4.3: Hyperbolic Tangent Squashing Function

4.1.3 Squashing Activation Function

The hyperbolic tangent activation has been selected for use in the baselines because its range

is (−1, 1), asymptotically approaching 1 as the limit of the input approaches infinity, as can

be seen in Figure 4.3. Hence, it can be metaphorically thought of as “squashing” its input.

This works well for box constraints−1 ≤ tanh(u) ≤ 1, but the following formula enables

arbitrary lower and upper bounds (with u being the output of the neural network):

a =
u− u
2

(4.1)

b = u− a (4.2)

u⋆ = a · tanh(u) + b (4.3)

Equation 4.3 scales and translates the output of tanh(u) so that it fits into any desired bounds.

This equation is crucial for successfully bounding the trajectory outputs in both baseline neu-

ral networks.
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4 Experiments & Results

4.2 Tasks

KCPO and the baseline methods are trained via imitation learning, attempting to copy an

expert policy that uses MPC with full access to the true dynamics equations and system pa-

rameters. More specifically, the task samples a random initial state and requires the agent to

navigate to an unstable fixed point.

Following [Amo+18], for Simple Pendulum, the initial state is randomly generated via

θ ∼ U(−π
2
,
π

2
) (4.4)

θ̇ ∼ U(−1, 1) (4.5)

xinit = [cos θ, sin θ, θ̇] (4.6)

and the fixed point goal is [1, 0, 0].

For Cartpole, the initial state is randomly generated via

x ∼ U(−0.5, 0.5) (4.7)

ẋ ∼ U(−0.5, 0.5) (4.8)

θ ∼ U(−π, π) (4.9)

θ̇ ∼ U(−1, 1) (4.10)

xinit = [x, ẋ, cos θ, sin θ, θ̇] (4.11)

and the fixed point goal is [0, 0, 1, 0, 0].

Expert control trajectories were generated and split into training, testing, and validation sets

with a distribution of 1000, 100, and 100 samples respectively. Given the initial state in the

trajectory and the box constraints, each method must enforce the box constraints throughout

training while aiming to reduce the imitation error and match the expert’s control trajectory.

Training took 250 epochs, meaning that the full training set was shown to the model 250

times.

After training finishes, each method is evaluated with imitation error on the held-out test set.

All methods are trained on the same dataset for ten random trials each with different repro-

ducible pseudorandom seeds initializing neural network weights and shuffling the dataset.

Architectural and other kinds of hyperparameters are tuned using the held-out validation set.

The RNN and ReflexNet experiments are trained with the Adam optimizer on the CPU with

a learning rate of 1× 10−3
, while KCPO is trained with a learning rate of 1× 10−2

[KB14].

These settings were tuned to achieve best validation loss for all methods.
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4.3 Results

After training with the torque limits (−2, 2), one experiment tests a held-out test set with the

same torque limits of (−2, 2), while another experiment tests whether policies can handle a

distribution shift with new torque limits of (−1, 1).

Unless otherwise stated, the loss function measured in experiments is the mean squared error

(MSE) between the expert model predictive controller’s controls and the policy’s controls:

1
n

∑n
i=1(ui− ûi)

2
for a batch of n trajectories, where û is the policy’s controls. For KCPO,

which has an autoencoder component, the loss function for measuring reconstruction error is

MSE between the original input state and the reconstructed output state:
1
n

∑n
i=1(xi− x̂i)

2

for a batch of n states, where x̂ is the autoencoder’s reconstruction of the state x.

4.3 Results

4.3.1 Experiment A: Generalization to held-out test set

Figures 4.4 and 4.5 display testing imitation loss (with a zoomed-in view of the last twenty

epochs) for Simple Pendulum and Cartpole, respectively, distributed over ten trials. The X-

axis is time measured in epochs, and the Y-axis is loss measured in MSE. For these trials, the

test set used bounds of (−2, 2), which all the methods were trained with. Though the error

bars overlap, the clear trend is that KCPO is competitive with the baselines and tends to have

lower imitation loss.

4.3.2 Experiment B: Generalization to unseen box constraints

For this experiment, the policies are all provided with a new set of box constraints: (−1, 1).

Figures 4.6 and 4.7 show testing and validation imitation loss for Simple Pendulum and Cart-

pole, respectively. The X-axis is time measured in epochs, and the Y-axis is loss measured in

MSE. For the baselines, the hyperbolic tangent squashing functions are rescaled, but the neu-

ral network weights remain frozen from the training phase. Meanwhile, for KCPO, the new

box constraints are provided directly to MPC, and KCPO’s neural network weights are also

unchanged.

The results show that the baselines are less effective than KCPO at overcoming generalizing

after a distribution change from the box constraints of (-2, 2) to (-1, 1). This is perhaps because

KCPO’s architecture has an MPC layer mirroring that of the expert, while the model-free

neural networks lack a similar inductive bias. For the Simple Pendulum, KCPO has the lowest

imitation loss. For Cartpole, error bars overlap; however, like with the (−2, 2) constraints,

the trend is that KCPO is competitive with the baselines and tends to have lower imitation

loss.

4.3.3 Training and Validation

The validation and training loss curves for the (−2, 2) constraints are included for complete-

ness in Figures 4.8, 4.9, 4.10, and 4.11. For these figures, as in the other loss curve figures, the

X-axis is time measured in epochs, and the Y-axis is loss measured in MSE.
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4.3.4 Speed

While the matrix multiplication of neural nets is fast, the bottleneck of KCPO is MPC, which

is slow even for inference. The baselines have the clear advantage in training and inference

time. Due to this bottleneck, an MPC horizon of 10 was used during experiments instead of

a longer horizon during both training and inference. Future work could improve this bottle-

neck and enable longer horizons to be tractably used.

The speed of training and inference for one batch was timed for both the Simple Pendulum

and Cartpole environments using each model with horizon T = {10, 20} for ten different

batches. The results of the Cartpole timing experiment are shown in Figure 4.12. In this

figure, the X-axis is separated into categories for training and inference forward passes of each

method (KCPO, RNN, and ReflexNet), and the Y-axis is the logarithm of time in seconds per

forward pass of a single batch of data. A black line is drawn where the time reaches on second

to demonstrate when a given controller’s speed becomes far too slow for real-time control.

For inference, it takes an entire second of wall clock time to do inference on a KCPO network

trained for control on a horizon of20. This result makes it currently impractical to use KCPO

for real-time control, but with an improvement in speed in future work, the superior control

performance of KCPO compared to the baseline would become an asset.

4.3.5 KCPO’s Autoencoder Reconstruction Loss

The autoencoder reconstruction loss curves, while important for KCPO’s learning perfor-

mance, cannot be compared against the non-autoencoding baselines, but they are included

for completeness in Figure 4.13.

4.3.6 Comparison of KCPOwith Related PriorWorks

Table 4.1 contrasts KCPO with related prior works by feature. KCPO combines many of the

advantages of neural network-based policies with the hard constraint satisfaction guarantees

of classical control methods using numerical optimization. KCPO is a model-based policy

learning method with hard constraints that trains end-to-end with backpropagation and has

guaranteed stable training, unlike [Amo+18] that KCPO built upon, because it uses a linear

dynamics model. Because the RNN and modified [Kur+22] baselines are model-free, they

lack the MPC inductive bias of KCPO, perhaps explaining why KCPO is a superior con-

troller. [YWK22], which inspired this work in being the first end-to-end Koopman model-

based policy training method, lacks the ability to impose hard constraints because it relies on

unconstrained LQR.

The Koopman Differentiable Predictive Control architecture of [Kin+22] improves upon

[YWK22] by having constraints, but they are probabilistic instead of hard, and thus the archi-

tecture is safe to use only with offline training. Another issue with Koopman Differentiable

Predictive Control is that it is not trained end-to-end, requiring that the Koopman dynam-

ics model be pre-trained. Finally, the original Constrained Policy Optimization introduced

in [Ach+17] was a watershed work in constrained reinforcement learning, but it also adopts

the approach of pursuing probabilistic (not hard) constraints like [Kin+22]. This probabilis-
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tic constraint paradigm restricts the usage of architectures like [Kin+22] and [Ach+17] to be

safely trained only offline.

Table 4.1: Method Comparison

Feature This Work Baselines [Amo+18] [YWK22] [Ach+17] [Kin+22]

Model-

Based/Model-

Free

Model-Based Model-Free Model-Based Model-Based Model-Free Model-Based

Linear

Dynamics

Model?

✓ ✗ ✗ ✓ ✗ ✓

End-to-End

Training?

✓ ✓ ✓ ✓ ✓ ✗

Hard

Constraints

During

Training and

Testing?

✓ ✓ ✓ ✗ ✗ ✗

Stable

Training?

✓ ✓ ✗ ✓ ✓ ✓
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Figure 4.4: Simple Pendulum - Test Imitation Loss (-2, 2). Full and Last 20 Epochs. Lower loss is

better.
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Figure 4.5: Cartpole - Test Imitation Loss (-2, 2). Full and Last 20 Epochs. Lower loss is better.
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Figure 4.6: Simple Pendulum - Test Imitation Loss (-1, 1). Full and Last 20 Epochs. Lower loss is

better.
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Figure 4.7: Cartpole - Test Imitation Loss (-1, 1). Full and Last 20 Epochs. Lower loss is better.
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Figure 4.8: Pendulum - Training Imitation Loss (-2, 2). Full and Last 20 Epochs. Lower loss is better.
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Figure 4.9: Pendulum - Validation Imitation Loss (-2, 2). Full and Last 20 Epochs. Lower loss is better.
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Figure 4.10: Cartpole - Training Imitation Loss (-2, 2). Full and Last 20 Epochs. Lower loss is better.
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Figure 4.11: Cartpole - Validation Imitation Loss (-2, 2). Full and Last 20 Epochs. Lower loss is better.
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Figure 4.12: Time for batch inference in Cartpole. Top: Horizon = 10. Bottom: Horizon = 20.

Black line drawn at one second. Faster (lower) is better.
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Figure 4.13: Top: Pendulum KCPO Reconstruction Loss. Bottom: Cartpole KCPO Reconstruction

Loss. Lower loss is better.
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5 Conclusion

In this thesis, a new method was presented for constrained policy optimization in unknown,

highly nonlinear systems: Koopman Constrained Policy Optimization (KCPO). As noted

in the Background, the paradigm of end-to-end differentiable Koopman policies originated

with [YWK22], and this work’s primary contribution has been to extend the power of the

Koopman policy to tasks requiring hard box constraints on controls. This becomes useful

for reasons of safety, when it would be self-destructive to the robot hardware or dangerous

for humans if a robot’s torque exceeded the real-life limitations of its hardware. Being able to

impose hard box constraints on torque throughout training and inference phases ensures the

safe operation of the robot.

The original Koopman policy used analytical Riccati solving to obtain optimal controls with

their dynamics model, but this will not work when imposing box constraints. A numerical

trajectory optimization method like Box-DDP is more appropriate. However, these optimiza-

tion methods are not easily or efficiently differentiable. In this work, we proposed to retain

end-to-end differentiability in a box-constrained Koopman policy by replacing Riccati solv-

ing with the implicitly differentiable constrained MPC layer of [Amo+18].

The results shown in this thesis demonstrate that KCPO can train with a guarantee to never

violate constraints, and it can successfully change constraints at inference time without any

retraining. KCPO beats baseline methods in the Simple Pendulum environment, while it is

competitive in the Cartpole environment.

5.1 Future Extensions

The Koopman operator is an infinite-dimensional linear operator that exactly characterizes

the evolution of an autonomous dynamical system, i.e. a system that is not actuated. How-

ever, in practice, prior literature has succeeded in applying Koopman autoencoders to optimal

control settings, the control of non-autonomous systems. My own results extend this trend.

There are also potential limitations to the use of discrete time dynamics modeling that most

recurrent neural networks use, including my own. Recent work on continuous-time neural

networks has shown great promise for superior learning in time series applications, so an ex-

citing direction could be to explore the power of these new recurrent architectures within the

neural network-based optimal control paradigm my thesis has explored [Has+22].

One major limitation of KCPO is that it can only apply box constraints to controls. There

are two approaches whereby KCPO could be extended to introduce state constraints.
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By concatenating the state variables with the latent embedding vector z, following the exam-

ple of [SM22], state constraints could be easily imposed on the trajectory optimization. How-

ever, one may expect for the dynamics model’s accuracy to suffer with this design, so there is

a trade-off to consider. Another approach to achieving state constraints with the Koopman

framework can be found in [KM18] and [HEK22], who use a linear decoder. The trade-off

with this approach is that a linear decoder cannot match the reconstruction error of the true

nonlinear decoding, also damaging the dynamics model’s accuracy.

As mentioned in the Background, DeSKO is a Koopman MPC method that, like a variational

autoencoder, deterministically maps to the parameters for a random distribution over latent

variables instead of mapping to latent variables directly. A future extension to KCPO could

borrow aspects of the DeSKO design to achieve stochastic control robust to random pertur-

bations in the dynamics. However, because LQR is already optimal for stochastic dynamics

with a Gaussian distribution, KCPO is actually an optimal controller for that particular ap-

plication of stochastic control [Tedd].

Finally, the timing experiments showed that KCPO is much slower than the baselines. Future

work remains to improve KCPO’s training and inference speed to enable real-time control.

5.1.1 From Box Constraints to Arbitrary Nonlinear Constraints

Future work could extend KCPO’s scope beyond box constraints for controls by replacing

the Box-DDP trajectory optimization algorithm within the differentiable MPC layer with the

Augmented Lagrangian TRajectory Optimizer (ALTRO), which like Box-DDP is also based

on iLQR. ALTRO retains the main advantage of iLQR, namely strict dynamic feasibility

through optimization, but it expands on iLQR with the augmented Lagrangian method to

support arbitrary nonlinear constraints [HJM19].

As long as those nonlinear constraints and the objective function remain convex, the opti-

mizer will provably converge with enough iterations, just as Box-DDP does. Provided that

ALTRO converges to a fixed point, the Implicit Function Theorem could be used in the same

manner to differentiate through the ALTRO solver for backpropagation. Due to ALTRO’s

heritage from iLQR, it requires linearization of its dynamics, making KCPO a complemen-

tary fit.
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Acronyms

ALTRO Augmented Lagrangian TRajectory Optimizer

Box-DDP Box-Dynamic Differential Programming

CMDP Constrained Markov Decision Process

CPO Constrained Policy Optimization

DARE Discrete Algebraic Riccati Equation

DDP Dynamic Differential Programming

DeSKO Deep Stochastic Koopman Operator

DMD Dynamic Mode Decomposition

eDMD Extended Dynamic Mode Decomposition

IFT Implicit Function Theorem

iLQR Iterative Linear Quadratic Regulator

JNF Jordan Normal Form

KCPO Koopman Constrained Policy Optimization

LQR Linear Quadratic Regulator

LSTM Long Short-Term Memory

MDP Markov Decision Process

MLP Multilayer Perceptron

MPC Model Predictive Control

RNN Recurrent Neural Network

SNOPT Sparse Nonlinear OPTimizer

UAT Universal Approximation Theorem
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