
Using Continous Logic Networks for Hardware Allocation
Anthony Saieva
Columbia University
ant@cs.columbia.edu

Dennis Roellke
Columbia University

Dennis.Roellke@rub.de

Gail Kaiser
Columbia University

kaiser@cs.columbia.edu

Suman Jana
Columbia University

suman@cs.columbia.edu

ABSTRACT
In recent years cloud computing has become a trend from for both
enterprise and independent developers. As such cloud computing
providers have become the main source of hardware for modern
computing. This modern computing paradigm makes specialized
hardware available at scale. Special purpose hardware or Hardware
Accelerators have experienced a revival since they can now be
shared among multiple cloud users.

While accelerators have shown great efficiency in terms of power
consumption and performance, determining which functions can be
accelerated remains problematic without manual selection. Static
similarity analysis has traditionally been based on solving satisfi-
able modulo theorems (SMT), but in a parallel advancement, con-
tinuous logic networks (CLN’s) have provided a faster and more
efficient alternative to traditional SMT solving by replacing tradi-
tional boolean functions with smooth estimations. These smooth
estimates create the opportunity to leverage gradient descent to
learn the solution. We present AccFinder, the first CLN based code
similarity solution and begin to evaluate its effectiveness across a
series of accelerator benchmarks.

1 INTRODUCTION
In recent years hardware accelerator technology has evolved to
make them more accessible to non specialized developers. In the
past if you wanted to run your programs on an accelerator you
had to build your own or pay an industry expert to build it for you.
This was particularly strenuous since it required both a domain spe-
cific skill set and specialized equipment to produce the accelerator.
With the advent of FPGA’s and programmable micro controllers,
producing accelerators became possible for hardware developers
anywhere, but still required a specific skillset.

In gaming and graphics for instance, most matrix computations
have been computed on graphics processing units (GPU) instead of
traditional CPU computing. Since GPUs have become highly avail-
able, NVIDIA developed the CUDA framework. This framework
exposes hardware level APIs at the software level, and provided
the developer has a parallelized version of their algorithm they
can implement any general purpose algorithm on the GPU. Con-
sequently the GPU functions as a general purpose accelerator for
all functions. CUDA represents a shift from hardware to software
accelerator development since now the developer can implement
the accelerator without dealing with the hardware explicitly. Still
the developer needs to know the alternative implementation, and
they need to know how to work within the CUDA framework.

Furthermore with the rise of cloud computing developers can run
programs on hardware that’s not available locally so any hardware
that the cloud provider offers becomes easily accessible.

This rises a new problem: With all the new availability of hard-
ware, how do you utilize it properly? Developers may have func-
tions that can be accelerated and they may have access to the
accelerated versions, but they may simply not be aware of this
opportunity. Luckily regardless of how the accelerator was exposed
or implemented there is some software representation of the accel-
erator’s function. So by performing code analysis on the software
representation of the accelerator and the function we wish to ac-
celerate we can match candidates - and make use of our access to
hardware acceleration.

While choosing an accelerator carries tradeoffs with respect to
size, performance, and energy consumption, from the perspective of
the software developer this is largely transparent. The accelerator
functions as a black box that takes an input and produces the desired
output. Therefore when assigning functions to accelerators only the
inputs and outputs of the functions need to match. Code similarity
is a well studied problem applied to code search, refactoring and
other tasks. Many solutions exist both static and dynamic, but
most suffer from performance problems due to heavyweight code
analysis procedures []. While dynamic procedures tend to have
better performance, they put constraints on the developers since the
code has to run under specific circumstances for the system to work.
The static code analysis solutions generally involve various forms
of symbolic execution reliant on SMT solving, but unfortunately
due to the computationally expensive nature of symbolic execution
these solutions introduce significant overhead.

In a parallel development, continuous logic networks (CLN) have
significantly increased the performance of traditional SMT solvers.
By replacing the traditional boolean functions with smooth rep-
resentations continuous logic networks can use gradient descent
to learn the solution to an SMT formula with increased efficiency
relative to state of the art SMT solvers.

This increase in efficiency makes what were previously heavy-
weight calculations lightweight.We present a technique to statically
transform software meant for accelerators and the software mod-
eling the accelerator into SMT formulas and then solve the SMT
formulas under a variety of constraints using CLN’s to develop a
similarity metric between the two.

Our approach remains static without imposing the constraints
on the developer that are associated with dynamic analysis, and we
retain a relatively lightweight solution.

This is the first work to apply CLNs in the context of code sim-
ilarity and the accelerator assignment problem. There are some

details that need to be resolved, but initial efforts indicate that with
engineering effort this work is feasible.

2 BACKGROUND
2.1 SMT Formulas
Satisfiable Modulo Theories have far reaching application in com-
puter science. Especially program analysis, tasks such as formal
verification and symbolic execution benefit from a programâĂŹs
abstraction as an SMT formula. In formal verification SMT for-
mulas are used to prove the correctness and completeness of a
program. This is commonly pursued by defining three inequalities.
The loop pre-condition, the loop post-condition, and a the loop
invariant, a consistent piece throughout each loop-iteration. These
three clauses can than be chained by conjunction and their satisfia-
bility can be decided by an SMT solver. This is especially interesting
for programs containing consecutive loops or nested loops, which
is when loop conditions get chained to SMT formulas of increasing
size. Symbolic execution assumes knowledge about the program’s
branch conditions, which can be interpreted as a conjunction of
inequalities as well. This technique is commonly used in bug dis-
covery, where it helps to gain code coverage, by generating inputs
and guiding fuzzers. In its raw form however, symbolic execution
suffers from path explosion, namely the exponential growths of the
SMT formula per discovered branch.

These agreed upon use cases for SMT formulas emphasize the
expressiveness of SMT to abstract the intrinsic meaning of a com-
puter program. As such, we have identified SMT formulas to be an
intuitive fit to approach the code similarity problem by following
the observation that if two programs are similar, they can be ex-
pressed by similar SMT formulas. Conversely, if two SMT formulas
are similar they represent two underlying programs that are similar.
We will discuss the soundness and completeness of this assumption
in Section (tbd).

Note that SMT solving is NP-complete and proven not to be
solved more efficiently than by using heuristics. This causes exten-
sive runtime for SMT solvers, or even undecidability for programs
of sufficient size. Even established projects like S2E and Z3 fail to
overcome this performance issue, though they are under constant
research and that ranges from novel heuristics [] to hardware op-
timizations []. A new line of research however, shows how the
problem can be approached by mapping the input/ output space
from binary (satisfiable or not) to floating point arithmetic. This
approach enables the application of strong methods from the field
of smooth optimization - a field where extensive progress was made
over the last few years as it was nudged by the advent of machine
learning.

2.2 Continuous Logic Networks
A major restriction to SMT, is its discrete, boolean nature, i.e. that
its solutions are ∈ {0,1}. As is, there is no notion of solutions being
âĂĲalmostâĂİ satisfiable or problems are âĂĲclose toâĂİ having a
solution. Hajek et al. introduced basic fuzzy logic to approach this
problem by defining a class of logic that uses continuous values
in the range [0, 1]. This representation is differentiable almost
everywhere and has thus been identified as a well-suited baseline
to apply differential analysis to satisfiability problems by adapting

Figure 1: An SMT formula an its respective graph of truth
values. Note that the graph is composed of discrete jumps
and can only take y-values of 0 and 1.

Figure 2: The SMT formula’s respective smooth differen-
tiable mapping as generated by a CLN. CLNs use sigmoid
function to approximate the discrete jumps in a smoother
manner and factor a smoothing value B to regularize the val-
ues to 0 and 1.

techniques commonly used to solve optimization problems. Ryan
et al. define Continuous Logic Networks (CLN) to abstract SMT
Formulas as fully differentiable optimization problems [].

To achieve a smooth continuous representation of an SMT for-
mula, CLNs map the boolean operations of conjunctions and dis-
junctions to t-norms and t-conorms (denoted by ⊕ and ⊗). Similar
to boolean operations, t-norms are commutative, monoton and
consistent. Namely, their input order does not influence the result,
larger inputs cause larger outputs, and the result of any t-norm
and 1 is 1; while the t-norm of any truth value and 0 is 0. Hence,
t-norms resemble boolean and operations. A relationship between
t-conorms and disjunctions can be shown respectively.

To solve an SMT Formula, a CLN can be constructed such that
every value is marked as either an input term, a constant, or a
learnable parameter. Once a CLN is constructed it can be efficiently
trained using gradient descent, which makes the solution finding
process so much faster than traditional SMT solving. When training
a CLN to approach a loss equal to 0, the resulting continuous SMT
formula is consistent with the solution of a boolean SMT formula. In
particular, Ryan et al. prove that continuous SMT formulas learned
with CLNs are sound and complete with regard to SMT formulas
on discrete logic. They further prove that a subset of SMT formulas
are guaranteed to converge to a globally optimal solution [].

The expressiveness and efficiency presented by CLNs leads us
to employ this novel technique to compare two programs for code

Figure 3: General Overview

similarity. Using CLNs such similarity analysis is made possible
more efficiently than ever before.

Furthermore, we have motivated that SMT formulas, even if
normalized to Conjunctive Normal Form (CNF) do not have to be
identical to represent similar programs. More importantly, we want
to quantify the number of overlapping solutions that satisfy both
formulas, namely the program characteristics that both candidates
have in common. As a consequence, we aim to measure the inte-
gral of the overlapping intervals of the function. The integral is
well defined for discrete formulas, but we can expect better and
faster results when taking under consideration the approximated
solutions of a CLN. More about integration method can be found
in Section 3.4.

2.3 Use Case Scenario and Problem
Specification

We envision a developer writing software normally, and has a series
of hardware accelerators available either physically, through a cloud
provider, or in the form of a series of CUDA implementations. They
have the ability to develop software in high level language like
C but don’t want to spend the effort to develop actual hardware.
Furthermore we limit this discussion to function level comparison,
we do not match function sub snippets to possible accelerators.

A more formal problem specification would be: Given a func-
tion f, the set of accelerators A, and the set of programs G
such that each accelerator inA is represented by a single pro-
gram in G - can we determine if f is equivalent (as defined
by input output equivalence) to some function in G and can
be replaced by some corresponding accelerator a ∈ A?

3 DESIGN
Our system is designed in 4 consecutive steps that lead to a numer-
ical code similarity score in the range [0,1]. Figure 8 displays this
general architecture. First we represent each function as an SMT
formula. In the SMT formula, each variable represents a possible
state of the program. We perform a variable mapping to link pro-
gram states between the two code candidates. These SMT formulas
then get transformed into CLNs, which we ultimately use to apply
a similarity analysis and deduce the similarity score.

3.1 SMT Construction
To construct an SMT formula, each input to the candidate function
- such as a parameter or global variable - gets assigned to a variable
in the SMT. SImilarly, each item in an array has its own variable
and each intermediary program state has another variable. Input
variables can be any value, but intermediary state variables must
be zero or one. If the variable representing the program state is one
then the program entered that state at some point during execution,

Figure 4: Branch SMT construction procedure

and if it is zero then the program never entered that state during
this particular execution. To successfully model any function we
need to deal with 3 main code constructs, arrays mentioned already,
branches, and loops.

3.1.1 SMT Branches.

(i f x then y else z) ==> (x ∧ y) ∨ (!x ∧ z) (1)

Formula 2 is the general rule for converting branches into an
SMT representation, and Figure 4 provides an example take from a
real code snippet.

The procedure starts by taking the code and condensing it to
variables representing the basic blocks of the program under exam-
ination. We choose the basic block level because each basic block
represents a specific program state. We also need variables repre-
senting the conditions that determine the function’s control flow.
After condensing the code, we follow the rules outlined in equation
2 and produce the corresponding SMT formula. Once the corre-
sponding SMT formula has been created we expand it to include
the original conditions from the source code.

Intuitively, the logic behind equation 2 is simple. Either the con-
dition is true, and the program has entered the state corresponding
with the if block, or the condition is not true and the program has
entered the state corresponding with the else block. Of course, if
there were more branches as in the case of an else if block, or
if the basic blocks contained nested control flow operations, the
SMT formula needs to be expanded accordingly. Any solution to
this formula represents a possible path through this piece of the
program and functions as a trace of the execution.

3.1.2 SMT Loops. Representing loops is significantly harder than
branches because by definition the code will be executed more than
once, so the same code segment represents many possible states.
However using loop unrolling we can assign a variable to each of
the prospective states.

Figure ?? represents an overview of the procedure. Just like
the branch SMT construction, first the program is condensed and
variables replace each basic block. Then, for each loop we model
the loop and termination condition using boolean logic, and in the
diagram we refer to these as LC and T respectively. If the loop
condition is true, and the loop condition is not true at the next
iteration then we call that the termination condition. We can unroll
the loop by representing each loop state with multiple variables,
one for each iteration of the loop. In the event the loop ends early,
before all the unrolled states then additional clauses simply evaluate

to false. In Figure ??we show what this procedure looks like for the
nested loops found in matrix multiplication. It’s important to note
that these are nested loops, so we don’t include a fully expanded
version of these 3 loops for space reasons, but in the actual SMT
formula all of these are expanded and unique variables have to
be used for each loop state. Note that loop unrolling pushes the
sized of SMT formulas to blow up, making traditional SMT solving
unviable and motivating our solution to use CLNs instead.

3.2 Variable and State Mapping
NOTE: This piece of the design is still in progress, but preliminary
studies show that it is possible After the SMT formulas have been
constructed, we need to perform some code analysis to determine
which intermediary states, or combinations of intermediary states
are the same. Ultimately we only care about the function outputs,
but function outputs are built from the outputs of the intermediary
states that are executed.

Just as in many code analysis approaches we define the inputs
to a particular basic block B as the USE(B) set and the output as
the DEF(B) set. The USE set of code variables is the set of variables
that are used by the basic block but not defined by the basic block,
and the set of USE variables is the set of variables that are defined
in the basic block but are still accessible from outside the block. It
should be noted that a variable can be a part of both sets.

Once variables have been substituted for basic blocks the data
dependency tree can be constructed. Figure ?? shows a simple ex-
ample of one such state matching procedure for a simple function.
In this instance the dependencies of the DEF set of A match the de-
pendencies of the DEF set of C and the same for B and D. Therefore
if for a given input, both functions execute the matching output
block, we say those functions are the same for that input.

While we are still working on the details of this algorithm in
complex examples preliminary analysis indicates that this is possi-
ble.

One such analysis from multiple implementations of matrix mul-
tiplication revealed that even though the order in which operations
take place, the ultimate assignment of the output variable has the
same data dependence tree. As shown in Figure 9 if you create the
data dependency tree for the output assignments, you get different
looking trees that don’t bear immediate resemblance. However if
you trim the trees down to the minimum number of nodes you get
the same tree. While there remains work to be done on how to fi-
nalize the details of this algorithm there seems to be a recognizable
relationship between the assignment statements with additional
effort.

3.3 CLN Construction
Continuous Logic Networks are based on a mapping from SMT
formulas to Basic Fuzzy Logic. Most importantly, boolean operators
such as ∧ and ∨ are mapped to differentiable counterparts - t-norms
(⊗) and t-conorms (⊕), respectively. Furthermore, the equation pred-
icates map to smooth functions of identical characteristics. These
mappings are consistent with the solutions of the inital SMT for-
mula, but they are continuous and differentibale, which facilitates
gradient descent. The functions’s gradient should be increasing
when approaching constraint satisfaction, and decreasing when

Figure 5: Program statematching for variablemapping. Con-
ceptually and applied to Matrix Multiplication.

approaching constraint non-satisfaction. These characteristics can
be achieve through the use of sigmoid functions. We conclude the
following mappings:

x > c → 1
1 + e−B(x−c−ϵ)

x ≥ c → 1
1 + e−B(x−c+ϵ)

x < c → 1 − 1
1 + e−B(x−c+ϵ)

x ≤ c → 1 − 1
1 + e−B(x−c−ϵ)

x = c → (1 − 1
1 + e−B(x−c−ϵ

) ⊗ (1
1 + e−B(x−c+ϵ)

)

x , c → 1 − (1 − 1
1 + e−B(x−c−ϵ

) ⊗ (1
1 + e−B(x−c+ϵ)

)

It is easy to see that CLNs are based on a deterministic mapping.
Hence, any given SMT formula can be translated into a CLN in
linear time. The resulting CLN is then parameterized with a weight
matrix and closely resembles what is commonly known as a neural
network. In a consecutive training phase, the CLN then learns to
approximate the discrete formula by using gradient descent and
iteratively adjusting its weight parameters until the loss between
smooth representation and discrete original converges to zero.

3.4 Monte Carlo Area and Similarity Metric
We define code similarity and apply a code similarity score based
on the observation that overlapping solution space of two SMT for-
mulas indicate program commonalities. The overlap of two smooth
continuous functions, such as our formerly generated CLNs, is a

region bounded by both function’s curves over a certain interval.
This region is equivalent to the function’s integral, often interpreted
as area or volume. For SMT formulas however, this region describes
the solution set of that formula. Consequentially we compute the
integral of two overlapping CLN to quantify program similarity.

We observe that integrals are well defined as long as an antideriv-
ative exists for the integrated function. Other methods to compute
the integral, including the Riemann- and the Lebesque- integral, are
based on enumerating infinitesimally small rectangulars under the
curve. All such solutions are so called enumeration problems and
cannot be solved efficiently. This issue is even more striking when
integrating functions of multiple dimensions or over intervals of
unknown shape, which is generally the case for neural networks -
or CLNs.

Deterministic algorithms approximate such complicated inte-
grals by defining a fixed input space and evaluating the function
over a regular grid that neatly covers the defined space. The results
then allow for an approximation of how many sample points fall
below or above the curve. Note that the accuracy of such methods
is deterministic but depends on the size of the grid.

Monte Carlo integration is a randomized technique to compute
the numerical integral of any multidimensional function of un-
known shape. A randomized choice of data points allows the Monte
Carlo technique to outperform grid based techniques. Hence, we
choose Monte Carlo as an efficient solution to our problem. It is im-
portant to understand that due to its random nature, each iteration
yields slightly different results but for a large enough choice of N
such results converge.

To facilitate an integration of form I =
∫
Ω
f (x)dx , we solve the

following equation in 4 steps:

I ≈ QN = V
1
N

N∑
i=1

CLN .train(x1,x2, ...y1, ...yn)

(1) Define input space Ω
(2) Draw N inputs xi ∈ Ω uniformly at random
(3) Train the target CLN over all N inputs
(4) Compute the sum of solutions weighted by the input space

volume
It is important to understand that numerical integrals of two

functions may be of equal size, but bounding entirely disjoint re-
gions. Therefore, we introduce a step-wise evaluation along the
input space dimension, that helps us determine where overlaps are
located. Our custom Dual-Monte Carlo function returns two lists
of boolean values, indicating whether a sample point xi lies in the
integrated area (True) or outside of it (False). Correlating these two
lists yields a similarity score between 0 and 1.

Figure 6: See how smooth? Soo smooth!

Figure 7: A traditional SMT formula and its truth values (top)
and a differentiable mapping as generated by a CLN (bot-
tom). The SMT graph (blue) is composed of discrete jumps,
whereas the CLN graph (red) is smooth and continuous.

4 INTRODUCTION
Hardware accelerator technology has evolved to make them more
accessible to the general computing public. While originally devel-
opers needed hardware expertise to build accelerators, the advent
of FPGAs and CUDA created the opportunity for programmable
implementations by skilled software developers.

This raises a new problem:With the new availability of hardware,
how do you utilize it properly? Developers may have functions that
can be accelerated and access to the accelerated versions, but they
may not be aware of this opportunity. Luckily, regardless of how
the accelerator was exposed or implemented it always exists some
software representation of the accelerator’s function. Therefore
we can match candidates for acceleration with the appropriate
hardware through code analysis.

While choosing an accelerator carries tradeoffs with respect
to size, performance, and energy consumption, choosing between
functionally identical accelerators is outside the scope of our prob-
lem. When assigning functions to accelerators in our context, only
the inputs and outputs of the functions need to match.

Continuous logic networks (CLNs) have significantly increased
the performance of traditional Satisfiable Modulo Theorems (SMT)
solvers. By replacing the traditional boolean functions with smooth
representations, CLNs can use gradient descent to learn the solu-
tion to an SMT formula with increased efficiency relative to state
of the art SMT solvers. We present a technique to statically trans-
form software seeking acceleration and the software modeling the
accelerator into SMT formulas and then solve the SMT formulas
using CLNs to implement a similarity metric.

This is the first work to apply CLNs in the context of code sim-
ilarity and the accelerator assignment problem. There are some
details that need to be resolved, but initial efforts indicate that with
engineering effort our approach is feasible.

5 BACKGROUND
SMT Formulas have wide ranging applications from formal verifi-
cation to symbolic execution. SMTs abstract the intrinsic meaning
of a computer program and as such are an intuitive fit to approach

the code similarity problem since if two programs are similar, they
can be expressed by similar SMT formulas. Unfortunately SMT solv-
ing is NP-complete meaning long runtimes and possible timeouts.
Established projects like S2E, MathSAT, and Z3 fail to overcome
this performance issue, though it is an active area of research.

Traditional SMTs are restricted to boolean solutions. There is no
notion of how close a possible solution is to being correct. Hajek [?
] approached this problem by defining a class of logic that uses
continuous values in the range [0, 1]. Figure 7 shows the standard 0,1
truth values associated with traditional SMT solving, and opposes
it to a smooth differentiable representation. This representation
permits techniques commonly used to solve optimization problems
to also solve SMT formulas.

Continuous Logic Networks (CLNs) were defined by Ryan
et al. [?] to abstract SMT Formulas as differentiable optimization
problems. SMTs can be solved with CLNs by marking every variable
as either an input term, a constant, or a learnable parameter. These
can be efficiently trained using gradient descent, which makes the
solution-finding process faster than traditional SMT solving.

6 DESIGN
Our system, AccFinder, has four consecutive steps shown in Fig-
ure 8 to calculate a numerical code similarity score (0-1).

SMT Representation: The transformation to SMT formulas is
based on following standard SMT procedures in code analysis.

(i f x then y else z) ==> (x ∧ y) ∨ (!x ∧ z) (2)

Figure 8: General Overview
Formula 2 is the general rule for converting a function’s branches

into an SMT representation. First, code is modeled by variables
representing the possible states of the function under examination.
We also need variables representing the conditions that determine
the function’s control flow. After condensing the code, we follow
the rules outlined in equation 2 to produce the corresponding SMT
formula. SMT formulas model loops through loop unrolling by
assigning a new variable to the same basic block at each iteration.

State Mapping: After the SMT formulas have been constructed,
we need to perform some code analysis to determine which interme-
diary states, or combinations of intermediary states, are the same.
We define the inputs to a particular basic block B as the USE(B) set
and the output as the DEF(B) set. Once variables have been substi-
tuted for basic blocks, the data dependency tree can be constructed
as in Figure 9. While the trees don’t look the same at first glance,
after trimming we see that they are in fact the same.

CLN Construction: Continuous Logic Networks map boolean
operators such as ∧ and ∨ to differentiable counterparts — t-norms
(⊗) and t-conorms (⊕), respectively. Furthermore, the equation
predicates map to smooth functions of identical characteristics.
Consequently, the function’s gradient increases when approach-
ing constraint satisfaction and decreases when approaching non-
satisfaction. The resulting CLN is parameterized with a weight

Figure 10: Overlapping integral similarity calculation

matrix and closely resembles neural networks. In a consecutive
training phase, the CLN then learns to approximate the discrete
formula by using gradient descent and iteratively adjusting its
weight parameters until the loss between smooth representation
and discrete original converges to zero.

Monte Carlo Integration and Similarity Metric: We define
code similarity and calculate a score based on the overlapping
solution space between SMT formulas or overlapping integrals.
Monte Carlo integration is a randomized technique to compute the
numerical integral of any multidimensional function of unknown
shape based on random sampling as shown in Figure 10.

To facilitate an integration of form I =
∫
Ω
f (x)dx , we solve the

following equation in four steps:

I ≈ QN = V
1
N

N∑
i=1

CLN .train(x1,x2, ...y1, ...yn)

1) Define input space Ω, 2) Draw N inputs xi ∈ Ω uniformly
at random, 3) Train the target CLN over all N inputs, 4) Compute
the sum of solutions weighted by the input space volume. Our
custom Dual-Monte Carlo function returns two lists of boolean
values, indicating whether a sample point xi lies in the integrated

area (True) or outside of it (False). Correlating these two lists yields
a code similarity score between 0 and 1.

7 CASE STUDY
We began our investigation based on multiple implementations of
algorithms in a common accelerator benchmark MachSuite [?]. We
calculated identical similarity scores between blocked and cubed
implementations of matrix multiplication when tested with matri-
ces of sizes 4, 16, 36, and 64. These different implementations had 4,
16, 36, and 64 output states, respectively, after combinations of inter-
mediary output states that effected the same final output state were
combined. We also investigated the perceived similarity between
a bulk implementation and a queued implementation of breadth-
first search. However, our current state matching scheme failed
to match states across those implementations since on different
executions the output states will have different data dependencies.
We continue to work on solving this problem.

Figure 9: Function state matching for variable mapping ap-
plied to Matrix Multiplication.

8 ACKNOWLEDGEMENTS
The Programming Systems Laboratory is supported in part by NSF
CNS-1563555, CCF-1815494 and CNS-1842456.

	Abstract
	1 Introduction
	2 Background
	2.1 SMT Formulas
	2.2 Continuous Logic Networks
	2.3 Use Case Scenario and Problem Specification

	3 Design
	3.1 SMT Construction
	3.2 Variable and State Mapping
	3.3 CLN Construction
	3.4 Monte Carlo Area and Similarity Metric

	4 Introduction
	5 Background
	6 Design
	7 Case Study
	8 Acknowledgements

