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Abstract—When a security vulnerability or other critical bug
is not detected by the developers’ test suite, and is discovered
post-deployment, developers must quickly devise a new test
that reproduces the buggy behavior. Then the developers need
to test whether their candidate patch indeed fixes the bug,
without breaking other functionality, while racing to deploy
before cyberattackers pounce on exposed user installations. This
can be challenging when the bug discovery was due to factors
that arose, perhaps transiently, in a specific user environment.
If recording execution traces when the bad behavior occurred,
record-replay technology faithfully replays the execution, in the
developer environment, as if the program were executing in
that user environment under the same conditions as the bug
manifested. This includes intermediate program states dependent
on system calls, memory layout, etc. as well as any externally-
visible behavior. Many modern record-replay tools integrate bug
reproduction with interactive debuggers to help locate the root
cause, but how do developers check whether their patch indeed
eliminates the bug under those same conditions?

State-of-the-art record-replay does not support replaying can-
didate patches that modify the program in ways that diverge
program state from the original recording, but successful repairs
necessarily diverge so the bug no longer manifests. This work
builds on record-replay, and binary rewriting, to automatically
generate and run tests for candidate patches. These tests reflect
the arbitrary (ad hoc) user and system circumstances that
uncovered the vulnerability, to check whether a patch indeed
closes the vulnerability but does not modify the corresponding
segment of the program’s core semantics. Unlike conventional
ad hoc testing, each test is reproducible and can be applied
to as many prospective patches as needed until developers are
satisfied. The proposed approach also enables users to make new
recordings of her own workloads with the original version of the
program, and automatically generate and run the corresponding
ad hoc tests on the patched version, to validate that the patch
does not introduce new problems before adopting.

Index Terms—test generation, software patching, record-
replay, binary rewriting, security vulnerabilities

I. INTRODUCTION

When a security vulnerability or other critical bug is not
detected by the developer test suite prior to deployment [1],
but reported after deployment, it can be difficult and time-
consuming for developers to construct new tests that reproduce
the bug. Furthermore the new tests need to verify that candi-
date patches do not exhibit the same or similar buggy behavior.
Although minimizing the time from bug discovery to patch
release is of the essence, users are wary of rushed patches,
since they may break mission-critical functionality [2]. How-
ever, user validation is also difficult and time-consuming.

Fig. 1. Ad hoc Test Generation Concept

The existence of the Common Vulnerabilities and Exposures
(CVE) list for security vulnerabilities [3] and mundane user
bug reports [4], [5] demonstrate that not all bugs are discovered
by developer tests. While vulnerability disclosures and bug
reports sometimes include an explicit test sufficient both to
reproduce the bug and to verify patches [6], [7], it is common
for no such test to be known [8]. But disclosures and other
bug reports often do include some evidence of the bug, such
as memory dumps, stack traces, system logs, error messages,
screenshots, and so on.

This paper presents a novel approach for rapidly generating
new tests that reproduce the bug, support debugging, and
verify that candidate patches do not exhibit buggy behavior,
when the bug report includes a detailed execution trace as
evidence of the bug. The approach even aids user validation
of released patches.

The problem is illustrated abstractly in Figure 1. The top
shows the original execution trace where the bug manifests.
The bottom shows a test automatically generated from that
execution trace. If this test is applied to the same code that
produced the original execution trace, the execution will be the
same. If the test is applied to modified code, i.e., patched to
try to fix the bug, it should execute as if the modified code had
been running in the user context instead of the original code.
If the patch successfully fixes the bug, then this execution will
not manifest the bug.

We refer to this concept as ad hoc test generation because
the generated test emulates whatever user context manifested
the bug. We emphasize that ad hoc test generation is intended
only for urgent time-crunch situations, when there are no ex-
isting developer tests that detect the bug and careful planning
and design of new developer tests would take too long. Ad
hoc test generation is feasible when execution trace divergence
is small, analogous to Tucek et al’s “delta execution” [9],
whose large-scale study of patch size found that security and
other patches solely to fix bugs tend to be modest in size



and scope, rarely changing core program semantics, shared
memory layout or process/thread layout.

The premise of record-replay technology is that there are
behaviors that manifest in the user environment that cannot
be reproduced by simply running the program with known
inputs in the developer environment. If there are such known
inputs, ad hoc testing is easy – just run the program with those
inputs. This paper addresses more complicated scenarios.

Current record-replay technology replays the recorded ex-
ecution trace with the original code. Record-replay tools
faithfully reproduce not just the externally visible manifes-
tation of the bug but also the intermediate program states
for the developer to inspect, single-step, etc. in an interactive
debugger or via inserted debugging statements. Current record-
replay systems do not support testing prospective patches that
modify the program in ways that change those intermediate
program states.

We have developed a novel ad hoc test generation
tool, ATTUNE (Ad hoc Test generation ThroUgh biNary
rEwriting). Instead of requiring developers to build doubles,
mocks or other test scaffolding to fake the user environment
for its tests, ATTUNE builds on existing record-replay tools:
It emulates the original execution context, including external
inputs, environment variables, the results of system calls,
network connections, and the accessed portions of the file
system, databases and other local resources as they were
at the time the exploit or bug manifested. Unlike existing
record-replay tools, ATTUNE leverages binary rewriting [10]
to modify the original executable at load-time to insert the
patched functions from the modified executable, and then
interprets the recorded log to manipulate the test emulation
as it executes the patched functions. Inserting the patched
functions into the original binary results in an execution that
perfectly matches the recorded log until divergence when the
first patched function is reached. Continuing the execution
beyond this point enables the developer to assess whether a
candidate patch indeed fixes the bug.

ATTUNE leverages two key insights: Our first key insight is
that the symbol tables resident in Linux ELF files, intended for
linking relocatable code, provide points of reference between
original and patched versions. Thus each patched function
can replace the corresponding original function and access the
same global variables and strings. New functions, etc. can also
be accessed by patched functions. Our second key insight is
the recorded log of the original execution trace does not need
to be replayed verbatim in order. Instead, events in the log
can be skipped or swapped, and new events can be derived on
the fly from those in the log, to match the changes in patched
functions.

ATTUNE follows the workflow illustrated in Figure 2 to
generate an ad hoc test for candidate patches that is faithful
to the execution trace recorded in the user environment.
Since ATTUNE requires detailed traces that would impose
too much time and space overhead for always-on recording
in user environments, we envision that always-on recording
is performed by a lightweight record-replay mechanism like

Fig. 2. ATTUNE Workflow

Castor [11]. Then when user observation, analysis, monitoring,
etc. determines that a lightweight trace manifests a security
vulnerability or other bug, then that trace is replayed (of-
fline from production but still in the user environment) and
simultaneously re-recorded (analogous to Crosscut [12]), by
ATTUNE’s verbose recorder.

Our initial ATTUNE prototype builds on the rr open-
source record-replay tool [13]–[15] from Mozilla as the ver-
bose recorder. (The authors of this paper are not affiliated
with the rr developers or Mozilla.) We did not modify rr’s
recorder and use it as-is to produce detailed execution traces
during re-recording. We made substantial modifications to
rr’s replayer subsystem to generate and run ad hoc tests
for prospective patches. rr runs without privileges in user-
space on commodity hardware and operating system, assuming
commodity compiler, libraries, etc., with no changes to the
application’s programming language code or executable files.
ATTUNE likewise runs without privileges in user-space, with
conventional hardware, operating system, compiler, libraries,
etc. and no changes to the application. ATTUNE’s binary
rewriting modifies the application executable only at load-time,
i.e., in memory, not the executable file(s). While the technical
details of our binary rewriting mechanisms are specific to our
modification of rr’s replayer, ad hoc test generation is not, and
in principle ATTUNE prototypes could be built on any record-
replay technology that supports sufficiently detailed execution
traces.

Unlike third-party website-session script recordings [16],
the user or a background user-organization process must initi-
ate re-recording and submit the re-recorded traces to develop-
ers; neither ATTUNE nor rr runs surreptitiously. To address the
privacy concerns inherent in all bug-report systems that send
information gathered in the user environment to the developer,
sensitive data could be anonymized during this offline process
(see [17]–[19]), and only the detailed but anonymous trace sent
to developers, but this is not implemented in the prototype.

Our requirements for verbose execution traces and the tech-
nical details of our binary rewriting techniques are explained
in Section II. Our evaluation in Section III describes how a
developer would use ATTUNE to test candidate patches for a
variety of security vulnerabilities and bugs from well-known
open-source projects. Section III also gives an example where
the user records their own workload with the original program
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Fig. 3. Recording and Preparation for Ad Hoc Test Generation

and replays with the modified program to convince themselves
that the bug has been fixed and the patch does not break other
behavior. Section IV compares ad hoc test generation to related
work.

The contributions of this paper are:
• An approach to leveraging record-replay technology and

binary rewriting to generate ad hoc test cases to exercise
candidate patches as if they had been executing in the user
context, instead of the previous buggy version, when the
bad behavior was originally recorded.

• A technique for adding developer environment metadata
to patch releases, enabling users to validate patched
versions with their own workloads by (re-)recording with
the old version and replaying with the new version.

• An open-source prototype implementation, portable
across Linux distributions running on x86-64. This pa-
per’s final version will include a link to our github repos-
itory containing ATTUNE’s open-source implementation
and documentation.

II. ARCHITECTURE AND DESIGN

Our ad hoc test generation workflow constitutes four main
procedures: recording, static preprocessing, load time quilt-
ing and the runtime replay decisions, which we describe in
turn. Recording and the two preparation stages are shown in
Figure 3, with runtime depicted later on in Figure 11.

A. Recording
We assume production recording with the user’s choice

of lightweight tool and, when warranted by some external
mechanism that detects an error or exploit, offline replaying
that tool’s recording while re-recording with rr’s recorder as
in Figure 2. Instead of rr, any other recording engine that
constructs sufficiently verbose traces would suffice, but we do
not know of any actively-supported open-source alternatives.
Specifically, the trace must provide the details needed for
ATTUNE to recreate the successive register contents and
memory layouts leading up to when the bug manifested. Thus

--- a/pngrutil.c // file info
+++ b/pngrutil.c
@@ -3167,10 +3167,13 @@ png_check_chunk_length(...) { //function intfo
...

- (png_ptr->width * png_ptr->channels // source changes
...

+ (size_t)png_ptr->width
+ * (size_t)png_ptr->channels

Fig. 4. libpng-bug-1 Abbreviated Example Patchfile
182: 0000000000003fe0 56 FUNC GLOBAL DEFAULT 1 png_check_chunk_name
//buggy function
183: 0000000000004020 221 FUNC GLOBAL DEFAULT 1 png_check_chunk_length
184: 0000000000004100 172 FUNC GLOBAL DEFAULT 1 png_read_chunk_header

Fig. 5. libpng-bug-1 Symbol Table Entries

the recorded sequence of events must include register values
before and after system calls, files that are mmapped into
memory, and points at which thread interleaving and signal
delivery occur during execution.

B. Static Preprocessing
Source Code and Binary Preprocessing. An abbreviated

example patchfile from a libpng bug fix [20] is shown in
Figure 4. Patchfiles document which files changed, which
function in the file changed, and which lines within that
function were inserted and deleted. Patchfiles are created with
a standard format so we are not limited to a single diff
implementation.

Dwarf Information & Symbol Table. Patch files don’t
provide any information about the resulting binary. Since the
recorded trace relies on binary/OS level information (register
values, pointers, file descriptors, thread ids etc.), we need to
translate from changes in the source to changes in the binary.

Two mechanisms within the binary allow for this translation.
The first is the symbol table standard in all ELF files and
the 2nd is DWARF information. The key insight is that the
symbols act as a point of reference between the old and
the modified binaries. They remain unchanged even if their
addresses and references change. After processing the patchfile
we use the symbol tables to find the locations of functions and
global variables, and we use DWARF information for finding
changed lines and identifying source files. These two sources
combined contain all the information in the source level diff
at the binary level. Refer to Figures 5 and 6 for concrete
examples.

Most real world projects create multiple binaries and as-
sociated libraries when building so it may be unclear which
binary contains the associated change. In order to generalize
to sophisticated build processes ATTUNE uses DWARF infor-
mation to search through all re-compiled binaries to find the
modified file.

Pre-Load Steps for Quilting. Once the function and line
addresses have been resolved via the procedure described
above, and a prospective patched binary has been compiled we
can generate our test code. In order for the newly compiled

...
<c> DW_AT_producer : (indirect string, offset: 0x1d90): GNU C11 7.4.0 ...
<10> DW_AT_language : 12 (ANSI C99)
<11> DW_AT_name : (indirect string, offset: 0x1c8e): pngrutil.c
...
0x0000402b [3156, 0] NS // address to line number table
0x0000403a [3166, 0] NS
0x00004046 [3182, 0] NS

Fig. 6. libpng-bug-1 Relevant DWARF Line Entries
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Fig. 7. Address Space Detail

patched code to remain a viable test case, it must maintain the
binary context of the original code. While most of the binary
context remains unchanged, code pointers and data pointers
that point somewhere inside the modified functions or that
point from the modified functions to any location outside of the
modified binary must updated accordingly. To create the most
accurate test we point to the original binary context wherever
possible. In order to fully integrate the patched code with the
recording, references to shared libraries must point to where
the shared libraries were loaded in the recording, references
to places in the modified section of the code must point to
the appropriate place in the patched code, and references
to unmodified contents of the patched binary must point to
the appropriate place in the original binary as illustrated in
Figure 7.

In order to prepare for load time quilting resolution (ex-
plained shortly), static reference identification needs to occur
for bookkeeping purposes. The patched function is scanned
for all symbol references that need to be resolved to integrate
with the recorded context. Some references like references
to locations within the modified function (e.g.jump and con-
ditional jump instructions) can remain unaltered in position
independent code. So after all references are accounted for,
they are trimmed to the subset of references that need to be
changed during the quilting procedure. This includes refer-
ences to strings, shared library functions, functions that only
exist in either the original or the modified binary, functions
that exist in both, procedure linkage table (PLT) entries, and
global variables. Since symbols are the points of reference
between original and patched binaries because recompilation
renders addresses meaningless, references to be resolved are
defined as a symbol and an offset from that symbol.

C. Load Time Quilting
Loading Replication & Custom ATTUNE loading. In

modern Linux systems the system loader is responsible for
parsing the executable’s header, loading it into memory, and
dynamic linking. Since shared libraries are not always loaded
at the same positions, references related to the global off-
set table (GOT), and procedure linkage table (PLT) cannot
be resolved until after loading completes. So even though
ATTUNE knows which references need resolution pre-load,

Fig. 8. Pointer Translation Procedure

it can’t actually resolve those references until load time. In
order to preserve the integrity of the replay, all required
shared libraries, executables, and system libraries must be
loaded into the recorded memory locations. Shared libraries
and executables required for replay are included in the trace,
and non-recorded libraries loaded during replay are limited to
the system loader which is required at the start of any process.
In order to replicate the recorded loading activity ATTUNE
begins by loading a small entry point program (replay hook)
which hijacks execution from the system loader and begins the
replay process. As mentioned earlier, some references in the
patched code can’t be resolved until the original code is loaded
into memory so initially loading replicates exactly what was
recorded. Once the original segments are loaded into memory
and GOT/PLT relocations are completed ATTUNE resolves
remaining references in the patched code (described below).
Finally, ATTUNE’s loader loads the quilted code after finding
an appropriate place to put it. Note quilting has to be repeated
on every replay, and the files containing the original and
patched executables are not modified. The loader searches the
address space for the lowest slot large enough to accommodate
all of the patched code, then loads the patch following the
Linux loading conventions. Figure 7 depicts the address space
when loading has completed.

Address Translation Procedure. A summary of the pro-
cedure to translate pointers from the context of the modified
binary to the context of the original binary is given in Figure 8,
and consists of both pre-load and load-time actions. The
process starts from the address of the modified function as
determined from the patchfile and DWARF processing. The
modified function is scanned for references. When a reference
is identified, if the pointer is effected by the quilting process
then ATTUNE’s translation procedure corrects the pointer. The
log messages in 9 explain the process in detail. An instruction
in the patched binary at 0x1b214 points to 0xaa60. In
order to update the instruction to point to the same position
in the original binary we need to identify the correct symbol
and offset in the original. First we convert the target address
0xaa60 into a symbol and offset in the patched binary.
Since this instruction is just calling a function, the target
symbol is the function name and the target offset is 0. Then
ATTUNE searches the original binary for the same symbol
and offset, and in this case the function was generated at the
same address in original binary. Resolving string references,
global variable references, and PLT references require slightly
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Linking function: png_check_chunk_length
in module pngutil

Updating Instruction Reference
from [0x1b214] to [0xaa60]

//identifying reference point
Target Symbol: png_chunk_error
Offset From Symbol: 0
Symbol Location in original binary:

0xaa60

//target address in the original binary
Target Address: 0xaa60
...
//patch references string
Resolving string reference at: 0x1b2cd
Resolving offset ...

for "chunk data is too large"
//identified string in original binary
Found string: "chunk data is too large"

at 0x320e
... module pngutil code found at 0x000000
... module pngutil data found at 0x200000
... generating quilted code

Fig. 9. libpng-bug-1 abbreviated linking example

different procedures and are described below. Finally the
patched code is generated with instructions pointing to the
correct locations at runtime.

PIC Code, PLT Entries & Trampolines. Position indepen-
dent code compilation has become the standard for security
and efficiency reasons so modern binaries can be loaded
anywhere in the address space. As a result the locations
of external functions and symbols aren’t known until those
symbols actually exist in the address space. Since most library
functions aren’t called they aren’t all resolved at load time,
and instead are only resolved after they are called. The
procedure linkage table (PLT) acts as a table of tiny functions
that perform a function lookup and trampoline to where the
code for external functions are defined. Unfortunately for
our purposes we can’t rely on a PLT because the system
loader which performs the runtime function resolution doesn’t
know about ATTUNE’s special memory configuration. Two
key differences let us implement static trampolines instead of
relying on the traditional PLT mechanism. 1)We only need to
resolve the PLT entries that are referenced by the modified
code which comprise a small fraction of the overall PLT, and
2) we can resolve these beforehand without relying on the
PLT’s lazy loading mechanism because the shared libraries
have already been loaded by the time this code is injected. The
x86 64 architecture only allows call instructions with a 32-bit
offset, but we need to call functions across the 64-bit address
space to reference shared library functions. To accomplish this
we transform calls to PLT entries into a move instruction that
loads an address into a register, and then a call instruction to
the address in the register. An example transformation is in
Figure 10.

Resolving String & Data Sections. Other than references
to code sections the patched code may reference data section

Fig. 10. PLT Transformation

Fig. 11. Runtime Architecture

variables like global data and strings. The patched code must
reference the old code where possible and the patched code
where required. Identical symbols and strings function as
a point of reference between the modified and the original
binary.

These translations can be done as described in Figure 8, with
a few minor differences. String tables don’t have an associated
symbol table. The modifed code references the string directly,
but to lookup the location of a specific string in the original, we
have to iterate through all of the read-only data. If the string
exists in the original binary then we point at it, otherwise
ATTUNE points to the appropriate location in the new data
section.

To accomplish this another small transformation must take
place. The compiler accesses data through a global offset table
entry, but cannot use it because the global offset table was
compiled for the modified code. Instead ATTUNE points to
the data directly since at code generation time it knows where
the data has been loaded.

D. Runtime Replay Decisions
The runtime architecture is shown in Figure 11. At runtime

we continue to leverage developer environment information
to aid ATTUNE’s decision making, e.g., we know exactly
which functions have been modified and perform a strict replay
until a modified function is called. We break at that point and
move to the patched code where we use information about
added or deleted lines to inform decision making. For any
non-deterministic event that takes place during replay, we must
decide whether to use a corresponding event recorded in the
log or to actually submit the event for operation by the kernel,
i.e., execute live as would be required if the inserted code
makes a new system call. We emulate kernel state and kernel
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Result getResult(event) {
if(!diverged) return next_recorded_result;

if (is_syscall_without_file_io
&& exists unused in log)

return recorded_result;
if (is_syscall_with_file_io &

& supported_recorded_operation)
return recorded_result;

if (is_signal && signal_is_recorded) {
if ( current_pos == inserted code )

return execute_live();
else return

delay_signal_until
_recorded_RCB_count();

}

return execute_live();
}

Fig. 12. Runtime Decision Algorithm

events whenever possible, and only ask the kernel to perform
the replaying action when necessary, following the greedy
approach shown by the pseudocode in Figure 12. It should
be noted that system calls which depend on process state like
malloc, and mmap don’t require emulation since this state is
actually recreated during replay. All file operations performed
during replay are based on the information available from the
recorded trace, essentially recreating how the program would
have acted at the time of the bug except now (for successful
patches) without the bug. If there is no appropriate information
available, the emulation ends.

System Calls. The simplest event types to replay are system
calls that don’t involve file IO. We can reuse results from the
log if the parameters for the syscall match what is in the log.
It won’t match the log exactly since the log contains checks
for all registers including the instruction pointer which is
obviously different, but we relax these checks once replay has
diverged to only check registers containing syscall parameters.

File IO. System calls involving file IO such as any operation
involving a file descriptor including network or device IO are
harder to replay since they require a specific kernel state.
We have to actually recreate the file state as best we can so
we track open, close, stat, read, write, and seek
operations for all file descriptors during replay. At the point
the replay diverges we have a partial view of the file system. Of
course we can’t recreate any data that doesn’t exist, but if a file
operation can’t be satisfied during replay we can look forward
in the recorded trace to see if we have enough information
to satisfy the operation. If we do then we emulate it, and
unfortunately if we don’t we have to die. Another approach
would be to supply random bytes, but we feel this wouldn’t
accurately reflect a realistic state if the full file system were
available.

Signal Delivery. If a signal is intercepted by the emulation
engine, we need to decide if that signal should be delivered
to the replaying process. Our normal replay mechanism based
on rr’s replay mechanism determines when to deliver signals

based on the value of the retired conditional branches (RCB)
performance counter standard in Intel chips. For signals that
have been recorded based on signal type, we check if we
are in an inserted line. If we are then we deliver the signal
and assume it’s created by the patch (e.g.a segfault from
an incorrect memory reference in the patch). However if a
recorded signal is delivered and we are not currently in the
inserted section of the code we can do our best to estimate
at what RCB count it should be delivered by taking the
target RCB count and adding the number of RCB’s caused
by inserted lines. While this isn’t perfect it does allow for
a rough idea as to when the signal should be delivered. In
the event an unrecorded signal fires we allow that signal to
be delivered without interference since there is no recorded
timing information to guide delivery.

E. Limitations
ATTUNE relies on rr as-is to record the execution trace

and to replay that recording with the original version of the
program [13]–[15]. Since rr was designed to be used during
developer testing, with too high overhead for production [13],
we adopt the re-recording model shown in Figure 2. In theory,
lightweight production recorders could fail to capture sufficient
detail to faithfully replay some behaviors even in the same user
environment, but Mashtizadeh et al [11] explain this limitation
is generally unimportant in practice.

Neither ATTUNE nor rr provide any special support, be-
yond interactive debugging (rr integrates with gdb) that helps
developers locate and understand the root cause of the bug
sufficiently to develop successful patches. There are other tools
available for that purpose [21]–[23]. ATTUNE’s role is to
test the developer’s candidate patches as if they had been in
place in the user context where the security vulnerability was
discovered.

Our ATTUNE prototype inherits other limitations of rr.
Most notably, rr runs the recording on a single thread during
replay, so replayed parallel programs incur the slowdown
of a single core [13], [14]. ATTUNE accommodates thread
synchronization, and faithfully emulates the error state, but
because rr simulates thread interleavings by interrupting a
single thread execution, ATTUNE cannot accurately verify
patches for concurrency bugs.

Independent of rr limitations, ATTUNE also does not sup-
port changes to data structures, e.g., changing the size of a
struct on the stack or in the heap, that would require changes
to memory allocation. ATTUNE does not verify patches to
preprocessor macros. Since macros are inserted inline when
executables are generated; there are no associated symbols so
a macro cannot be replaced in the same way that ATTUNE
replaces functions.

III. EVALUATION

We evaluated ATTUNE on a Dell OptiPlex 7040 with Intel
core i7-6700 CPU at 3.4GHz with 32GB memory, running
Ubuntu 18.04 64bit, using gcc/g++ version 7.4.0 and python
3.4.7. ATTUNE is built using CMake version 3.10.2 and Make
version 4.1. This paper’s final version will include a link
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Bug Success
or
Failure

Patching Effort Files
Modi-
fied

LOC
Changed

curl-1 [24] X Changes how a string is parsed 1 16+, 16-
curl-2 [25] X Changes functions arguments and call. 4 9+, 9-
curl-5 [26] X Modified if statement for buffer overflow 1 4+, 1-
curl-6 [27] X Added new function and inserted call 1 55+, 8-
curl-8 [28] 7 Changes multiple functions calling a write function 4 17+, 17-
curl-9 [29] X Change parameters to a function call 1 2+,1-
curl-10 [30] X Adds a condition check 1 6+, 2-
curl-11 [31] X Off by 1 correction 1 1+, 1-
curl-12 [32] X Changes libc calls to add extra parsing 1 5+, 5-
libpng-1 [20] X Calculation modification for divide by 0 error 1 6+, 3-
libpng-2 [33] X Adjust calculation for idat chunk max 3 13+, 13-
wc-1 [34] X Added new function and changed condition check 1 23+, 2-
wc-2 [35] X Added error condition check 1 3+, 0-
yes-1 [36] X Substantial changes in option parsing 15 40+, 141-
shred-1 [37] 7 Removed a break statement 1 1+, 1-
ls-1 [38] X Added condition for change in option parsing 1 1+, 2-
mv-1 [39] X Adding a conditional check before operation 2 6+, 0-
df-1 [40] X Replacing open calls with stat calls 2 12+,8-
bs-1 [41] X Changing a loop condition 1 2+, 1-
wget-1 [42] X Adding conditional check for log 1 1-, 2+
redis-1 [43] X Adding conditional check 1 1+, 1-

Fig. 13. Patch-Testing Dataset

to our github repository containing ATTUNE’s open-source
implementation and documentation.

Since we want to evaluate ATTUNE on an unbiased se-
lection of patches for both security vulnerabilities (CVEs)
and other kinds of bugs, and know of no benchmark that
provides user environment execution traces or scripts to set
up the user context for recording traces, we recruited (for
one semester of academic credit) an independent challenge
team of three graduate students who were not involved in
developing ATTUNE nor versed in how it works. They were
tasked to identify a diverse collection of around 20 bugs in
widely used C/Linux programs. The bugs had to be patched
2016–2019 and the students had to construct user contexts
that demonstrated the buggy behavior. For example, in order
to recreate the circumstances leading up to the redis-1 bug,
first one needs to run the server with a specific configuration,
connect to the server in MONITOR mode, and then send a
specific byte stream to the server. Note the team could script
creation of such contexts given the bug and its root cause is
already known; record/replay is for capturing and reproducing
the contexts of previously unknown bugs. The team identified
the 21 bugs listed in Table 13.

A. ATTUNE successfully validates a wide range of patches
provided that corresponding metadata is available

ATTUNE successfully validated the real developer patches
for 19 and failed for 2 of the bugs the challenge team collected,
marked with Xand 7 in Table 13, resp. We organize the

19 bugs successfully handled into several different types and
describe how the developer employs ATTUNE in each case,
then explain the 2 failures.

String Parsing bugs are fairly common as there are of-
ten many corner cases, which can have significant security
implications since input strings may act as attack vectors.
Figure 14 [24] adjusts Curl’s treatment of URLs that end
in a single colon. In the buggy version, Curl incorrectly
throws an error and never initiates a valid http request. The
patch modifies one file. (The code shown in our figures is
abbreviated.) Since ATTUNE replaces the entire modified
function instead of individual lines of code, it needs to resolve
all references in the new version, e.g., to string manipulation
functions.

ATTUNE uses the recorded test case to recreate the context
that triggered the bug, and then jumps to the patched code
upon entering the modified function. Since the only change
was adding an if statement that doesn’t trigger a recorded
event, the ad hoc test continues past the point where the bug
occurred, without divergence other than instruction pointer and
base pointer. The developer can set a breakpoint at the patched
section, watch the if statement process the input correctly and
verify the string in *portptr. Since the log has no information
regarding how the network would have responded to the http
request had it been sent, the test ends.

Figure 15 [32] deals with mishandling URL strings
crafted with special characters, e.g., the ”#@” in
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...
+ if(!portptr[1]) {
+ *portptr = ’\0’;
+ return CURLUE_OK;
+ }
- if(rest != &portptr[1]) { ...
- ...
+ *portptr++ = ’\0’; /* cut off the name there */
+ *rest = 0;
+ msnprintf(portbuf, sizeof(portbuf), "%ld", port);
+ u->portnum = port;
...

Fig. 14. Curl-1 URL Parsing

static CURLcode parseurlandfillconn(...) {
path[0]=0;
rc = sscanf(data->change.url,

- "%15[ˆ\n:]:%3[/]%[ˆ\n/?]%[ˆ\n]",
+ "%15[ˆ\n:]:%3[/]%[ˆ\n/?#]%[ˆ\n]", /* new data */

protobuf, slashbuf, conn->host.name, path);
if(2 == rc) {
....

Fig. 15. Curl-12 String Parsing

http://example.com#@evil.com caused Curl to erroneously
send a request to a malicious URL. The patch calls sscanf
with a different filter string. Since the surrounding function
handles all the URL parsing for the application, it is rather
large with lots of references. Unlike the above bug, which
only requires resolving pointers to old strings, the new
filter string needs to be loaded into a new data section and
referenced appropriately. ATTUNE recreates the state that
caused the initial behavior and then jumps to the modified
code. There the developer can verify the patch by checking
the values in protobuf and slashbuf.

Mathematical Errors can have security implications when
related to pointer errors or integer overflows. For example,
an attacker could craft a malicious PNG image that triggers
a bad calculation of row factor in Figure 16 [20], causing
a divide-by-zero error and Denial-of-Service (DoS). With
traditional bug reports, the user would need to send the image
as an attachment, but a legitimate user affected by the DoS
is unlikely to be aware of the carefully crafted malicious
image uploaded by an attacker. ATTUNE does not require
attachments besides the execution trace, since the re-recorded
trace includes the image. After the developer writes the patch,
they use ATTUNE to verify that row factor is no longer 0. The
patch doesn’t trigger any new events so the function returns
gracefully.

New Functions & Function Parameter Refactoring.
Many fixes, especially those that pertain to size miscalcu-
lations, involve refactoring the buggy function to require a
new parameter or writing an entirely new function. While
not particularly strenuous from the developer’s perspective,
these types of fixes do create a challenge from ATTUNE’s
perspective. Since both the function that has been refactored or
inserted and the functions that call the new/refactored function
need to be modified, ATTUNE must replace all these functions

png_check_chunk_length(...) {
...
size_t row_factor =

- (png_ptr->width * png_ptr->channels
- * (png_ptr->bit_depth > 8? 2: 1)
- + 1 + (png_ptr->interlaced? 6: 0));
+ (size_t)png_ptr->width
+ * (size_t)png_ptr->channels
+ * (png_ptr->bit_depth > 8? 2: 1)
+ + 1
+ + (png_ptr->interlaced? 6: 0);

Fig. 16. libpng-1 Mathematical Error

+/* Return non zero if a non breaking space. */
+ static int iswnbspace (wint_t wc) {
+ return ! posixly_correct && (wc == 0x00A0 ...
+ static int isnbspace (int c) {
+ return iswnbspace (btowc (c));
+}
+
wc (args) {
- if (iswspace (wide_char))
+ if (iswspace (wide_char) || iswnbspace(wide_char))

goto mb_word_separator;
...

- if (isspace (to_uchar (p[-1])))
+ if (isspace (to_uchar (p[-1]))
+ || isnbspace (to_uchar (p[-1])))
+ goto word_separator;
}
...

Fig. 17. wc-1 New Function and Refactoring

void addReplyErrorLength(client *c, const char *s ... )
{
- if (c->flags & (CLIENT_MASTER|CLIENT_SLAVE)) {
+ if (c->flags & (CLIENT_MASTER|CLIENT_SLAVE)
+ && !(c->flags & CLIENT_MONITOR)) {
+ char* to = c->flags &
+ CLIENT_MASTER? "master": "replica";
...

Fig. 18. redis-1 Erroneous Conditional

in the executable and properly link them.
A patch for the wc file processing utility adds special

character parsing functions as shown in Figure 17 [34].
ATTUNE loads patched versions of the new function and those
functions that call the new function into the address space. The
new function is loaded to point towards the original libraries
and executables where appropriate, and the modified calling
functions point to the new function. There is no need to send
a file with the problematic non-standard characters in the bug
report to the developer, since it is included in the recorded
log. These types of bugs can be difficult for conventional bug
reports as files in transit may arrive with modified encoding
types and changed contents.

ATTUNE provides the input from the recorded file without
requiring any additional information and successfully returns
from the modified functions displaying the patched output.
Since wc largely contains deterministic operations, testing the
modified code doesn’t diverge drastically from the original
execution trace. The developer can verify the patch by letting
the program run to termination and inspecting the calculated
value.

Adding Conditionals. Perhaps the most common patch
we saw involved adding conditionals. Many security-critical
patches make one-line changes to correct conditional checks.
We examined one such example in redis. Such services are
particularly hard to test and debug using conventional mocks,
as complex network inputs can be difficult to recreate in
mocking frameworks. Redis allows monitor connections to
send logging and status checking commands. The buggy
version in Figure 18 [43] didn’t check the client flags for
the monitor, which resulted in a kernel panic. While this

url_parse (const char *url ...) {
...

+ /* check for invalid control characters in host
name */
+ for (p = u->host; *p; p++) {
+ if (c_iscntrl(*p)) {
+ url_free(u);
+ error_code = PE_INVALID_HOST_NAME;
+ goto error;
+ }
+ }

Fig. 19. wget-2 New Loop

8



was one of the smaller patches, the validation process varied
substantially from the log. ATTUNE enables the developer
to step through the program and watch progress through the
modified control flow past the point of the crash.

New or Changing Loop Conditions. Bad loop conditionals
are also common. Reference resolution is performed as before,
but these patches vary greatly from an ad hoc testing per-
spective because loop conditionals do not necessarily exhibit
the bug on the loop’s first iteration. One such example from
the wget utility demonstrates how ATTUNE handles this sort
of change in a security-critical situation. The bug allowed
attackers to inject arbitrary HTTP headers via CRLF sequences
into the URL’s host subcomponent. Attackers could insert
arbitrary cookies and other header info, perhaps granting
access to unauthorized resources. The developer modified the
url parse functions in Figure 19 [44] to check each character
in the host name and throw an appropriate error. During ad
hoc testing the developer verifies the patch works by watching
the program check each character, and upon entering the if
statement freeing the URL pointer and proceeding correctly
to the error handling code.

Swapped Code: ATTUNE successfully constructed test
cases in scenarios that swapped library function calls yes-
1 [36] and swapped control flow blocks df-1 [40]. The yes-
1 patch makes far-reaching changes across the code base to
address the same bug in multiple places (15 files). Assuming
the recorded log only manifests one instance of the bug, then
the generated ad hoc test case can only check for that instance,
not changes elsewhere in the code base.

Failures: ATTUNE successfully generated ad hoc test cases
for those challenge patches where the compiled binaries in-
cluded complete metadata. However, it failed on functions
with no ELF symbol table entry: A removed break statement
in shred-1 [37] caused a surprising error. While the change is
small, the function (used only in one place) is inlined, so there
is no symbol table entry. ATTUNE also failed due to DWARF
omissions: Applying ATTUNE to parameter changing in curl-
8 [28] was unsuccessful. ATTUNE failed to locate pieces of
the modified function in the loaded binaries and couldn’t link
a patch. ATTUNE depends on DWARF information for line
numbers so test construction was unsuccessful.

B. ATTUNE’s wait time and memory overhead is small
Quilting Time: Since ATTUNE’s quilting occurs at load

time, the procedure runs when each candidate patch is tested.
The overhead depends on the time it takes to parse the
binaries, search for pointers, and update those pointers. If this
is excessive, it might hinder developers’ ability to produce
a successful patch. Figure 20 shows our measurements of
quilting overhead. In the worst case the wait time is slightly
below 4 seconds and in the best case near instantaneous.

Memory Footprint: Quilting the patched functions into
the original binaries adds some overhead to the program’s
memory footprint during testing. Figure 21 shows specific
measurements. The worst case overhead was close to 100KB
in curl-2 and a bit over 25KB in curl-11, but otherwise

Fig. 20. Quilting Overhead

Fig. 21. Quilting Memory Footprint

remained well under 25KB. Modern Linux systems with 64bit
address spaces and 4KB page sizes can easily accommodate
this overhead. Increases in the program’s memory footprint
from quilting is not related to the number of lines of code
patched (added or deleted), but instead to the size of the
functions that have been patched and the associated data those
functions access, as well as of course the number of functions
patched. For example, the curl-2 patch is so large because it
spanned multiple large functions.

C. ATTUNE enables users to validate released patches with
their own workloads

In the last (optional) stage of the patching workflow, the
user validates the patch in their own environment to verify no
needed functionality has broken. Because ATTUNE operates
entirely in user-space, without hardware, operating system, etc.
support, it can run in both developer and user environments.
ATTUNE leverages the “diffs” in programming language code,
ELF and DWARF information during developer testing, which
it summarizes and exports into metadata sent along with the
released binary patch.

inserted line addresses:
0x6b
0x6e

deleted line addresses:
0x495AD
0x495B7

patched code:
...
69: jne 0xb9
6b: and $0x2,%eax
6e: lea -0x58090939(%rip),%rdx
75: mov 0x58(%rbx),%rax

...

Fig. 22. redis-bug-1 Metadata for User Validation
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For sample user environment workloads, we used the redis
benchmark [45], which simulates thousands of different re-
quests to the server, and the httperf benchmarking tool [46]
making thousands of connections. The validation procedure for
the redis patch [45] is similar to the redis discussion above, but
ATTUNE utilizes only the metadata it added to the released
patch, shown in Figure 22.

ATTUNE needs the addresses of inserted and deleted lines
for its runtime decision algorithm. The metadata’s ”inserted
line addresses” and ”deleted line addresses” are offsets into
the relevant files. Deleted lines are removed from the original
binary so those addresses are offsets into the original exe-
cutable. Inserted lines only appear in the patch release so their
addresses are offsets into the patched codefile that gets mapped
into memory. With this metadata ATTUNE can emulate the
user’s original execution trace that demonstrated the bug, to
verify it has been fixed, as well as emulate new execution
traces from the user’s choice of workloads that do not trigger
bugs in the original version.

D. Threats to Validity
Internal. As far as we know, neither rr nor any other record-

replay system was recording execution traces when any of the
real bugs we studied were discovered. Some of our scripts
for recording the buggy version run bug reproduction tests
included in the real bug reports, but others were contrived. This
threat is partially mitigated since the contrived scenarios were
developed by a three masters students who were not ATTUNE
developers. We describe how we imagine a developer would
verify the patches using ATTUNE, but we are not developers
on these projects and lack the developers’ knowledge. This
is mitigated to some extent since ATTUNE generated ad hoc
tests for the real developer patches. Lastly, since do not have
execution traces for any real users using the programs in our
dataset, we simulated workloads with benchmarks that may
not be representative of how real users would validate these
programs.

External. We demonstrate that ATTUNE supports a wide
variety of single-line and multi-line patches for security
vulnerabilities and other bugs in real programs. ATTUNE
resolved references between modified and original executables
and program state with binary transformations, but we cannot
claim that ATTUNE’s set of transformations will resolve
all types of references supported by the expansive x86-64
instruction set. We have not yet studied C++ or other non-
C programs and we have not yet investigated ARM or other
architectures. The bugs we studied may not be representative
of real-world bugs; notably we have not yet studied GUI bugs.

IV. RELATED WORK

Kuchta et al [47] generates tests for software patches using
”shadow symbolic execution”. The old and new program
versions are symbolically executed in tandem, with the old
version shadowing the new one. Whenever new and old
diverge, their Shadow tool generates a test exercising the
divergence, to comprehensively test new behaviors. Shadow’s
symbolic execution time budget might permit reaching parts

of the program not exercised by available user execution,
complementing ATTUNE. Shadow does not leverage user
execution traces and may not model all system calls, so its
tests may not reflect known bug-triggering user environments.

Elbaum et al [48] introduced ”differential unit tests” gen-
erated from the execution traces of developer system tests.
Their CR (Carving and Replaying) tool extracts and combines
the trace segments that construct in-memory program state as
it was just prior to invoking the target Java method, which
then serves as a unit test. CR also complements ATTUNE,
since its system tests would likely exercise the program more
broadly than available user execution traces. Since CR does
not leverage user execution traces and its system traces support
only in-memory events, its tests may not reflect known bug-
triggering user environments. Other work similarly extracts
unit tests from developer execution traces, e.g., [49], with
analogous advantages and disadvantages.

Kravets and Tsafrir [50] proposed ”mutable replay”, a
hypothetical design to construct a new execution trace for
a modified program from an execution trace of a previous
program version that, as in ATTUNE, demonstrates a bug.
Mutable replay was later implemented by Viennot et al in
Dora [51], building on the Scribe record-replay system [52].
Dora leveraged checkpoint/restart [53] in a backtracking
search algorithm that sought to minimize adds/deletes to the
original execution trace. Although successful on many bug-
fix examples in the sense that execution continued through
the modified code, the minimal-distance execution trace is not
necessarily the same as would have occurred had the modified
code been running in the user environment, which is what
ATTUNE aims. The underlying Scribe record-replay required
a shared file system (copy on write) between the user and
developer environments and a special Linux kernel module
that intercepted and controlled system calls and other non-
deterministic kernel events within both user and developer
environments, which are impractical for most post-deployment
scenarios, whereas ATTUNE runs without privileges in user-
space with no changes to the operating system and no sharing
between user and developer environments other than user-
submitted execution traces.

Parallel retro-logging allows developers to change their
logging instrumentation and then quickly see what the new
logging would have produced on a previous execution [54],
but the program itself is not modified. Arora et al [55]
describe feeding cloned network traffic to a sandboxed fork of
an architectural component in a service-oriented architecture,
for debugging or testing patches of that component, but the
sandboxed execution trace is not necessarily faithful when
there are non-network sources of non-determinism.

There are numerous other record-replay tools in the litera-
ture, recently including [56]–[60]. Some versions of gdb build-
in recording and replaying debugging sessions [61], as does
Microsoft’s IntelliTrace [62]. These tools reproduce execution
traces for a given program version and cannot test modified
versions. Many record-replay tools focus on reproducing con-
currency bugs, e.g., [63]–[65], outside the scope of this paper.
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While ATTUNE supports ad hoc test generation for multi-
threaded programs, our prototype built on rr cannot generate
tests for patches aimed specifically at concurrency bugs due to
how the rr implements multi-threading (it simulates multiple
threads within a single thread).

Much record-replay research focuses on reducing the over-
head of recording, e.g., [66]–[68]. Cui et al [69] explain
that ”high-fidelity program tracing is not affordable in de-
ployed systems”, so their REPT tool combines hardware
tracing and binary analysis to reconstruct execution traces,
which can then be replayed with the same program ver-
sion. Castor [11] records multi-core applications by leverag-
ing hardware-optimized logging, transactional memory, and
a custom compiler. It can replay slightly modified binaries
when the changes do not impact program state. Pervasive
(always-on) recording will likely require special hardware,
operating system and/or compiler support for the foreseeable
future. ATTUNE users can choose any baseline recording tool
that supports faithful replay. Only execution traces known or
suspected to contain evidence of security vulnerabilities or
other bugs need to be replayed by the host recording system
for ATTUNE’s offline re-recording.

Multi-Version Execution (MVE) provides an alternative
approach to user validation. ATTUNE’s validation of patched
programs in the user environment proceeds by: lightweight
recording of the user’s production workloads with the old
version of the program, offline re-recording, replaying ad hoc
tests generated from those workloads on the patched version
and, if all is satisfactory, switching the new version into pro-
duction by some mechanism outside ATTUNE, e.g., ”mutable
checkpoint-restart” [70]. In MVE, the patched and original
versions run simultaneously on production user workloads,
adding runtime overhead but enabling immediate detection
of undesirable divergences [71], [72]. Unlike MVE running
different code versions, as in ATTUNE, LDX [73] runs two
instances of the same code to infer causality between execution
events. The slave explicitly changes one event from the master
execution to find divergent impacts on later events, which is
orthogonal to our work.

Fuzzing seeks inputs that induce crashes and other prob-
lems [74]. Other approaches also strive to induce bad behav-
iors, e.g., [75], [76]. [77] builds on EvoSuite’s search-based
testing [78] to reproduce crashes. Symbolic execution [79] and
other approaches generate test suites to achieve coverage goals.
There is a rich literature concerned with generating inputs
intended to trigger or reproduce bugs. Generally the same
generated tests could be applied to multiple program versions
— unless those tests are ”flaky”. There has also been much
work towards making tests repeatable, which is sometimes
difficult even in the developer environment on the exact same
system build [80]. These kinds of tools, as well as conventional
regression testing, are complementary to ATTUNE.

V. CONCLUSION

ATTUNE (Ad hoc Test generation ThroUgh biNary
rEwriting) supports ad hoc test generation for security vulner-

abilities and other critical bugs discovered post-deployment,
when there are no existing developer tests for bug reproduction
and testing candidate patches, and little time for constructing
and vetting new developer tests. ATTUNE first quilts the
modified functions (the patch) into the original binary and
then interprets the execution trace from the original binary, as
it executed in the user environment, to emulate the generated
ad hoc test on the patched binary. The developer just modifies
one or more buggy functions to produce a candidate patch
and monitors the progress of the ad hoc test to check that the
bug no longer manifests; the developer does not intervene in
ATTUNE’s binary rewriting and testing and does not need to
build test scaffolding. ATTUNE also produces metadata that
the developer can deploy with the patched program, which
enables users to validate the new version by using ATTUNE
to (re-)record execution traces of their own workloads with the
original version and emulate the corresponding ad hoc tests
with this new version. We showed that ATTUNE generates ad
hoc tests for a wide range of known security vulnerabilities and
bugs in older versions of open-source software, with minimal
developer effort. We will release ATTUNE and our dataset
open-source on github upon acceptance of this paper.
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