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ABSTRACT
Smartphones incorporate a plethora of diverse and powerful sensors
that enhance user experience. Two such sensors are the accelerom-
eter and gyroscope, which measure acceleration in all three spatial
dimensions and rotation along the three axes of the smartphone,
respectively. These sensors are often used by gaming and fitness
apps. Unlike other sensors deemed to carry sensitive user data, such
as GPS, camera and microphone, the accelerometer and gyroscope
do not require user permission on Android to transmit data to apps.
This paper presents our IRB-approved studies showing that the
accelerometer and gyroscope gather sufficient data to quickly infer
the user’s gender. We started with 33 in-person participants, with
88% accuracy, and followed up with 259 on-line participants to show
the effectiveness of our technique. Our unobtrusive ShakyHands1
technique draws on these sensors to deduce additional demographic
attributes that might be considered sensitive information, notably
pregnancy. We have implemented ShakyHands for Android as an
app, available from Google Play store, and as a Javascript browser
web-app for Android and iOS smartphones. We show that even a
low-skilled attacker, without expertise in signal processing or deep
learning, can succeed at inferring demographic information such
as gender and pregnancy. Our approach does not require tamper-
ing with the victim’s device or specialized hardware; all our study
participants used their own phones.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; Pri-
vacy protections;Usability in security and privacy; •Human-
centered computing → Smartphones.
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1 INTRODUCTION
Most mobile devices, including smartphones, tablets, and smart-
watches, come equippedwith built-in sensors such as accelerometer,
gyroscope, and magnetometer. A study suggests that accelerome-
ters are the most widely used sensor accessed by mobile apps [12].
Accelerometer and gyroscope sensors measure acceleration and ro-
tation forces caused by the movements and vibrations of an object.
When the smartphone goes from a standstill to any velocity, the ac-
celerometer is designed to respond to the vibrations associated with
such movements. Similarly, when the smartphone rotates about
any of the smartphone axes, the gyroscope captures that change.

1In this paper, shaky hands does not refer to essential tremor disorder or any other
disorder.

The axes of acceleration and rotation for a smartphone are shown
in Figure 1.

Figure 1: The x, y, and z-axis represent the horizontal axis
along the face of the phone, the vertical axis along the face,
and the axis along the perpendicular plane passing through
the center of the phone, respectively. Figure from [42].

The privacy implications of inferences from smartphone sensors
have previously been reviewed in [54]. For example, [83] showed
how to infer the user’s gender from their hip movements, gait, and
activity patterns while walking for 5-10 minutes with the phone in
their pocket. Instead, we observe different patterns in accelerom-
eter and gyroscope data in male and female participants when
they hold their phones. We collect accelerometer and gyroscope
sensor data from the user’s smartphone while the user is reading
or browsing the internet, which enables detecting the user’s gen-
der within thirty seconds with reasonably high confidence. This
difference in the holding pattern between the user groups stems
from user’s hand stability, which is attributed to physiologic tremor
in hands. Tremor is an involuntary, rhythmic muscle contraction
leading to shaking movements in one or more parts of the body.
We leverage physiologic tremor in hands to infer the demographic
information of smartphone users. Physiologic tremor occurs in
all healthy individuals. It is rarely visible to the eye and typically
involves a fine shaking of both of the hands and also the fingers.
It is not considered a disease but is a normal human phenomenon
that is the result of physical properties in the body (for example,
rhythmical activities such as heart beat and muscle activation) [6].
Studies have investigated the impact of physiologic tremor on hand
stability [33]. As computer scientists, we are not qualified to ana-
lyze the physiological differences in genders or pregnant women.
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Figure 2: The graph shows two seconds of accelerometer magnitude time-series data of randomly selected male and female
participants. Q1 and Q3 represent first and third quartile respectively. The quartile plots show lower spread in female’s sensor
readings, which implies lesser fluctuations or tremors while holding the phone.

Experts in ergonomics and neurology have, however, previously
published about physiologic tremor and hand stability differences
due to gender [34, 45] and pregnancy [5].

Since these holding patterns are subliminal in nature, it is diffi-
cult to replicate these patterns consciously. The difference becomes
evident in the plot of accelerometer sensor readings corresponding
to both genders. Figures 2 shows the differences in the accelerom-
eter readings of randomly selected male and female participants
from our study. The subtle differences in the phone holding charac-
teristics of the two genders can be observed in the plot. The graph
shows that the female participant’s hand is more stable as com-
pared to that of the male participant. These variations in sensor
readings contribute to differences in the phone holding pattern in
the genders. In this paper we study how these patterns can be used
to predict gender and pregnancy state of the smartphone user.

We conducted 33 in-person and 259 online experiments with
smartphone users to demonstrate the effectiveness of our proposed
approach. The experimental results show that our technique can
achieve accuracy up to 88% on gender and 86% on pregnancy pre-
diction tasks.

1.1 Contributions
We evaluate ShakyHands in terms of both run-time performance
and accuracy. In this paper, we answer three research questions:

• RQ1: Can we derive demographic information of the user by
looking at only accelerometer and gyroscope data streams?

• RQ2: If yes, then which demographic attributes can we ex-
tract with high accuracy?

• RQ3: Is this a realistic threat? In particular, how much inter-
action time is needed before making an inference?

The primary contributions of this paper are four-fold:

• We demonstrate that smartphone sensor readings which, at
the time of writing, do not require user permission and are
available to arbitrary apps, can be used for near-real-time
inference of demographic information about the user.

• In particular, we show that holding the phone for as little as
5 seconds can leak private information about the user, such
as gender and pregnancy.

• We provide evidence that instituting permission require-
ments for apps to access these sensors may be ineffective.

To our best knowledge, this is the first work on predicting end
users’ demographics in near real-time (In the order of seconds)
which does not require cooperation from the user.

If our paper is accepted, we will provide the Android app, JS
based web-app, open-source implementation of ShakyHands, model
training scripts, and anonymized dataset. The rest of the paper is
organized as follows: Section 2 provides background for our re-
search and threat model followed by Section 3 which discusses
related research efforts to infer demographic information. Section
4 presents data acquisition methodology and study design. Section
5 provides detailed description of the proposed algorithm for de-
mographic inference tasks. Section 6 presents evaluation scheme
and experimental results. Section 7 discusses observations from our
study. Section 8 describes the limitations of our approach. Section
9 describes our privacy scoring scheme and mitigation strategies
for sensor based attacks. Finally, conclusion is presented in Section
10 followed by future work.

2 BACKGROUND
As smartphones become a ubiquitous part of society, our data be-
comes intertwined with smartphone tech [30]. Such data has be-
come a valuable commodity in today’s marketplace, with even
user’s demographic information holding significant value. In re-
sponse, users have taken many measures to protect their privacy.

In a 2012 study [20], researchers found that 20% of the Facebook
users did not reveal their gender, and another study in 2014 [63]
showed that in the popular online game World of Warcraft 23%
of the male users used female avatars and 7% of the female used
male avatars. While there are many reasons for users to give fake
information about gender, with privacy concerns being one of them,
users maintain a right to know and control how much informa-
tion about them is shared on the net. Nevertheless, unrestricted
access to related user information like a list of installed apps allows
service providers to identify users who entered fake information
disregarding the user’s wish for anonymity. Even something as
seemingly benign as a person’s gender can quickly become sensi-
tive, e.g. targeted advertising, political or otherwise [14, 26, 43, 50].
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As such, the Cambridge Analytica scandal has demonstrated how
digital technology, such as weaponized social media, can efficiently
micro-target voters [16].

According to a 2014 study [56], gender significantly impacts
the ways in which political candidates communicate to voters and
political communication experts have paid increasing attention to
gender differences in political advertising. Holman et al. [43] studied
the impact of political advertisements on genders, and found that
candidates of either gender can use these ads to affect women’s
votes. Therefore, it seems reasonable to treat gender as sensitive.

User education remains a major problem with respect to smart-
phone related privacy concerns. Researchers observed that tech-
nically skilled and financially independent users risked potential
privacy intrusions despite their awareness of potential risks [15].
Since the general public uses smartphones, many users do not fully
realize the amount of information revealed by granting access to
various smartphone hardware nor the level of permissions most
apps retain. Furthermore, when app-specific knowledge is used in
conjunction with orthogonal data sets available for purchase, it is
nearly impossible to grasp the breadth of user information data
consumers can infer.

Data collection related to smartphone usage is not limited to
apps and service providers as might be initially thought, but also to
general web activity. Javascript APIs [81] allow traditional browser
activity to access smartphone sensor information creating another
opportunity for privacy invasion. Researchers found that of the
top 100,000 sites-as ranked by Amazon-owned analytics company
Alexa - 3,695 incorporate scripts that tap into one or more of these
accessible mobile sensors. That includes plenty of big names, in-
cluding Wayfair, Priceline.com, and Kayak [69]. Another study of
the top 2200 free apps collected from 28 categories on Google Play
store, reported that 719 apps used sensor-related APIs [13]. Out of
these 719 apps, 610 (84.8%) apps used accelerometer, and 107 (14.9%)
apps used gyroscope sensors.

2.1 Threat Model and Existing Protections
In recent years, data collection and sale, also called data broker-
age, has become a viable profit model for numerous companies
and individuals [31, 57, 65]. Data consumers leverage this infor-
mation to inform investment decisions, target advertising choices,
and manipulate user behavior all at the expense of user privacy.
The primary defense mechanisms protecting users against privacy
invasions are the privacy policies enforced by the App Distribution
System (ADS), e.g. Google Play Store [39] and Apple’s App Store
[10]. Such policies require that if an app is going to record sensitive
data from the user (per the policy, this includes things like gender,
personal preferences, location information, and health habits), the
user must be explicitly informed about the data collection [40, 46].
Gender information is particularly valuable for targeted advertising,
political or otherwise [14, 43]. While most advertising is mundane,
political advertising advantages represent significant risk to elec-
tion integrity as demonstrated by social media based propaganda
campaigns in the 2016 US presidential election [35]. Furthermore a
candidates ability to appeal to specific gender demographics can
win or lose an election for a hopeful politician [23, 86]. As such,
any invasion of privacy that reveals the gender of users and creates

opportunity for the attacker to sway the user’s political opinions on
a large scale presents an opportunity to influence elections which
would have far reaching political and societal impacts.

In a 2016 experiment, researchers found that 74% of people who
joined a fictitious social network skipped reading the privacy policy.
Furthermore, those who opened the terms and conditions must not
have read them very carefully-because all of them agreed to give
up their firstborn child to the social network [9]. In another study
[64], researchers estimated that it would take an average individual
154 hours to skim the privacy policies for the approximately 1,462
websites they encountered each year. The study concluded that in
terms of wages and lost time, that would amount to $2,226 per per-
son. Moreover, it is essential to note that the privacy policies allow
app developers to record most sensor data without user permission.
In particular, the privacy policies permit the developer to record
the accelerometer and gyroscope data without the user ever know-
ing. Additionally, ADS’s generally provide basic defenses, such as
Google Play Protect [8], against malware and spyware to protect
users from the most malicious and invasive attacks. The smart-
phone’s OS re-enforces the privacy policies by providing additional
app-specific access control mechanisms for particularly sensitive
hardware like the microphone and camera as well as sensitive user
data like contacts and photos. No such access control mechanisms
are provided for the gyroscope and accelerometer on Android [3]
(and were apparently not provided on iOS until version 13 [2]).

We assume that the attacker wants to covertly collect marketable
user information without the user knowing this data is being col-
lected, but is still limited by the ADS’ privacy policies and malware
inspection as well as the phone’s permission restrictions. The at-
tacker circumvents these controls to obtain the marketable user
demographic information by leveraging the data leakage from the
built-in motion sensors of a smartphone. Any environment that lets
the attacker run code with access to the phone’s gyroscope and ac-
celerometer for 30 seconds or longer and allows the attacker to send
the collected data across the network functions as an attack vec-
tor. We show that even a low-skilled attacker, without expertise in
signal processing, feature extraction or deep learning, can succeed
at these classification tasks. Because deep learning algorithms and
frameworks have a steep learning curve (many hyper-parameters
and network architecture options) and require an advanced skill-set
(such as defining the layers, activation functions, regularization,
etc.) to train a model, the attacker uses off-the-shelf signal process-
ing libraries and machine learning algorithms to extract relevant
features and train models for predictions, respectively. For instance,
Random Forest can be used without turning the hyper-parameters.
On the other hand, a neural network requires the definition of the
network architecture, hidden layers, activation function, regular-
ization, etc. to ensure that it can produce any meaningful results
[41, 73]. We demonstrate our proof of concept by collecting data
while users read a piece of text, but other possible scenarios in-
clude collecting data while users wait for a gaming app to load,
or while a user is typing in a messaging app. These heavyweight
attack vectors like a maliciously developed app or website present
obvious yet realistic threats [88]. However, more subtle approaches
present a more severe threat. Most apps and websites run unmoni-
tored 3rd-party ads, and since the attack requires so little overhead
and leverages a unprotected resource, ads accessing sensor data
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Figure 3: The adversary uploads an app or hosts a website.
The user opens the adversarial app or visits an adversar-
ial website on the phone’s browser. The installed app or
web-app accesses the accelerometer and gyroscope sensors
through an API call and sends the data to the adversary. The
adversary can then infer the demographics of the user in
real-time. The app implementation could alternatively be
self-contained and able to survive intermittent network con-
nectivity, by running the interference engine locally and
later sending only the results to the adversary.

via the Generic Sensor API [81] function as an omnipresent and
omnipotent attack vector. Since most apps and (obviously) web
pages require network connections to run, the malicious code in
an ad will be able to connect to a remote server under the control
of the attacker. Since most ad distribution services provide highly
targeted deployments, an attacker has almost complete control over
where and how the attack is deployed. The threat model is shown
in figure 3. In our proof of concept, we only examine accelerometer
and gyroscope sensor data collected via an Android and web app
for demographics inference.

3 RELATEDWORK
Researchers have studied the privacy implications of the accelerom-
eter sensor [54]. Prior studies have been conducted to infer the
behavior, location, health parameters, and demographics of the
smartphone user by leveraging the accelerometer sensor alone.
Most of the existing approaches for sensor-based demographic in-
ference in mobile phones are based on gait analysis, installed apps,
browser history, and call logs. Other approaches include the pro-
cessing of visual or audio signals. In this section, we first discuss the

related work based on smartphone data, then we look at inference
techniques using sensors.

3.1 App/Browser Based Approaches
There are three popular techniques that can be applied on a smart-
phone to infer demographic information about the user. The first
group of researchers used an application installed on the devices
to infer the demographic information about the user. The second
group investigates the browser history to infer the demographic
attributes of the user. The third group looks at the call logs over
long periods of time to make inferences.

3.1.1 Installed App.
Suranga et al. presented how third-party apps can leverage infor-

mation about installed applications on the smartphone to predict
the gender of the user [76]. Their work shows that the app installa-
tion patterns between male and female users can be used to train
the linear SVM classifier for the prediction task. They achieved
an accuracy of around 70%. In a study, researchers used a list of
installed applications on the device, used at least once within a
period of one month, to train the logistic regression model for the
task of predicting gender, age, race, marital status, children count,
and income [62]. They reported an accuracy of 82.3% for gender
detection. These techniques of gender inference are effective to an
extent. They cannot determine if the user of the device has been
changed temporarily, which can happen often in a household [77].

3.1.2 Browser History.
The user’s web browsing history has been studied extensively

for demographic inference. Previous studies show that there is cor-
relation between users’ browsing behavior and their demographic
attributes. Phuong et al. presented browser history-based gender
detection techniques by leveraging the websites visited and the
time of each visit over a period of one month [72]. They treat the
problem as a binary classification problem and apply the SVM al-
gorithm for the task. Their technique achieved a macro-average
F1 score of 0.805. Hu et al. [44] used data on page clicks from a
major website to predict the age and gender of the users through a
Bayesian framework. They achieved 79.7% on gender and 60.3% on
age in terms of Macro F1 score over a dataset collected over one
week. Goel et al., paired web history over one year of 250K users
(57% female and 43% male) with user-level demographics [38]. They
reported accuracy of 80% and 76% for age and gender, respectively.
In a similar study, Kalimeri et al. studied the relationship between
demographics and multi-modal digital data from web browsing
behavior and smartphone usage collected for one month [49]. They
reported accuracy of 90% for gender and 71% for age.

3.1.3 Call Logs.
Felbo et al. used anonymized call detail records over fifteen

weeks to predict the age and gender of the users [36]. They report an
accuracy of 63.1% for age and 79.7% for gender prediction. In another
study, Ying et al. proposed a multi-level classification model to
predict gender, age, marital status, and job using call logs, location,
and environmental features collected over a year [87]. They used
MDC data set [52, 55] consisting of 200 participants and reported
an accuracy of 85.47% and 77.77% for gender and age, respectively.
Dong, et al. used more than 7 million users’ call and SMS data,
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collected over a period of one year, to predict the gender and age of
the user [28]. Their dataset comprised of 45% female and 55% male
participants. They recorded the performance to be 80% and 73% for
gender and age detection, respectively.

The above-mentionedmethods of demographic inference require
system permissions and historic data from other applications for
predictions. Each of these methods is intrusive since they access
the user’s private information of browser history, call logs, and
applications installed on their device. Furthermore, these techniques
require substantial data from the device over a long period of time.
Hence, they are computationally ineffective.

3.2 Sensor Based Approaches
In the past, there have been studies to infer the demographics of
the user through sensor data. We summarize work on two popular
demographic attributes studied extensively: age and gender.

3.2.1 Age.
Researchers have investigated the relationship between the smooth-

ness of walking and the age of the participants by measuring the ac-
celeration patterns at the head and pelvis [66]. Researchers studied
the variation in step length, step time, and velocity of the partici-
pants and observed that the magnitude of accelerations at the head
and pelvis were generally smaller in older subjects. Davarci et al.
studied the critical observation that the characteristics of children
and adults differ in hand-holding and touching the smartphones
[24]. In the study, participants were asked to use an app and per-
form simulated screen taps to gather data and train their model.
They report an accuracy of 92.5% over 100 adults and 100 children
participants. Study of age is outside the scope of our study.

3.2.2 Gender.
SH Cho et al. studied the gender-based differences in gait [21].

Gait analysis data were obtained with the optoelectronic system and
force plates. They observed that gait analysis data had significant
gender differences attributed to anatomy and habits. In another
work, Gary Weiss and Jeffrey Lockhart studied the relationship
between walking pattern and soft-biometric traits, gender, height,
and weight, based on the walking pattern of the participants [83].
The volunteers were asked to walk, with an Android phone in their
pocket, for approximately 5-10 minutes. They obtain an accuracy
of 71% over 70 participants. In another study, researchers presented
a gender recognition technique based on behavioral biometrics
[47]. Researchers investigate gender recognition using gait data
acquired from the inbuilt accelerometer and gyroscope sensors
of a smartphone. They used Multi-level Local Pattern, and Local
Binary Pattern features to train SVM and aggregate bootstrapping
classifiers to achieve an accuracy of 76.83% over 42 participants.

Other methods of side channel attack on accelerometer and
gyroscope for private information has been studied in the past
[11, 67, 89].

The techniques mentioned above, though efficient, require ei-
ther sophisticated data collection mechanism and/or the data to
be collected over long intervals of time. Hence, these techniques
are not always practical. In the next section, we discuss some tech-
niques which leverage the smartphone data to make demographic
predictions. In this work, we present a novel real-time technique of

demographic inference, ShankyHands, which is time efficient and
unobtrusive.

We have also experimentedwith implementing a browser version
of ShankyHands, which uses JavaScript API calls to get the sensor
readings of the phone. Thismethod of inference requires continuous
internet connectivity as the JavaScript transfers the data to the
adversarial server for making an inference. However, such inference
can be made in real-time in the mobile app, and only the result
needs to be sent to the adversary, thus, saving significant network
bandwidth. In this paper, all evaluation is done for Android app
and JavaScript-based web app.

4 STUDY DESIGN
In this section, we describe our process of collecting labeled ac-
celerometer and gyroscope data, which is used for generating and
evaluating classification models. Prior to data collection, we ob-
tained approval from our institution’s IRB (Institutional Review
Board), since we were “experimenting” on human subjects. All sub-
jects provided informed consent before participating in our study
and were also asked to fill out a demographics questionnaire. We
had used IRB approved deception while collecting the data. Partici-
pants were not briefed about the nature of the study or the purpose
of data collection to avoid bias. The participants were asked to
answer several demographic questions, some of which were used
in our study and some of which were not (e.g. height). Some people
started the study but did not complete it, these are not included
as participants in our data. As a consequence, there were 292 par-
ticipants for gender and pregnancy prediction tasks. The details
associated with the collected data set are provided in Section 4.2
and Table 1. We conducted the study in two phases. In the first
phase, we recruited 33 participants (17 male and 16 female) for an
in-person study. These participants belonged to the undergradu-
ate and graduate population of our university. In this phase, we
collected age, gender, and hand preference of the participants. In
the second phase, we recruited 127 on-line participants to collect
data using the Android app. We deployed the web application to
collect data from an additional 132 on-line users using iPhone and
Android devices. In both the phases, participants were asked to use
their own smartphones to complete the study and were given clear
instructions on how to perform the task.

4.1 Data Collection Apps
In order to collect data, we developed an Android app and a web-
app. We designed the apps to collect data from the sensors at a
frequency of 50 Hertz (one sample from all sensors after every 20
milliseconds). In our study, a combination of accelerometer and
gyroscope sensors demonstrated good results on the demographics
inference tasks. We recruited 145 male and 147 female participants
in our study. Every participant was asked to read a short passage
on their Android smartphone while holding the phone in either one
hand or both hands, according to their preference. We asked the
participants to be comfortable in standing posture without using
any arm support.

Both apps consist of a set of three tasks; a demographic survey to
collect the ground truth, a reading task, and a quiz. The apps collect
accelerometer and gyroscope sensor data to capture the subtle hand
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Figure 4: Overview of ShakyHands. The accelerometer and gyroscope sensor stream of the smartphone is used to train the
classifiers. The models are then deployed to infer demographic information of the user in real-time.

movements of participants. The collected data allow us to infer the
hand vibration and rotation along the three axes of the smartphone.

4.1.1 Demographic Survey. In the demographic survey, partici-
pants were asked about their demographic attributes, which include:
age, gender, preferred phone holding hand, height, race, relation-
ship status, education level, income, caffeine consumption, smoking
habit, nicotine consumption, stress level, and pregnancy. The data
provided by the participants and the demographic filters provided
by online recruitment platform acted as ground truth for our classi-
fiers. We were able to observe the apparent gender of the in-person
participants.

4.1.2 Reading Task. After completing the demographic survey,
participants were asked to read a short passage of 355 words while
holding their smartphone in their preferred hand(s). Because people
spend less than 72 seconds with an app at a time on an average
[17], we designed our study to reflect a similar app use scenario.
On average, male and female participants spent 86 and 81 seconds
to read the passage, respectively.

4.1.3 Quiz. After the reading task, participants were asked three
multiple-choice questions from the passage. The first question asked
the participants to select the title of the passage. In the second
question, participants were asked the summary of the passage,
which was epitomized in the last sentence of the passage. The last
question asked about the general idea of the passage. The first two
questions were factual, and the last question was intuitive. We used
the response to the first two questions of the quiz as a filter to
weed out participants who did not read the passage carefully. The
intuition is that if a participant had not read the passage carefully,
they might not have read the instruction either.

4.2 Participant Recruitment
For data collection, we recruited adult participants who speak Eng-
lish either as a first or second language. We curated the data based
on the response to the quiz and the availability of the accelerometer
and gyroscope sensors on participants’ phones. We would consider
the data only if the participant answered first two factual questions
correctly. Some participants’ smartphones did not have a gyroscope
senor; we disregard all such participants for our study. After cu-
rating, the results reported in this paper are based on data from
292 participants; 145 male and 147 female. Table 1 summarizes the

characteristics of our dataset. Participants were spread out geo-
graphically, although most stayed in the United States or Europe.
On average, male and female participants spent 86 and 81 seconds
to read the passage, respectively. We advertised on Prolific 2, a
well-known online crowd-sourcing service specifically designed
for the scientific community [70], helping us to reach its growing
number of users. Prolific boasts more naive, diverse, and less dis-
honest participants as compared to other online research platforms
[71]. In addition, Prolific allows the researchers to get in touch with
the study participants to verify the information if needed.

Parameter Results

Age

Mean: 34 years
Standard Deviation: 11
Minimum: 18 years
Maximum: 76 years

Gender
Male: 145 (50%)
Female: 104 (35.27%)
Pregnant: 43 (14.73%)

Smoking Habits Smokers: 47
& Nicotine Non-Smokers: 212

Consumption Not Available: 33

Preferred Hand
Right Hand: 157
Left-Hand: 80
Both-Hands: 55

Stress Level

High Stress: 66
Medium Stress: 98
Low Stress: 95
Not Available: 33

Table 1: Summary of demographics of study participants.
We had 292 participants who participated in two separate
data collection rounds.

5 SHAKYHANDS IMPLEMENTATION
In this section, we describe the implementation of ShakyHands.
There are two steps to process the sensor data: Noise Removal and
Feature Extraction. ShakyHands infers demographic information
by leveraging patterns in the sensor readings extracted from the
phone. We train two models 1) Gender Inference, and 2) Pregnancy
Detection. Figure 4 shows the data pipeline used to process the raw
sensor signals and train our classifiers.
2Prolific (www.prolific.co)

www.prolific.co
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Figure 5: Supervised learning pipeline: The sensor data stream is segmented into windows of constant width and 50% overlap.
Each window is then used to extract time-series features and train classifiers for predictions.

5.1 Noise Removal
The dataset acquired from smartphones will be subjected to various
sensor noises. It is crucial to choose the right set of features from
these noisy datasets that uniquely describes the behavior for the
success of the data-driven algorithms. To remove data points that
do not represent the reading task (Noise) we apply upper and lower
threshold limits on accelerometer magnitude readings. Essentially,
the optimal gravitational force should be 9.8m/sec2. The subtle
movements of the participants’ hand(s) lead to further fluctuation
in this value. Hence, we trained our model to obtain an optimum
range of threshold to remove such noise from the data. We observed
that the accelerometer magnitude reading for our study task is
between 8.0m/sec2 and 12.0m/sec2. These threshold limits only
consider micro-fluctuations in values and do not overlap with any
other activity that a user might perform on the smartphone. This
threshold range has been observed in the data collected through the
study. Hence, we use this limit to remove noise from the dataset.

5.2 Feature Extraction
We gather raw X, Y, and Z axes readings from each sensor. In addi-
tion to the raw data, we computed the magnitude of accelerometer
and gyroscope from the raw sensor data. As mentioned in section
2.1, we assume that the attacker does not possess deep knowledge
of signal processing or feature extraction, so they use an off-the-
shelf signal processing library to extract relevant features. For each
processed data value, we applied a feature extractor functions from
the Tsfresh library [22] to extract all simple statistical time-series
features which do not require additional parameters. These features
are straight forward to use because they only rely on the time series
window. Figure 5 shows how time-series data is segregated into
windows and features are extracted from each window to construct
the dataset. After extracting the time series features, we apply Se-
quential Forward Floating Selection (SFFS) algorithm [74] using the
MLxtend library [75] to select the best features for each task. Our
dataset consists of features comprising of 44 time-series metrics
calculated from the two processed sensor data streams. For our
study, we only use the accelerometer and gyroscope magnitude
because we want to study the stability of the hand, independent of
the orientation of the phone.

Let Xm×n be the multi-modal time series data comprised ofm
sensor streams and n attributes. We derive statistical features from
the time series data over a rolling window of size d with an overlap
of (ϕ). We use the feature extraction algorithm outlined in Algo-
rithm 1 to derive the features from Xm×n to train our classifiers.

Algorithm 1: Time-Series Sensor Data Feature Extraction
Input : Xm×n : n sensor streams obtained during m time

instances, t1, t2 . . . tm
Output : Extracted Features: X r×λ(n): r is instances of

processed data over window sizeW and λ(n) is
time-series features

Define : W (sliding window size), ϕ (overlap window), D
(Sensor stream at a time instance), Accl (Lower
threshold of accelerometer magnitude), Acch (Higher
threshold of accelerometer magnitude)

Function Noise_Removal(Xm×n):
foreach D ∈ Xm×n do

if D > Acch & D ≤ Accl then
Remove D from Xm×n

return Xm̂×n

Function Feature_Extraction(Xm̂×n):
Segment m̂ samples into r segments consisting ofW
samples each and ϕ overlap window
foreach segment s ∈ r do

compute λ(n) = f1, f2 . . . fj

return X r×λ(n)

If our paper is accepted, we will provide the Android app, web-
app, open-source implementation of ShakyHands, model training
scripts, and anonymized dataset. The web-app method of inference
requires continuous internet connectivity as the JavaScript trans-
fers the data to the adversarial server and offloads computation to
server for making an inference. However, the skill level required to
implement this technique is minimal as compared to developing
an app, which requires registration on app stores and a steep learn-
ing curve. App can make inferences in real-time within app itself,
and only the result needs to be sent to the adversary, thus, saving
significant network bandwidth. In the next section, we discuss the
mitigation strategies to obviate the privacy leak from ShakyHands.
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6 EVALUATION
As part of our comprehensive evaluation of our classifiers, we
used two different evaluation schemes: Stratified 10-fold cross-
validation and Leave-One-Out Cross-Validation (LOOCV). Both
schemes are similar in terms of the algorithm. In stratified k-fold
cross-validation, the folds are formed such that they contain approx-
imately the same proportions of labels as the original data-set. The
model is trained on k −1 folds and tested on the kth fold. LOOCV is
a variant of k-fold cross-validation more suitable for small datasets.
It uses a single observation from the original sample as the vali-
dation data, and the remaining observations as the training data.
We selected these evaluation schemes because LOOCV is almost
unbiased, as observed in [60], whereas 10-fold cross-validation has
a lower variance [48]. However, we show only one or the other for
each prediction task for space reasons. For Gender prediction, since
we have more than hundred participants, we use both 10-fold cross
validation and LOOCV. For pregnancy prediction task, we only use
LOOCV. Moreover, our primary goal is to identify the features of
one individual and hence, we have used LOOCV to classify the
demographic features in both the tasks.

Asmentioned in section 2.1, we assume that the attacker does not
possess the expertise of deep learning algorithms and frameworks
and uses off-the-shelf machine learning algorithms to train models
for predictions. Since the Random Forests (RF) algorithm [18], is
touted as one of the best “off-the-shelf” algorithms for classification
available [25], we used Random Forest (RF) for both classification
tasks. In addition to RF, we used K-Nearest Neighbour (KNN), SVM,
Naive Bayes, Logistic Regression, and decision tree classifiers for
all classification tasks. Because of space limitations we only report
the performance of RF and KNN classifiers for evaluation to demon-
strate the threat model. We ran our scripts on a Dell XPS 8930,
with 9th generation Intel Core i5-9600K 6-core processor and 32GB
RAM, running Ubuntu 18.04 and Python 3.7.3.

6.1 Metrics
To evaluate the performance of the model, we use four metrics,
namely, accuracy, precision, recall, and F1 score. Each one of them
is defined below:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall

where TP represents true positive samples, TN represents true
negatives, FP is the number of false-positive predictions, and FN is
false-negative predictions.

6.2 ShakyHands
In this section, we present the results of models for two demo-
graphic detection tasks, namely, gender and pregnancy. We studied

several other demographic attributes to demonstrate the effective-
ness of ShakyHands. For space limitations, we only present the
results of gender and pregnancy.

6.2.1 Gender Detection.
In the first phase, we recruited 33 participants (17 male and 16

female) for an in-person study. Participants belonged to the un-
dergraduate and graduate population of our university. For this
data set, we used LOOCV and achieved an accuracy of 88% and
85% using RF and KNN algorithms, respectively. Table 2 shows the
results of each classifier. For the in-person study, our RF model
achieved precision, recall, and F1 score of 0.93, 0.82, and 0.87, re-
spectively. These results motivated us to perform a large scale study
and observe if the same results hold true for larger populations
across different demographics.

n = 33 Predicted Male Predicted Female
ActualMale 14 / 13 3 / 4 17
Actual Female 1 / 1 15 / 15 16

Table 2: Confusion matrix for gender classification task us-
ing LOOCV for in-person study. The values in red and blue
represent the classification performed by random forest
classifier and k-nearest neighbors algorithm, respectively.

In the second phase, for gender detection tasks we consider data
from all 292 participants from in-person study and Prolific. First, we
evaluate the performance of RF and KNN algorithms using LOOCV
and 10 fold cross validation. We achieved 77% overall accuracy on
292 participants using LOOCV. We had recorded an accuracy of
79.31% for male and 74.83% for female participants. Then we applied
stratified 10-fold CV to evaluate our technique. Our model achieved
accuracy, precision, recall, and F1 score of 75.31%, 0.74, 0.79, and
0.76, respectively. The ROC curve of cross-validation is shown in
Figure 6. The Area Under the Curve (AUC) is 0.75. Table 3 shows
the results for both RF and KNN classifiers using 10-fold CV.

Figure 6: ROC curve of 10-fold cross validation.
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n = 292 Predicted Male Predicted Female
Actual Male 115 / 117 32 / 30 145
Actual Female 37 / 58 110 / 89 147

Table 3: Confusion matrix for gender classification task us-
ing 10-fold Cross validation. The values in red and blue rep-
resent the classification performed by random forest classi-
fier and k-nearest neighbors algorithm, respectively.

We also studied the minimum user interaction time required
to make high confidence inference of gender. Figure 7 shows how
the model accuracy increases over time. Time presented in x-axis
represents the time spent by the participants on the app. The figure
demonstrates how the model’s accuracy varies depending on the
time spent by the participants on the app. Our model predicted the
claimed gender within 15 seconds of user holding the phone with
an accuracy of 72%, within 30 seconds with an accuracy of 74%,
and within 60 seconds with an accuracy of 76%. We note that these
results are lower than for our in-person study. We suspect that
some on-line participants did not answer the gender demographic
question truthfully. This suspicion is coherent with the study [63]
on online games. Various studies have suggested that participants
in on-line crowd-sourcing websites do not necessarily represent
their demographic information accurately [19, 27, 29, 79, 80, 84].

Figure 7: Gender classification accuracy increases over time.

We applied t-SNE dimentionality reduction [61] on the gender
data-set to reduce the feature space to two features. To plot the
graph, we used the points utilized by RF algorithm to classify the
participants. Figure 8 shows clear distinction between genders.

6.2.2 Pregnancy Detection.
There have been numerous studies to detect pregnancies using

smartphone [1, 78]. However, these techniques require external
components to be added to the smartphone. In our study, we iden-
tify if a woman holding the phone is pregnant or not by using the
motion and orientation sensors to measure the physiologic tremors.
Increased physiologic tremor may occur in pregnancy caused by
agents that cause an increase in adrenaline [5]. This increase in
tremor is caused most often by increasing sympathetic nervous ac-
tivity, which is a common phenomenon during pregnancy [68]. The

Figure 8: TSNE visualization shows distinction between
male and female data points. Female data points are clus-
tered in the center, and data points representing male par-
ticipants lie along the edges.

sympathetic nerves are the system of nerves excited by adrenaline
released from adrenal glands [4].

Our study had 43 pregnant participants, with ages ranging from
18 to 42 years, who were due to give birth in time ranging from
1 month to 9 months. We performed under-sampling of the non-
pregnant females to construct a balanced dataset, consisting of 43
pregnant vs 43 randomly selected non-pregnant females, for su-
pervised training and avoid the imbalanced classification problem
[58]. All selected participants belonged to the same age group as
pregnant women. Since we had less than 100 participants, we used
LOOCV for evaluating our model. Table 4 shows the performance
of our models. Figure 10 demonstrates the distinction between the
data points representing both classes. Our model achieved accu-
racy, precision, recall, and F1 score of 86%, 0.92, 0.79, and 0.85,
respectively using random forest classifier.

Predicted Predicted
n = 86 Pregnant Not Pregnant

Actual Pregnant 34 / 32 9 / 11 43
Actual N. Pregnant 3 / 11 40 / 32 43

Table 4: Confusion matrix for pregnancy detection task us-
ing LOOCV. The values in red and blue represent the classifi-
cation performed by random forest classifier and k-nearest
neighbors algorithm, respectively.

Studying the minimum user interaction time required to make
high confidence inference of pregnancy, we observed that it requires
significantly less time than gender detection. Figure 9 shows how
the model accuracy increases over time. Time presented in x-axis
represents the time spent by participants on the app. The figure
demonstrates how the model’s accuracy varies depending on the
time spent by the participants on the app. Our model predicted the
pregnancy state within 5 seconds of user holding the phone with
an accuracy of 83%. That figure remains constant throughout 60
secs, however, the accuracy of detecting non pregnant participants
increases over time.
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Figure 9: Pregnancy prediction accuracy increases over time.
However, number of pregnant people detected remain con-
stant throughout time.

Figure 10: t-SNE visualization of data points of 43 pregnant
and 43 non-pregnant females show class distinction.

7 DISCUSSION
In this section we first propose a scoring scheme to quantify the
invasiveness of each side-channel attack approach presented in
Section 3, then we discuss each research question.

7.1 Privacy Scoring Scheme
In Section 3 we reviewed related research that use different data
sources to infer the user’s demographic information. We propose a
three-level scheme to quantify the intrusive nature of a data source.

(1) High: Users’ private data, such as their browsing history,
that can provide the content of items as well as their meta-
data. Accessing these sensitive data sources requires user
permission. Even though the browser itself records this in-
formation, it does not share this information with web-apps.

(2) Moderate: Data sources that access semi-private informa-
tion about the user, such as the metadata from call logs,

emails, and messages, without accessing the direct content
of individual items. To access moderate level sources, an app
also has to acquire explicit user permission.

(3) Low: These data sources include sensors like the accelerom-
eter, gyroscope, and magnetometer, which cannot directly
provide users’ private or semi-private information. These
sensors can be easily accessed by any app on the device with-
out user consent. However, as we show, they can be used to
infer sensitive information about the user.

RQ1: Can we derive demographic information of the user
by looking at only accelerometer and gyroscope data streams?

We demonstrate that using ShakyHands, it is possible to infer
demographic information of the smartphone user in real-time by
leveraging differences in physiologic tremor. Through supervised
learning, our technique can achieve prediction accuracy of up to
77% about the user’s gender and 86% accuracy for pregnancy predic-
tion. We also show that our method of inference does not require
any explicit permission from the user on Android devices. Table 5
summarizes the related work and the performance of each work. In
comparison to existing works, ShakyHands performed better in the
gender prediction task in two areas. First, ShakyHands achieved the
highest accuracy in the sensor category. Second, ShakyHands used
the minimum amount of time to make a high confidence inference.
In comparison to works in other categories, our technique does not
access any sensitive information.

We observe that when using an accelerometer alone for gen-
der classification and pregnancy prediction tasks, models perform
poor than the models leveraging both accelerometer and gyroscope
sensors. Table 6 summarizes our findings regarding sensor contribu-
tions. Through this study we conclude that physiologic tremor not
causes vibrations which are measured through the accelerometer,
but also rotations which are measured through the gyroscope.

Classifier Gender Pregnancy
Classification Prediction

Acc. 67.47% / 65.41% 62.79% / 54.65%
Acc.+Gry. 77.05% / 70.54% 86.05% / 74.41%

Table 6: Table shows the accuracy of our models. We studied
the impact of each sensor on different tasks.

RQ1: We observe that it is indeed possible to infer demographic
information from the accelerometer and gyroscope readings.

RQ2: If yes, then which demographic attributes can we
extract with high accuracy?

In this paper we demonstrated that the gender and pregnancy
prediction tasks can be performed with high accuracy of 77% and
86%, respectively. Other potential characteristics that influence
physiologic tremors include smoking habits, stress level, alcohol
consumption, and substance consumption [6]. We intend to study
these features in the future work.
RQ2: ShakyHands can predict the gender and pregnancy of the user
with high confidence.

RQ3: Is this a realistic threat? In particular, how much in-
teraction time is needed before making an inference?
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Type Related Work Summary Participants Reported Performance Intrusion Data / Code
Accuracy Period Level Availability

Browser

Phuong et. al [72] Browser History 150K Users Gen: 0.805 F1 1 mo High N/A

Hu et al. [44] Page Clicks 189K Users Gen: 0.797 F1 1 week High N/AAge: 0.603 F1

Goel et. al, [38] Browser History 250K Users Gen:76% 1 year High N/AAge: 80%

Kalimeri et. al [49] Browser History 7633 Users Gen: 90% 1 month High N/AAge: 71%

Call Logs

Felbo et. al [36] Call Logs 150K Users Gen: 79.7% 1 year Moderate N/AAge: 63.1%

Ying et. al [87] Call logs, location 200 Users Gen: 85.47% 1 year High MDC Dataset& env. features Age: 77.77%

Dong et. al [28] Call Logs and SMS 7M Users Gen: 80% 1 year Moderate N/AAge: 73%
Installed Seneviratne et. al [76] Installed Apps 174 adults Gen: 70% Instant Moderate N/A
Apps Malmi et. al [62] Installed Apps 3760 Users Gen: 82.3% 1 month Moderate N/A

Sensor

Menz, et. al [66] Gait Analysis 30 Young & 30 N/A N/A Low N/AOlder adults

Davarci, et. al [24] Phone holding and 100 adults & Age: 92.5% N/A Low N/Atouch/tap features 100 children
Cho, et. al [21] Barefoot gait analysis 98 adults N/A N/A Low N/A
Weiss, et. al [83] Hip movements 70 adults Gen: 71% 5-10 mins Low Data
Jain, et. al [47] Gait analysis 42 adults Gen: 76.83% N/A Low N/A

ShakyHands Phone Holding 292 adults Gen: 77% <1 minute Low Apps &
Preg.: 86% Dataset

Table 5: Related studies on demographic inference which reported their results in terms of accuracy or F1 score allows for a
direct comparisonwith our results. For eachwork, we provide the intrusion level as per Section 7.1. “Gen” refers to Gender and
“Preg” refers to pregnancy. ShakyHands performs the best in the sensor category and has significantly lower computational
overhead and intrusion level. ‘N/A’ is stated for papers that had omitted this information.

Our simulations with different phone holding time suggest that
the accuracy of individual prediction tasks increases over time. We
achieved optimal results within one minute of the phone holding for
gender detection task. For pregnancy prediction task, we observed
that as little as 5 seconds is enough to achieve an accuracy of
83%. We observe that the performance of gender prediction model
increases over time and the model achieves 76% accuracy within a
minute. We show that ShakyHands has significantly lower overhead
in terms of time and intrusion level required to make an inference.
RQ3: ShakyHands can infer gender and pregnancy within as little
as 5 seconds.

8 THREATS TO VALIDITY
In this study, we demonstrate how to predict four demographic
characteristics of a smartphone user by mining accelerometer and
gyroscope sensor data in a time-efficient manner. In this section,
we delineate the limitations of our approach.

(1) User Activity: In this study, we consider that the participant is
standing. In reality, users might perform other activities, such as
walking, while using their smartphone. When walking with the
smartphone, the sensors do not capture the micro-movements of
the hand, and we lose the vital information required to predict the
gender of the user.

(2) Arm Support: Our approach assumes that the user is using their
smartphone in a position that does not require them to take arm sup-
port. We observed that when the participant takes arm support, the
pattern in the sensor data diminishes, leading to a higher number
of mis-classifications. This case of mis-classification is particularly
true for male users since their data exhibits higher variations on
sensor readings, which are lost while taking arm support. Though
we have limited success when the user rests their hands, monitor-
ing the sensor readings over time will eventually get the correct
classification.
(3) Substance Consumption: Our classifier does not consider the
impact of food items containing caffeine. Researchers had observed
that participants had higher variations in the hand movement (ir-
respective of gender) when they regularly consume caffeine (e.g.,
coffee) [6]. This case might be handled by training a separate clas-
sifier on caffeine consumption and studying the dependence of
caffeine on physiologic tremor. Similar to caffeine, nicotine con-
sumption (e.g., cigarettes) also impact physiologic tremors [32]
and, consequently, the performance of the model. Earlier studies
have investigated the relationship between nicotine and tremors
[59]. There may be other commonly used substances that affect
the results, such as recreational drugs. Research is being done to
understand the dependency of drugs and medication on physiologic
tremors [6]. These and other substances might have affected some
of our participants, but are outside the scope of our study.
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We also did not consider the health conditions of the participants
or other environmental factors like temperature, which might also
influence the results. We leave that as a future research problem.

9 POTENTIAL MITIGATION STRATEGIES
We considered some fairly simple potential mitigation strategies
and conclude that these are not adequate, a more sophisticated
solution is needed, which we hope to address in future work.

9.1 Security through Policy
Unlike other sensitive sensors of the smartphone, accelerometer and
gyroscope do not require user permission on Android to transmit
data to an app [53]. A malicious app can exploit this loophole to
its advantage and gather sensor streams that could be used to infer
sensitive information about the user, as in our ShakyHands.

Permission mechanisms serve as the main measure to protect
users’ privacy and security in Android apps. Modern smartphone
operating systems prompt users to regulate permissions using the
ask-on-first-use (AOFU) policy. Much research has been done to dy-
namically regulate permissions depending on user preferences and
contexts [85]. However, one common limitation of all the existing
techniques is that they heavily rely on users’ historical decisions
on granting permissions. By relying on historical data, they ignore
the fact that users are not experts on privacy protection. Felt et
al. [37] show that Android’s AOFU policy is ineffective, since only
17% of the study participants read the requested permissions when
installing an app, and only 3% were able to demonstrate an un-
derstanding of those permissions. Other similar studies [7], [82],
[51] show that install-time prompts fail because users either do not
understand or pay attention to them. Hence, adding permissions
on the accelerometer and gyroscope sensors will not necessarily be
a secure solution.

9.2 Enhancing Privacy via Noise
An alternative to controlling the sensor access through permissions
is to add noise to the sensor data such that there is no apparent
correlation between the demographics and the sensor readings.

For example, most smartphones come with a built-in vibration
mechanism, primarily to alert users for incoming notifications and
calls. The design of the vibrator allows it to vibrate the phone at
different amplitudes and frequencies. One could leverage these pa-
rameters of the vibrator to develop a background app that triggers
small vibrations in the phone when it detects that the user is us-
ing the phone. The vibrations would be limited in amplitude and
duration such that the user would not explicitly feel the vibrations
when using the phone.

Though apparently feasible, there are inherent limitations to this
approach. First, vibration is a battery-intensive operation: Contin-
ued use of vibrations will lead to decay in battery life over time.
Second, vibration sensors vary, and as a result, some users may
indeed notice the vibrations unless there separate versions for dif-
ferent phone models — and such an app may simply not work on
some models.

10 CONCLUSION
In this paper, we demonstrated that while the traditional smart-
phone privacy mechanisms do not protect sensors like the ac-
celerometer and gyroscope from data collection, they still leave
malicious actors the opportunity to gather protected information
about the user. We present a non-invasive transparent technique
to infer user demographic information by mining data from these
seeming innocuous smartphone sensors. A study was conducted
on 292 real smartphone users to demonstrate the effectiveness of
the proposed approach. The experimental results show that our
technique can achieve prediction accuracy of more than 77% on the
user’s gender and 86% on pregnancy prediction. Furthermore, we
also demonstrate that the time needed to perform such an inference
attack is less than a minute.

Our findings suggest that accelerometer and gyroscope sensors
can be combined to create a profile consisting of a person’s per-
sonality traits. While these sensors are a powerful attack vector on
their own, our evaluation shows that, in combination, they pose
a significantly more severe threat. These findings are powered by
different digital data sources, which allowed us to perform a com-
parative study on the predictive power of each sensor alone and in
combination. Overall, deviations for performance between the two
scenarios, using accelerometer alone vs. the combination of the two
sensors, were found to be significant for all demographic inference
tasks. If our paper is accepted, we will provide the Android app, JS
based web-app, open-source implementation of ShakyHands, model
training scripts, and anonymized dataset.

11 FUTUREWORK
While our work can be used for demographic inference, our primary
goal is to learn as much as possible about the user. This mined
knowledge has value across a number of fields like marketing and
intelligent application design. Our objective is to identify user traits,
including human conditions, by building predictive models from
labeled sensor data using supervised learning. We have identified
potential areas of future research that build on ShakyHands:

(1) ShakyHands focuses on reading and browsing tasks; in the
future, we would like to extend to include gaming activities.

(2) ShakyHands might also be extended to predict substance
consumption (such as nicotine, caffeine) and psychological
factors (such as stress), since these also impact the intensity
of physiologic tremors [6].

(3) We would also like to work on potential defense mechanisms
to mitigate the privacy threat posed by ShakyHands attacks.

(4) ShakyHands predicts demographic attributes. Such traits are
often referred to as “soft biometrics” because these traits are
not sufficiently distinctive to uniquely identify an individual,
but they can be used in conjunction with other information
for identification. In our next work, we plan to investigate
biometric authentication based on physiologic tremor.
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