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1 Introduction

�e goal of the fhw project was to produce a compiler able to translate programs written in

a functional language (we chose Haskell) into synthesizable rtl (we chose SystemVerilog)

suitable for execution on an fpga or asic that was highly parallel. We ultimately produced

such a compiler, relying on the Glasgow Haskell Compiler (ghc) as a front-end and writing

our own back-end that performed a series of lowering transformations to restructure such

constructs as recursion, polymorphism, and �rst-order functions, into a form suitable for

hardware, then transform the now-restricted functional ir into a data�ow representation that

is then �nally transformed into synthesizable SystemVerilog.

We have not yet released our compiler in open-source form, but this is largely because

we have not gone to the e�ort to make it feasible for others to install and run it. As of this

writing, our compiler is tied to a very speci�c, now-deprecated version of ghc (7.6.3) which

would be di�cult for most users to install. We have plans to address this issue (e.g., through a

portable vm image), but have not yet found the time to make a proper release.

2 History

I started thinking seriously about compiling Haskell to hardware while visiting Microso�

Research in Cambridge, uk in the summer of 2010. I had been invited by Satnam Singh, who

introduced me to the “Lambda Corridor” of Simon Peyton Jones, Simon Marlow, Andrew

Kennedy, and others. While I had caught the functional programming bug some years before,

this experience solidi�ed it to me: I saw functional programming as where programming

languages will have to go to handle the challenge of e�cient, correct parallelism. I still believe

this, although there remain many, many challenges.

In my 2012 technical report [11], I showed a series of transformations to produce an

implementation of the recursive Fibonacci number calculator in vhdl, much like the example

in section 3.1 demonstrates, although we ultimately abandoned vhdl in favor of SystemVerilog

because of the availability of superior tools such as the Verilator open-source simulator.

Later that summer, MS student Neil Deshpande [10] wrote a pass for ghc that experi-

mented with limited inlining of recursive functions to expose greater parallelism. �e idea is

that recursive calls of a function are usually performed sequentially; inlining can make the

body of a small recursive function bigger, allowing parts of it to run in parallel. Ultimately,

Richard Townsend would implement this sort of inlining in the fhw compiler [31].

In 2013, I wrote a revised version [12] of my earlier report [11] in which I re�ned the

procedure and switched to using SystemVerilog, the language we would ultimately target with

our later compiler. Later that year, I wrote another report [13] that outlined the vision of the

fhw project (much of this was taken from the nsf proposal), looked at performing classical

high-level synthesis scheduling with resource binding in a functional setting (something that

has yet to be realized in the fhw compiler), and discussed how inlining types and functions

could increase parallelism, which Richard Townsend ultimately implemented as part of his

thesis work [31].



Richard Townsend joined Columbia in 2013 as a Ph.D candidate and started working

on the fhw project. His �rst paper [32], co-authored with fhw co-pi Martha Kim, looked

at e�ciently implementing “map” functions (a common idiom in functional programs) in

parallel and balancing the number of processing units with bu�er memory needed to handle

variable execution times.

We published our �rst major paper on fhw in 2015 at codes+isss [35]. Our main contri-

bution in this paper was our technique for compiling away recursion (which we had described

in earlier technical reports), which we describe in detail below in section 3.1. �e authors of

this paper also include Kunagya Zhai and Lianne Lairmore, who also joined Columbia in

2013 as Ph.D candidates to start working on the project, but did not complete the program.

Also in 2015, we published a paper at memocode [5] were we took the �rst step toward the

hardware data�ow implementation we ultimately adopted as our ir. In this paper, we de�ne

a simple valid/stop �ow-control protocol and show how “patient” blocks can communicate

safely by communicating through input and output bu�ers that speak this protocol. In this

paper, we use this technique to implement a range partitioning pipeline we designed for a

hardware database accelerator, which is not directly part of the fhw project, but we later

adopted this technique.

Our next two papers appeared in 2017 and re�ected the transition to a data�ow intermedi-

ate representation. �e �rst, which we presented at Compiler Construction [34], describes the

translation from our higher-level ir (a dialect of the ghc Core dubbed “Floh”) into our simple

data�ow ir. Challenges in this translation include groups of mutually recursive functions,

which require a “lock” node at the inputs to prevent multiple simultaneous invocations of

such functions; literal constants, for which tokens are generated only when “control” reaches

them during execution through a network of valueless “Go” channels; and pattern-matching

case expressions, which require steering logic so that only one branch is ever activated. We

started with Arvind and Nikhil’s 1990 paper [2] that generates acyclic data�ow networks as a

functional program is running (e.g., from recursion) and adapted it to our static setting in

which the network is �xed when the program is compiled and uses cycles in the data�ow

graph to handle recursive calls.

Our second 2017 paper [15], a follow-up to our 2015 memocode paper, presents the

details of a hardware implementation of our data�ow networks. We show how to implement

nodes such as multiplexers that have non-uniform (i.e., data-dependent) token consumption

and production behavior (“�ring rules”), something we did not consider in our 2015 paper.

�e other big problem was avoiding inadvertently introducing combinational cycles in the

circuit. In general, we want connected blocks to communicate combinationally (in the same

cycle) and only want to introduce cycles of latency when absolutely necessary to meet clock

frequency constraints. �is suggests combinational handshaking logic, but introducing

handshaking between arbitrary combinational blocks with complex �ring rules quickly leads

to combinational cycles. In particular, a naïve implementation of a fork followed by a strict

operator (that requires both inputs, such as an addition), appears to produce a combinational



cycle. Our solution prohibits combinational communication from any node’s ready network
(backpressure) to its valid network. One unexpected implication of this approach is the need

for fork nodes to �re across multiple cycles (e.g., copy the input token to the �rst output in

the �rst cycle and copy it to the second output and consume it in the second cycle).

In 2019, we published an extended version of the hardware data�owwork [14] that includes

a description of the textual data�ow format we use to communicate between the fhw compiler

proper and the SystemVerilog back end. One notable feature of this format is a novel, formal

way of characterizing data�ow blocks with variable numbers of inputs and outputs. We de�ne

a type system that characterizes such blocks and check that the generated data�ow ir from

our compiler generates well-typed networks.

Richard Townsend’s 2019 Ph.D�esis [31] is a far more thorough summary of the fhw

project than this report. He goes over the details of how we translate ghc Core into our ir,

e.g., by eliminating recursion as discussed earlier, describes the translation of this ir into a

data�ow network, then shows how these networks are implemented in rtl SystemVerilog. He

also describes two optimization procedures: one that duplicates the computational core of a

divide-and-conquer recursive procedure to improve parallelism, and one that packs recursive

data types into denser objects that improves data locality and hence performance by reducing

the number of memory transfers.

3 Contributions

3.1 Recursion to Tail Recursion

Recursive functions are fundamental to functional programming languages, yet the richer

behavior they produce is rarely supported by existing hls tools, which generally only accept

nested loopswith a�ne array indices [18, 19]. One exception isGhica et al. [17], who implement

local variables in recursive functions with register �les that function as stacks to hold functions’

activation record data in a distributed fashion.

We transform recursive functions into tail-recursive functions that explicitly manipulate

a stack. An advantage of the functional approach is that this transformation can be shown

correct as a series of well-known semantics-preserving operations. We �rst proposed this

technique in a series of technical reports in 2012 [11] and 2013 [12] before publishing it at

codes+isss in 2015 [35]. Townsend [31, §3.3.4] summarizes our technique.

�e following example (Fibonacci) from Zhai et al. [35] illustrates the steps. Starting from

a recursive function consisting of a case with two recursive calls,

�b n = case n of 1 → 1

2 → 1

_ → �b (n−1) + �b (n−2)

we transform the program into the well-known continuation-passing style (cps) [16, 29, 1],

which imposes a sequential order on the two recursive calls and transforms all recursive calls

to tail calls at the expense of introducing lambda expressions and function arguments:



call n k = case n of 1 → k 1

2 → k 1

_ → call (n−1) (λn1 →
call (n−2) (λn2 →
k (n1 + n2)))

�b n = call n (λx → x)

Here, k is the continuation — the function to which the result is passed.

Next, we perform lambda li�ing [21] to capture non-local variables as function arguments:

call n k = case n of 1 → k 1

2 → k 1

_ → call (n−1) ((λ n k n1 →

call (n−2) ((λ n1 k n2 →

k (n1 + n2)) n1 k))

n k)

�b n = call n (λx → x)

then name each lambda expression (i.e., k0, k1, . . . ) and hoist it to the top level:

call n k = case n of 1 → k 1

2 → k 1

_ → call (n−1) (k1 n k)

k1 n k n1 = call (n−2) (k2 n1 k)

k2 n1 k n2 = k (n1 + n2)

k0 x = x

�b n = call n k0

Finally, we perform defunctionalization [7] and introduce an algebraic data type (Cont)
to encode the k arguments and avoid the need to pass actual functions as arguments:

data Cont = K0 | K1 Int Cont | K2 Int Cont

call n k = case n of 1 → ret k 1

2 → ret k 1

_ → call (n−1) (K1 n k)

ret k r = case k of K1 n k′ → call (n−2) (K2 r k′ )

K2 n1 k′ → ret k′ (n1 + r)

K0 → r

�b n = call n K0



�e program is now in a form well-suited to implementation in hardware: each function

consists of pattern matching followed by some arithmetic and a tail call to another explicit

function.

�e Cont type functions as a stack of activation records. �e various K’s encode the return
address and the ret function decodes them and executes the code at each return address.

Creating an element of the Cont type amounts to pushing an activation record on the stack.

Townsend [31, §3.3.4] provides more details about our technique, which also handles

mutually recursive functions.

3.2 Coat Check: the Functional Memory Paradigm

A goal of this project has always been to experiment with synthesizing memory systems

that are tuned for speci�c algorithms. We chose early in the project to adopt an immutable

memory model, which would free us from the sequential memory consistency issues plaguing

parallel programs on modern multi-core processors. We were con�dent this model was rich

enough based on observations of pioneers such as Dennis [9, 8] along with the success of

Haskell. Furthermore, we knew of the work of Bacon et al. [3, 4], which demonstrated garbage

collection in pure hardware was realistic.

�inking of memory operations in a purely functional setting naturally leads to a “coat

check” model in which write operations are the inverse of read operations. In this model,

read operations behave in the familiar way: read is given a pointer to an object and returns a

copy of the requested object. Write, however, behaves more like the C++ new operator: data

is passed to write, which returns a pointer to it. �is is like checking your coat at a restaurant:

when you turn in your coat, you’re given a number that will let you retreive it later. In Haskell

types,

read :: Pointer → Data

write :: Data → Pointer

�e coat check memory model eliminates read-a�er-write hazards provided the mem-

ory system never returns a pointer to an object before it has successfully stored the object.

�is e�ectively turns the object sharing problem into simple data dependency, which is a

fundamental issue that has to be solved anyway.

�e immutable memory model similarly eliminates write-a�er-read hazards since objects

are never written a�er being created, so there is no danger of a read picking up an earlier

version of the data than it should because there can only ever be one version.

�e immutable memory model leads to di�erent ways of thinking about the role of

memory and data in programs. For instance, the coat check memory model can also be

thought of as a sort of extreme data compression scheme: arbitrarily large objects can be

“compressed” down to a code word the size of a pointer object; reading an object frommemory

amounts to consulting a code book. Garbage collection amounts to knowing which codes

have been forgotten and can be reused, or equivalently, which codes will never be used again.



3.3 Avoiding Combinational Cycles in Flow Control

Our compiler translates its functional Core-like intermediate language into a data�ow repre-

sentation that can be easily translated into e�cient parallel hardware with distributed �ow

control. We �rst proposed these sorts of data�ow networks at memocode in 2015 [5], then

re�ned our technique to support conditional and other actors in 2017 [15].

While many have proposed implementing data�ow networks in hardware, notably Li et

al. [24], whose latency-insensitive blocks served as inspiration for our work, and Cortadella et

al. [6], we believe ours are the �rst to be compositional in the sense that combinational blocks

with �ow control may be connected in feed-forward networks without fear of introducing

spurious combinational cycles in the fundamentally cyclic handshaking logic.

Our data�ow blocks communicate using a simple �ow-control protocol that indicates the

validity of a data token (valid) and provides backpressure (i.e., when ready is false).
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valid ready Meaning

0 − No token to transfer

1 1 Token transferred

1 0 Token valid but not consumed
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data 1 2 3 4 5 6

valid

ready

In our communication protocol, in each cycle,

valid indicates data is available upstream; ready
indicates downstream is capable of consuming

data immediately. A token is transferred only

when both are asserted; upstream must other-

wise hold any valid data.

in0

in1 out

f A unit-rate actor such as an adder consists of the combinational

function f and two �ow-control gates that indicate the output is

valid only when both inputs are and that the inputs are consumed

only when the output is valid and downstream is ready.
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A data bu�er, e�ectively just a familiar pipeline bu�er, breaks

combinational paths in the data/valid network by introducing

a cycle of latency. �e input is ready when the output is ready

or the bu�er is empty.
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A control bu�er breaks combinational paths in

the upstream ready network by providing a “spill
bu�er.” Nominally, the input is ready and any

input token �ows immediately to the output.

However, if the downstream is not ready, the

bu�er cannot announce this in the current cycle

because to do so would require a combinational

path from output ready to input ready. In this

case, the spill bu�er captures any incoming to-

ken and holds it to the next cycle in which the

downstream is ready. In cycles where the bu�er

holds a token, the input is not ready.

Our nodes may be connected arbitrarily provided each output goes to exactly one input

and vice versa and each cycle in the communication network has at least one data bu�er and

one control bu�er. Introducing additional bu�ers may a�ect performance (the clock rate

and/or cycle latency), but will not induce deadlocks.
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Amultiplexer takes a select input and uses
it to steer the data and valid signals from
the selected input to the output when select
is also valid. If the downstream is ready,

the token on select and the corresponding

input is consumed.
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A demultiplexer is mostly handshaking.

�e data fans out, but at most one output

is valid when the input and select channels
have data. When they do, select sets which
output is valid, and the input and select to-
kens are consumed only when the selected

output is also ready.
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�efork node is themost subtle of our nodes.

To prevent inadvertent combinational cy-

cles when nodes are connected, we prohibit

combinational paths from the readynetwork
to the valid network. Unfortunately, this

precludes the most natural design for fork,
which would wait until all outputs are ready

before presenting valid output tokens. In-

stead, our fork sends a valid input token to

all outputs that have not already consumed

the input token (each output has a �ip-�op

that remembers whether the output previ-

ously consumed a token). Only a�er all the

outputs have consumed the input token is it

�nally consumed and the process repeats.
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�e nondeterministic merge node is

complex because it also functions like

a fork. An arbiter looks at the valid bits

on the inputs to decide which input will

be passed to the output. A sel output
emits a token that records this choice.

Complexity arises when one of these is

not ready when the arbitration is com-

pleted. In that case, the node needs to

remember which input won the arbi-

tration and whether the output, sel, or
both have not yet consumed the tokens

emitted because of an arbitration.

3.4 Non-Strict Functions Produce Pipelining

In developing our data�ow translation [34], we found loop pipelining can be recovered by

allowing tail-recursive functions to be non-strict. In classical so�ware loop pipelining, the

next iteration of a loop starts execution before the previous iteration has completely �nished.

In our setting, starting the next execution of a tail-recursive function before all its arguments

have been completed produces a similar result. Consider the following example:



sum lp s = case read lp of
Nil → s

Cons x xs → sum xs (x + s)

�is tail-recursive function sums the elements of a list

in the accumulator argument s. �e data�ow network

we generate for this function contains two loops, one

per function argument. �e lp loop walks down the list,

feeding each element to the s loop, which accumulates

the elements and ultimately emits their sum.

read

Nil Cons Nil Cons

+

lp s

x xs

Because information only �ows one direction between the loops (i.e., from the lp loop to

the s loop), inserting bu�ers on the channels between decouples the two loops, allowing the

lp loop to race ahead and start reading the next list element before the addition operation

has been completed. �is is exactly pipelining: the next invocation of sum starts before

the previous one has completed. Townsend [31, §4.5.2] explores how the presence of such

non-strict functions improves performance.

3.5 Resource Sharing the Root of All Evil

When building a static data�ow network in which some function f is called non-recursively

in multiple places, there are at least two options: inline each call of f, which duplicates the

circuitry in the body of f ; or share a single copy of f across the various call sites. �e former

typically requires far more area; exponentially more in the worst case, so we rarely do this.

�e latter is di�cult to implement in true Kahn data�ow because it requires the system to

decide the order in which the various call sites should be serviced. We were inspired by Sharp

and Mycro� [28, 25, 26] to take the approach depicted below and described more in our 2017

cc paper [34] and Townsend’s thesis [31, §4.3.2].

f f f Share with

merge/demux

merge

f

demux

se
le
c
t

Here, three calls to a function f share a single functional unit for f. A nondeterministic

merge node selects and delivers one input to f and also reports which input won each arbitra-

tion on a select channel. Once f processes the input, a demultiplexer block routes the result

back to the appropriate call site based on the select token.
�is seems safe, but already we found one subtle condition under which it would cause

deadlocks. As shown, a single-input function is unlikely to introduce deadlocks, but when we



coupled this approach with the non-strict functions we described above, we found it could

lead to deadlock. �e problem was that our networks, as described in our 2017 cc paper [34],

placed a nondeterministic merge actor on the �rst argument and used the results from the

arbitration to control muxes on all further arguments. With this arrangement, code such as

f 1 ( f 2 3)

could deadlock. If the “1” reaches f �rst, it would win the arbitration and force f to compute

its outer call �rst. However, that call needs the result of the inner call of f to complete, which

would never happen because inner call is blocked inde�nitely by the choice made by the

arbiter.

We resolved this problem by forcing non-recursive calls to always be strict, as explained in

Townsend’s thesis [31, §4.3.2], but this seems needlessly heavy-handed. It is an open question

how better to handle this problem.

4 Regrets

4.1 GHC External Core

“Adopt or build?” is the perennial question facing so�ware developers and we were no excep-

tion. In part from advice from others, we decided to adopt an existing compiler as a front-end

and have it output its intermediate representation a�er optimization as input into our tools.

We had decided early on to use Haskell as a source language and ghc in particular as

the base compiler for a variety of reasons. Other possible choices would have been one of

the Standard ml compilers or OCaml, but we chose ghc because of its advanced state of

development, which continues to be ongoing; the functional purity of the language (ml

and OCaml allow side-e�ects and, while they isolate them with the type system, we did not

understand the mechanism well and feared that the mutable memory model was deeply

baked into the system); and the richer features of Haskell, including type classes, user-de�ned

operators, and its “imperative” do notation.
We speci�cally chose not to directly adopt Haskell’s lazy semantics, which allows program-

mers to code things like in�nite lists but then only examine the �rst few elements. While a very

interesting aspect of Haskell, we felt the bookkeeping involved in executing lazy semantics

(which relies heavily on function pointers in every data structure [22, 23]) was not appropriate

for hardware. Later, we relaxed this requirement to allow tail-recursive calls to be non-strict

to enable pipelining, but doing so did not require additional bookkeeping.

Haskell’s intermediate represention, known as core, is simple and well-documented [27].

It is essentially the Lambda Calculus (function application) with let bindings and pattern-

matching case constructs, which simpli�es syntax-directed translation into hardware because

there are so few constructs to be considered.

Sitting beside core, however, is ghc’s elaborate and growing type system, which now

includes things like generalized algebraic data types, which are outside the scope of what

we wanted to handle in hardware. In looking at the source, we quickly learned that the data



structures used in ghc’s type system were far too complicated (and poorly documented) for

our purposes.

We turned instead to Tolmach and Chevalier’s External Core [30], a package developed

to more-or-less do exactly what we wanted: provide a well-documented, simple interface

that exported ghc’s core. �e quality of this decision has been mixed at best. While it did

do more-or-less what we needed it to, support for External Core was dropped from ghc

in April 2014, not long a�er we decided to adopt it, but long enough so that we had built a

signi�cant code base that depended on it.

�ere were also obscure bugs in the External Core system: compiling certain �les would

produce malformed external core �les (i.e., that would not parse properly). �is was a minor

problem, however, and only showed up in the standard libraries, which we had to modify

anyway. We were able to �gure out what constructs were causing the problem and change the

source to avoid them.

�e main problem, however, is that ghc has moved beyond External Core so our com-

piler remains tied to the very speci�c version of ghc that was available when we started

development (ghc 7.6.3, the version provided with Ubuntu 16.04). As a result, it is di�cult to

release our compiler in a form that others could use it, since they’re likely to have a much

newer version of ghc installed and installing an older version is o�en di�cult.

�ere are ways to work around this problem, such as to update External Core to work with

newer versions of ghc or run the older version of ghc in a lightweight virtual environment like

Docker. Ironically, the ghc system introduced the Stack build tool, amechanism formanaging

reproducible builds by allowing users to select speci�c ghc versions, library versions, etc.

However, Stack only supports ghc versions 7.8.3 and later, which do not have External Core

support.

4.2 Haskell Intrinsics and the Standard Library

One of Haskell’s strengths is its extreme malleability. Features that are baked into most

languages, such as numeric types and arithmetic operators, are instead coded in the language

itself in standard libraries such as the Haskell Prelude, which includes such basic types as Int
and operators such as +.

�is �exibility is very convenient for programmers, who can make use of it through new

or existing libraries, but it makes life di�cult for �edgling Haskell compiler writers.

Consider the innocuous-looking program that de�nes a single function that adds two to

its integer argument.

add2 :: Int → Int
add2 x = x + 2

�is little bit of code relies on the de�nition of the Int type, which is a wrapper for the

built-in Int# class, and the Num typeclass—part of the Standard Prelude—of which the Int
type is an instance. Num de�nes the familiar arithmetic operators excluding division.



data Int = I# Int#

in�xl 7 *

in�xl 6 +, −

class Num a where
(+), (−), (*) :: a → a → a

negate :: a → a

abs :: a → a

signum :: a → a

fromInteger :: Integer → a

instance Num Int where
I# x + I# y = I# (x +# y)

When it compiles the Standard Prelude, ghcnames the + function in theNum Int typeclass
$fNumInt_$c+. In External Core syntax (which is explicitly typed), it becomes

$fNumInt_$c+ :: Int → Int → Int =

λ (x :: Int) (y :: Int) → case Int x of
I# (xx :: Int#) → case Int y of

I# (yy :: Int#) → I# (+# xx yy)

Ghc implements typeclasses by passing around dictionaries of functions, e.g., for Num, it

passes around a dictionary of the seven functions de�ned in the typeclass:

data Num a = D (a → a → a) −− (+)
(a → a → a) −− (−)
(a → a → a) −− (*)
(a → a) −− negate
(a → a) −− abs
(a → a) −− signum
( Integer → a) −− fromInteger

For Num Int, the dictionary is an instance of a D object named $fNumInt with the

$fNumInt_$c+ function:

$fNumInt :: Num Int = D @ Int $fNumInt_$c+ $fNumInt_$c− $fNumInt_$c*

$fNumInt_$cnegate $fNumInt_$cabs

$fNumInt_$csignum $fNumInt_$cfromInteger



�e + function that implements the + operator de�ned for the Num typeclass takes a

dictionary as an argument and returns the function de�ned for the + operator, which is

$fNumInt_$c+ for Int arguments.

+ :: forall a . Num a→ a → a → a =

λ @a (x ::Num a)→ case (a → a → a) x of
D:Num (plus :: a → a → a)

(minus::a → a → a)

(times :: a → a → a)

(negate :: a → a)

(abs :: a → a)

(signum::a → a)

(fromInteger :: Integer → a) → plus

Finally, the compiled form of add2 is a call to the + function, which is passed the Int type
(the @Int argument), the Num Int dictionary, the x argument, and a I# constructor passed
the literal 2, an Int#.

add2 :: Int → Int = λ (x :: Int) → + @Int $fNumInt x (I# (2:: Int#))

As a result, just to compile “x + 2,” the compiler needs to support algebraic data types

(to handle the Num Int dictionary and the Int type itself), �rst-class functions (for the

$fNumInt_$c+ function in the dictionary), and pattern-matching.

To compile this example, which should be a sort of “hello world” program for our compiler,

we need to inline the + function with its dictionary (which ghc usually does) and compile

away the degenerate wrapping of Int types with the I# data constructor.
In retrospect, these aspects of Haskell and ghc gave us many headaches. We spent a fair

amount of time reworking the standard prelude so that it would compile in our setting. In

particular, we do not support Haskell’s exception mechanism, which many standard prelude

functions rely on (e.g., division can throw a division-by-zero exception). Such challenges

meant we never realized our dream of compiling Haskell code written by others, in no small

part because we did not attempt to implement its I/O library.

4.3 Streams

One notable dead end, documented in our 2015 codes+isss paper [35], was “streams,” our

dialect of Core that had a near-trivial translation into hardware.

In this dialect, we represented the sequence of values on wires in a synchronous digital

circuit as in�nite lists. We chose such a dialect of the lambda calculus as an ir because it has

a nearly one-to-one translation into circuitry: the “delay” constructor for streams becomes

a �ip-�op whose reset value is its �rst argument; constant-latency memories are modeled

as primitive stream functions (read/write commands in; read data out); and everything

else becomes combinational logic. We expand on this in a 2015 technical report [33]. �e



drawback of the streams approach was that it forced everything to be scheduled into clock

cycles before hardware could be generated. As such, accommodating a block with variable

latency, such as a more complicated memory system or a called function, would require

inserting explicit handshaking logic in the ir, which we felt would make it overly detailed. We

ultimately abandoned this direction in preference to a data�ow representation with implicit

handshaking.

4.4 Algebraic Data Types in SystemVerilog

SystemVerilog is a far richer language than its predecessor Verilog or main competitor vhdl.

In particular, the 2012 version of the standard includes tagged unions [20, §7.3.2], which are

e�ectively the algebraic data types of Haskell.

Sadly, the SystemVerilog tools we have been using, speci�cally Verilator and Altera/Intel’s

Quartus, did not support tagged union types when we started this project, and still do not

appear to. As a result, much of our SystemVerilog code generator is devoted to translating

algebraic data types into (synthesizable) bit vectors and the resulting generated code is o�en

di�cult to read. Clearly, someone on the SystemVerilog standardization committee saw the

utility of algebraic datatypes.

5 Conclusions and Future Work

It took a long time, but we did manage to create a working compiler able to generate hardware

for complex, irregular algorithms expressed as functional programs. �e richest example

program to date is K-means clustering [31, §6.3, 7.2.3], which is used in machine learning and

image processing.

�ere remain many small optimizations to be made to the generated data�ow networks.

One obvious one, which Arvind and Nikhil [2] employed decades ago, is to merge literals into

arithmetic operators. At the moment, our networks have rather complicated “go” networks

that e�ectively track control �ow and are used to generate literals as needed; Arvind and

Nikhil preferred to merge literal constants into arithmetic operators, so for an expression like

“a + 2,” they would generate a custom “+2” node and feed the variable a into it.
Bu�er insertion is another serious optimization issue that remains unaddressed. Choosing

where to insert data and control bu�ers is equivalent to the scheduling problem in classical

high-level synthesis and likely has a similar solution that looks at expected combinational

latency and balances it with desired clock frequency to divide operations across multiple clock

cycles. An algorithm for this would likely start from our current minimal bu�er insertion

policy (which inserts bu�ers in likely sources of loops, such as function call boundaries) and

then decide where bu�ers are to be added to meet timing requirements. A challenge in such

a setting is to properly take the timing of handshaking logic into account, which we suspect

can dominate in networks that perform little arithmetic.

We have only just begun to look at one of the big problems we set out to address—

synthesizing algorithm-speci�c memory systems—but we now have the infrastructure to

begin making inroads on this problem. Townsend presents some preliminary results in his



thesis [31, §6.2] in which he looks at how to partition a �xed number of memory bits (e.g.,

those available on a particular fpga) into multiple memory region, o�en type-speci�c, to

improve parallelism and performance. One issue that came up in this work is how best tomove

data between on-chip and o�-chip memories. One challenge is dealing with di�erent word

sizes: type-speci�c on-chip memory can use arbitrary word widths (much to its advantage),

but an o�-chip memory port is invariably a single, standard word size (e.g., 64 bits). �is

raises the usual challenge of packing and/or alignment. While standard solutions exist, which

are best in our setting remains unclear.

Garbage collection remains the elephant in the room. We are currently developing a

garbage collected memory system, but doing so presents many challenges. One is gathering

the roots of the heap. In most settings, this is fairy easy: they reside in processor registers

and on the stack. In our setting, the stack is part of the memory system (but may not be

part of a garbage-collected heap), but the equivalent of processor registers are scattered

across our data�ow networks. In ongoing work, we are developing a scheme for “peeking”

into every bu�er that could hold a pointer and collect and use those for the roots. Another

challenge is coping with the heterogeneous collection of type-speci�c mini-heaps that we

wish to synthesize. A primary goal of this work has always been to use distributed memory

to enable parallelism, but this makes it all the more di�cult to perform garbage collection

since cross-heap pointers must be considered.

We suspect adding the ability to have multiple parallel invocations of pipelined tail-

recursive functionswill greatly improve the performance of certain algorithms. At themoment,

any tail-recursive function (that is to say, most interesting functions) is implemented in such

a way that only one call of it can be processed at any time. Put another way, only one set

of function argument tokens are allowed to enter a tail-recursive function call until a result

is �nally generated. �e reason for this is the di�culty of accommodating multiple calls

simultaneously: the number of iterations required to produce a result from a tail-recursive

function o�en depends on the arguments passed to it; multiple invocations may therefore

terminate out-of-order. �e solution for doing this will involve things like tagging tokens

with a “color” that indicates which function invocation they belong to and reorder bu�ers for

rectifying the out-of-order termination problem, but this may lead to very costly hardware

that may not perform better enough to justify the increased area.

We suspect the ability to have multiple in-�ight invocations of a function could also

address the resource sharing problem. In particular, we would like to show that a merged sub-

graph in a Kahn network does not introduce any more deadlocks than would be present in an

equivalent non-merged sub-graph. �at is, sharing produces the same result as inlining. We

suspect this will require tokens of di�erent colors to pass each other (our networks otherwise

process tokens in strict order), which will be quite a jump over classical Kahn networks.
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