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ABSTRACT

Modern software engineering practices rely on program compre-
hension as the most basic underlying component for improving
developer productivity and software reliability. Software developers
are often tasked to work with unfamiliar code in order to remove
security vulnerabilities, port and refactor legacy code, and enhance
software with new features desired by users. Automatic identifi-
cation of behavioral clones, or behaviorally-similar code, is one
program comprehension technique that can provide developers
with assistance. The idea is to identify other code that “does the
same thing” and that may be more intuitive; better documented; or
familiar to the developer, to help them understand the code at hand.
Unlike the detection of syntactic or structural code clones, behav-
ioral clone detection requires executing workloads or test cases to
find code that executes similarly on the same inputs. However, a
key problem in behavioral clone detection that has not received
adequate attention is the “preponderance of the evidence” problem,
which advocates for more convincing evidence from nontrivial test
case executions to gain confidence in the behavioral similarities.
In other words, similar outputs for some inputs matter more than
for others. We present a novel system, SABER, to address the “pre-
ponderance of the evidence” problem, for which we adapt the legal
metaphor of “more likely to be true than not true” burden of proof.
We develop a novel test case generation methodology with three
primary dynamic analysis techniques for identifying important
behavioral clones. Further, we investigate filtering and weighting
schemes to guide developers toward the most convincing behav-
ioral similarities germane to specific software engineering tasks,
such as code review, debugging, and introducing new features.

KEYWORDS

Program comprehension, behavioral clones, dynamic analysis, meta-
morphic testing

1 INTRODUCTION

Program comprehension, or program understanding, continues to
pervade today’s software practices as developers attempt to acquire
knowledge about existing software systems. Software engineering
activities such as debugging, code refactoring, and feature enhance-
ment require sufficient understanding of application programs;
these tasks are essential for maintaining and scaling large-scale
software in today’s world. Many studies [36, 38, 46, 61, 90, 95] have
shown that program comprehension continues to be nontrivial.
Software developers repeatedly seek to understand unfamiliar code-
bases [38, 46]; this process is often very time-consuming [52, 61],
and existing documentation is sometimes outdated or insufficient

to completely aid developers’ understanding of the code’s function-
ality [1, 27, 50, 51, 93]. In industrial settings, co-workers may be
reliable sources of assistance, but they may not always be available,
or they may have left the company [24, 35, 53].

Software developers rarely seek to understand any part of the
system in its entirety and are content to understand even single
methods or classes to make necessary changes [3, 12, 42, 73, 76]. It
may be helpful to present the developer with code snippets similar
to her own. Code clone detection [2, 20, 34, 40] is ubiquitously
used as a mechanism for identifying similarities in small pieces
of software, primarily based on static pattern searches. Static code
clones [33, 64, 66], or textually-; syntactically-; and structurally-
similar code, are fairly well-understood, and identification tech-
niques are reasonably mature. While most program analysis tech-
niques have focused on detecting static code clones, we are inter-
ested in behavioral clones, or code fragments that exhibit similar
behaviors and that may not look visibly similar (henceforth, we
refer to behaviorally-similar or dynamically-similar code as “be-
havioral clones” and similar code based on syntax or structure
as “static code clones”). Behavioral clone identification techniques
[9, 16, 21, 29, 32, 48, 67, 78, 81] can aid developers’ understanding of
the functionality of the complex code fragments at hand by match-
ing them to code from elsewhere in the same codebase or from
other applications, particularly those the developer has previously
worked with. The intuition is that developers may not recognize
or remember where to locate behaviorally-similar code without
automated assistance [65].

Prior research has studied behavioral clones by applying dynamic
analysis techniques, including functional I/O similarity [21, 32, 48],
similarity of execution traces [81], and similarity of concolic and
dynamic symbolic executions [25, 39, 41, 45, 71, 86]. However, some
works [21, 81] are overly optimistic and sometimes classify similar-
ity based on only a single test case [80]. In contrast, SLACC [48]
constructs test cases based on multi-modal grey-box fuzzing to gen-
erate inputs. SLACC reflects improvements on the approach taken
in previous work and attempts to provide a systematic approach
to selecting relevant test cases. Further, recent concolic execution
techniques for automated test case generation have improved on
their predecessors, which often suffer from scalability challenges
such as path explosion and constraint solving inefficiency. Despite
the advancements, all of these techniques fail to provide a rationale
as to why their chosen test cases for similarity are convincing; we
refer to this as the “preponderance of the evidence” problem.

“Preponderance of the evidence” is a standard used for civil
claims in legal proceedings, requiring that evidence be “likely
enough” (with greater than 50% probability) to prove a charge or as-
sertion. The “preponderance of the evidence” standard is concerned



SABER: Identifying SimilAr BEhavioR for Program Comprehension Aditya Sridhar et al.

Subject Code Unconvincing Tests for absoluteValue Convincing Tests for absoluteValue

public	class	MathOperations	{

			...

			public	static	int	absoluteValue(int	val)	{
							if(val	<	0)
											return	-val;
							return	val;
			}

			...
			
			public	static	int	evalIdentityLine(int	x)	{
							y	=	x;	//	Identity	line
							return	y;
			}

			...
}

@Test(timeout	=	4000)
public	void	test0()	throws	Throwable	{
				int	absValue	=	MathOperations.absoluteValue(1);
				...
}

@Test(timeout	=	4000)
public	void	test1()	throws	Throwable	{
				int	absValue	=	MathOperations.absoluteValue(45);
				...
}

@Test(timeout	=	4000)
public	void	test2()	throws	Throwable	{
				int	absValue	=	MathOperations.absoluteValue(283);
				...
}

@Test(timeout	=	4000)
public	void	test0()	throws	Throwable	{
			int	absValue	=	MathOperations.absoluteValue(1);
			...

}

@Test(timeout	=	4000)
public	void	test1()	throws	Throwable	{
			int	absValue	=	MathOperations.absoluteValue(0);
			...

}

@Test(timeout	=	4000)
public	void	test2()	throws	Throwable	{
			int	absValue	=	MathOperations.absoluteValue(-1);
			...

}

Adjudication Functionally-Similar	Methods  Functionally-Dissimilar	Methods❌ ✅

Figure 1: An example of unconvincing evidence vs. convincing evidence formethod absoluteValue’s test executions using only
functional I/O similarity to compare methods absoluteValue and evalIdentityLine.

with the quality, not the quantity, of convincing evidence. In the
context of behavioral clone detection, more convincing evidence
from nontrivial test case executions will lead to higher confidence
on behavioral similarity classifications.

To demonstrate the difference between “convincing” and “un-
convincing” evidence, Figure 1 presents a simple but nontrivial
example for functional I/O similarity based on the rationale of
test coverage. The set of unconvincing test cases for the method
absoluteValue fails to address complete line and branch cover-
age by testing only positive integer inputs. As a result, methods
absoluteValue and evalIdentityLine would be incorrectly ad-
judicated as functionally similar. Instead, a representative test suite
considers all coverage criteria, thus including negative integer (i.e.,
“-1”) and boundary-value (i.e., “0”) inputs. The outputs differ on
negative inputs, hence providing convincing evidence to rule the
methods as functionally dissimilar.

The following considerations help expose and guide the search
for convincing evidence that may not be captured by existing tools:
• Tests guided by code coverage criteria reach and execute
all lines and branches of subject code, thus providing an
elaborate and complete examination of the code prior to
adjudicating similarity (as in Figure 1).
• The process of presenting evidence as convincing is expe-
dited by actively supplying common similar-by-construction
inputs to code subjects under comparison, thus construct-
ing new “incentivized” invocations. It is intuitive that this
approach is more effective than passively searching for “in-
trinsic” invocations containing common sets of inputs that
happen to occur for some workload [21].
• Different software engineering use cases require different
categories of evidence; therefore, they have different inter-
pretations of convincing evidence (e.g., similar exception
handling may be convincing for debugging but not for fea-
ture enhancement).
• The developer may favor certain test executions or specific
inputs of interest for a subject method. She should have the

ability to provide seed tests as “testimony” contributing to
convincing evidence.
• A test suite that is convincing for the assessment of a specific
definition of behavioral similarity may not be convincing
for other definitions.

In comparison to the “beyond a reasonable doubt” standard,
“preponderance of the evidence” is more relaxed; however, we opt
for “preponderance of the evidence” over the other standard, which
is much stricter. The “beyond a reasonable doubt” standard would
strive for comparisons involving functional or behavioral equality,
which is often unachievable or undecidable. “Preponderance of the
evidence,” on the other hand, would require only sufficient similarity,
based on some notion of sufficiency, per engineering task.

The literature is severely limited in addressing this “prepon-
derance of the evidence” problem. While LASSO [32] developed a
coverage-based technique for test case generation in an attempt
to provide convincing evidence, it only identifies functional I/O
clones with the same method name and signature, thus significantly
limiting the scope for finding such clones. LASSO only supports
method comparisons with arguments of array, string, and primitive
types. Further, LASSO fails to consider other sources of convinc-
ing evidence, including developer testimony (i.e., existing seed test
workloads) and properties of methods’ states. Finally, it only sup-
ports functional I/O similarity and does not profess an approach
that generalizes across multiple categories of behavioral code simi-
larity, which should be considered. These limitations undermine
the argument to classify LASSO’s evidence as convincing for the
“preponderance of the evidence.”

Selective test cases and definitions of behavioral similarity (e.g.,
functional I/O or execution traces) are sometimes more favorable
and applicable than others, and a developer may or may not know
how to characterize the behavioral similarities most germane to
a specific software engineering task for improving developer pro-
ductivity and software quality. For example, suppose the devel-
oper, given a test suite with known valid and faulty test cases, is
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tasked with applying differential testing to find security vulnera-
bilities. While the developer might initially choose to find other
functionally-equivalent code to compare against, it would be more
prudent to find code functionally similar on just the valid test cases
and functionally different on the faulty test cases. Such code pairs
could better expose differences that would help indicate sources of
vulnerabilities.

In addition to functional I/O, execution traces, and symbolic
execution, we introduce a fourth definition of similarity known
as metamorphic similarity. The premise of metamorphic similarity
lies in a testing technique called metamorphic testing. Metamorphic
testing was first developed by T.Y. Chen et al. [11] to solve the test
oracle problem, which is the problem of determining the correct
program outputs (or verifying that the actual outputs concur with
expected outputs) for a defined set of inputs. Today, metamorphic
testing is also used for program repair [30], program understanding
[95], and software quality assessment [96]. Metamorphic testing
involves identifying the “properties” of methods’ program states;
these properties are called metamorphic properties or metamorphic
relations. Metamorphic similarity is distinct from functional I/O
similarity in that the former is interested in the similarity among the
relationships between I/O pairs, or metamorphic properties, instead
of the similarity among the I/O themselves. In the previous example,
presenting the developer with additional metamorphically-similar,
but not metamorphically-equivalent, code may assist the devel-
oper in identifying violated method properties and localizing the
vulnerabilities.

In contrast to previous clone detection approaches, we instead
seek a more configurable approach that identifies behavioral clones
based on a representative set of test cases, targeted for desired en-
gineering objectives. We create a system, SABER, that significantly
advances state-of-the-art techniques by identifying these “targeted”
behavioral clones for four well-defined software engineering tasks
involving program comprehension: baseline program comprehension,
debugging, code refactoring, and feature enhancement. The system
is implemented in Java. Contrary to previous techniques, SABER
couples guided test case generation with three distinct dynamic
analysis techniques to identify behavioral clones: functional I/O
analysis, execution trace analysis, and metamorphic analysis. Auto-
mated test case generation is performed using dynamic symbolic
execution and search-based software testing via the EvoSuite tool.
Our system further employs filtering and weighting schemes for
the “preponderance of the evidence” problem in order to choose
the most convincing similarities across the engineering tasks.

A comprehensive qualitative and quantitative study conducted
by Maalej et al. [46] considers different program comprehension
strategies in engineering practices by software developers. Half of
them directly involve searching for behaviorally-similar code, either
from the same codebase or from open-source repositories. While
[46] does not directly observe any program comprehension tools,
it concludes that future research agendas should address context-
aware tool support, a problem we propose to solve in SABER.

Our approach does not require that existing codebases include
test cases to supply workloads, and no formal specifications are re-
quired. SABER is aimed at JVM-based languages such as Java; how-
ever, our methodology can be scaled and applied to most high-level
statically-typed languages, as well as dynamically-typed languages.

Table 1: Software engineering use cases presented in this pa-

per.

Use Case Description

Baseline Preliminary understanding of the
codebase using isolated code subjects

Debugging Detection, localization, and correction
of defects in the codebase

Legacy Code Refactoring Codebase modifications to improve its
maintainability and readability

Feature Enhancement Software upgrades and modifications

Our paper presents the following contributions:

• A novel approach to identifying behaviorally-similar code
at method-level granularity
• The first exploration of the “preponderance of the evidence”
problem for software engineering tasks that mandate pro-
gram comprehension
• Filtering and weighting schemes to choose the most convinc-
ing behavioral code similarities
• The application of metamorphic properties for test case gen-
eration and similarity detection as part of dynamic analysis

The rest of the paper is organized as follows. §2 explains the moti-
vation of our work across different software engineering use cases,
as well as details about the use cases and other key definitions
and notation used in the paper. §3 introduces test case generation
techniques and definitions of behavioral code similarity supported
by our system for the aforementioned software engineering tasks.
§4 presents SABER, our behavioral clone detection system, in fur-
ther detail based on a well-defined input generation methodology.
§5 provides an analysis of the filtering and weighting schemes
for targeted behavioral clones, and §6 applies the general solution
framework to the specific engineering use cases introduced and
motivated in §2. §7 provides the related work in behavioral clone
detection, concolic execution, program comprehension, and meta-
morphic testing. Finally, §8 concludes the paper by summarizing
our work.

2 BACKGROUND

2.1 Motivation

To emphasize the need for finding targeted behavioral clones for
specific software engineering tasks involving program understand-
ing, we present the following scenario.

Alice is a former software developer at a large technology com-
pany, BigTech. Carol is a current employee and has just recently
been instructed by her boss, halfway through the development
cycle, to take over a large Java project from Alice, who has left
the company. Carol must enhance a set of software features for an
upcoming deliverable. Although Carol is familiar with the program-
ming language, the IDE, the compiler, and the version repository,
she is unfamiliar with the project’s codebase. The code is rather
poorly documented and poorly written, making the task even more
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cumbersome. Carol has reached out to her boss, who is also unfa-
miliar with the codebase. She has received little assistance from
Alice and previous development teams at BigTech.

Fortunately, Carol has found some existing unit tests, which may
help her to understand the relationships among different classes and
methods. However, she still cannot understand the functionality
of some methods in specific classes, and certain unit tests fail due
to existing bugs in the codebase. It appears that Carol will have a
painful experience taking over the new (for her) software project.

Since Carol is knowledgeable in proper software engineering
practices, she understands the process for handling legacy code.
She must begin by formulating a baseline understanding of the
codebase. Next, shemust fix existing bugs and then refactor the code
to improve its long-run maintainability and extensibility. Finally,
she must learn how large volumes of code function together in
order to add a new feature. Given the unpleasant nature of the
codebase documentation and presentation, Carol’s task will be very
time-consuming. She would definitely benefit from a tool that could
aid her in her endeavor.

We present SABER as such a tool that streamlines the program-
ming understanding process of code review, debugging, and fea-
ture extension. SABER uses dynamic analysis to find behaviorally-
similar code that may be useful to developers like Carol. SABER
assists with four software engineering tasks: baseline program
comprehension, debugging, legacy code refactoring, and feature
enhancement. These use cases are briefly described in Table 1.

2.2 Use Cases

This section provides commentary on each of the four use cases
presented in SABER. Note that presenting similar code from the
same codebase would be counterintuitive for all use cases, as similar
perplexing code written by the same author(s) would not improve
comprehension. To circumvent this issue, SABER instead searches
for individual matches strewn across multiple unrelated codebases.
Moreover, SABER aggregates the similarity across code obtained
from different codebases. While [44] presents a code recommenda-
tion system inspired by clone detection, they search for structurally-
or syntactically-similar code from other codebases. Instead, we are
interested in behaviorally-similar code.

2.2.1 Baseline Program Comprehension. The baseline use case
refers to a preliminary understanding of the codebase and is a
fundamental first step in working with legacy code. Performing a
line-by-line analysis of whole classes or methods with high 𝐿𝑂𝐶

and numbers of invocations is cumbersome, especially if the code
has poor readability. Further, new developers are often interested
in comprehending only particular code fragments and methods in
the context of their application rather than the whole application
itself.

Hence, this use case focuses on analyzing subject methods and/or
classes in isolation and presenting similar code to developers with-
out requiring additional effort from developers. In SABER, code
subjects are compared against other code from the same applica-
tion, and possibly also code from other available applications. In
both cases, neither finding all similar code nor obtaining the most
closely-similar code is necessary for baseline comprehension.

2.2.2 Debugging. Before new developers can cater to feature re-
quests, the code must be fully tested to ensure its correctness. How-
ever, the code may have existing bugs, and new developers may be
unsure about the approach to fixing them. Developers may take
advantage of faulty test cases, which are test cases that either pass
but are incorrect or unexpectedly fail on one or more assertions.
For the latter category of faulty tests, failing unit tests in Java can
be exposed by executing test suites using JUnit [55], which reveals
tests that contain one or more failing assertions. The former cate-
gory of faulty tests are tests that themselves contain defects (e.g.,
incorrect assertions or outputs). SABER assumes these defects are
known beforehand, are flagged by testers or previous developers,
and are presented separately to the system as inputs for debugging.

Although faulty test cases provide information about the classes
and methods under test and about the exceptions thrown to aid in
localization of bugs, code correction requires knowledge about the
intended functionality of the code, which may be unclear to the
developers.

By leveraging similar code, SABER guides developers by pre-
senting them with a “handbook” of similar code to the subject code
under test based on variegated subsets of valid and faulty test case
executions. Design decisions for constructing this handbook and
choosing these subsets are described in §6. This approach may
also enable SABER to detect security vulnerabilities in large-scale
applications.

2.2.3 Legacy Code Refactoring. Legacy code is code that is out-
dated or difficult to maintain and extend. Although legacy code is
often functional and contains unit tests for verification, software
may still have poor readability and high complexity.

Improving legacy code can be time-consuming, attributed pri-
marily to a lack of knowledge of the codebase, and has been shown
to divert developers’ attention away from primary workday respon-
sibilities [50]. In particular, legacy code is often difficult to debug,
quickly ages, and is brittle. Nevertheless, refactoring is paramount
to improving the design, readability, extensibility, and performance
of software. Thus, code refactoring conventionally succeeds debug-
ging in the pipeline to ensure new bugs are not introduced in the
working code.

For legacy code refactoring, SABER empowers developers with
the ability to replace existing application code with less complex
but functionally-equivalent and comprehensible code that can be
stitched into the application. Because the notion of “complexity”
is often subjective, we adapt our own definitions of complexity in
§5.2.

2.2.4 Feature Enhancement. Extending the legacy code with new
features or enhancing feature functionality are primary objectives
in software development for businesses to satisfy user demand.
Once legacy code for unfamiliar software applications has been
repaired and refactored, new software developers must have a suf-
ficient understanding of the code to add new features without
injecting new bugs.

In contrast to previous use cases, software developers often
require an understanding of multiple methods from different classes
(as opposed to a single method in isolation) to add and extend
features.
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2.3 Definitions and Notation

For inputs and outputs, our system supports both primitive and
reference data types, which are compatible with the Java Virtual
Machine (JVM) [43].

SABER defines inputs as any data whose scope begins prior to
method execution (i.e., they are defined outside of the method) and
are used in the computation of any of the method’s outputs. Inputs
are considered live prior to entering the method body. Therefore,
inputs are comprised from a subset of both the method’s parameters
and the method’s state. Outputs are defined as any data computed
in the method body and whose scope extends beyond the method
(e.g., the data is stored in memory and accessed outside of the
method). These definitions are adapted from [21]. Test cases are
templates for executing methods and contain specifications for
execution based on a set of test conditions. Test cases also house
inputs that drive method invocations, and their setup construction
enables simple extraction of these inputs and potential outputs for
similarity analysis.

Additionally, SABER references the following notation used
later in the paper. \𝑠𝑖𝑚 is the similarity threshold for determin-
ing whether two code subjects are considered behavioral clones. A
is the developer’s application code, 𝜌 is the set of code subjects on
which the developer performs a specific software engineering task,
and U is the list of developer specifications (including testimony)
for her task at hand, if any exist. C is the list of targeted behavioral
clones for the presented code subjects; they are derived by execut-
ing test suites Γ, generating test executions Π, and analyzing I/O
profiles [ (§4.1, §4.3) and execution traces E (§4.4). Finally, with
regard to metamorphic testing (§3.1.3),M is the list of constructed
metamorphic tests, and P is a map of valid metamorphic properties
that exist for each code subject.

3 TEST GENERATION AND CODE

SIMILARITY CLASSIFICATIONS

3.1 Test Generation Techniques

Test generation is pervasive in software development today to
improve and enhance the quality of software [72]. Unfortunately,
creating, understanding, and assessing meaningful test suites are
time-consuming. To address this problem, we first investigate test
generation techniques as a preliminary step to constructing input
sequences well-suited for driving test executions. The generated
tests will be instrumental for analyzing similar behaviors in the
context of each software engineering use case. Previous work has
employed random testing [16, 29], search-based software testing
[8, 23, 26], guided testing [28, 58, 92], and symbolic/concolic execu-
tion [4, 7, 25, 39, 45, 62, 71, 86] as avenues for dynamic test input
selection and generation. We present three different sources of test
generation used in this paper: pre-existing tests, automated tests,
and metamorphic tests. SABER supports unit testing with the JUnit
[55] framework.

3.1.1 Pre-Existing Tests. Codebases often provide well-defined test
suites to supplement their applications. Pre-existing test cases are
designed by developers to provide inputs that are considered rel-
evant to testing their code’s functionality; these tests amount to
developer testimony. Suppose a developer is tasked to work with a

subject method or class in the code and corresponding pre-existing
unit tests. It is natural that these unit tests should be exercised,
and they can be leveraged to help guide input generation for candi-
date similar code. Pre-existing tests have been incorporated into
workloads executed by SABER.

3.1.2 Automated Tests. SABER does not require that codebases
have pre-existing tests or pre-existing workloads. There are several
automated test generation tools or techniques designed for unit
testing in Java.

While random testing, which generates test cases based on a
random distribution, and fuzzing are often useful for detecting re-
liability and security problems [15, 57, 58], they usually achieve
low coverage and offer limited guidance in complex object-oriented
codebases. Instead we chose coverage-based automated test genera-
tion. This approach provides the developer with a representative set
of test cases for verifying the functional correctness of her subject
code. [32] has demonstrated that coverage-based test generation
tools result in better precision and quality of inputs than random
test generation tools.

SABER uses EvoSuite [8, 22, 23], which is a mature and readily-
available tool for Java. EvoSuite combines genetic algorithms, mu-
tation testing, and search-based mechanisms to generate test suites.
Moreover, EvoSuite supports tuning of parameters for search bud-
gets, assertions, and coverage criteria.

3.1.3 Metamorphic Tests. Metamorphic testing was first developed
by T.Y. Chen et al. [11] to solve the test oracle problem. The test
oracle problem is the problem of determining the correct outputs
of a program given a defined set of inputs. Often, the assumption
that a valid test oracle is available for a software system may not
always hold in practice.

Metamorphic testing was introduced to alleviate this issue by
leveragingmetamorphic properties—properties of methods’ program
states generated by analyzing transformations to those methods’
inputs—to augment the original test suite. An advantage of meta-
morphic properties is that for a given test case Γ1 belonging to a
method𝑀 , additional test cases can be generated from Γ1 based on
Γ1 and 𝑀 alone; metamorphic properties do not require compar-
isons to other methods or test cases.

Metamorphic properties can be summarized as follows:
(1) Given a program f and an input set 𝑥 , its output is f (𝑥 ).
(2) Apply a transformation function T, derived from a defined

metamorphic property for the method, on subsets of 𝑥 to
obtain the resultant transformed input set T (𝑥 ). The output
with input set T (𝑥 ) is f (T (𝑥 )).

(3) Apply a check function C on the original output f (𝑥 ) to ob-
tain C(f (𝑥 )), the predicted output. A metamorphic property
holds if f (T (𝑥)) can be predicted from f (𝑥), i.e., f (T (𝑥)) is
consistent with (but not necessarily equal to) C(f (𝑥)), and
the metamorphic property exists on {𝑇,𝐶}.

One major challenge with metamorphic testing is that metamorphic
relationships among pairs of executions are not usually known a
priori [11, 68]. To determine possible metamorphic properties, we
adopt the approach taken in [79]. Using a series of well-defined
metamorphic transformations on the inputs and checks on the out-
puts, we can verify the existence of specific metamorphic properties.
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Once metamorphic properties have been identified, new test cases
can be selected and constructed based on the transformed inputs
used in the verification of those properties.

3.2 Code Similarity

3.2.1 Functional I/O Similarity. Functional I/O similarity is predi-
cated on the execution of code subjects’ test cases and the succes-
sive extraction and comparison of inputs and outputs. We refer to
functionally-similar code as functional I/O clones. To be considered
functional I/O clones, methods or applications must output similar
values when driven with similar inputs. Unlike previous techniques
that studied functional I/O similarity, SABER considers the condi-
tions for functional I/O similarity to have been met if the similarity
across executions satisfies the “preponderance of the evidence.”

SABER reports functional I/O similarity even when methods
have different signatures or different output vehicles, such as re-
turn values or values in static fields. Our system does not ignore
situations in which outputs have different data types (including ob-
ject type) or the number of outputs is different; instead, it imposes
similarity penalties where applicable. SABER enforces a relaxed
approach to analyzing I/O comparisons; note that we do not seek
functional equality, but functional similarity, as it is often infeasible
to find functional I/O clones that have completely identical I/O
profiles in practice.

While such policies are relatively similar to those in [21], SABER
also actively supplies common similar-by-construction inputs to
code subjects under comparison instead of passively searching for
“intrinsic” invocations that contain common sets of inputs. Finally,
the system weighs certain executions more highly than others,
hence presenting a stronger characterization of similarity.

3.2.2 Behavioral Similarity with Execution Traces. Instead of com-
paring source inputs and sink outputs, this definition of similarity
is interested in the trace program executions across different meth-
ods. Dynamic dependency graphs are constructed in real time for
each method invocation during the execution of code subjects’ test
cases. SABER compares graphs for a specific method invocation to
those of other method invocations and their respective subgraphs
as part of a subgraph isomorphism problem. As with functional I/O
similarity, we are concerned with similarity and not equality; hence,
exact matches are not mandatory. Execution traces are considered
similar if the “distance” between the traces is below some tolerance
threshold, based on some distance metric. To measure this distance,
the instruction sequences from dynamic dependency graphs are
first linearized into vector representations using the PageRank [59]
algorithm. The Jaro-Winkler distance [13] metric is then applied
on these vectors. Pieces of code that are behaviorally similar on
execution traces are referred to as executional clones.

3.2.3 Metamorphic Similarity. Recall with functional I/O similarity
that two code subjects are considered functional I/O clones if for
similar inputs, their outputs are similar. Additionally, we seek to
investigate the similarity among the relationships between I/O pairs,
transcending input type differences between the code subjects.

We devise a new definition of behavioral similarity based on
“known properties” of code subjects. In §3.1.3, we introduced meta-
morphic testing as an approach to test case generation based on

// Insertion Sort
public List<Integer> insertionSort(List<Integer> list) {

for (int i = 1; i < list.size(); i++) {
int value = list.get(i);
int j;
for (j = i; j > 0 && list.get(j - 1) > value; j--)

list.set(j, list.get(j - 1));
list.set(j, value);

}
return list;

}

// Selection Sort with Value Shifts
public static Double[] selectionSortAndShift(Double[]

values, double shiftValue) {
for (int i = 0; i < values.length - 1; i++) {

int index = i;
for (int j = i + 1; j < values.length; j++)

if (values[j] < values[index])
index = j;

double smallerNumber = values[index];
values[index] = values[i];
values[i] = smallerNumber;

}
for (int i = 0; i < values.length; i++)

values[i] += shiftValue;
return values;

}

Figure 2: An example of metamorphic clones detected by

SABER.

derived metamorphic properties. We leverage these same properties
as part of our definition of behavioral similarity by considering two
code subjects as similar if they have similar sets of metamorphic
properties and different otherwise; we refer to such behavioral
clones as metamorphic clones.

Consider Figure 2, which shows two Java methods determined
to be metamorphic clones by SABER. One method shows an inser-
tion sort algorithm that accepts an Integer list as an input and
outputs a sorted Integer list. The second method, on the other
hand, takes in a Double array as input and executes a selection sort
algorithm, concluding with each element in the array being shifted
by the amount given by the input shiftValue. Note that due to
the differences in data types, number of inputs, and the value shifts
in the second method, these methods are unlikely to be considered
similar by functional I/O analysis. Further, the sorting algorithms
have different instruction sequences and execution traces; thus, ex-
ecutional analysis will also fail to detect the methods as executional
clones. However, these methods are metamorphically similar, as
the sets of metamorphic properties are similar despite differences
in execution traces, syntax, or structure.

To summarize, the implications of metamorphic similarity are
twofold. It provides an approach to measuring the similarity be-
tween two code subjects without requiring matching input types or
output types. Metamorphic similarity may also reveal existing bugs
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Figure 3: High-level architecture of SABER.

in the codebase and guide the developer toward a solution through
the analysis of common or dissimilar metamorphic property sets.

4 SABER: BEHAVIORAL CLONE DETECTION

We create SABER as a behavioral clone detection system designed
to identify “targeted” behavioral clones for different software engi-
neering tasks based on a potpourri of test generation techniques
and definitions of behavioral code similarity. Figure 3 provides a
high-level overview of the different functioning components in our
work, further illustrated in Algorithm 1.

SABER first constructs the original test suite from any pre-
existing test cases (line 5) (along with user specifications, if applica-
ble) and automated tests (line 11); these initial tests are referred to
as primary tests. Next, the system performs functional I/O analysis
(lines 14-17, 22-31) on the test suite. I/O profiles or records created
(line 16) during functional I/O analysis are examined and exploited
to generate additional metamorphic tests (lines 18-19), which re-
veal patterns in a code subject’s metamorphic properties. Using
the primary test cases, data type conversion techniques, and the
generated metamorphic tests, the original test suite is augmented
with handcrafted tests cases, labeled as secondary tests (line 20).
Executional analysis (line 22) is performed on both the primary tests
and the newly-created secondary tests. We then conduct offline
similarity analysis coupled with well-guided filters and weighting
schemes (detailed in §5) of the code subject’s execution traces, I/O,
and metamorphic properties (lines 32-33). Finally, we tailor these
results to the specific software engineering task at hand in order
to identify the most valuable behavioral clones for the developer
(lines 34-37 ). Algorithm 1 will be used as a reference in §4-6.

4.1 Primary I/O Profiling

The original test suite is first constructed based on test generation
techniques highlighted in §3.1 (lines 4-12). Using the approach
previously developed in HitoshiIO [21] to leverage the definitions
of inputs and outputs from §2.3, we perform static analysis on the
complete application code and insert bytecode instrumentation
with Java’s ASM bytecode manipulation library [6] to identify and
record method inputs and outputs at runtime (line 13).

Our system then executes the modified test suites (line 14) to
generate I/O profiles (lines 16-17 ) from the executions. The profiles

are serialized to XML using the XStream library [14] for Java. These
I/O profiles are classified as primary I/O profiles, distinct from the
handcrafted I/O profiles generated later in the methodology.

4.2 Metamorphic Profiling

In this stage of SABER, primary I/O profiles serve as templates for
constructing new tests based on individual methods’ metamorphic
properties (Alg 1, lines 18-19). Algorithm 2 describes our approach
to generating metamorphic profiles, extracting likely metamorphic
properties, and constructing reliable metamorphic tests. Metamor-
phic transformers (line 2) and checkers (line 3) are defined as in
[79] and utilized as per the approach highlighted in §3.1.3.
• Transformers: SABER uses 11 well-defined input trans-
formers for inputs of both primitive and reference data types.
Primary transformer categories include adder, multiplier, re-
verser, shuffler, negator, inclusion, and exclusion.
• Property Verifiers/Checkers: similar to the case of input
transformers, SABER provides 17 well-defined checkers to
be applied on the original and metamorphic profiles in veri-
fying metamorphic properties. The main classifications of
checkers include additive, multiplicative, identity, shufflable,
negatable, invertible, inclusive, exclusive, and correlative.

Once inputs I have been extracted (line 5) from the primary I/O
profiles [, transformations are applied on all subsets of I to form the
transformed set I𝑇 (line 7 ). The primary I/O profiles are transformed
into profiles [𝑇 by replacing the existing inputs with the respective
transformed inputs (line 8). Test cases Γ𝑇 are constructed from these
transformed profiles via the technique explained in §4.3 (line 9);
these tests only represent “possible” metamorphic tests. Next, the
Γ𝑇 tests are executed as in §4.1 (line 10), and metamorphic profiles
[𝑇𝑜𝑢𝑡 (line 11) are constructed from the executed tests. Thereafter,
for each metamorphic I/O profile (line 12) and corresponding pri-
mary I/O profile, checkers verify whether metamorphic properties
hold for that transformer-checker pair (line 13). If a metamorphic
property exists and the profile belongs to a developer-specified
subject method found in 𝜌 (line 14), the property’s existence is re-
ported (line 15). Moreover, the metamorphic test from which the
metamorphic profile was derived is flagged as a valid metamorphic
test for the subject method (line 17 ). This process continues until
all profiles have been analyzed.
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Algorithm 1 Solution Overview of SABER
Input: Developer application code A, a set of code subjects 𝜌 , and
any developer specifications U (including use case type)
Output: A list C of targeted behavioral clones for each code
subject
1: Ω𝑜𝑟𝑖𝑔 ← SetUpRepos(A);
2: 𝑇𝑌𝑃𝐸 ← GetUseCaseType(U);
3: {Γ𝑜𝑟𝑖𝑔 , [𝑜𝑟𝑖𝑔 , M, [𝑛𝑒𝑤 , 𝐹𝑇 } ← ∅;
4: for Ω𝑖 ∈ Ω𝑜𝑟𝑖𝑔 ∀𝑖 ∈ {1, . . . , |Ω𝑜𝑟𝑖𝑔 |} do
5: Γ𝐸,𝑖 ← ExtractExistingTests(Ω𝑖 );
6: if 𝑇𝑌𝑃𝐸 = "debug" then
7: 𝐹𝑇 ← ExtractFaultyTests(Γ𝐸,𝑖 );
8: 𝑉𝑇 ← ExtractValidTests(Γ𝐸,𝑖 );
9: Γ𝑜𝑟𝑖𝑔 ← Γ𝑜𝑟𝑖𝑔 ∪𝑉𝑇 ;
10: else

11: Γ𝐴,𝑖 ← GenerateAutomatedTests(Ω𝑖 );
12: Γ𝑜𝑟𝑖𝑔 ← Γ𝑜𝑟𝑖𝑔 ∪ (Γ𝐸,𝑖 ∪ Γ𝐴,𝑖 );
13: Γ𝑚𝑜𝑑

𝑜𝑟𝑖𝑔
← PreAnalyzeAndCompile(Γ𝑜𝑟𝑖𝑔 );

14: Π𝑜𝑟𝑖𝑔 ← ExecuteTests(Γ𝑚𝑜𝑑
𝑜𝑟𝑖𝑔

);
15: for Π𝑖 ∈ Π𝑜𝑟𝑖𝑔 ∀𝑖 ∈ {1, . . . , |Π𝑜𝑟𝑖𝑔 |} do
16: [𝑜𝑟𝑖𝑔,𝑖 ← GenerateTypeAIOProfile(Γ𝑚𝑜𝑑

𝑜𝑟𝑖𝑔,𝑖
, Π𝑖 );

17: [𝑜𝑟𝑖𝑔 ← [𝑜𝑟𝑖𝑔 ∪ [𝑜𝑟𝑖𝑔,𝑖 ;
18: M𝑖 ← GenerateMetamorphicTests([𝑜𝑟𝑖𝑔,𝑖 );
19: M← M ∪M𝑖 ;
20: Γ𝑛𝑒𝑤 ← ConstructTypeBTests(Γ𝑜𝑟𝑖𝑔 , [𝑜𝑟𝑖𝑔 ,M, 𝜌);
21: E← GenerateExecutionTraces(Γ𝑜𝑟𝑖𝑔 , Γ𝑛𝑒𝑤 );
22: Π𝑛𝑒𝑤 ← ExecuteTests(Γ𝑛𝑒𝑤 );
23: O← ConstructProfileOrganizers(Π𝑛𝑒𝑤 );
24: for Π𝑖 ∈ Π𝑛𝑒𝑤 ∀𝑖 ∈ {1, . . . , |Π𝑛𝑒𝑤 |} do
25: [𝑛𝑒𝑤,𝑖 ← GenerateTypeBIOProfile(Γ𝑛𝑒𝑤,𝑖 , Π𝑖 );
26: 𝑂 ← GetProfileOrganizer(O, [𝑛𝑒𝑤,𝑖 );
27: if IsAlphaProfile([𝑛𝑒𝑤,𝑖 , 𝜌) then
28: AddToAlphaProfilePool(𝑂 , [𝑛𝑒𝑤,𝑖 , 𝜌);
29: else if IsBetaProfile([𝑛𝑒𝑤,𝑖 , 𝜌) and 𝑇𝑌𝑃𝐸 ≠ "debug" then
30: AddToBetaProfilePool(𝑂 , [𝑛𝑒𝑤,𝑖 , 𝜌);
31: [𝑛𝑒𝑤 ← [𝑛𝑒𝑤 ∪ [𝑛𝑒𝑤,𝑖 ;
32: 𝑆𝐼𝑀 ← ComputeAllWeightedSimilarities(O, E,M, 𝜌);
33: 𝐶𝑂𝑀 ← ComputeAllComplexities(𝜌 , 𝜌 ′);
34: C← FindTargetedBehavioralClones(𝑇𝑌𝑃𝐸, 𝜌 , 𝑆𝐼𝑀 , 𝐶𝑂𝑀);
35: if 𝑇𝑌𝑃𝐸 = "debug" then
36: ApplyClonesOnFaultyTests(C, 𝐹𝑇 );
37: return C;

As the number of classes, methods, and primary I/O profiles
increases, the number of metamorphic tests becomes increasingly
large. To reduce the number of metamorphic tests, we implement
a top-k heuristic that searches for the “strongest” metamorphic
tests for each code subject. Metamorphic tests are grouped by code
subject (line 18) and ranked in decreasing order of the number of
metamorphic properties revealed by those tests. The top 𝑘 tests are
selected per code subject (line 20) as representatives in the final set
of metamorphic tests (line 21), with 𝑘 chosen from a fixed range of
values.

Algorithm 2 Metamorphic Profiling
Input: Primary I/O profiles [ and a set of code subjects 𝜌
Output: Metamorphic testsM and properties P
1: {M,M𝑖𝑛𝑖𝑡 } ← ∅;
2: 𝑇 ← SetUpTransformers();
3: 𝑉 ← SetUpCheckers();
4: for [𝑖 ∈ [ ∀𝑖 ∈ {1, . . . , |[ |} do
5: I← GetInputs([𝑖 );
6: for 𝑇𝑗 ∈ 𝑇 ∀𝑗 ∈ {1, . . . , |𝑇 |} do
7: I𝑇

𝑗
← TransformInputs(𝑇𝑗 , I);

8: [𝑇
𝑖,𝑗
← TransformProfiles([𝑖 , I𝑇𝑗 );

9: Γ𝑇
𝑖,𝑗
← SetUpPossiblyValidMetTests([𝑖 , [𝑇𝑖,𝑗 );

10: Π𝑖, 𝑗 ← ExecuteTests(Γ𝑇
𝑖,𝑗
);

11: [𝑇
𝑖,𝑗,𝑜𝑢𝑡

← CreateMetamorphicProfiles(Γ𝑇
𝑖,𝑗
, Π𝑖, 𝑗 );

12: for 𝑉𝑘 ∈ 𝑉 ∀𝑘 ∈ {1, . . . , |𝑉 |} do
13: 𝑝𝑟𝑜𝑝𝐸𝑥𝑖𝑠𝑡𝑠 ← VerifyProperty(𝑉𝑘 , [𝑖 , [𝑇𝑖,𝑗,𝑜𝑢𝑡 );
14: if 𝑝𝑟𝑜𝑝𝐸𝑥𝑖𝑠𝑡𝑠 and [𝑖 .𝑚𝑒𝑚𝑏𝑒𝑟 ∈ 𝜌 then

15: P[[𝑇
𝑖,𝑗,𝑜𝑢𝑡

,𝑉𝑘 ] = true;
16: if [𝑇

𝑖,𝑗,𝑜𝑢𝑡
∉ M𝑖𝑛𝑖𝑡 then

17: M𝑖𝑛𝑖𝑡 ← M𝑖𝑛𝑖𝑡 ∪ [𝑇𝑖,𝑗,𝑜𝑢𝑡 ;
18: 𝐺 ← GroupByCodeSubjects(M𝑖𝑛𝑖𝑡 , 𝜌);
19: for 𝐺𝑖 ∈ 𝐺 ∀𝑖 ∈ {1, . . . , |𝐺 |} do
20: 𝐺𝑖,𝑘 ← SelectTopKMetTests(𝐺𝑖 );
21: M← M ∪𝐺𝑖,𝑘 ;
22: return {M, P};

public	class	Person	{
				public	String	name;
				protected	int	age;
				private	double	weight;
				private	List<Person>	children;
				public	static	boolean	isValid;

				public	Person(String	name,
																		int	age,
																		double	weight,
																		List<Person>	children)	{
								this.name	=	name;
								this.age	=	age;
								this.weight	=	weight;
								this.children	=	children;
				}
}

<Person>
 	<name>Dr.	Foo	Bar</name>
 	<age>50</age>
 	<weight>160.0</weight>
 	<children>
 	 	<Person>
 	 	 	<name>John	Bar</name>
 	 	 	<age>22</age>
 	 	 	<weight>120.0</weight>
 	 	 	<children/>
 	 	</Person>
 	 	<Person>
 	 	 	<name>Jane	Bar</name>
 	 	 	<age>19</age>
 	 	 	<weight>95.0</weight>
 	 	 	<children/>
 	 	</Person>
 	</children>
</Person>

Convert
object
to XML

Figure 4: XML serialization of an object instantiated from a

sample Java class.

4.3 Secondary Test Case Generation and I/O

Profiling

To overcome the challenge of candidate methods never being in-
voked with similar inputs during available workloads, such as pre-
existing test cases, SABER also directly supplies common inputs
to both the method of interest and other methods that potentially
behave similarly. In this section, we describe how inputs are created
and used in test case generation.

4.3.1 Input Type Conversion. For a method𝑀1 to be compared to
a method𝑀2, we must supply𝑀1’s inputs to𝑀2 and𝑀2’s inputs
to𝑀1. However, methods often have variegated signatures, which
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@Test(timeout	=	4000)
public	void	testPerson2()	throws	Throwable	{
				Person	person	=	new	Person();
				person.setName("Hello	World!");
				String	out	=	
									NameManager.repeatName(person,	100,	3);
}

@Test(timeout	=	4000)
public	void	testDuplicator2()	throws	Throwable	{
				StringTokenizer	st	=	
									new	StringTokenizer("Dr.	Foo	Bar");
				StringOperations.repeats	=	5;
				String	dup	=	StringOperations.dupString(st);
}

@Test(timeout	=	4000)
public	void	testDuplicator()	throws	Throwable	{
				StringTokenizer	st	=	
									new	StringTokenizer("Hello	World!");
				StringOperations.repeats	=	3;
				String	dup	=	StringOperations.dupString(st);
}

@Test(timeout	=	4000)
public	void	testPerson()	throws	Throwable	{
				Person	person	=	new	Person();
				person.setName("Dr.	Foo	Bar");
				String	out	=	
									NameManager.repeatName(person,	100,	5);
}

person	(Person)
5	(int)

st	(StringTokenizer)
3	(Integer)

XML Parsing and
Type Conversion

Input extraction

Input extraction

 I/O profile for method dupString from test case testDuplicator
 I/O profile for method repeatName from test case testPerson

 I/O profile for method repeatName from test case testPerson
 I/O profile for method dupString from test case testDuplicator

Input replacement

Input replacement

public	class	Person	{
				private	String	name;
				private	int	age;
				private	double	weight,	height;
				
				public	Person()	{}
				
				//	Setters	and	getters
				public	void	setName(String	name)	{	this.name	=	name;	}
				public	String	getName()	{	return	this.name;	}
				...
}

public	class	NameManager	{
				public	static	String	repeatName(Person	person,	
										int	errorVal,	int	numTimes)	{
								String	name	=	person.getName();
								if(name	==	null	||	name.length()	>	50)
												return	"Error:	"	+	errorVal;
								String	repeatedName	=	"";
								for(int	i	=	0;	i	<	numTimes;	i++)
												repeatedName	+=	name;
								return	repeatedName;
				}
}

public	class	StringOperations	{
				public	static	Integer	repeats;

				public	static	String	dupString(StringTokenizer	st)	{
								List<String>	tokens	=	new	ArrayList<>();
								while(st.hasMoreTokens())
												tokens.add(st.nextToken());
								String	str	=	String.join("	",	tokens);
								String	finalStr	=	"";
								int	index	=	0;
								while(index	<	repeats)	{
												finalStr	+=	str;
												index++;
								}
								return	finalStr;
				}
}

Figure 5: An example of secondary test case generation performed by SABER.

result in different argument types and counts. This observation can
be extended to input state, which is not limited tomethod arguments.
Unlikemost of the previous techniques, SABER supports conversion
of data types across methods with not only different signatures, but
also different input types and counts. Further, SABER supports all
JVM primitive and reference data types.

To convert data types across methods, we implement a type
conversion adapter that supports conversion across primitive data
types, strings, objects (which are enclosed in wrappers), multi-
dimensional arrays, collections, and file types based on a compre-
hensive set of existing converters. Comparing twomethods requires
comparing their primary I/O profiles from §4.1 and selected meta-
morphic profiles from §4.2, which are serialized using XML. All
permutations of input orders are considered. For each permutation,
XML input elements are recursively dissected, individually manipu-
lated, and stitched together to form new I/O profiles. During input
type conversion for a specific input order, if a type conversion for
any individual input in the order cannot be supported, then SABER
drops the input order and proceeds to the next one. This policy
helps to limit the number of test cases generated in §4.3.2. The
type conversion process continues until all input orders have been
considered for a method pair.

One advantage of our approach to serialization is our ability to
manipulate both private and non-private members of classes, as
input state variables may be private or non-private. An example
of the flexibility of XML serialization is shown in Figure 4 (object
creation is omitted for brevity). Public, private, and protected access
modifiers can be serialized in XML; hence, SABER supports the
manipulation of all members with these modifiers. Since static
variables (e.g., the isValid field) belong to the class in Java, they
cannot be serialized by XStream.

Similar to SLACC [48], SABER can handle objects whose mem-
bers are initialized via constructors. However, SABER also supports
conversion of objects that may not be initialized via their construc-
tors; this is due to the flexible structure of test cases and accessibility
to input values from serialized profiles. To compare object types
across objects with the same number of fields, objects are internally
manipulated by pairwise comparison of those fields. Since individ-
ual fields may have object types themselves, objects are recursively
examined until all serialized entities have been converted.

4.3.2 Test Case Generation. To generate new test cases (Alg. 1, line
20), we implement a searching technique to replace inputs from the
test suite of both the original Γ𝑜𝑟𝑖𝑔 and metamorphicM test cases
with the new type-converted inputs. Pre-instrumentation monitors
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are inserted in the test suite to track runtime values around variable
declarations and literal expressions. Based on the runtime values,
variables and literals from the primary test cases are mutated and
then loaded into new secondary test cases. Since complex inputs
such as objects often require setup code, the values are loaded from
a MySQL database and extracted from the result set.

Figure 5 demonstrates a simple example of secondary test case
generation. Note that SABER is able to handle object inputs (e.g.,
person, which is of type Person) and file type inputs (e.g., st, which
is of type StringTokenizer). Objects can be initialized through
means other than their constructors (e.g., the Person class only has
a default constructor, but the name field can be initialized via a setter
method, as in testPerson). Method arguments may not necessarily
be inputs, as in the case of testPerson, where errorVal = 100 is
unused in the specific method invocation to repeatName. Further,
the example underscores the flexibility of state variables as inputs by
not requiring inputs to be passed in via method arguments (e.g., “3”
in testDuplicator). Finally, for demonstration purposes, note that
the setup code for the person object in testPerson conveniently
contains the value of the field (i.e., name) to be modified during
input replacement. However, SABER can cleverly modify or replace
the values of the “implicit” object fields—age, weight, and height—
via serialization if their values happen to influence the outputs of
any method, even if their original values are not initialized in the
test case.

4.3.3 I/O Profiling. The secondary tests are executed (Alg. 1, line
22), and secondary I/O profiles are generated (Alg. 1, line 25) for
analysis. For developer-specified subject methods of interest, these
secondary I/O profiles are organized (Alg. 1, line 23) into two cate-
gories: 𝛼 and 𝛽 . These categories may be influenced by test cases the
developer herself elects to be “more important” or “less important”
for her software engineering task at hand; however, as noted in
§1, SABER does not require such test cases and does not assume
the developer knows how to characterize the importance of test
cases. 𝛼 I/O profiles (Alg. 1, lines 27-28) for a method𝑀1 are profiles
from highly-relevant tests cases that represent the bodies of other
methods𝑀2 but with𝑀1’s inputs driven to𝑀2. Conversely, 𝛽 I/O
profiles (Alg. 1, lines 29-30) may be either: 1) profiles containing
𝑀1’s method body and inputs from other methods𝑀2, or 2) profiles
from less-relevant tests cases containing the bodies of other meth-
ods𝑀2 and inputs from𝑀1. Priority is given to 𝛼 I/O profiles, since
we anticipate that they are involved in comparisons more useful to
the developer. In §5, this bifurcation of secondary I/O profiles will
be instrumental for characterizing similarity.

To increase the clarity of the “secondary” division, Figure 5 shows
the 𝛼 and 𝛽 I/O profiles that would be generated from the secondary
test cases for the previous example. The yellow and green highlights
demonstrate the swapping of input values between (testPerson,
testDuplicator) and (testPerson2, testDuplicator2), respec-
tively.

4.4 Execution Tracing

SABER adopts the approach in DyCLINK [81] to generate traces
of program executions using ASM (line 22). Dynamic dependency
graphs are constructed from bytecode instructions, and link anal-
ysis matches dependency subgraphs based on approximations of

isomorphism between subgraphs. Filtering of the “best” subgraph
matches is implemented using the PageRank algorithm [59] to
identify centroid instructions. Despite this filtering mechanism,
DyCLINK is inefficient in its code similarity detection for “targeted”
code subjects.

We apply subgraph isomorphism on the specific code subjects
using method and class separation techniques. Method invoca-
tions are collected from both the primary tests and the secondary
tests, thus providing a comprehensive workload for SABER’s exe-
cutional analysis. Within individual code subjects, invocations of
other methods are also examined as part of subgraph comparison.
Additionally, we modify the PageRank algorithm to filter impor-
tant instructions, i.e., the graph centroids, targeted at Java API
calls as opposed to arbitrary load and store bytecode instructions
as in DyCLINK. Capturing interesting behavior is accomplished
by prioritizing bytecode instructions such as invokevirtual and
invokestatic. Overall, our approach minimizes the subgraph com-
parison runtime when limiting the scope to developer-specified
code subjects.

4.5 Behavioral Clone Extraction

To find targeted behavioral clones (Alg. 1, line 34), filtering and
weighting schemes are introduced in §5, and customizations of the
software engineering use cases are described in §6.

We first describe the notation (Def. 4.1) and properties (Def. 4.2)
of behavioral clones.

Definition 4.1. Let 𝑉𝑇 represent the set of valid test cases and
𝐹𝑇 the set of faulty test cases in the test suite. C_𝑆

_𝐸
is the set of

behavioral clones whose similarity depends on inputs from tests
designated by _𝑆 , based on executing only tests designated by _𝐸
(where _𝐸 ∈ {𝑉𝑇, 𝐹𝑇 ,𝑉𝑇 ∨ 𝐹𝑇 }). The possible values of _𝑆 are
defined as follows:
• 𝑉𝑇 : clones are similar on valid tests’ inputs and may be
similar or dissimilar on faulty tests’ inputs
• 𝐹𝑇 : clones are similar on faulty tests’ inputs and may be
similar or dissimilar on valid tests’ inputs
• 𝑉𝑇 ∧ 𝐹𝑇 : clones are similar on both valid tests’ and faulty
tests’ inputs
• ¬𝑉𝑇 ∧ 𝐹𝑇 : clones are similar on faulty tests’ inputs and
dissimilar on valid tests’ inputs
• 𝑉𝑇 ∧ ¬𝐹𝑇 : clones are similar on valid tests’ inputs and dis-
similar on faulty tests’ inputs
• ¬𝑉𝑇 ∧ ¬𝐹𝑇 : clones are dissimilar on both valid tests’ and
faulty tests’ inputs

Def. 4.2 provides a list of important behavioral clone proper-
ties and algebra useful in the analysis of engineering use cases
investigated in §6.

Definition 4.2 (Properties of Behavioral Clones). Given C#
_𝐸

is the
complete behavioral clone space obtained by executing tests _𝐸 , ∨
is the logical OR operator, and ∧ is the logical AND operator, the
following are properties of behavioral clones:

(1) C_𝑆
_𝐸
∧ C_𝑆

_𝐸
= C_𝑆

_𝐸
and C_𝑆

_𝐸
∨ C_𝑆

_𝐸
= C_𝑆

_𝐸
(Idempotent Rule):

the intersection or union of a set of behavioral clones with
itself is the same set of clones
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(2) ¬C_𝑆
_𝐸

= C¬_𝑆
_𝐸

(Negation Rule): the complement of a set of
behavioral clones similar on inputs from tests designated
by _𝑆 , or all other behavioral clones in the behavioral clone
space, is the set of behavioral clones similar on inputs from
tests not designated by _𝑆

(3) C𝑉𝑇
_𝐸
∨ C𝐹𝑇

_𝐸
= C#

_𝐸
(Clone Sum Rule): the union of the set

of behavioral clones similar on valid tests’ inputs and the
set of behavioral clones similar on faulty tests’ inputs is the
complete behavioral clone space

(4) C_𝑆1
_𝐸
∧ C_𝑆2

_𝐸
= C

_𝑆1∧_𝑆2
_𝐸

(Similarity Intersection Rule): the
intersection of the set of behavioral clones similar on inputs
from tests designated by _𝑆1 and the set of behavioral clones
similar on inputs from tests designated by _𝑆2 is the set of
behavioral clones similar on inputs from the intersection of
tests designated by _𝑆1 and tests designated by _𝑆2

(5) ¬C_𝑆1
_𝐸
∧ C_𝑆2

_𝐸
= C
¬_𝑆1∧_𝑆2
__𝐸

and C_𝑆1
_𝐸
∧ ¬C_𝑆2

_𝐸
= C

_𝑆1∧¬_𝑆2
_𝐸

(Composite Rule #1): this property follows from the negation
and similarity intersection rules

(6) C¬𝑉𝑇∧𝐹𝑇
_𝐸

= C¬𝑉𝑇
_𝐸

and C𝑉𝑇∧¬𝐹𝑇
_𝐸

= C¬𝐹𝑇
_𝐸

(Composite Rule
#2): this property follows from the negation and clone sum
rules

5 WEIGHTED SIMILARITY COMPUTATION

AND RANKING

5.1 Similarity Analysis

Recall that our objective is to find behavioral clones targeted to
a given software engineering task. In §3.2, we presented different
definitions of behavioral similarity. We now apply these definitions
in our work to identify sufficient similarity for the task at hand. It
is difficult to classify similarity as a binary concept, as either “yes”
or “no.” We adapt the preponderance of the evidence metaphor to
find convincing code matches by investigating filters and weighting
schemes for assessing similarity.

Previously, we established the two classifications of secondary
I/O profiles that we construct for characterizing similarity: 𝛼 and 𝛽 .
We propose that 𝛼 I/O profiles for a particular subject method of in-
terest are more important for similarity than 𝛽 I/O profiles because
the driving inputs in the 𝛼 I/O profiles are the subject method’s
own highly-relevant test cases. Consequently, 𝛽 I/O profiles may be
similar to the 𝛼 I/O profiles but on less-relevant test cases, or they
may instead represent inputs of “foreign” methods’ invocations
applied to our subject method. The latter type of 𝛽 I/O profiles may
be understood as more germane to the respective foreign methods
than to the subject method. Thus, we seek to construct a weighting
scheme that places more emphasis on the former comparisons than
on the latter.

We introduce the following definitions to facilitate the construc-
tion of the weighting scheme. Our goal is to aggregate the similarity
among comparisons between method invocations. Previous dy-
namic analysis techniques [21, 48, 81] did not differentiate among
convincing and unconvincing comparisons, which is crucial for
preponderance of the evidence.

5.1.1 I/O Similarity. We first consider I/O similarity separately.

Definition 5.1. Let Φ represent a function that measures the I/O
similarity between two methods. Suppose we have two methods
𝑀1 (with I/O profiles of the form [𝑀1 ) and𝑀2 (with I/O profiles of
the form [𝑀2 ). Then, Φ([𝑀1 , 𝛼𝑀1,𝑀2 ) is the similarity for an𝑀1 𝛼
I/O profile comparison to𝑀2, and Φ([𝑀2 , 𝛽𝑀1,𝑀2 ) is the similarity
for an𝑀1 𝛽 I/O profile comparison to𝑀2.

We compute Φ for two methods 𝑀1 and 𝑀2 based on the ex-
ponential model leveraged in [21]. The exponential model applies
penalties on invocation pairs when either or both of their respective
input sets and their respective output sets are dissimilar. Higher
values correspond to greater I/O similarity between the methods.
We set the locally-optimized value of the model’s parameter set-
ting to be 3, as was experimentally determined in [21]. Input set or
output set similarity is calculated using a Jaccard coefficient. For
object types, we apply the following approaches:

• DeepHash: we adopt the approach used in HitoshiIO [21] to
recursively aggregate Java hashcodes of object fields. Two
objects are considered similar if they have matching hash
values.
• Ancestral Walk: as a deviation of disjoint sets, we measure
the distance between two objects as follows. We represent
the root 𝑎𝑛𝑐 of an inheritance hierarchy tree𝑇 as the closest
common ancestor of the objects’ classes 𝐶1 and 𝐶2, and all
subclasses are represented as children nodes of their respec-
tive superclasses. Let class 𝐶𝑚𝑎𝑥 represent the class whose
node has greater depth in𝑇 . Further, let 𝑑𝑎𝑛𝑐,𝑜 represent the
distance from anc to Java’s Object class and 𝑑𝑐𝑚𝑎𝑥 ,𝑜 repre-
sent the distance from 𝐶𝑚𝑎𝑥 to Object. The ancestral walk
factor (AWF) is computed as the ratio between 𝑑𝑎𝑛𝑐,𝑜 and
𝑑𝑐𝑚𝑎𝑥 ,𝑜 . Larger values of AWF imply closer relation between
the objects’ classes.

Using the similarity function Φ from Definition 5.1, we measure
the “sufficiency” of similarity based on the relevance of certain
comparisons, given by specific weight factors, or relevance factors.

Definition 5.2. Suppose𝑀1 is a subject method and𝑀2 is a candi-
date match. Let 𝛼𝑀1,𝑀2

𝑖
and 𝛽

𝑀1,𝑀2
𝑗

represent the 𝑖-th 𝛼 I/O profile
and the 𝑗-th 𝛽 I/O profile, respectively, for method𝑀1 in the com-
parison between methods𝑀1 and𝑀2. Finally, let Z1 and Z2 be the
relevance factors applied to the 𝛼 and 𝛽 I/O profile comparisons,
respectively. The total I/O relevance similarity Ψ𝐼/𝑂,(𝑀1,𝑀2) between
𝑀1 and𝑀2 is computed as:

Ψ𝐼/𝑂,(𝑀1,𝑀2) =

∑
𝑖

Z1Φ([𝑀1
𝑖

, 𝛼
𝑀1,𝑀2
𝑖

) +
∑
𝑗

Z2Φ([𝑀2
𝑗

, 𝛽
𝑀1,𝑀2
𝑗

)∑
𝑖

Z1 +
∑
𝑗

Z2
(1)

It follows from Definition 5.2 that the total I/O relevance simi-
larity between two methods will range between 0 and 1.

The default values of Z1 and Z2 are 2 and 1, respectively. Note that
multiplying both relevance factors by a constant does not change
Ψ𝐼/𝑂 , so we can simply normalize them. Instead, we analyze the
relevance ratio.
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Definition 5.3. The relevance ratio, Z𝑟 , is calculated as:

Z𝑟 =

{
Z1−Z2
Z1

Z1 ≠ 0, Z1 ≥ Z2
0 Z1 = 0

(2)

As a consequence, larger values of the relevance ratio translate
to greater importance placed on comparisons involving the subject
method’s own inputs applied to other methods.

5.1.2 Weighted Similarity. In addition to I/O similarity, we com-
pute the similarity functions for metamorphic similarity and exe-
cutional similarity. Metamorphic similarity between two methods
is calculated as the Jaccard coefficient between the sets of meta-
morphic properties for both methods. Similarly, the similarity of
execution traces between two methods is calculated by applying
the Jaro-Winkler distance between the dynamic dependency graph
PageRank vectors as in DyCLINK [81].

Given our definitions of behavioral similarity, we compute the
total relevance similarity Ψ, which is the weighted aggregate of the
different definitions of behavioral similarity (Alg. 1, line 32).

Definition 5.4. Let `1 be the weight factor for functional I/O
similarity, `2 be the weight factor for executional similarity, and `3
be the weight factor for metamorphic similarity. Then, Ψ(𝑀1,𝑀2) is
computed as:

Ψ(𝑀1,𝑀2) =
[
`1 `2 `3

] 
Ψ𝐼/𝑂,(𝑀1,𝑀2)
Ψ𝑒𝑥𝑡𝑟,(𝑀1,𝑀2)
Ψ𝑚𝑒𝑡,(𝑀1,𝑀2)

 ∋
3∑

𝑖=1
`𝑖 = 1 (3)

Methods 𝑀1 and 𝑀2 are considered behavioral clones if their
total relevance similarity Ψ(𝑀1,𝑀2) meets or exceeds the similarity
threshold \𝑠𝑖𝑚 .

For class similarity between two classes, we consider the indi-
vidual methods between those classes. The similarity between two
classes can be summarized as the ratio of the number of “similar”
method pairs to the “total” number of method pairs. Formally, class
similarity can be computed using graph theory, as follows.

Definition 5.5. Suppose𝐺 is a bipartite graph between two classes
𝐶1 and 𝐶2 such that all methods of 𝐶1 are in one set 𝑈 and all
methods of 𝐶2 are in another set 𝑉 . Let an edge connect a node
𝑢 in 𝑈 for method 𝑀𝑢 with a node 𝑣 in 𝑉 for method 𝑀𝑣 if 𝑀𝑢

and𝑀𝑣 are considered behavioral clones, i.e., their total relevance
similarity meets or exceeds the similarity threshold, \𝑠𝑖𝑚 . Further,
suppose 𝐺 ′ is a complete bipartite graph for the same nodes in 𝐺 .
Then, the total class similarity is the ratio of the number of edges
in 𝐺 to the number of edges in 𝐺 ′.

5.2 Complexity Analysis

For certain use cases, we further perform ranking of behavioral
clones. The intuition is that the developer will be best served by
behavioral clones less “complex” than the current code, based on
some defined complexity metric (Alg. 1, line 33).

Hence, we define method complexity using the cyclomatic com-
plexity metric [88], developed by T.J. McCabe. Using control flow
graphs (CFGs), cyclomatic complexity quantifies the decision logic

of a single software module, thus serving as a measure of a pro-
gram’s or method’s code complexity. We present the formal defini-
tion of cyclomatic complexity in Definition 5.6.

Definition 5.6. Let 𝐸 and 𝑉 be the number of edges and vertices,
respectively, in the CFG representation of a method𝑀 . Then, the
cyclomatic complexity 𝛿𝑀 of method𝑀 is computed as:

𝛿𝑀 = 𝐸 −𝑉 + 2 (4)

Similarly, we define complexity for a full class based on the Lack
of Cohesion in Methods (LCOM) [60] metric. LCOM measures the
correlation between methods and class instance variables. Lower
values of LCOM indicate higher class cohesion and lower complex-
ity. We implement a definition of LCOM known as Pairwise Field
Irrelation (PFI).

Definition 5.7. For a class𝐶 with 𝑛 fields, let 𝑅𝐶 (𝐹𝑖 ) represent the
set ofmethods that access the field 𝐹𝑖 . Further, let 𝐽𝐷 (𝑅𝐶 (𝐹𝑖 ), 𝑅𝐶 (𝐹 𝑗 ))
be the Jaccard distance between two distinct sets of methods ac-
cessing fields 𝐹𝑖 and 𝐹 𝑗 , respectively. Then, the PFI complexity 𝛿𝐶
of class 𝐶 is the mean Jaccard distance across all pairs of fields and
is computed as:

𝛿𝐶 = 2
𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

𝐽𝐷 (𝑅𝐶 (𝐹𝑖 ), 𝑅𝐶 (𝐹 𝑗 ))
𝑛(𝑛 − 1) (5)

6 SOFTWARE ENGINEERING USE CASES

In this section, we investigate targeted behavioral clones for our
four software engineering use cases (Alg. 1, lines 34-36).

6.1 Baseline Program Comprehension

Baseline understanding of programs adopts a straightforwardmodel
of the implementation presented in §4. Since the developer is only
interested in understanding basic methods in isolation during this
phase, arbitrary values of Z𝑟 , `1, `2, and `3 may be chosen (by
default, Z𝑟 = 0.5 and `1 = `2 = `3 = 0.3). It is preferable that both
𝛼 and 𝛽 I/O profiles be analyzed to decrease the likelihood of false
positives. Similarly, metamorphic clones may aid the developer
in understanding the properties of her own code subjects in the
context of other application code.

6.2 Debugging

For debugging, developers need to identify flaws in the code that
break intended functionality. An example of such a scenario is
shown in Figure 6. computeJaccardSimilarity computes the Jac-
card similarity between two lists of objects. In the example, three
test cases—test0, test1, and test2 (test1 and test2 are not
shown)—are created for testing the method. In the ideal version of
the method, a special check would be performed when the two lists
have no elements. All three test cases would then pass with the
original version. However, after injecting a mutant that removes the
check, the first test case fails because the Jaccard similarity between
two empty lists is incorrect in the mutated (buggy) version.

In order to aid the developer in fixing this bug, SABER divides
the test suite into faulty test cases (Alg. 1, line 7 )—test0—and valid
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/* Jaccard Similarity Without Mutant */
public double computeJaccardSimilarity(List<Object> list1,

List<Object> list2) {
Set<Object> unionSet = new HashSet<>(list1);
unionSet.addAll(list2);
int union = unionSet.size();
int intersection = list1.size() + list2.size() - union;
double jaccardSimilarity = (union == 0) ? 0 :

intersection * 1.0 / union;
return jaccardSimilarity;

}

/* Jaccard Similarity With Mutant */
public double computeJaccardSimilarity(List<Object> list1,

List<Object> list2) {
...
// Mutant injected here
double jaccardSimilarity = intersection * 1.0 / union;
return jaccardSimilarity;

}

/* Test Cases */
@Test(timeout = 4000)
public void test0() throws Throwable {

Jaccard jaccard0 = new Jaccard();
List<Object> list0 = new ArrayList<>();
List<Object> list1 = new ArrayList<>();
double double0 =

jaccard0.computeJaccardSimilarity(list0, list1);
// Note: this assertion fails for the second method!
assertEquals(0.0, double0, 0.01);

}
...

Figure 6: An example of the debugging use case. The pre-

sented test case passes for the original method, but it fails

after the mutant is injected.

test cases (Alg. 1, line 8)—test1 and test2. We proceed to perform
at least one of following sets of executions on our test cases:

(1) Executing only valid test cases: behavioral clones are identi-
fied using only the valid tests as the test suite.

(2) Executing both valid and faulty test cases: just as with the
baseline understanding use case, behavioral clones are iden-
tified by including all tests from our original test suite.

If the developer has a valid test oracle for inputs from the faulty
test cases (e.g., via assertion statements), she may choose only the
former set of executions to obtain candidate behavioral clones C𝑉𝑇

𝑉𝑇
.

She can then apply the faulty test cases’ inputs on the candidate
clones C𝑉𝑇

𝑉𝑇
determined from executing only valid test cases. This

approach provides her with some level of verification on the true
outputs of her subject code and identification of correct code. In
the example from Figure 6, test0’s inputs can be driven to the
behavioral clones found from executing only test1 and test2.
This helps the developer determine whether there are any clones
similar to computeJaccardSimilarity on test1 and test2 but

that also output a Jaccard similarity of 0 (as per test0’s assertion
statement) on test0’s inputs.

Alternatively, suppose that the developer has tests for which the
assertion statements themselves are faulty or nonexistent. Some
tests may also have been generated via automated testing tools,
which have been applied on the codebase only after it has been
infected by the mutant. The developer might be interested in run-
ning the latter set of executions, obtaining a more restricted set
of behavioral clones C𝑉𝑇∧𝐹𝑇

𝑉𝑇∨𝐹𝑇 , which consists of clones similar to
the subject code on both valid and faulty test cases’ inputs. The set
C𝑉𝑇∧𝐹𝑇
𝑉𝑇∨𝐹𝑇 is separately presented to the developer, annotated with

references to the faulty test cases, indicating these clones are similar
to the subject code at hand on all test cases but do not possess the
desired functionality. SABER also constructs the set of behavioral
clones C𝑉𝑇∧¬𝐹𝑇

𝑉𝑇∨𝐹𝑇 , the set of clones similar to the subject code on
valid test cases’ inputs, but not on faulty test cases’ inputs. The set
C𝑉𝑇∧¬𝐹𝑇
𝑉𝑇∨𝐹𝑇 will be more helpful to the developer than C𝑉𝑇

𝑉𝑇
because

the outputs of the former set of clones are known to be distinct
from the invalid outputs of the faulty test cases.

We propose that functional I/O similarity is the predominant
definition of behavioral similarity for debugging, as valid test cases
guarantee valid inputs for executing those branches of code that
are independent of bug-exposing code. Hence, `1 may be large in
comparison to `2 and `3. Since the developer is only interested in
finding behavioral clones on the subject code’s inputs, 𝛽 I/O profiles
are ignored in secondary profile analysis. Therefore, Z𝑟 is always 1,
and Ψ𝐼/𝑂,(𝑀1,𝑀2) is simply the average similarity across the 𝛼 I/O
profiles.

6.3 Legacy Code Refactoring

As a preliminary step to code refactoring, it is preferable to perform
dead code elimination (DCE) on the codebase for removal of unused
code and code optimization. Since our primary objective from §2.2
for code refactoring is to identify simpler, more comprehensible
code than the subject code (yet still functionally equivalent), static
simplification of all application code via DCE is recommended,
although not necessary. Moreover, DCE may improve program
performance and does not eliminate any candidate functional I/O
clones, given our definitions of inputs and outputs.

Code complexity analysis from §5.2 is highly applicable to the
code refactoring use case, as simpler code that preserves the func-
tionality of the subject code may be easier to maintain and under-
stand. We are interested in finding exact behavioral clones; there-
fore, we set `1 equal to 1.0 and set the similarity threshold\𝑠𝑖𝑚 to 1.0.
To further aid with refactoring, functionally-equivalent behavioral
clones with different execution traces, i.e., possessing executional
dissimilarity, may be considered “behaviorally different enough”
from the legacy code to be used as an effective replacement. Behav-
ioral clones are then ranked by decreasing complexity. Note that
by default, only behavioral clones with lower complexity than that
of the subject code are presented to the developer.

6.4 Feature Enhancement

For feature enhancement, we prioritize the search for behavioral
clones from other codebases as per the motivation in §2.2. SABER
is designed to support an aggregation of similarity among multiple
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methods and classes. The choices of ` and Z𝑟 , by design, are the
same as for baseline understanding but can be toggled accordingly.
The similarity metric for classes has been explained in §5.1. Similar
to code refactoring, this stage leverages similarity ranking based
on the LCOM PFI complexity metric introduced in §5.2 for classes.

7 RELATEDWORK

Our primary focus with SABER is to identify similarly-behaving
code targeted for software engineering tasks that mandate some
level of program comprehension. We also leverage dynamic sym-
bolic execution and metamorphic testing for test case generation
and similarity detection. Thus, we appropriately split related work
into behavioral clone detection, dynamic symbolic execution, program
comprehension, and metamorphic testing.

Behavioral Clone Detection. Many studies have proposed tech-
niques for behavioral clone detection, including work for functional
I/O analysis [21, 29, 32, 48], executional analysis [56, 81], concolic
execution [25, 39, 41, 45, 70, 86], and other analysis approaches. We
highlight the studies for functional I/O and executional analyses,
which were implemented in our work, and provide succinct com-
mentary on symbolic/concolic execution. We are unaware of any
systems that perform metamorphic analysis and its ilk.

HitoshiIO [21] is a proof-of-concept functional I/O clone detector
by Su et al. that extracts inputs and outputs from instrumented byte-
code. SABER adapts HitoshiIO’s approach to capturing, recording,
and extracting inputs from state variables and method arguments,
as well as outputs from return variables. However, HitoshiIO is
contingent on executing existing workloads, restricted to classes
with “main” methods. Further, HitoshiIO classifies similarity based
on only a trivial set of test cases. The system sidesteps the method-
level test case generation problem by utilizing only the I/O driven
in the context of executions of the full application. While this is
convenient, a pairwise comparison of all method invocations is
highly inefficient; methods that should be functionally similar may
never be invoked with similar inputs in HitoshiIO. SABERmitigates
these issues by selecting the most convincing similarities on the
most representative but nontrivial test cases, with common inputs
passed to each pair of methods under comparison.

LASSO [32] by Kessel and Atkinson presents an approach for
functional I/O analysis that constructs coverage-based test cases
using the EvoSuite tool. However, LASSO only identifies functional
I/O clones with the same method name and signature, which sig-
nificantly limits the scope for finding functional I/O clones. In
extension, LASSO is only able to detect clones for methods with
arguments of array, string, and primitive types, whereas SABER
can also support more complicated data structures such as objects,
collections, and file types. Unlike LASSO, which does not work
with existing workloads, SABER not only generates automated
test cases using EvoSuite, but also enables developers to supply
pre-existing test cases and can produce novel test cases based on
methods’ metamorphic properties.

For functional I/O analysis, SABER is most related to SLACC [48],
a state-of-the-art functional I/O clone detector for both dynamically-
typed and statically-typed languages. SLACC, developed byMathew
et al., generates test cases per method using an approach inspired by

grey-box testing. However, SLACC provides no compelling expla-
nation for which subset of these test cases is sufficient for executing
all method-specific source code, or achieving high test coverage. Re-
cent studies have shown that improving test coverage is essential
to gaining more confidence in the test cases under consideration
and the overall software quality. To truly assess code similarity and
verify that tests extensively identify all aspects of the application
code (including potential defects), all test coverage criteria must be
considered; SLACC does not aim to achieve complete or high code
coverage and may overshoot the number of test case executions re-
quired for certain coverage criteria, thus exacerbating the runtime
performance. SABER leverages EvoSuite to generate test cases that
attempt to target all coverage criteria (including method, line, and
branch coverage), regardless of EvoSuite’s achieved coverage and
mutation score for each test file.

Furthermore, while SLACC only selects inputs from method
arguments via an analysis of the source code, SABER adapts the
approach in HitoshiIO to find inputs from both state variables and
method arguments at the bytecode level, via ASM bytecode instru-
mentation [6]. As a result, SLACC has limited capability in input
replacement for constructing new test cases; during I/O profile
input replacement in the secondary test case generation phase,
SABER can modify the values of both used state variable and used
method argument inputs, whereas SLACC can only modify method
arguments (without regard for data flow). SLACC also fails to sup-
port comparison of methods with a different number of inputs or
arguments, lacks data type conversion of inputs during input re-
placement, and performs minimal primitive type casting of method
arguments for similarity analysis; these limitations, including the
lack of object type conversion, may account for fewer method-level
clones in SLACC and have been addressed in SABER.

In contrast to HitoshiIO, SLACC attempts to provide a system-
atic approach to selecting relevant test cases. However, both suffer
from the “preponderance of the evidence” problem by failing to
provide a rationale as to why the test cases chosen for similarity
are convincing. SABER responds to this problem by choosing and
justifying the most representative test cases based on coverage, de-
veloper specifications, and metamorphic properties. SABER builds
on this approach by constructing a filtering scheme that applies
weight factors to representative and non-representative test cases
and factors differences in code complexity to choose the most con-
vincing similarities. Critically, unlike all of these techniques, SABER
customizes exploitation of behavioral clones to specific software en-
gineering tasks mandating program comprehension across multiple
categories of behavioral similarity.

DyCLINK [81] is the state-of-the-art system for executional
clones, using subgraph isomorphism on dynamic dependency graphs
to trace program executions at the bytecode level. SABER improves
on DyCLINK’s approach for executional analysis by applying sub-
graph isomorphism on targeted code subjects and prioritizing Java
API calls to capture the most interesting behaviors. SABER’s test
case generation also helps to alleviate DyCLINK’s problem of re-
quiring a sufficient test suite to increase confidence in behavioral
code similarities.
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Dynamic Symbolic Execution. Concolic execution has remained
an effective technique for behavioral analysis. It generates high-
coverage test suites while considering multiple execution paths
simultaneously. One representation of concolic execution is dy-
namic symbolic execution (DSE), a hybrid technique that combines
classical symbolic execution and concrete execution while over-
coming the limitations of both techniques.

Sen et al. [71] present a new DSE technique for JavaScript that
performs incremental state merging of symbolic states without the
introduction of auxiliary variables. Li et al. [39] introduce a paired-
programDSE approach and associated behavioral similarity metrics
tailored for online programming and software engineering educa-
tion. JDart by Luckow et al. [45] is a Java-based DSE framework
that executes and symbolically analyzes Java bytecode for specific
programmethods based on an “explorer-and-executor” architecture.
Vartanov [86] constructs a DSE engine for Java programs targeting
the Java Native Interface (JNI) framework, based on the connection
of native code with Java bytecode.

However, these techniques may result in missed paths and fre-
quent path divergences. In extension, they might fail to generate
test inputs along certain execution paths. While these techniques
alleviate the issues associated with scalability, they do not guaran-
tee the elimination of path explosion for more complex programs or
software systems. Such limitations reduce the soundness of these
techniques and lead to greater false negatives.

Nevertheless, DSE has shown to be promising. SynFuzz by Han et
al. [25] is a hybrid fuzzer designed to address scalability challenges.
It performs concolic execution by leveraging dynamic taint analysis
and program synthesis based on branch predicate synthesis and
branch flipping. Liang et al. [41] has recently developed a practi-
cal concolic execution engine, Pracolic, that aims to alleviate the
state explosion problem by focusing on program state generation
strategies targeting different classifications of symbolic memory.
As an adaptation of DSE for automated test generation, SABER
uses EvoSuite, a scalable automated testing tool that integrates DSE
with search-based software testing to maximize code coverage.

Program Comprehension. Prior work in program comprehension
has been diverse in the evaluation of novel software tools and
in bridging the gaps between such tools and developers’ level of
program understanding [1, 10, 27, 35–38, 46, 50–52, 54, 61, 63, 74,
75, 90, 93]. Some studies have found overlap even in metamorphic
testing [17, 30, 31, 77, 85, 95, 96]. However, there are few studies
that appear germane to behavioral code similarity.

Earlier studies [35, 36, 74] hinted at limitations in gauging the
effectiveness of development tools to answer the questions that
developers askwhen they evolve their application codebases. Due to
findings that showed developers spendingmore time understanding
than modifying or enhancing the code, these works called for new,
well-directed tools as a replacement for manual, misguided, and
failed searches for relevant code. Robillard et al. [63] constructed a
tool, ConcernDetector, that takes advantage of two Java systems’
revision histories to make recommendations about relevant, high-
level features, requirements, and design decisions to the developer.

Recent studies continue to be interested in and build tools for en-
hancing program comprehension. Meyer et al. in both [50] and [51]
study developers’ workday productivity and find that developers

still continue to face problems with existing documentation, which
is often outdated or insufficient, for improved understanding of
their code’s functionality. They elaborate that participants require
sufficient tool support to form good work habits with identification
and monitoring of well-defined goals. Chen et al. [10] develop a
tool to measure changes in performance across software revisions
to help developers better comprehend and resolve performance
issues that prevail in practice. CROKAGE [75] by Silva et al. iden-
tifies and presents solutions to developers in response to queries
about unfamiliar code by leveraging Lucene indexing and FastText
modeling to filter candidate solutions.

Mooij et al. [54] explore an approach that combines code refac-
toring and model-based rejuvenation to reduce the complexity of
the code and improve program understanding, extensibility, and
maintainability. While SABER applies dynamic analysis, [54] uses
a static analysis technique that is limited to specific cases. Latoza
et al. [37] build a mixed-initiative strategy description language
called Roboto and design a strategy tracker tool for programming
strategies to bridge the gap between human decision-making and
computer processing.

Metamorphic Testing. To the best of our knowledge, SABER is
the first work to apply metamorphic testing as a technique for
both test case generation and code similarity for dynamic analysis.
Metamorphic testingwas first introduced by T.Y. Chen et al. [11] and
was developed to solve the test oracle problem. Recent literature has
appliedmetamorphic testing to RESTful web services [47, 69, 82, 83],
deep learning [18, 19, 49, 84, 87, 89, 94], software engineering and
program comprehension [5, 17, 30, 31, 77, 79, 85, 91, 95, 96], and
many other areas.

The application of metamorphic testing in SABER is inspired by
[79]. Su et al. implement Kabu, an intensive heuristic designed to
predict metamorphic properties based on a series of input trans-
formations and output verifications. With regard to identifying
and extracting metamorphic properties, SABER adopts a similar
approach to Kabu. While Kabu is limited to transforming only in-
puts from method arguments, SABER is able to magnify the input
transformation space by incorporating inputs from both method
arguments and state variables. SABER leverages the reported meta-
morphic properties to construct new test cases.

8 CONCLUSION

We have presented SABER, the first system to explore the “pre-
ponderance of the evidence” problem for identifying behaviorally-
similar code. The proposed methodology leverages functional I/O
analysis, executional analysis, and metamorphic analysis to iden-
tify behavioral clones targeted to baseline program comprehension,
debugging, legacy code refactoring, and feature enhancement soft-
ware engineering use cases. Furthermore, we have demonstrated
the application of filtering and weighting schemes for adapting the
“preponderance of the evidence” to choosing the most convincing
similarities for a given use case. SABER enables developers to lever-
age behavioral clones to better understand their codebase toward
the goals of improving workplace productivity, software quality,
and code reliability.
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