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ABSTRACT

Topics in Landmarking and Elementwise Mapping

Mehmet Kerem Turkcan

We consider a number of different landmarking and elementwise mapping problems and

propose solutions that are thematically interconnected with each other. We consider diverse

problems ranging from landmarking to deep dictionary learning, pan-sharpening, compres-

sive sensing magnetic resonance imaging and microgrid control, introducing novelties that

go beyond the state of the art for the problems we discuss.

We start by introducing a manifold landmarking approach trainable via stochastic gra-

dient descent that allows for the consideration of structural regularization terms in the

objective. We extend the approach for semi-supervised learning problems, showing that it

is able to achieve comparable or better results than equivalent k-means based approaches.

Inspired by these results, we consider an extension of this approach for general supervised

and semi-supervised classification for structurally similar deep neural networks with self-

modulating radial basis kernels.

Secondly, we consider convolutional networks that perform image-to-image mappings

for the problems of pan-sharpening and compressive sensing magnetic resonance imaging.

Using extensions of deep state of the art image-to-image mapping architectures specifically

tailored for these problems, we show that they could be addressed naturally and effectively.

After this, we move on to describe a method for multilayer dictionary learning and feed-

forward sparse coding by formulating the dictionary learning problem using a general deep

learning layer architecture inspired by analysis dictionary learning. We find this method

to be significantly faster to train than classical online dictionary learning approaches and

capable of addressing supervised and semi-supervised classification problems more naturally.

Lastly, we look at the problem of per-user power supply delivery on a microgrid pow-

ered by solar energy. Using real-world data obtained via The Earth Institute, we consider



the problem of deciding the amount of power to supply to all each user for a certain pe-

riod of time given their current power demand as well as past demand/supply data. We

approach the problem as one of demand-to-supply mapping, providing results for a policy

network trained via regular propagation for worst-case control and classical deep reinforce-

ment learning.
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Introduction

In this thesis, we consider a number of different landmarking and elementwise mapping

problems and propose solutions that are thematically interconnected with each other. We

consider diverse problems ranging from landmarking to deep dictionary learning, pan-

sharpening, compressive sensing magnetic resonance imaging and microgrid control, in-

troducing novelties that go beyond the state of the art for the problems we discuss.

We start by introducing a manifold landmarking approach trainable via stochastic gra-

dient descent that allows for the consideration of structural regularization terms in the

objective. We extend the approach for semi-supervised learning problems, showing that it

is able to achieve comparable or better results than equivalent k-means based approaches.

Inspired by these results, we consider an extension of this approach for general supervised

and semi-supervised classification for structurally similar deep neural networks with self-

modulating radial basis kernels.

Secondly, we consider convolutional networks that perform image-to-image mappings

for the problems of pan-sharpening and compressive sensing magnetic resonance imaging.

Using extensions of deep state of the art image-to-image mapping architectures specifically

tailored for these problems, we show that they could be addressed naturally and effectively.

After this, we move on to describe a method for multilayer dictionary learning and feed-

forward sparse coding by formulating the dictionary learning problem using a general deep

learning layer architecture inspired by analysis dictionary learning. We find this method

to be significantly faster to train than classical online dictionary learning approaches and

capable of addressing supervised and semi-supervised classification problems more naturally.

Lastly, we look at the problem of per-user power supply delivery on a microgrid pow-
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ered by solar energy. Using real-world data obtained via The Earth Institute, we consider

the problem of deciding the amount of power to supply to all each user for a certain pe-

riod of time given their current power demand as well as past demand/supply data. We

approach the problem as one of demand-to-supply mapping, providing results for a policy

network trained via regular propagation for worst-case control and classical deep reinforce-

ment learning.
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Part I

Landmarking Architectures
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Chapter 1

Sequential Landmarking

1.1 Introduction

For this section, we follow from previous work on landmarking manifolds with Gaussian

processes [Liang and Paisley, 2015]. Let us begin with a brief overview of the model.

Given a dataset X ∈ RM×N of M examples, we want to calculate a number of land-

marks, li, i ∈ {1, ...,K} that exemplify the dataset in some way. Given n landmarks

l1, ..., ln, let us consider the following objective:

ln+1 = arg max
x

k(x,x)− k(x, {l1, ..., ln})k({l1, ..., ln}, {l1, ..., ln})−1k({l1, ..., ln},x) (1.1)

where we can use the RBF kernel k(x,y) = c ·exp
(
−‖x− y‖2/η

)
(generalized for vector or

matrix output) or use the approximation described in [Liang and Paisley, 2015] to consider

X during the calculations.

1.2 Sparse Landmarking via Alternating Direction Method

of Multipliers

In many machine learning datasets, the examples are sparse, that is, they have a small `0

norm. To give specific examples, bag-of-words representations of sentences or digits from

the MNIST database have this property. Using the convex `1 norm instead of the difficult-

to-optimize `0 norm, we can use the alternating method of multipliers (ADMM) to promote
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sparsity in the landmarks calculated.

The general ADMM formulation considers the problem

minimize f(x) + g(z)

subject to Ax+Bz = c

(1.2)

which is solved via iterating with the following steps:

xi+1 = arg min
x
Lρ(x, z

i,yi)

zi+1 = arg min
z
Lρ(x

i+1, z,yi)

yi+1 = yi + ρ(Axi+1 +Bzi+1 − c)

(1.3)

where

Lρ(x, z,y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22 . (1.4)

ADMM has been used for a huge variety of methods from robust PCA [Candès et al.,

2011] to tensor inpainting [Liu et al., 2013]. Given a black-box landmarking algorithm with

objective function Llandmark to learn the next landmark, then, the problem becomes

minimize Llandmark(x) + λ||z||

subject to x− z = 0

(1.5)

with solution

xi+1 = arg min
x

Llandmark(x) + ρ/2||x− zi + yi||22

zi+1 = arg min
z

Shrinkageλ/ρ(x
i+1 + yi/ρ)

yi+1 = yi + ρ(xi+1 − zi+1).

(1.6)

where Shrinkageλ/ρ is the soft thresholding function with threshold λ/ρ. In [Liang and

Paisley, 2015], the landmarks are computed with the following gradient-normalized update:

γ = lin+1 + ρs∇lfn(l,Xbatch)|ln+1/(
∥∥∇lfn(l, Xbatch)|ln+1

∥∥
2
)

li+1
n+1 = ProjS(γ)

(1.7)

which we extend by changing the second step as

li+1
n+1 = ProjS(γ + κ (x− z + y) /‖x− z + y‖2)
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in order to solve the first step in Equation 1.6.

This method allows one to capture the hidden structure in a given dataset. In Figure

1.1, we show two sets of 9 landmarks calculated from the MNIST dataset with and without

the `1 norm term. For these results, we have used ρ = κ = 10−2 and run the algorithm

for the same amount of steps (Imax = 1000) for both methods with other parameters set

the same way as the source paper, running the outer ADMM loop 10 times. In Figure 1.2,

we show the difference between the classical landmarking algorithm and the sparse model

for the first 1000 landmarks by using RBF kernel matrix from examples to landmarks as

features and training logistic regression models on the MNIST dataset, reporting the results

on the testing set. To make the differences between the methods more noticeable, only 10000

examples were used for training and 1000 for validation. Training was stopped with early

stopping after 10 iterations without improvement.

Figure 1.1: Visualization of the 9 landmarks from (a) the sequential landmarker we consider

and (b) the ADMM variant with `1 sparsity for the full MNIST dataset.

1.3 Semi-Supervised Landmarking

Similar to support vector machines, construction of the full similarity matrix is the most

demanding part for spectral clustering approaches. For this section, we will be following

previous work on the subject that has utilized the centers of k-means clusters as landmarks

or random landmarks and used the examples-to-landmarks similarity matrix for spectral

clustering [Chen and Cai, 2011]. Following the paper, given the examples-to-landmarks
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Figure 1.2: The difference between the classical landmarking algorithm and the sparse land-

marking algorithm for the first 1000 landmarks by using RBF kernel matrix from examples

to landmarks as features and training logistic regression models on the MNIST dataset.

To make the differences between the methods more noticeable, only 10000 examples were

used for training and 1000 for validation. Training was stopped with early stopping after

10 iterations without improvement.

kernel matrix Φ(X,L) ∈ RM×K (whereX is the matrix of examples and L is the landmarks

matrix), one can calculate the eigenvectors of Φ(X,L)TΦ(X,L), then project Φ(X,L) to

that space and perform a final k-means to get the spectral clustering result. We will seek

to use a similar idea to perform semi-supervised learning instead.

1.3.1 Semi-Supervised Learning on the Affinity

A direct way to extend this method is through the usage of Φ(X,L) in addition with a

one-hot label encoding Y train. For this subsection we choose to follow an old and famous
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methodology that makes use of the submatrices of the full examples-to-examples affinity

matrix to get the desired result [Zhu et al., 2003]. The equation used in the paper to

calculate the result is

Ŷ test = Φ̄(Xtest,Xtest)
−1Φ̄(Xtest,Xtrain)Y train (1.8)

where Φ̄ refers to Φ after some normalization.

We seek the find a method for generating similar results using landmarks instead to

significantly reduce the dimensionality required. We choose to use

Ŷ test = Φ̄(Xtest,L)†Φ̄(Xtrain,L)TY train (1.9)

to get similar results without actually computing the full affinity matrix.

We show a set of results as a function of landmarks using the classical landmarking

algorithm from Chapter 1 against a simple k-means baseline for the examples on Figure

1.3. 1000 landmarks were used for each algorithm. As shown, the landmarking algorithm is

able to beat k-means when the number of training examples is low; increasing the number

of training examples quickly leads to both methods converging to the same accuracy.

1.4 Deep Landmarking

We will now look at landmarking as a step in a wide range of machine learning applications,

from autoencoders to support vector machines and specifically deep RBF networks.

1.5 Autoencoders

Here, we consider the problem of learning an autoencoder with landmarking layers. An

autoencoder is a model that is trained to mimic its input; the intermediate representation of

the input, or code, generated by the autoencoder can then be used as features for an another

method for classification, regression or unsupervised learning [Hinton and Salakhutdinov,

2006].

A once-popular extension of the autoencoder model is the stacked autoencoder, which

is interesting due its ability to provide layerwise training; in a stacked autoencoder, a
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series of autoencoders are sequentially trained and every autoencoder uses the intermediate

representation of the previous one as input/output [Bengio et al., 2007]. More recently,

variational autoencoders and their variants have been shown to give good results on a
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Figure 1.3: Semi-supervised classification results for k-means versus our approach (GML)

with 1000 examples in the training set and 10000 in the test set. For these results, the

classical landmarking algorithm from [Liang and Paisley, 2015] was utilized.

EncoderInput Decoder Output

Figure 1.4: Model overview for a general autoencoder.
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number of problems [Kingma and Welling, 2013].

Another interesting extension is the so-called denoising autoencoder, in which noise is

added to the input of the autoencoder but not to the output so that the model will learn

to denoise its input [Vincent et al., 2008].

1.6 Landmarking Autoencoder

Let us consider an autoencoder in which the final layer of the encoder calculates the distance

matrix between its inputs and a number of landmarks (wherein the landmarks are going

to be the parameters of the layer). Then the decoder is forced to learn to reconstruct the

data from this distance matrix. This very last layer of the encoder can then be seen as a

landmarker with an Euclidean distance kernel (or log-RBF). One could also use the RBF

kernel directly if desired.

In this model the landmarks can be learned sequentially, by freezing the landmarks that

were previously obtained and restarting training to relearn the remaining parameters of the

network as well as the new landmark. This type of model can be trained via stochastic

gradient descent (SGD). Other, more modern stochastic optimization methods (like RM-

SProp [Tieleman and Hinton, 2012], Adadelta [Zeiler, 2012] and the recently-popular Adam

[Kingma and Ba, 2014]) which allow for simultaneous learning of all landmarks could be

utilized as well.

Whereas autoencoders are interesting approaches, by itself data reconstruction is un-

interesting as end-to-end training is more desirable for supervised tasks. Therefore, we

consider a number of landmarking support vector machine methods for classification in the

upcoming sections.

1.7 Landmarking Support Vector Machine

Given an input vector x ∈ RN , a fully-connected (FC) hidden layer calculates

y = g(xW + b) (1.10)
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where y ∈ RB are the output activations, g an activation function, W ∈ RN×B a weight

matrix, and b a vector. Here, W and b are the parameters to be learned in a single layer,

and in modern architectures g(x) = max(0, x) (called the rectified linear unit, or ReLU)

and its variants like parametric rectified linear units (PReLU) [He et al., 2015b] are used as

the activation. We can consider a kernel trick here to get a (potentially) more interesting

set of features:

y = g(Φ(x,W ) + b) (1.11)

which is a sort of representation that allows us to construct a support vector machine. For

simplicity let’s call this layer a Kernelized Fully-Connected (KFC) layer. We note that

in literature this kind of layer is popularly referred to as a Radial Basis Function (RBF)

network [Broomhead and Lowe, 1988], but the general framework in which we consider

the architecture is going to be novel and we are ignoring the weighting of the output.

Accordingly, for Φ, we choose to use

Φ = e−
‖x−W‖22

2σ2 (1.12)

in which we assume vectors broadcast to matrices.

For MNIST classification, we can consider a neural network with architecture:

Input→ Landmarking64 → BatchNorm→ Softmax10 (1.13)

where Landmarking64 refers to a landmarking layer with 64 landmarks, BatchNorm is

batch normalization and Softmax10 refers to a logistic regression layer (with 10 outputs

corresponding to the 10 MNIST classes). We can train this architecture with multiclass

hinge loss to get a proper landmarking support vector machine (LSVM).

We train a LSVM using the popular Keras library [Chollet, 2015]. First, we choose to

train on the training set of MNIST by (1) setting 2σ2 to be equal to the variance of the

input automatically or (2) making it a unique value per landmark. We initialize all 2σ2’s

as 1000 and run the training for 100 epochs with the Adam optimizer and with only 16

neurons per landmarking layer.

We achieve 89.84% accuracy with the auto-sigma LSVM as compared to the 88.26%

accuracy we received with a multi-sigma LSVM. Our result shows that some regularization
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is necessary to make sure that sigma values do not drift significantly from each other, hinting

at the possibility of a Bayesian loss for enhanced results.

A limiting factor in RBF network training (as well as LSVM training) is the size of the

input. To counteract this limit, we augment LSVM’s with a FC layer after the input and

before the KFC layer.

1.8 Multilayer Landmarking Support Vector Machine

In this section, we investigate whether it is possible to extend the method we consider

into a multi-layer scheme. To perform this, we will need to use some recent regularization

approaches like batch normalization [Ioffe and Szegedy, 2015] and dropout [Srivastava et

al., 2014]. These methods are used in virtually all modern deep learning approaches and

allow for nearly-non-parameterized regularization, especially compared against the classical

`1 and `2 regularization schemes that require extensive hyperparameter optimization.

1.9 Residual Networks

Residual networks are composed of blocks with so-called skip connections [He et al., 2015a].

The general look of a residual block is shown on Figure 1.5.

We consider residual networks as a simple way to enhance the results and to make

multilayer landmarking SVM’s a viable training method. We compare residual blocks with

several layers against multilayer LSVM’s on the MNIST database, finding that multilayer

LSVM’s can outperform standard residual blocks. Specifically, we consider a variant of a

classical residual architecture [Johnson et al., 2016] for deep residual networks

Input→ FC64 →
[
[FC64 → BatchNorm→ FC64]

5
]
→ Softmax

where [. . . ] refers to a residual block in which the input and the final result are summed up

(via elementwise sum) at the very end and powers refer to the number of repetitions of the

structure within the parentheses Furthermore, FCa refers to a fully connected (or dense)

layer with a hidden units. The landmarking equivalent of this is given by

Input→ FC64 →
[
[Landmarking64 → BatchNorm→ Landmarking64]

5
]
→ Softmax
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We find that the landmarking approach we consider is able to beat the equivalent residual

version on the MNIST dataset, achieving 97.81% accuracy against the 96.56% accuracy

baseline for the residual network when the dense or landmarking layers are succeeded by

dropout layers with a dropout rate of 0.2. Note that we have purposefully considered only

non-convolutional layers with a low number of neurons for the experiments so that there is

a visible difference in the final results.

1.10 Future Work and Discussion

Immediate future work for the new residual approach we formulate would be to attempt to

extend the approach for more general deep learning tasks (like convolutional architectures)

and to perform extensive benchmarking; expensive hardware and large amounts of time are

required to build the experiments for more advanced datasets like SVHN, CIFAR-10 and

Block
Summing 

Layer

Figure 1.5: Overview of a general residual block. A standard residual block consists of a

classical block of fully connected or convolutional layers with batch normalization and/or

dropout as well as a summing layer that sums the input of that classical block with its

output.
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ImageNet. We are hoping to continue this line of research during our PhD, when we will

have access to such hardware.

Kernelized layers are unique in that even a single layer is quite formidable, unlike clas-

sical fully connected layers that are only capable of straightforward subspace projection.

Modern approaches for deep architectures that introduce skip connection or gates (like

highway networks) to the layers are capable of alleviating the intractable overfitting is-

sues encountered when attempting to generalize kernelized networks to multilayer schemes.

Combination of dense residual network generalizations, like the one proposed in [Huang et

al., 2016], with kernelized layers is thus an additional promising line of research.



15

Part II

Learning Convolutional Mappings

for Image Restoration
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Chapter 2

Deep Pan-Sharpening

The pan-sharpening problem considers the estimation of a high-resolution multispectral

image given a low-resolution multispectral (MS) image and a high-resolution panchromatic

(PAN) image as inputs. The multi-input and super-resolution-like structure of the problem

renders convolutional layers a natural approach to solving the problem. In this chapter,

we propose a pan-sharpening neural network architecture that operates independently on

all channels. This allows model training with large amounts of real world data. Through

experiments on the QuickBird and IKONOS images, we demonstrate that our proposed

method achieves state-of-the-art performance on a number of metrics.

2.1 Introduction

As physical limitations render the acquisition of high-resolution multispectral images dif-

ficult, for remote sensing applications a high-resolution panchromatic image and a low-

resolution multispectral image is acquired via two separate sensors instead. A pan-sharpening

method can then be used to fuse these two images to approximate a high-resolution multi-

spectral image.

2.1.1 Relevant Work

A large number of different approaches have been offered for the pan-sharpening problem

[Nikolakopoulos, 2008; Vivone et al., 2015].
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Figure 2.1: 16 high-resolution patches from the QuickBird dataset used in the experiments.

More recently, approaches based on sparse coding and Bayesian dictionary learning have

been proposed [Li and Yang, 2011; Zhu and Bamler, 2013; Jiang et al., 2015]. Following

the sparse coding methodology and combining it with deep learning ideas, a recent work

has even used a modified, deep sparse denoising autoencoder with greedy layerwise training

and fine-tuning [Huang et al., 2015b].

Deep learning methods with convolutional layers have shown promise on a large number

of image transformation tasks. A variety of deep convolutional neural network architec-

tures been proposed for super-resolution and achieve impressive results [Dong et al., 2014b;
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Figure 2.2: 16 high-resolution patches from the IKONOS dataset used in the experiments.

Wang et al., 2015; Mao et al., 2016; Huang et al., 2015a; Ledig et al., 2016]. Convolu-

tional architectures have shown success on other difficult tasks like image colorization, style

transfer and sketch inversion as well [Zhang et al., 2016; Gatys et al., 2015]. A convolu-

tional neural network approach for the pan-sharpening problem has recently been proposed

[Masi et al., 2016], in which authors have improved the results through the addition of

domain-specific features into the network.

The past convolutional network approach to pan-sharpening has utilized a simple net-

work architecture (seemingly inspired by the simple yet effective super-resolution architec-
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ture in [Dong et al., 2014a]) as satellite imagery data is relatively rare compared to the

datasets for which deep learning is usually performed, which renders obvious deep learning

approaches with many parameters difficult to train.

lowX panX

Merge

...

UpSampling2x2

Conv64

Conv64

MaxPooling2x2

Conv64

Conv64 +

Conv3

...
+

...

Conv256

ˆ
highX

Figure 2.3: An overview of our multi-channel model, which could be used for single-channel

outputs as well. We first get the low-resolution multispectral image to the same size as the

high-resolution panchromatic image. We then add the panchromatic image as an another

channel. In the left column, we gradually lower the resolution in the input, while upscaling

the output in the second column. We use skip connections to make sure that the network can

decide on the scale at which the filtering operations are to be performed. All convolutional

layers are followed by a dropout layer with dropout fraction 0.25 and PReLU activations.

Note that the blocks in the left column are different than the blocks in the right column.

We use 5 blocks in each column in this chapter.
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2.1.2 Our Contribution

In this chapter we introduce a pan-sharpening method that directly takes only a single

channel of the low-resolution multispectral image and the panchromatic image as input.

Our method first increases the resolution of the low-resolution multispectral input to match

the resolution of the panchromatic image by upsampling with bicubic interpolation. The

panchromatic image is then concatenated super-resolved tensor as a new channel, which

is fed to the deep superresolution network and then eventually converted into an image

of the expected output size. Finally, the pixel values are acquired by applying a sigmoid

function at the output, assuming the target output values are in [0, 1]. We train this model

with the Adam optimizer using a Keras-based implementation and show state-of-the-art

performance in patches sampled from QuickBird and IKONOS images.

Table 2.1: Baseline Network Configuration: Input A is the low-resolution multispec-

tral image and Input B is the high-resolution panchromatic image. ConvYX×X refers to a

convolutional layer with Y X×X dimensional filters, and we assume that the multichannel

input resolution has been quadrupled with bicubic interpolation.

Input A: 4M × 4N Naively Upscaled RGB Image Input B: 4M × 4N Grayscale Image

Merge Channels

Conv56
3×3

Conv32
3×3

Conv3
3×3

Sigmoid Activation

2.2 Method

In this section, we propose a model trained with the mean-squared error (MSE) metric

for solving the problem. A visual overview of the model we propose is given on Figure

2.3, and a baseline convolutional architecture, based on previous deep learning work on

pan-sharpening, that we use for comparison is given on Table 2.1 [Masi et al., 2016].

We use the Adam optimizer for training and a Dropout of 0.25 after the convolutional
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layers [Kingma and Ba, 2014; Srivastava et al., 2014] We utilize the PReLU activation

function for all convolutional layers [He et al., 2015b]. We use 5 blocks for both the down-

sampling and the upsampling directions. For each model, during training, we use 20% of the

data for validation and return the best model after running for 10 epochs or early stopping

after no decrease in validation MSE after 5 epochs.

2.2.1 Channelwise Pan-Sharpening

In the previous section we have seen an approach to pan-sharpening that utilizes state-

of-the-art deep learning methods. Whereas such models are powerful when given enough

training data, they are not powerful when the size of the data is small due to the large

number of parameters that require tuning.

A central problem about pan-sharpening, however, is the lack of training data. Every

satellite has a number of non-RGB, near-infrared (NIR) channels that require superresolu-

tion as well. However, such satellite imagery is naturally extremely rare and thus is only

available in small numbers. Due to the different number of channels in different satellites,

the utilization of a standard convolutional neural network at the beginning of the deep neu-

ral network architecture is unfeasible as the weights of the first convolutional layer remain

fixed. Here, we formulate a new approach that allows for general optimization schemes.

By building the same model as before, but only inputting one channel of the input at

a time, we can train a network that performs channelwise pan-sharpening. In practice,

this model could be the same as the normal multichannel pan-sharpening model we have

introduced apart from the number of channels in the input and the output, which practically

has the additional advantage of allowing the network to have less parameters at the more

training-dependant earlier layers that naturally have a huge effect on the superresolution

output. We will refer to this model as the Single Channel pan-sharpening model, and test

it along with the multi-channel variant. For this specific model, to avoid comparison issues

we choose to use the same architectural and training choices as above.



CHAPTER 2. DEEP PAN-SHARPENING 22

2.3 Experiments

2.3.1 Datasets

We run our experiments on publicly available QuickBird and IKONOS images. We ex-

tract 256× 256 dimensional patches for each dataset. Following the established simulation

methods, we perform 7× 7 Gaussian blurring with σ = 1 followed by downsampling to get

64 × 64 dimensional low-resolution multispectral images and use grayscale versions of the

high-resolution images as the panchromatic inputs.

2.3.1.1 QuickBird

We use 2800 patches for training and 340 for testing. We use disjoint image sets for training

and testing. Examples from the dataset are shown on Figure 2.1.

(a) Input (b) IHS (c) PCA (d) Wavelet

(e) Closed (f) Guided (g) Our Proposal (h) Ground Truth

Figure 2.4: Examples of pan-sharpening results for the different methods and the method

we propose. Due to the similarity between the approaches we consider, we only show results

from the single-channel approach we describe.
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2.3.1.2 IKONOS

We use 3600 patches for training and 390 for testing. We use disjoint image sets for training

and testing. Examples from the dataset are shown on Figure 2.2.

2.3.2 Evaluation

We use RMSE, ERGAS, SAM and Q metrics for evaluation, and compare against the

classical IHS, PCA, Wavelet, P+XS, Closed and Guided pan-sharpening methods. For our

models we use the settings given above, specifically utilizing the MSE loss, and train each

method by early stopping after no improvement for 10 epochs and loading the model with

least validation error. Due to data restrictions, we only use the red, green and blue channels

for the satellite data of both the QuickBird and KRONOS satellite imagery throughout our

experiments.

We present the results on Table 2.2 for the QuickBird dataset and 2.3 for the IKONOS

dataset. We also provide a visual example showing the results for the different methods

on Figure 2.4. As shown, our approaches are good but not the best for every metric and

dataset; this is to be expected, as our models have only taken RMSE into account during

optimization. Practically, one must take into account the practical advantages of the single

channel model as once could potentially train an all-purpose superresolution network to

address every pan-sharpening problem regardless of the model specifications. This is more

similar to the current and past pan-sharpening approaches that have been utilized to that

purpose.

2.4 Discussion and Future Work

In this section, we have proposed and evaluated a number of deep convolutional network

architecture with multiscale skip-connections to address the pan-sharpening problem. The

architectures presented can be trained end-to-end via backpropagation. We have introduced

a method that works on single channel imagery to be able to address the presence of near-

infrared or other non-visible band channels for the same or different capture conditions

under the constraint that the model was trained on similar channels beforehand.
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Table 2.2: Results for the QuickBird dataset composed of 340 testing examples.

RMSE ERGAS SAM Q4

IHS 0.091 2.691 2.049 0.932

PCA 0.167 4.476 2.932 0.778

Wavelet 0.083 2.514 2.321 0.945

PxS 0.115 3.297 2.677 0.904

Closed 0.13 3.605 2.746 0.868

Guided 0.128 3.574 2.805 0.868

Convolutional Network Baseline 0.063 2.131 2.455 0.934

Our Proposal (Multichannel) 0.056 2.129 2.439 0.947

Our Proposal (Single Channel) 0.052 2.126 2.437 0.949

Table 2.3: Results for the IKONOS dataset composed of 390 testing examples.

RMSE ERGAS SAM Q4

IHS 0.098 2.698 2.456 0.94

PCA 0.175 4.484 2.94 0.786

Wavelet 0.091 2.522 2.328 0.953

PxS 0.123 3.305 2.685 0.912

Closed 0.137 3.613 2.754 0.876

Guided 0.136 3.582 2.812 0.875

Convolutional Network Baseline 0.07 2.132 2.442 0.957

Our Proposal (Multichannel) 0.064 2.136 2.447 0.955

Our Proposal (Single Channel) 0.059 2.134 2.441 0.96
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In the future, we are hoping to improve the results further through the introduction

of more regularization methods that promote realism such as the addition of texturing via

adversarial generative networks, TV loss and VGG-16 loss as performed in some modern

super-resolution approaches [Ledig et al., 2016].



CHAPTER 3. COMPRESSIVE SENSING MAGNETIC RESONANCE IMAGING 26

Chapter 3

Compressive Sensing Magnetic

Resonance Imaging

A very similar problem is that of Compressive Sensing Magnetic Resonance Imaging (CS-

MRI) [Lustig et al., 2008]. In CS-MRI, we assume that we have a image that has been

heavily subsampled in the Fourier domain and we seek to recover the original. This problem

has been studied extensively over the past decade, with multiple approaches that utilize

sparsity and/or dictionary learning constraints to achieve good reconstruction rates [Huang

et al., 2014].

For our approach, we make no assumptions regarding whether the sampling mask itself

is known along with the image, though we utilize a fixed mask for simplicity and thus

indirectly allow for the models we consider to learn it during the training phase. A further

assumption is that the fully sampled Fourier domain signals we are seeking to recover have

low sparsity, i.e. the number of nonzero entries are small. Of course, we make the usual

assumption that we can minimize `1 norm instead.

3.1 Objective Function

The problem description itself tells us that we need to have an `1 error term related to the

Fourier coefficients of the output. Usually, a TV-norm constraint is added in CS-MRI as

well [Huang et al., 2014]. As such, the objective function we seek to minimize becomes, for
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a single image,

JCS−MRI =
∥∥∥Y − Ŷ ∥∥∥2

2
+ α

∥∥∥Ŷ ∥∥∥
TV

+ β
(∥∥∥∣∣∣Re

(
FŶ

)∣∣∣∥∥∥
1

+
∥∥∥∣∣∣Im(FŶ )∣∣∣∥∥∥

1

)
(3.1)

where α and β are constants, F denotes the 2D discrete Fourier transform, Y is the ground

truth for an image and Ŷ is the estimate (in this case, the network output). We assume

that our network takes in a corrupted image in the spatial domain, X as input and outputs

Ŷ . For multiple images, this objective effortlessly generalizes as a sum (or mean) over all

images.

In the case when we are not assuming that a training set will not be available, the new

objective function (that follows the approach from [Huang et al., 2014]) becomes:

JCS−MRI−Single = α
∥∥∥Ŷ ∥∥∥

TV
+ β

∥∥∥(|FY |) ◦
(
FŶ −FY

)∥∥∥2
2

(3.2)

which we will use for our single image CS-MRI experiments with a deep learning architecture

that attempts to mimic a patch-based dictionary learning-based solution.

3.2 Model

A basic overview the model we choose to utilize is given in Figure 3.2, inspired by recent state

of the art superresolution networks introduced [Ledig et al., 2016]. Practically, we apply

convolutional layers with ReLU activations (except for the final layer) and skip connections

after every two convolutions. As is the norm with such models, filters in the convolutional

layers are of size 3×3. As a balanced compromise between training speed and accuracy, we

Figure 3.1: A number of radial CS-MRI sampling masks. In order, they correspond to

sampling 10%, 20%, 25%, 30% or 35% of the original Fourier space signal. In this chapter, we

use the middle mask, corresponding to sampling 25% of the Fourier domain representation.
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consider 5 residual blocks for our models, and as shown in the figure utilize 64 filters per

layer.

Due to numerical difficulties one would face with the last term, we find that we have

to add extensive guards against NaN’s. We use Adam for fast training [Kingma and Ba,

2014].

We also consider the single image CS-MRI problem, using Equation 3.2 as the objective

function. For this model, we consider a very simple convolutional neural network with only

two layers. The first layer contains 256 filters of size 6× 6 (inspired by [Jiang et al., 2015])

and the second layer contains a single filter of size 5 × 5; the first layer is succeeded by a

ReLU activation and the second layer lacks a nonlinear activation function. We again use

Adam for training of this network. We consider 512× 512 dimensional single image inputs

for the single image model.

ReLU

Conv64

Conv64

+
Conv1

...

Ŷ

X

Conv64

Figure 3.2: The image restoration model we utilize for CS-MRI. We consider convolutional

layers to be without activations and have omitted the batch normalization after the convo-

lutions. Whereas we have shown X as a multichannel image for the general case, for this

section we assume that the input is a single-channel image.
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For all approaches considered, we choose to use radial sampling masks for our approach

as they are well known to be the ones that give the best results [Huang et al., 2014]. We

display images for 5 different masks with different sparsities on Figure 3.1. In this chapter,

we use the mask in the middle, which corresponds to sampling 25% of the Fourier domain

representation of the image.

3.3 Experiments

Due to the lack of a standard dataset to try CS-MRI algorithms on, we choose to use a

subset of the publicly available OASIS dataset [Marcus et al., 2007]. Specifically, we extract

6080 slices of cranial MRI from the first part of OASIS images. We show a montage of 16

images from the dataset we prepare on Figure 3.4.

We train our model using 75% of the data and validate on the 25%. We utilize five

residual blocks for the network architecture and set α = β = 10−2 as higher values en-

courage sparsity further. We compare our results against an application of the sparse MRI

algorithm with default parameters. We find that our algorithm is able to improve the

24.32dB input baseline (corrupted inputs) to 31.13dB over the testing set; in comparison,

with the default parameters, the classical CS-MRI method is only able to achieve 25.19dB.

With more training examples, deeper networks and heavy hyperparameter optimization, we

believe we can improve the results significantly.

For the single image model, we provide results on two 512 × 512 images, shown on

Figure 3.3: Two real-valued MRI images we choose to use for our single image model

experiments.
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Figure 3.4: 16 images from the OASIS dataset used in the experiments.

Figure 3.3. For these experiments, we use the 10% sampling mask instead. For the first

image, we find that our model improves the 18.45dB corrupted baseline to 21.12dB, while

the default CS-MRI model achieves 19.51dB. For the second image, on the other hand,

our model improves the 18.63dB corrupted baseline to 22.15dB, while the default CS-MRI

model achieves 20.23dB.
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3.4 Discussion and Future Work

Future work in this area should focus on finding ways to use the sampling mask within the

network as a constraint along with the Fourier domain sparsity. In many ways, this problem

is an interesting challenge for convolutional approaches as a convolution corresponds to an

elementwise multiplication in the Fourier domain; as such, the sparse Fourier input leaves

the activation function the main means of improvement for the network at hand unlike most

other deep learning tasks in which the convolution filters are powerful and interpretable

enough the describe the problem solution.

Furthermore, we believe that through the usage of more advanced, deeper architectures

with more parameters and the inclusion of a more extensive hyperparameter search, the

results shown can be improved significantly. Moreover, through the utilization of pre-trained

neural networks like VGG-16 as feature extraction layers for the single-image approaches,

we believe that significant strides in single-image CS-MRI could be attained. We are hoping

to focus on such ideas in the future.
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Part III

Lethargic Multilayer Dictionary

Learning
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Chapter 4

Lethargic Dictionary Learning

In this chapter we introduce a new non-greedy approach for coupled multilayer dictionary

learning with an optionally supervised objective. We perform experiments on MNIST and

CIFAR-10 databases, showing the efficacy of our method compared against classical online

dictionary learning approaches.

4.1 Background

There has been a significant amount of interest in dictionary learning methods in recent

years [Bengio et al., 2013; Rubinstein et al., 2013; Ravishankar et al., 2015]. Similar

methods, like autoencoders and adversarial generative networks, have similarly received

significant attention [Vincent et al., 2010; Bengio et al., 2013; Goodfellow et al., 2014;

Radford et al., 2015; Denton et al., 2015].

In this part, we consider dictionary learning as a layer in general deep learning models,

extending the idea of analysis dictionaries to perform end-to-end learning for arbitrary

objectives to eliminate the mismatch between dictionary learning and supervised learning

cost functions encountered when following greedy training schemes.

4.1.1 Our Contribution

We show that dictionary learning can be used as a deep neural network layer with a very

specific regularizer. We assume that a dictionary learning layer can be fully parameterized
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by the analysis dictionary D−1 (assuming that D would in this case be the classical dic-

tionary). Our coding step is entirely feed-forward and relies on the network being able to

process its inputs (i.e. project them to a subspace easily seperable by the dictionary) with

little error and without iterative optimization of an objective.

4.2 Method

Let us consider the dictionary learning objective. The task in general is to solve

min
D,Z
‖X −ZD‖22 (4.1)

For our solutions, we will assume that D−1 holds the parameters we want to keep. Observe

that this parameterization directly turns our models into an analysis dictionary learning

approach [Rubinstein et al., 2013]. Then, taking the output of the layer Z as Z = XD−1,

for a dictionary learning layer, the contribution to the overall objective function of the

network can be given by

min
D

∥∥∥X −Z(D−1)+∥∥∥2
2

+ λ‖Z‖1 (4.2)

In practice, this formulation is weaker than full dictionary learning as the sparse represen-

tation Z is not recovered via solving the basis pursuit problem on Z given D. In order to

solve this issue, we apply a nonlinear transform ϕ on X to get Z as follows:

min
D

∥∥∥X − ϕ (X,D−1
) (
D−1

)+∥∥∥2
2

+ λ
∥∥ϕ (X,D−1

)∥∥
1

(4.3)

wherein for ϕ we can use the soft-shrinkage function with threshold θ (which could be

learned as part of the network) as

ϕ
(
X ,D−1

)
= Shrinkageθ

(
XD−1

)
(4.4)

For the full LethargicNet model for classification and with categorical cross-entropy loss,

the loss function is then given by

JLeth arg icNet = −
∑
u∈|X|

∑
v∈C

yu,v log(ŷu,v)

+

I∑
i=1

[
α
∥∥∥Xi − ϕ

(
Xi,D

−1
i

) (
D−1i

)+∥∥∥2
2

+ λ
∥∥ϕ (Xi,D

−1
i

)∥∥
1

]
(4.5)
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where I denotes the number of hidden layers. As such the loss function has two regulariza-

tion parameters, α and λ.

We can extend the approach we have proposed to unsupervised and semi-supervised

problems without a significant alteration to the core of the method. For the unsupervised

objective, we can simply choose to remove the cross-entropy loss. Then, the unsupervised

objective function for the dictionary learning method we propose is

JLeth arg icNet =
J∑
j=1

[
α
∥∥∥Xi − ϕ

(
Xi,D

−1
i

) (
D−1i

)+∥∥∥2
2

+ λ
∥∥ϕ (Xi,D

−1
i

)∥∥
1

]
(4.6)

whereas for the semi-supervised objective, we can utilize the well-known pseudolabel ap-

proach that only modifies the cross-entropy term for the unlabeled examples [Lee, 2013].

Simply put, if the per-class prediction vector for example i without labels is ŷi, the la-

bel of that term in the cross-entropy objective is simply argmax(ŷi); so, the end result is

practically the same as the one shown on Equation 4.5.

4.3 Experiments

We give results on two datasets, MNIST and CIFAR-10. We train our model first without

an activation function, and with 3 layers followed by a softmax layer. We use the Adam

optimizer for training and the Theano library for implementation [Kingma and Ba, 2014;

Bastien et al., 2012]. We compare our results against those achieved using greedy-trained

stacked dictionaries via the well-known [Mairal et al., 2009], which also allows for a mini-

batch approach.

For all our experiments with the LethargicNet architecture, we have used 10000 exam-

ples in the training set for validation. We choose to report the testing set accuracy that

corresponds to the highest accuracy in the validation set, using α = 5 · 10−3 and λ = 10−2.

We report our results for the unsupervised learning coupled with k-nearest neighbors with

k = 1, semi-supervised and supervised learning classification tasks. For the baseline results,

classification is done with k-nearest neighbors with k = 1 as well. For the results to be

more clear, we have used an architecture in which we train two consecutive dictionaries

of 64 atoms each. Note that for the LethargicNet architectures 10000 examples from the

training set are used for validation.
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We provide results for both cases on all datasets on Table 4.1, using a batch size of 512

for both methods. In all of the experiments, we observe a speedup of at least a factor of 20

on a computer with an i7-6820k, 32GB RAM and a GTX 1080 graphics card.

4.4 Discussion and Future Work

In this chapter, we have introduced and evaluated a straightforward, end-to-end method

for deep dictionary learning, testing the method under different training scenarios. We

have found that the models we introduce are faster and perform better on a number of

tasks, while being practical for implementing deep learning models with dictionary learning

regularization as well as general dictionary learning problems.

Future work in this problem could proceed by introducing the same loss into convo-

lutional architectures to enable patch-based dictionary learning, as used in modern ap-

proaches. Such a model would additionally benefit the single-image compressive sensing

magnetic resonance problem we have considered in the preceding sections. In addition, by

separating the code-generating network from the dictionary used in calculating the dictio-

nary learning loss, better coders could be implemented in a straightforward manner without

excessive loss of efficiency.

Table 4.1: Results for the LethargicNet method compared against classical online dictionary

learning for MNIST and CIFAR-10 datasets. (64,64) refers to the model, wherein we train

two consecutive dictionaries of 64 atoms each for ease of differentiation between the two

methods. There is no trivial semi-supervised analogue for our method, so for the sake of

fairness we leave the corresponding fields blank.

MNIST Unsupervised Semi-Supervised Fully Supervised

LethargicNet (64,64) 89.32% 92.12% 90.17%

Baseline (64,64) 79.45% 80.01%

CIFAR-10 Unsupervised Semi-Supervised Fully Supervised

LethargicNet (64,64) 26.20% 27.14% 40.21%

Baseline (64,64) 23.17% 25.14%
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Chapter 5

The Microgrid Supply Control

Problem

With increasing adoption of renewable energy, smart cities and related technologies, there

is now an interest in efficient and fair power regulation methods for households when the

customer demand in the grid exceeds the battery constraints at hand [Lopez, 2015; Soto

et al., 2012]. Of immense importance to the solution, or rather the formulation of the

optimization problem, of this underspecified task is the tradeoff between efficiency and

fairness .

Classical approaches adopt simple strategies that throttle down user power capacity

depending on the amount of power available for allocation over a period, prioritizing more

regular customers and attempting to not go below a certain minimum threshold specified

to the customers beforehand (a schedule). Obviously, due to the jittery response of such

strategies user happiness is affected negatively. Whereas electrical power is not a problem

that many encounter in modern cities, Internet providers do utilize similar heuristics with

weak guarantees that damage user happiness.

5.1 Introduction

In this chapter, we will consider a nonconvex optimization approach to this problem that’s

≈ 20000 times as fast as the equivalent convex solution. We show how the model could
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be trained via classical stochastic gradient descent or for reinforcement learning of a pol-

icy network. Note that while the problem itself has some implementation-specific details

regarding the physical implementation of the algorithms using available hardware, the ma-

chine learning viewpoint is quite simple as Arduino’s and Raspberry Pi’s provide enough

computational power.

In the general microgrid power allocation problem, we are presented with a user demand

at the beginning of every discrete time point (generally, updates are assumed to be hourly).

Our task is to output the amount of power to supply per customer during the next hour.

We assume that we have complete access to past supply and demand data. There are a

number of soft and hard constraints regarding the supply output. Firstly, the `1 norm of the

supply cannot exceed the battery capacity Pbattery or the available battery energy stored,

Ebattery [Lopez, 2015]. To ensure those limits, all predictions are scaled down equally so

that the `1 norm satisfies this upper limit.

Furthermore, every user has a schedule and an associated goodwill cost. The schedule

acts as a soft lower bound for each user, discouraging a solution proposal from choosing

to deliver an amount of power below that amount unless necessary. Finding the schedule

itself, then, becomes an important question in itself. We want the method we propose to

be capable of generating these schedules ahead of time as well.

5.2 Method and Architecture

Let us start by mathematically describing the problem at hand. The objective function we

have, which tracks the revenue generated, can be written as

maximize
θ

∑
t

(min(dt, st)p(t) + k ◦max (st −min(ht,dt)))1
T

subject to ‖st‖1 ≤ Pbattery, t = 1, . . . , tmax

‖st‖1 ≤ Ebattery(t), t = 1, . . . , tmax

0 ≤ st ≤ dt, t = 1, . . . , tmax

(5.1)

where ◦ is the element-wise product, Ebattery(t) is the energy left in the battery at time

t, dt and st are the demand at supply vectors at time t respectively, k is a vector of
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user priority coefficients (goodwill costs) and ht is a vector of user schedules, p(t) is the

income which is a function of time (nights are more expensive for customers) and θ are the

model parameters. st are calculated as the output of a deep neural network Θθ(dt). Note

that there is a temporal constraint in the constraints in terms of the battery capacity as

Ebattery(t + 1) = Ebattery(t) + Psolar(t) − ||st||1, wherein for the purposes of this thesis we

assume that we do not have access to real Psolar(t) values ahead of time.

For simplicity, we refer to the norm of the first term inside the sum in the objective

as the income, whereas the negative of the norm of the second term becomes the amount

unmet.

For the network itself, we utilize a variant of the networks we have considered in the

previous sections, called Highway Networks [Srivastava et al., 2015]. A feedforward variant

of the highly popular Long Short Term Memory networks [Hochreiter and Schmidhuber,

1997], highway networks allow for two activation functions to exist simultaneously and

thus grant the network the ability to automatically adjust the depth of the network during

training. More specifically, we consider highway networks of form

Y = fHighway(X) = g(XWH + bT ) ◦ h(XW T + bT ) +X ◦ (1− h(XW T + bT )) (5.2)

wherein X is the input matrix, Y is the output matrix, g and h are two activation func-

tions, ◦ denotes the Hadamard (or elementwise) product and WH , bH , W T and bt are the

parameters to be optimized within the layer.

A significant weakness of the highway architecture is that the very first layer needs

have a sufficiently small dimensionality in order to avoid memory issues. As the input to

the network could contain a window of arbitrary size, in practice we want the number of

neurons in the initial hidden layer to be sufficient so that the architecture itself may remain

unchanged when implemented on the field. As such, in practice, we implement a network

Input#Users → FC512 → (Highway512 →)50 → FC#Users (5.3)

where (. . . )x refers to x repeats of the structure inside the parentheses and FC refers to

a fully connected, or dense, layer so that the network does not overfit and remains fast

to train even on simple hardware (such as a Raspberry Pi). We add dropout layers with

a dropout rate of 0.5 after every layer as the low number of examples we have require
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heavy regularization for a network to be effective. Furthermore, we add Gaussian noise

with σ = 10−1 at the start of the training as an additional regularization method.

5.3 Evaluation

Obviously, the temporal component of the cost function given in Equation 5.1 renders offline

training a difficult task. For offline training, we choose to use the worst-case scenario for

the battery (assuming that the demand was always met) to generate the training examples

while turning the constraints shown into soft constraints so that the network will be able to

meet the constraints by gradient descent. Note that all of the constraints can be forced by

simple calculations in real world implementations even if the network fails to meet them.

In addition, we choose to utilize a full reinforcement learning-based approach. For this,

we utilize a policy network and take a similar approach to that taken in modern deep

reinforcement learning approaches [Mnih et al., 2013]. We train our network, simulating

the real world results and considering the original objective function augmented with the

size of the battery at time t as an additional additive term. We use a factor ε = 0.05 to

determine the number of random choices our network is going to make, going against its

predictions during training.

5.4 Experiments

We have been presented with hourly data for a three month period for 30 users by the Earth

Institute at Columbia; due to the small size of the data, we use two months for training and

the last month for testing. We have chosen to use this data for the rest of our experiments.

This gives us 1440 examples for training and 720 examples for testing. We choose this split

as we do not want to lose out on testing the capacity of the model introduced in adapting

to long-range dependencies in the data.

As a balance between realism and idealism, we choose to use 97th percentile for each

user as the schedule to employ on a per-user basis, and we calculate the priority coefficients

k as the mean/std for the values of a particular user over the training set.

We show our results for two baselines and the models we consider in Figure 5.1. As
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shown, our neural network approach is able to outperform the baselines we consider. The

first baseline we consider attempts to supply the demand at the previous time step, the

second one simply uses the mean of the training, and the third supplies the 85th percentile

of the demand for the user (85 was found through validation, and maximizes the revenue

in a validation set composed of 20% of the training data). As shown, the reinforcement

learning approach we consider is not as good as we would expect it to be, as expected

since we lack enough data points to make the network capable of generalizing beyond the

training.

We must note that our approach is very fast compared to a convex optimization-based

solution for the problem that was considered previously, requiring 23ms (taken as the mean

of 10000 runs) compared to the 60.45 second baseline reported in [Lopez, 2015] for a problem

with a smaller microgrid.

Previous Hour Mean of Training 85th Percentile Our Proposal RL Model
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Figure 5.1: Results of the microgrid supply allocation problem we consider using 3-month

data of 30 users, in which the last month is used for testing. As shown, our approach

outperforms the simple baselines, while our reinforcement learning model shows promise

but lags behind the offline approach due to, we believe, the lack of data and/or a good

simulation method for better training.
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5.5 Discussion and Future Work

In this chapter, we have looked at a method for applying non-convex optimization via

deep learning methods to solve the constrained hourly supply allocation problem in an ap-

proximate manner. The approach we have outlined allows for online training, reinforcement

learning and ease of adaptability to different constraints and objectives, especially regarding

the goodwill cost.

Allowing for arbitrary differentiable and nonlinear goodwill regularizers, the approach we

introduce could be used to solve allocation problems with arbitrary assumptions regarding

customer benefits. This, in turn, makes it possible to have power allocation systems that

are more merciful towards customers and thus capable of facilitating loyalty. One such

approach would be the introduction of an `2-norm penalty to the objective. Many similar

differentiable regularization techniques could be used to further granularize the notion of

fairness and to maximize customer royalty by substituting user-specific punishments with

negligible grid-wide cutoffs.
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Chapter 6

Conclusion and Discussion

In this thesis, we have considered a number of exciting and potent approaches for problems

ranging from landmarking to deep dictionary learning, pan-sharpening, compressive sensing

magnetic resonance imaging and microgrid control, introducing and evaluating a number of

exciting and novel approaches.

In the first part, we have described and evaluated a manifold landmarking approach

trainable via stochastic gradient descent that allows for the consideration of structural reg-

ularization terms in the objective. Looking at the semi-supervised learning problems, we

have shown that it is able to achieve comparable or better results than equivalent k-means

based approaches on the MNIST database. We have also introduced an extension of this ap-

proach for general supervised and semi-supervised classification for structurally similar deep

neural networks with self-modulating radial basis kernels. Whereas this lazy deep learning

approach was not found to be as potent as the first approach we introduce in our experi-

ments, we expect future ideas in deep learning training to render such approaches, which

are more versatile due to their parameter-free nature, effective for a number of problems.

Switching to deep learning, we have looked at two interrelated image restoration prob-

lems, pan-sharpening and compressive sensing MRI. We have introduced a single channel

convolutional autoencoding approach that directly sidesteps the data bottleneck problem

in pan-sharpening that limits the effectiveness of the classical convolutional approaches to

the problem.

Thirdly, we have introduced a method for multilayer dictionary learning and feedfor-
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ward sparse coding by formulating the dictionary learning problem using a general deep

learning layer architecture inspired by analysis dictionary learning. We have found the in-

troduced method to be significantly faster to train than classical online dictionary learning

approaches and capable of addressing supervised and semi-supervised classification prob-

lems more naturally.

Lastly, we have considered the problem of per-user power supply delivery on a microgrid

powered by solar energy. Using real-world data obtained via The Earth Institute, we have

looked at the problem of deciding the amount of power to supply to all each user for a certain

period of time given their current power demand as well as past demand/supply data. We

have approached the problem as one of demand-to-supply mapping, providing results for

a policy network trained via regular propagation for worst-case control as well as classical

deep reinforcement learning. Whereas we have not been able to make the reinforcement

learning approach work more effectively than the worst-case model due to a large number of

potential problems, we believe that it will be possible to render the approach viable through

the addition of more real-world data, the introduction of more extensive regularization and

hyperparameter optimization.



47

Part VI

Bibliography



BIBLIOGRAPHY 48

Bibliography

[Bastien et al., 2012] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra,

Ian Goodfellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua

Bengio. Theano: new features and speed improvements. arXiv preprint arXiv:1211.5590,

2012.

[Bengio et al., 2007] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al.

Greedy layer-wise training of deep networks. Advances in neural information processing

systems, 19:153, 2007.

[Bengio et al., 2013] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation

learning: A review and new perspectives. IEEE transactions on pattern analysis and

machine intelligence, 35(8):1798–1828, 2013.

[Broomhead and Lowe, 1988] David S Broomhead and David Lowe. Radial basis functions,

multi-variable functional interpolation and adaptive networks. Technical report, DTIC

Document, 1988.

[Candès et al., 2011] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust

principal component analysis? Journal of the ACM (JACM), 58(3):11, 2011.

[Chen and Cai, 2011] Xinlei Chen and Deng Cai. Large scale spectral clustering with

landmark-based representation. In AAAI, 2011.

[Chollet, 2015] François Chollet. Keras: Deep learning library for theano and tensorflow,

2015.



BIBLIOGRAPHY 49

[Denton et al., 2015] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative

image models using a laplacian pyramid of adversarial networks. In Advances in neural

information processing systems, pages 1486–1494, 2015.

[Dong et al., 2014a] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image

super-resolution using deep convolutional networks. arXiv preprint arXiv:1501.00092,

2014.

[Dong et al., 2014b] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learn-

ing a deep convolutional network for image super-resolution. European Conference on

Computer Vision, pages 184–199, 2014.

[Gatys et al., 2015] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural

algorithm of artistic style. arXiv preprint arXiv:1508.06576, 2015.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,

David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative

adversarial nets. In Advances in Neural Information Processing Systems, pages 2672–

2680, 2014.

[He et al., 2015a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. arXiv preprint arXiv:1512.03385, 2015.

[He et al., 2015b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep

into rectifiers: Surpassing human-level performance on imagenet classification. Proceed-

ings of the IEEE International Conference on Computer Vision, pages 1026–1034, 2015.

[Hinton and Salakhutdinov, 2006] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reduc-

ing the dimensionality of data with neural networks. Science, 313(5786):504–507, 2006.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and Jürgen Schmidhuber. Long short-

term memory. Neural computation, 9(8):1735–1780, 1997.

[Huang et al., 2014] Yue Huang, John Paisley, Qin Lin, Xinghao Ding, Xueyang Fu, and

Xiao-Ping Zhang. Bayesian nonparametric dictionary learning for compressed sensing

mri. IEEE Transactions on Image Processing, 23(12):5007–5019, 2014.



BIBLIOGRAPHY 50

[Huang et al., 2015a] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image

super-resolution from transformed self-exemplars. 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 5197–5206, 2015.

[Huang et al., 2015b] Wei Huang, Liang Xiao, Zhihui Wei, Hongyi Liu, and Songze Tang.

A new pan-sharpening method with deep neural networks. IEEE Geoscience and Remote

Sensing Letters, 12(5):1037–1041, 2015.

[Huang et al., 2016] Gao Huang, Zhuang Liu, and Kilian Q Weinberger. Densely connected

convolutional networks. arXiv preprint arXiv:1608.06993, 2016.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-

celerating deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[Jiang et al., 2015] Yiyong Jiang, Xinghao Ding, Delu Zeng, Yue Huang, and John Paisley.

Pan-sharpening with a hyper-laplacian penalty. In Proceedings of the IEEE International

Conference on Computer Vision, pages 540–548, 2015.

[Johnson et al., 2016] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses

for real-time style transfer and super-resolution. arXiv preprint arXiv:1603.08155, 2016.

[Kingma and Ba, 2014] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[Kingma and Welling, 2013] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[Ledig et al., 2016] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew

Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-realistic

single image super-resolution using a generative adversarial network. arXiv preprint

arXiv:1609.04802, 2016.

[Lee, 2013] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learn-

ing method for deep neural networks. Workshop on Challenges in Representation Learn-

ing, ICML, 3:2, 2013.



BIBLIOGRAPHY 51

[Li and Yang, 2011] Shutao Li and Bin Yang. A new pan-sharpening method using a

compressed sensing technique. IEEE Transactions on Geoscience and Remote Sensing,

49(2):738–746, 2011.

[Liang and Paisley, 2015] Dawen Liang and John Paisley. Landmarking manifolds with

gaussian processes. In Proceedings of the 32nd International Conference on Machine

Learning (ICML-15), pages 466–474, 2015.

[Liu et al., 2013] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor com-

pletion for estimating missing values in visual data. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 35(1):208–220, 2013.

[Lopez, 2015] Carlos Adrian Abad Lopez. Smart grid risk management. 2015.

[Lustig et al., 2008] Michael Lustig, David L Donoho, Juan M Santos, and John M Pauly.

Compressed sensing mri. IEEE Signal Processing Magazine, 25(2):72–82, 2008.

[Mairal et al., 2009] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. On-

line dictionary learning for sparse coding. Proceedings of the 26th annual international

conference on machine learning, pages 689–696, 2009.

[Mao et al., 2016] Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration

using convolutional auto-encoders with symmetric skip connections. arXiv preprint

arXiv:1606.08921, 2016.

[Marcus et al., 2007] Daniel S Marcus, Tracy H Wang, Jamie Parker, John G Csernansky,

John C Morris, and Randy L Buckner. Open access series of imaging studies (oasis):

cross-sectional mri data in young, middle aged, nondemented, and demented older adults.

Journal of cognitive neuroscience, 19(9):1498–1507, 2007.

[Masi et al., 2016] Giuseppe Masi, Davide Cozzolino, Luisa Verdoliva, and Giuseppe

Scarpa. Pansharpening by convolutional neural networks. Remote Sensing, 8(7):594,

2016.



BIBLIOGRAPHY 52

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-

nis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-

forcement learning. arXiv preprint arXiv:1312.5602, 2013.

[Nikolakopoulos, 2008] Konstantinos G Nikolakopoulos. Comparison of nine fusion tech-

niques for very high resolution data. Photogrammetric Engineering & Remote Sensing,

74(5):647–659, 2008.

[Radford et al., 2015] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised rep-

resentation learning with deep convolutional generative adversarial networks. arXiv

preprint arXiv:1511.06434, 2015.

[Ravishankar et al., 2015] Saiprasad Ravishankar, Bihan Wen, and Yoram Bresler. Online

sparsifying transform learning—part i: Algorithms. IEEE Journal of Selected Topics in

Signal Processing, 9(4):625–636, 2015.

[Rubinstein et al., 2013] Ron Rubinstein, Tomer Peleg, and Michael Elad. Analysis k-svd:

a dictionary-learning algorithm for the analysis sparse model. IEEE Transactions on

Signal Processing, 61(3):661–677, 2013.

[Soto et al., 2012] Daniel Soto, Edwin Adkins, Matt Basinger, Rajesh Menon, Sebastian

Rodriguez-Sanchez, Natasha Owczarek, Ivan Willig, and Vijay Modi. A prepaid archi-

tecture for solar electricity delivery in rural areas. pages 130–138, 2012.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural net-

works from overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[Srivastava et al., 2015] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber.

Highway networks. arXiv preprint arXiv:1505.00387, 2015.

[Tieleman and Hinton, 2012] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop:

Divide the gradient by a running average of its recent magnitude. COURSERA: Neural

Networks for Machine Learning, 4(2), 2012.



BIBLIOGRAPHY 53

[Vincent et al., 2008] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine

Manzagol. Extracting and composing robust features with denoising autoencoders. In

Proceedings of the 25th international conference on Machine learning, pages 1096–1103.

ACM, 2008.

[Vincent et al., 2010] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and

Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning useful representa-

tions in a deep network with a local denoising criterion. Journal of Machine Learning

Research, 11(Dec):3371–3408, 2010.

[Vivone et al., 2015] Gemine Vivone, Luciano Alparone, Jocelyn Chanussot, Mauro

Dalla Mura, Andrea Garzelli, Giorgio A Licciardi, Rocco Restaino, and Lucien Wald. A

critical comparison among pansharpening algorithms. IEEE Transactions on Geoscience

and Remote Sensing, 53(5):2565–2586, 2015.

[Wang et al., 2015] Zhangyang Wang, Yingzhen Yang, Zhaowen Wang, Shiyu Chang, Wei

Han, Jianchao Yang, and Thomas Huang. Self-tuned deep super resolution. Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages

1–8, 2015.

[Zeiler, 2012] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv

preprint arXiv:1212.5701, 2012.

[Zhang et al., 2016] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image col-

orization. arXiv preprint arXiv:1603.08511, 2016.

[Zhu and Bamler, 2013] Xiao Xiang Zhu and Richard Bamler. A sparse image fusion algo-

rithm with application to pan-sharpening. IEEE Transactions on Geoscience and Remote

Sensing, 51(5):2827–2836, 2013.

[Zhu et al., 2003] Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised

learning using gaussian fields and harmonic functions. In ICML, volume 3, pages 912–919,

2003.


	I Landmarking Architectures
	1 Sequential Landmarking
	1.1 Introduction
	1.2 Sparse Landmarking via Alternating Direction Method of Multipliers
	1.3 Semi-Supervised Landmarking
	1.3.1 Semi-Supervised Learning on the Affinity

	1.4 Deep Landmarking
	1.5 Autoencoders
	1.6 Landmarking Autoencoder
	1.7 Landmarking Support Vector Machine
	1.8 Multilayer Landmarking Support Vector Machine
	1.9 Residual Networks
	1.10 Future Work and Discussion


	II Learning Convolutional Mappings for Image Restoration
	2 Deep Pan-Sharpening
	2.1 Introduction
	2.1.1 Relevant Work
	2.1.2 Our Contribution

	2.2 Method
	2.2.1 Channelwise Pan-Sharpening

	2.3 Experiments
	2.3.1 Datasets
	2.3.2 Evaluation

	2.4 Discussion and Future Work

	3 Compressive Sensing Magnetic Resonance Imaging
	3.1 Objective Function
	3.2 Model
	3.3 Experiments
	3.4 Discussion and Future Work


	III Lethargic Multilayer Dictionary Learning
	4 Lethargic Dictionary Learning
	4.1 Background
	4.1.1 Our Contribution

	4.2 Method
	4.3 Experiments
	4.4 Discussion and Future Work


	IV Microgrid Control
	5 The Microgrid Supply Control Problem
	5.1 Introduction
	5.2 Method and Architecture
	5.3 Evaluation
	5.4 Experiments
	5.5 Discussion and Future Work


	V Conclusions
	6 Conclusion and Discussion

	VI Bibliography
	Bibliography


