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Abstract

This master thesis opens with a description of several text summarization methods based

on machine learning approaches inspired by reinforcement learning. While in many cases

Maximum Likelihood Estimation (MLE) approaches work well for text summarization, they

tend to suffer from poor generalization. We show that techniques which expose the model

to more opportunities to learn from data tend to generalize better and generate summaries

with less lead bias. In our experiments we show that out of the box these new models do

not perform significantly better than MLE when evaluated using Rouge, however do possess

interesting properties which may be used to assemble more sophisticated and better performing

summarization systems.

The main theme of the thesis is getting machine learning models to generalize better using

ideas from reinforcement learning. We develop a new labeling scheme inspired by Reward

Augmented Maximum Likelihood (RAML) methods developed originally for the machine

translation task, and discuss how difficult it is to develop models which sample from their

own distribution while estimating the gradient e.g. in Minimum Risk Training (MRT) and

Reinforcement Learning Policy Gradient methods. We show that RAML can be seen as a

compromise between direct optimization of the model towards optimal expected reward using

Monte Carlo methods which may fail to converge, and standard MLE methods which fail to

explore the entire space of summaries, overfit during training by capturing prominent position

features and thus perform poorly on unseen data.

To that end we describe and show results of domain transfer experiments, where we train

the model on one dataset and evaluate on another, and position distribution experiments, in

which we show how the distribution of positions of our models differ from the distribution in

MLE. We also show that our models work better on documents which are less lead biased,

while standard MLE models get significantly worse performance on those documents in par-

ticular.

Another topic covered in the thesis is Query Focused text summarization, where a search

query is used to produce a summary with the query in mind. The summary needs to be relevant

to the query, rather than solely contain important information from the document. We use

ii



the recently published Squad dataset and adapt it for the Query Focused summarization task.

We also train deep learning Query Focused models for summarization and discuss problems

associated with that approach. Finally we describe a method to reuse an already trained QA

model for the Query Focused text summarization by introducing a reduction of the QA task

into the Query Focused text summarization. The source code in python for all the techniques

and approaches described in this thesis are available at https://github.com/yanvirin/material.
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1 Introduction

The problem of single document summarization can be described as the following: given a text

document the system should produce a short limited in size snippet, which contains the gist of

the information and can be easily read and understood by a human. In other words, the produced

text snippet should summarize well the content of the document, but also consist of well defined

grammatical sentences, one that a human could read and understand.

In abstractive text summarization novel sentences are generated by the summarization system,

thus the risk of creating non readable content is elevated. Many of these systems can compress the

information pretty well, but lack the ability to create grammatical sentences. In this thesis we will

be tackling the problem of summarization using the extractive approach, where the summary is

constructed by extracting certain sentences from the document, rather creating new ones based on

the input. These systems are constrained by the sentences in the input document, as all they can do

is decide whether to include or exclude a certain sentence, while breaking sentences into smaller

phrases is not allowed. This constraint makes the extractive summarizers worse compressors of

information than their abstractive siblings, however also makes them produce perfectly readable

output, while many abstractive summarizers tend to struggle with that task.

Classic extractive text summarization systems use different information theory related metrics

to score the input sentences and pick the best into the summary until they hit a certain word count

limit. The main theme in all of these systems is the computation of diversion of some metric from

the mean. The closer to the mean the sentences score, the more appropriate for summary they tend

to be marked by the system. Such metrics include KL-divergence, information gain, and other

information theory related metrics. These techniques work well in some basic scenarios, however

in more specific domains they tend to generate summaries which do not score well with human

opinion. Also, they lack the ability to adapt to a particular domain, as the rules on which they rely

are fixed and cannot be easily changed.

The question of how to evaluate text summarization is not a trivial one. Intensive research had

to be done before researchers could nail down a metric which correlated well with human judge-
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ment. That metric was developed by [Lin, 2004] and is called the Rouge metric. Roughly speaking

the metric computes the precision and recall of retrieval of unigrams and bigrams in the candidate

summary with respect to the golden human abstract of the document. Although intuitively it is

not immediately clear this metric should correlate well with real human judgements, in practice

it does so surprisingly well. One of the caveats is that the standard implementation of the metric

is written in Perl as a standalone script and includes many parameters to tweak. That makes it

not really scalable and applicable in many scenarios were large amounts of computations of the

metric needs to be executed. In addition to that, for better precision one can exclude stopwords

from being counted, and include stemming to improve recall, thus when comparing two different

systems it is import to state which parameters were used exactly. This makes Rouge not the perfect

candidate metric for evaluation, but currently state-of-the-art non the less. In extractive text sum-

marization, as the output summary is of limited size, precision portion of the metric is not really

relevant and researchers focus on the recall component. In abstractive text summarization both

parts are relevant, thus the F measure is reported in most cases.

In this thesis we explore several problems with current text summarization systems, which in

our opinion prevent them to perform well in practice.

The first problem is the generalization problem. It is well known that machine learning based

text summarization systems do not perform well on unseen data, partially due to lack of good

representative labeled data, and also due to the inadequate learning mechanisms applied to the

problem. In this thesis we try to attack both issues, by proposing a new dataset based on news

from social media, and by exploring new learning schemes which tend to generalize better on

unseen data due to their better space exploration using reinforcement learning inspired methods.

The dataset we have built consists of summaries of news written by humans and published on

the wikinews website. The content is being reviewed by moderators constantly and we use only

approved summaries. These summaries contain more approachable language and thus can be used

for learning summarization systems to be deployed in environments where informal language is in

use.
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The second problem is the bias to the lead problem that most news summarization systems

tend to have. Due to the fast pacing modern nature of news consumption, editors and writers tend

to create content which is biased to the lead, i.e. where the first several sentences of each document

contain the most important information, and the rest of the document gives the details. If all content

in the world had that property, we would not need to develop models for the summarization task

at all, as a system which selects a few first sentences would work perfectly. However that’s not

the case, and we do need summarization systems which go beyond selecting top portion of the

document to get good content summarization. Having that said, most of the available datasets for

summarization are heavily lead-biased, as they come from the news realm. When we train machine

learning models on such datasets they tend to strongly capture the positional features. Strictly

speaking, during prediction these models tend to select sentences from the top of the document,

which is obviously not the desired behavior. We have made an attempt to create a less lead biased

dataset than the existing ones, however our wikinews dataset is not perfect as we will see in the

experiments section. We have also designed our learning algorithms to explore the search space

in a better way, so that they do not capture positional features as strongly as standard maximum

likelihood models do.

Training models with our methods is not a simple task. We use two different types of optimiza-

tion techniques to train summarization models. One is using sampling from the model itself, and

one is sampling from the labels space. Both techniques has their challenges. When sampling from

the model, the variance of the estimate of the gradient tends to get very high and different tricks

have to be applied to control it and make optimization finish in reasonable time. When sampling

from the labels space, a large amount of candidates has to be scored with Rouge, which may take

considerable resources. Thus in both cases we have to resort to approximation, which allows us

to retain some of the original power of the optimization technique, but also generate models in

reasonable time.

Another theme this thesis touches upon is query focused summarization, a problem which

arrises in practice and for which standard summarization systems do not provide good answer. We
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explore usage of Question Answering datasets for training Query Focused summarization systems

and show there is a lot in common between the two tasks. We then reduce the problem of Query

Focused summarization to QA by showing that the latter system can be used as a proxy for the

former one.

2 Research Focus

This thesis has four main sections and is organized as follows:

• First comes the topic of application of loss functions inspired by reinforcement learning for

extractive summarization in comparison to traditional maximum likelihood training. We

describe related work, different loss functions used for text summarization and some exper-

iments with deep learning models in section 4.

• Then we explore the problem of generalization in text summarization and present our hy-

pothesis as to why machine learning models do not generalize well in section 5. To that end

we discuss the labeling techniques applied to create datasets. We also describe our experi-

ments results which show that alternative learning methods may create better generalizable

models.

• Further we talk about how sequence models trained with maximum likelihood tend to pro-

duce models biased to the lead portion of the document, and strongly depend on the posi-

tional features. We describe the problem in section 6 and show that our methods perform

better in regards to that problem.

• Finally we claim that in the presence of a search query standard summarization systems do

not produce relevant summaries. We define the problem in section 7 and describe how we

used the Squad dataset and a QA system to address that problem.
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3 Datasets for Text Summarization

Throughout the thesis we are using several datasets for text summarization commonly used by

others for reporting results. We also developed a new dataset from Wikinews, which we describe

in more details in the next few sections.

3.1 Published datasets

CNN-DM

This dataset was introduced in [Hermann et al., 2015] for the task of reading comprehension,

although also can be used for text summarization. Researchers create two datasets by using online

newspaper articles and their respective summaries. They have collected around 93k articles from

the CNN1 and 220k articles from the Daily Mail2 websites. Both news providers add upon their

articles a number of bullet points, summarizing different portions of the information contained in

the articles. When we run our experiments on this corpora, we combine both datasets into one and

get what we call CNN-Daily Mail dataset, or CNN-DM for short.

DUC-SDS

DUC stands for Document Understanding Conference. DUC proceedings serve as a platform

for the dissemination of technical papers written by participants in the DUC workshops, who use

the DUC datasets, which were provided each conference year. These datasets are manually curated

and thus small, but serve as standard for text summarization tasks. SDS sands for single document

summarization. This dataset contains single documents as inputs and golden summaries, which

were created by humans as supervision signal.

DUC-MDS

This is yet another type of a dataset from DUC. MDS stands for multi-document summariza-

tion. Although summarizers presented in this thesis concentrate on single document summarization

task, we do explore multi-document summarization by creating a single document summarization

dataset from the DUC-MDS. These DUC datasets tend to be small, and thus we combine datasets
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from 2001 and 2002 years for training and 2004 for testing. Multi-document datasets contain

document sets instead of single documents, which need to be summarized into one summary. In

the DUC-MDS dataset documents in one document set contain similar information, taken from

different sources but describe same or related events. We combine all the documents in each doc

set into one super-document and run our single document algorithms on the that data to produce

summaries.

XSUM

Another recently published dataset that we use in this thesis is the XSUM dataset. It was

published by [Narayan et al., 2018a] and in that work researchers introduce a new single document

summarization task called extreme summarization. The idea was to create a very short, one-

sentence news summary answering the question “What is described in the article?”. They collect

a large dataset for this task by extracting online articles from the British Broadcasting Corporation

(BBC). This particular dataset imposes additional difficulties on the extractive summarizers as

there is only one sentence they need to match in the human abstract.

3.2 Wikinews Dataset

We made an attempt to create a more versatile dataset based on informal language and potentially

lesser lead-bias. To do that we developed a codebase to build a news dataset from the online

wikinews service. This section described the details of that portion of the work.

Our dataset is of news articles and their summaries, created by humans and published on the

Wikinews repository. Wikinews selectively publishes human summaries of news from all around

the world and we decided to use that resource in order to carefully curate a high quality dataset for

summarization. The news articles on Wikinews are public and are available for download using the

wiki api’s. We decided to use an existing implementation of a client which uses those api’s and tar-

gets Wikinews in particular, out of all other Wiki-based services. The package is called pywikibot

and the code is implemented in python. We use the package to query for the news articles through

HTTP and store the raw results on disk. Unfortunately for the users of this client, the output is for-
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matted in a very custom fashion and we had to write our own parser to be able to correctly parse

each article with its sources. The format resembles the regular Wiki data format, but does not have

clear start and end markers for each articles and has several exceptions that we had to treat heuris-

tically. Moreover, we had to clean, normalize and filter the data. We got rid of various Wiki related

tags in the text, normalized the data by removing punctuation and lowercasing the words, and also

ran a naive bayes based sentence segmenter called Splitta(https://github.com/lukeorland/splitta) to

split text to sentences.

The recent advances in machine learning made it easy in practice to use word and sentence

embeddings as features for different tasks in NLP. Approaches range from very complex sentence

embeddings as shown in [Jiao et al., 2018], where authors actually train embeddings on whole sen-

tences, to approaches where sentence embeddings are constructed from more popular pre-trained

word embeddings, as in SIF system described in [Arora et al., 2017]

We used the latter simpler approach to create sentence embeddings, as it seems like they do per-

form well on many NLP related tasks, according to the authors and are very modular, in the sense

that you don’t need to have a separate apparatus to create the embeddings - the sentence embed-

dings are just a function of the word embeddings contained in the sentence. Recent development in

the area of word embeddings which produced the popular sets Word2vec and Glove vectors, make

it very easy to quickly construct the embeddings in practice. Another reason for using a simple

combination based approach is that otherwise sentence embeddings might be difficult to analyze

and assess their quality. When the embedding is just a weighted linear combination of the word

vectors in the sentences, as in our approach, it is very easy to check which words dominate the

embedding and then tweak the needed parameters.

One thing that we skip in the SIF implementation is the removal of the first few principal

components, a technique which according to the authors removes some of the influence of very

common words. We do not argue that this technique is of no value by all means, but according

to our analysis in our domain this operation can be skipped, allowing us to more freely apply

the embeddings, without any global dependency like the one that PCA enforces (one does not
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have to submit a large set of sentences in one batch to the embeddings computation code, as no

global dependency exists, because there is no need in computing PCA on the entire batch/corpus).

To test our sentence embeddings we made the following analysis: for each sentence in each of the

Wikinews articles we picked the closest sentence using the cosine similarity metric on the sentence

embeddings vectors. Here is one example from that analysis: ”reports say that the plane sent a

distress signal at 2:00 am just after it took off from cameroon but it is not known what triggered the

distress signal” was very close to ”a distress signal was later sent out by the plane kenyan airways

chief executive titus naikuni said adding that this would have been sent out automatically”

4 Loss Functions for Summarization

Most of recent research in the area of machine learning for extractive summarization has been fo-

cusing more on different algorithms and feature extraction techniques, and less on loss functions

and ways to label data. In this thesis we describe two new promising training procedures which in-

corporate new loss functions. These loss functions require new optimization techniques and a new

way of labeling data, departing from the traditional greedy approach. The training procedures are

called Minimum Risk Training (MRT) and Rewards Augmented Maximum Likelihood (RAML).

These approaches are not novel by themselves and both were applied successfully to neural ma-

chine translation before, however as far as we know have not yet been applied to extractive text

summarization.

4.1 Related Work

In recent years researchers began to use supervised machine learning techniques to create more

sophisticated summarization systems which learn from supervised data and use different feature

representations. The sentences are featurized and a loss function with respect to the labels is

minimized to produce a set of optimal weights. These approaches tend to differ in the way the

sentences are featurized, but for the most part use the same techniques for labeling and similar loss
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functions to approximate the divergence from the optimal Rouge score computed against a set of

golden summaries curated by humans.

As early as in 1995 researchers already were experimenting with supervised machine learning

approaches for extractive text summarization. The problem was posed as a classification task

where the decision of wether to include or excelude each sentence is made by a classifier. Models

like Naive Bayes were applied by [Kupiec et al., 1995] and [Miles, 2002], maximum entropy by

[Miles, 2002] and support vectors machines by [Tsutomu et al., 2002]. It is interesting to note that

in addition to different general features, which became almost standard in the NLP community

since then (e.g. n-grams, tokens weighted by TF-IDF, lexical features like phrases from gazeteers,

etc.) researchers used the positional features extensively. Thus we know positional features were

strongly used in early research on summarization and it is unlikely that the problem of lead-bias

was introduced only recently with the advance of deep learning sequence models. One of the main

research focuses of this thesis is how pervasive can be position features.

In addition to representing the problem as an independent classifier, significant body of work

has been done in the area of structured predictions for extractive text summarization. Instead of

thinking independently about each sentence, the summarization problem can be represented as a

sequence problem, similarly to how entity extraction problem is dealt with in modern NLP. Instead

of testing each sentence independently, we could reason about the whole sequence of sentences

included and excluded from the summary and learn parameters of a model in order to maximize

the likelihood of these sequences which rise from our labeled data. Models like the HMM, CRF and

structured SVM were all applied to extractive summarization in the past (see [Shen et al., 2007],

[Conroy and O’Leary, 2001], [Berg-Kirkpatrick et al., 2011] for reference).

The survey in [Dipanjan and Andre, 2007] describes a slew of approaches starting from HMM’s

and Log-Linear models to Deep learning architectures all used for extractive single document text

summarization.

Since deep learning models began to become the ”bread and butter” in recent NLP research in

general, text summarization arena has also began to be infiltrated by the use of deep architectures.
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Convolutional and Recurrent neural networks have been recently applied to the problem of ex-

tractive text summarization and yielded state-of-the-art results, even so that structured inference in

these cases tends to be computationally intractable and simpler inference techniques have to be ap-

plied instead. Deep architectures used for text summarization recently include simple multi-layer

multi-label classifiers, simple RNN and CNN models, and also encoder-decoder sequence to se-

quence models. The variety of different architectures generally does not align with loss functions

variation, i.e. most of these models use some type of cross-entropy loss. The labels are gener-

ated using a simple greedy technique based on local Rouge optimization. In the next sections we

introduce two different loss functions, which do explore the space of labels in a better way.

Recently research also includes deep reinforcement learning methods application to extractive

text summarization. For example [Yao et al., 2018] present a Deep Q-Network for extractive text

summarization. Deep Q-Networks are deep neural networks which directly approximate the Q-

values of state and action and learn the induced policy to maximize the long term rewards. Each

sentence selection is defined as an action in the RL methodology, and the Rouge score between a

candidate summary and the gold human abstract is used for computing rewards.

Another example of direct application of reinforcement learning for extractive text summariza-

tion is shown by [Narayan et al., 2018b], where REINFORCE style algorithm is used to directly

optimize the policy. This work in particular is similar to our Minimial Risk Training approach,

where the risk is minimized with respect to a special Q distribution, constructed over a finite set of

samples of candidate summaries.

Recent research has also seen works like [Keneshloo et al., 2018] where domain transfer for

text summarization is being solved through reinforcement learning. In that paper the issue of poor

generalization of state-of-the-art models on unseen datasets is discussed. They propose a learning

framework which uses self-critic policy gradient and show good results on a variety of datasets.

They show an interesting ability of the framework to fine-tune models using only a few training

samples. This aligns with us developing models for better generalization, where we show the

advantages of reinforcement learning ideas applied for extractive text summarization.
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4.2 Maximum Likelihood

Labeling in general lies in the basis of all modern supervised machine learning approaches. It

is fair to say that any system produced by a supervised machine learning approach can be only as

good as the labels which have been fed into the learning algorithm. Labels, along with the features,

are used to produce the loss function, which is the objective all supervised methods are supposed

to optimize. If the labels are wrong or suboptimal, the loss function no more correctly represents

the problem at hand and thus stops being a good objective for optimization. Without a good loss

function supervised machine learning does not work and thus it stops working without good labels

as well.

Noisy labels is a well known problem in the supervised branch of the machine learning field.

As in most cases it is a very expensive and labor intensive process, in practice there is a tendency

to use various heuristics to produce cheap labels, even with a set back to the performance down the

road. For example, if we want to classify email to spam vs. non-spam using a supervised machine

learning approach, we need someone to categorize our emails to these two categories in order to

produce a supervised training set. In that context labeling can be seen as only a moderate problem,

because it is pretty simple for a human to decide wether an email is a spam or not just from one

glance at the content. However it still costs money and takes significant amount of time, as we do

need to pay someone to go over all emails in our training set, potentially containing thousands of

instances. Instead of doing that we could use a heuristic, according to which we create labels from

some implicit signal rather than conscious email reading.

For example, we could examine user behavior if we have access to such information. If users

spend time reading a particular email and do not delete it right away, then we could conclude

it is unlikely this email is spam. On the other hand, if the users delete the email immediately

even without opening it, then it is a good sign they encountered an unwanted content. Is that a

perfect approach to get labels? Not at all. There might be different reasons for users not to delete

a spam email immediately, for example due to procrastination. But it might be a good enough

approximation after all.
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When it comes to extractive summarization it seems like it is even a bigger problem to directly

get labels from humans. If we wanted to do that, we had to ask people to go over all sentences

in each document in the training set and select the ones they think should be in the summary. It

would be problematic to reuse these labels for other extractive summarization systems which need

summaries with a different length. Moreover, those labels would be totally worthless for abstractive

summarization, as they just define the best sentences to extract, and not the optimal summary which

could be constructed from the content of the document. Due to the fact that creating such special

labeled datasets solely for extractive summarization would be very expensive and it would most

certainly produce non reusable outcome, researchers use heuristics to approximate extraction of

optimal sentences.

The common procedure most recent extractive summarization systems implement for labeling

data includes humans who are being asked to produce a summary for each document in the dataset

as free written text, perhaps sometimes using phrases from the original document and sometimes

coming up with entirely new content. By minimizing the constrains on how humans perform

summarization, we hope to get the most natural summary of the text, so to speak a summary that

is truly produced due to human creativity and ability to compress information. This kind of a

summary potentially can be used for different related summarization tasks, like abstractive and

extractive summarization. However, it does impose a difficulty in coming up with direct labels in

the extractive summarization task, finding the indices of the sentences which should be included

in the summary by the summarization system. That second step, in which we produce a ”labeled”

datapoint out of a document and a human gold summary is a fuzzy process and cannot be well

defined universally. How should we decide which sentences are the most suitable to be in the

summary, based on a summary written by a human after reading the original content, which might

contain new unseen words and phrases?

One way to think about it would be that we want somehow to score each possible summary

against the human gold reference and obviously pick the best one. Intuitively, this approach does

make sense, however we quickly realize we have a combinatorial problem at hand and that go-
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ing over all possible summaries and scoring them with some complex metric will be most likely

intractable. It does although depend on the complexity of the metric. If the metric is linear with

respect to summation, in the sense that the sum of the metric applied to each sentence equals to the

metric applied on all the sentences in the summary combined into one piece of text, then we could

use a greedy algorithm to optimize it and get the best sentence indices as labels. The optimal metric

however has to be correlated to how humans perceive quality of a summary, meaning the higher

the value of the metric, the better humans think this excerpt summarizes the document. One such

metric was found recently and named Rouge - it is based on recall and precision in the token space

between the proposed system summary and a golden human reference. Multiple experiments have

shown this metric indeed correlates well with the perceived quality and thus became a standard in

the field of summarization, similar the BLUE score in the domain of machine translation.

However the Rouge metric is not linear with respect to the sum. The sum of the Rouge R1

of each individual sentence does not equal to the Rouge of the concatenation of all the sentences.

The main reason for that is the ability of Rouge to penalize duplication, a known problem in

summarization systems. Adding a sentence with content already seen in the candidate summary

does contribute to the metric, even if this content is really relevant with respect to the reference.

This forces summarization systems to select new content with each additional sentence added

to the summary. It also creates a dependency between the first sentence added to the candidate

summary and the following one, making it impossible to decompose the optimization and use a

greedy algorithm to extract all the labels with an optimal outcome. It seems also intractable to

compute the Rouge metric for all possible combinations of sentences in a given document. That

means we have to use some heuristic in order to approximately search for the best combination of

sentences, and that leads us to the greedy approach that seems to work in most cases:

• For each document, we create the candidate summary, initially an empty set of sentences

further to be marked with the label 1.

• We look for a sentence which maximizes Rouge with respect to the reference summary

provided by humans for that document.
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• We include that sentence into the candidate summary, and continue the process, by selecting

the next sentence which maximizes Rouge (not including the selected one) of the candidate

summary with the human abstract: we try to add each sentence to the candidate summary

and look for one which makes the candidate summary to achieve the best score.

• Note that the second computation of Rouge should be done for the candidate summary as

a whole, meaning the combination of two sentences together - the first sentence which was

chosen and the second one which is being tested at current step. This emphasizes the non

linearity with respect to the sum as we explained earlier Rouge has due to the importance of

penalizing duplication of content.

• We continue to the third iteration, by adding each sentence (excluding the two selected into

the candidate) to the summary, one at a time, computing the Rouge and selecting the one

sentence which maximizes the score. We stop the process when we hit the length limit of

the summary to be extracted (we truncate the last sentence if needed)

In figure 1 we show schematically how the labels are selected according to the above described

process.

The process remains greedy in the sense that the order of adding sentences might be significant

for Rouge computation and does not guarantee the optimal combination of sentences to be selected.

In some cases this standard approach of extracting greedy labels may not work optimally. Our

hypothesis is that when data is noisy or there is some duplication of important information in the

document, the above described approach would fail to label all possible good summaries, as it is

geared to select only one which is the best. For example, let’s say there is a sentence which includes

the words ”talking to a stranger might be dangerous”, and suppose this sentence was selected to

be in the summary. Another sentence like ”strangers might be dangerous in certain situations”

might not get selected into the summary, as it contains duplicated information. If a sentence is not

selected into a summary, then that particular sentence gets the 0 label, and when we use Maximum

Likelihood to train a model which optimizes cross entropy of the labels, we might get a suboptimal
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Figure 1: The scheme for the labels selection algorithm. In the begining the candidate summary
is empty. We start going over each sentence in the document and add it to the new candidate to get it
scored. The yellow plus sign represents concatenation of the sentences to produce a new candidate,
and the blue plus sing represents the addition of the best selected sentence to the candidate.

performance overall, as two sentences with similar information have two different labels and may

confuse the learning process.

Maximum Likelihood (MLE) is a popular approach for machine learning based extractive text

summarization. Let us define the problem of summarization as a maximum likelihood problem:

We will assume we have a labeled training dataset with S documents, and each document s having

N(s) total sentences. The label vector for each document s is defined as y(s) ∈ {0, 1}N(s). The

featurized document is represented by a vector x(s), and a conditional probability distribution is
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defined over the labels given the documents, and parameterized by vector θ.

θ̂MLE = argmax
θ

{
L(θ)

}
(1)

where

L(θ) =
S∑
s=1

logP (y(s)|x(s); θ) (2)

=
S∑
s=1

N(s)∑
n=1

logP (y(s)n |x(s), y
(s)
<n; θ) (3)

with S being the set of documents, N(s) the number of sentences in each document, and y(s)

being the label of the sentence s in the domain of {0, 1}N(s)

The partial derivative with respect to a model parameters θi is given by:

∂L(θ)
∂θi

=
S∑
s=1

N(s)∑
n=1

∂P (y
(s)
n |x(s), y(s)<n; θ)/∂θi

P (y
(s)
n |x(s), y(s)<n; θ)

(4)

There has been a growing body of evidence that this approach might be suffering from a par-

ticular problem described in details in [Ranzato et al., 2016]. MLE usually uses cross-entropy loss

focusing on single sentence inclusion errors to maximize the probability of the next correct label

of the sentence, which might not always correlate well with corpus-level evaluation metrics such

as Rouge. Another known issue related to MLE training on sequences is the exposure bias. Ar-

chitectures which during decoding condition on previous output suffer from this problem, as they

are not exposed to their own predictions distribution, but rather to the real data distribution, present

in the training data.

For example in machine translation the previous word is frequently fed into the decoder as

input, while during test time the decoder has only its own predicted word in previous step to use

as input for the next prediction. Feeding its own prediction during training introduces too much

variance and makes training impossible or at least very time consuming in practice. On the other
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hand using gold words during training introduces the exposure bias issue, which might impose a

real problem during prediction and cause the model to introduce errors. In our architecture the

decoder acts independently for each of the sentences and thus does not suffer from this problem.

Given all the above, we think it is important to introduce new training procedures and loss

functions which capture the nature of the problem in a better, more holistic way. As we can see

the gradient in equation 4 is fairly simple to optimize directly, if the probability distribution P is

represented as a differentiable function, e.g. with a deep neural network. We will see in the next

few sections that this is not always the case with other types of loss functions. We will eventually

propose a compromise, in which the loss function is both simple to optimize and does explore the

space better than MLE, due to the ability to directly optimize for Rouge.

4.3 Minimum Risk Training

Minimum Risk Training (MRT) has been applied in many fields as a technique to minimize an

expected loss and thus get optimal behavior of a model in expectation. This method allows for

direct optimization of the metric of interest instead of using approximate labels. The basic idea of

MRT is to use the evaluation metric directly to build a parameterized differentiable risk function

and optimize that objective to find best parameters. Most metrics like Rouge actually has to be

maximized, thus a negation of the metric should be used in loss function construction. We have

implemented this approach for extractive text summarization by creating a differentiable loss func-

tion which follows the negative expected sum of rouge scores with respect to the human curated

reference summaries for each document in the training set. Training works by taking samples from

the model and using these to approximate the gradient. This approach has been used in classical

machine translation (SMT) ([Koehn et al., 2003], [Smith and Eisner, 2006], [He and Deng, 2012])

and neural machine translation ([Shen et al., 2015]).

We will use L(y, y(s)) = −Rouge(sum(y), sum(y(s))) to represent the discrepancy between

the model prediction and the gold best outcome, i.e. the human abstract summary of the document.

We apply Rouge metric on the summary generated by the system and induced by the labels y(s)
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which is sum(y(s)) and the golden human abstract summary which we denote by sum(y). Notice

that L is based on the Rouge evaluation metric and is not parameterized nor differentiable. We

further construct a differentiable risk function based on a negatively smoothed Rouge metric. We

can state that MRT is aimed at minimizing the following risk which is the expected loss with

respect to the posterior distribution:

R(θ) =
S∑
s=1

Ey|x(s);θ

[
L(y, y(s))

]
(5)

=
S∑
s=1

∑
y∈Y(s)

P(y|x(s); θ)L(y, y(s)) (6)

where Y(s) is the set of all possible summaries for document s.

The training objective of MRT is to minimize the risk on the training data:

θ̂ = argmin
θ

{
R(θ)

}
(7)

Intuitively, while MLE is maximizing the likelihood of the gold label sequence, MRT training

objective is trying to discriminate between candidate summaries with high and low Rouge. In order

to be able to optimize with gradient descent we need to derive the gradient of the risk shown above.

To that end we will have to use a well known log trick, where we represent the derivative of an

intractable sum as an expectation and estimate that quantity with Monte Carlo sampling, similarly

how estimation of complex integrals works. We begin by taking the derivative of the risk:

∂R(θ)
∂θ

=
S∑
s=1

∑
y∈Y(s)

L(y, y(s)) · ∂P(y|x(s); θ)/∂θ (8)

Then we acknowledge that the following holds true due to derivative of log formula:

∂P(y|x(s); θ)/∂θ = P(y|x(s); θ) · ∂ logP(y|x(s); θ)/∂θ (9)

By plugging that in to the derivative of the risk we get that the risk can be expressed as an
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expectation, as we got the P (·) out due to the log trick above:

S∑
s=1

∑
y∈Y(s)

L(y, y(s)) · P(y|x(s); θ)∂ logP(y|x(s); θ)/∂θ (10)

=
S∑
s=1

Ey∈Y(s)

[
L(y, y(s)) · ∂ logP(y|x(s); θ)/∂θ

]
∼=

S∑
s=1

1

n

n∑
y=1

L(y, y(s))∂ logP(y|x(s); θ)/∂θ
(11)

Using that trick we get the following derivation over all the training data:

∂R(θ)
∂θ

=
S∑
s=1

Ex|y(s);θ

[
L(y, y(s))×

∑N(s)
n=1

∂P (y
(s)
n |x(s),y

(s)
<n;θ)/∂θi

P (y
(s)
n |x(s),y

(s)
<n;θ)

]
(12)

As we see from the above equation, we do not need to differentiate the loss function itself

thus any loss function can be used. Another advantage is that MRT can be applied to any end

to end neural machine learning architecture. However, the main difficulty with MRT lies in the

computation of the expectation which has to be calculated over all possible candidates which is

clearly impractical. That’s why we follow [Shen et al., 2015] and define the risk over a subset of

the space by introducing an approximate distribution Q:

R̃(θ) =
S∑
s=1

Ey|x(s);θ,α

[
L(y, y(s))

]
(13)

We define Ŷ (s) to be a subset of Y (s) which is the set of all possible summaries, i.e. all

combinations of sets of t sentences from document s. We get Ŷ (s) by sampling from the model

distribution (in our experiments we used |Y (s)| = 100 and t = 3)

=
S∑
s=1

∑
y∈Ŷ (s)

Q(y|x(s); θ, α)L(y, y(s)) (14)
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where Ŷ (s) ⊂ Y (s) and Q defined over Ŷ (s):

Q(y|x(s); θ, α) = P(y|x(s); θ)α∑
y′∈Ŷ (s)P(y′|x(s); θ)α

(15)

The hyper-parameter α ∈ [0, 1] controls the manner in which distribution Q is approximating

theoretical distribution of Rouge over the entire space of summaries Y (s). With small values

of α the Q distribution becomes flatter smoothing away sharp differences between Rouge values

of different summaries, while with larger values the distribution become spiky, and in the limit

concentrates around the larger values of Rouge (in our experiments we have seen that small values

around 0.001 work best).

And finally we differentiate with respect to the parameters θ to get the derivative of R̃:

∂R̃(θ)
∂θ

= α
S∑
s=1

Ey|x;θ,α

∂P(y|x(s); θ)/∂θ × P(y|x(s); θ)−1×
(L(y, y(s))− Ey|x;θ,α[L(y, y(s))])

 (16)

This approach has a lot in common with the REINFORCE based algorithms introduced in

[Williams, 1992], where gradient of expected reward with respect to the policy parameters is used

during optimization of the policy directly, instead of going through the value function in a rein-

forcement learning setting. Furthermore [Sutton et al., 2000] proved that a version of policy itera-

tion with arbitrary differentiable function approximation is convergent to a locally optimal policy.

The relation between direct policy optimization in reinforcement learning and MRT training ap-

proach can be seen through the long-term reward function ρ(π) with respect to a policy π and its

gradient, when compared to the risk equations shown above:

ρ(π) = lim
n→∞

1

n
E[r1 + r2 + r3 + ...+ rn|π]

=
∑
s

dπ(s)
∑
a

π(s, a)R(s, a)
(17)
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One practical issue we faced when implementing MRT for extractive text summarization was

related to computation of Rouge for each sample of documents. As original implementation of

Rouge was done in perl, we could not efficiently incorporate it inside our pytorch implementation

of the MRT deep learning model. We had to implement a simplified version of Rouge, which

does not always follow the original metric, but is closely related. It computes the overlap between

the tokens found in the summary and the tokens found in the golden human reference. As the

original metric includes special stopwords handling, stemming, and multiple other options which

are commonly used, our risk minimization problem was posed as an approximation to the original

one and definitely made the task of finding good set of parameters more difficult.

Our implementation of MRT is written in pytorch and uses categorial sampling to sample from

the model to compute the risk. The pseudo code for this procedure is given in the following

algorithm:

Algorithm 1 MRT risk computation; σ designated softmax operation, and S(·) the sigmoid func-
tion

1: procedure COMPUTERISK(logits)
2: probs← S(logits)
3: samples← categorical(probs)
4: logL(samples)← log(samples)
5: Q ← σ(logL(samples) · α)
6: R ← SmoothedNegRouge(samples)

returnR · Q

As we can see in the ComputeRisk function above, it gets as inputs the logits from any differen-

tiable computation graph. It then uses the logits to produce probabilities, and uses those to sample

from the model using categorical sampling. A log likelihood is created over the samples and Q

values are computed. Then Q values are multiplied by R values, which represent the smoothed

negative Rouge scores, to produce the mean expected risk.

4.4 Reward Augmented Maximum Likelihood

We have adapted the Reward Augmented Maximum Likelihood (RAML) approach introduced in

[Norouzi et al., 2016] to the extractive text summarization task. At the core of this approach lies the
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ability to sample from the exponentiated payoff distribution, which allows the approximation of the

expected maximum likelihood. As the task of text summarization is highly structured, and it is not

trivial to sample from the distribution of all possible summaries, we turned to an approach which

approximates importance sampling for this distribution with a special preprocessing algorithm.

We go over all possible summaries of certain length (i.e. 3 sentences long), and score all of them

with respect to the gold human reference summary for each document. Then we keep only a small

number of best scoring summaries and use those to construct the loss function.

In this section we will defineLRAML andLRL, which are the RAML and Reinforcement Learn-

ing (RL) loss functions respectfully. We will also see in this section that the MRT approach is very

similar to RL and thus suffers from the same variance in gradient estimation problems. We will

show that the main reason optimizingLRAML is easier thanLRL in practice, is that in reinforcement

learning the sampling is done from a dynamic distribution, and thus the variance of the estimate is

very high, while in RAML we sample from a stationary distribution. There has been a lot of work

done in the reinforcement learning community to reduce the variance of that estimate, including

actor-critic methods in [Sutton and Andrew, 2017] and [Degris et al., 2012].

In the original approach in [Norouzi et al., 2016] the researches use importance sampling in

order to approximately sample from the distribution according to the value of the metric of interest.

They use edit distance between the sampled sentence and the gold translated sentence, as they apply

the approach to machine translation. In our implementation, we explode the space of labels and go

over the candidates to score all of them with Rouge. In optimization time we construct the weighted

average MLE loss with respect to the Rouge scores of the top scored candidate summaries. Thus in

our approach we do not sample, but rather apply deterministic optimization with a more complex

loss function, which incorporates more information coming from multiple possible summaries.

RAML can be seen as a simple and computationally efficient approach to use task reward

within a maximum likelihood framework. To make connection between Maximum Likelihood

Estimation (MLE), Reinforcement Learning (RL) and Reward Augmented Maximum Likelihood

(RAML), we examine their corresponding loss functions:
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For MLE we have negative log likelihood:

LMLE(θ) =
S∑
s=1

− logP (y(s)|x(s); θ) (18)

When we minimize this objective, the conditional probability of the targets increases, however

at the same time the conditional probability of all alternative outputs decreases without discrimina-

tion. According to this approach, all wrong labels are equally wrong, and none of them is preferred

over the others, while in reality it is clearly an incorrect approach to follow.

RL is taking a different approach, by looking at all possible labels and trying to minimize the

negative regularized expected reward (e.g. Rouge score):

LRL(θ, τ) =
S∑
s=1

{
−τH(p(y|x; θ))−

∑
y∈Y P (y|x; θ)r(y, ŷ)

}
(19)

where τ is the parameter controlling regularization, H is the entropy and r(y, ŷ) denotes the

reward, like the Rouge score between summary given by a particular set of labels and the gold

human abstract.

If we look back at the MRT equation 6, we see that it looks very similar to equation 19 defined

above. Both approaches sample from the dynamic model distribution and thus suffer from the high

variance at estimating the gradient.

RAML can be seen as a hybrid between MLE and RL, and the following distribution, called

the exponentiated payoff distribution, is central to linking between the two:

q(y|ŷ; τ) = 1

Z(ŷ; τ)
exp

{
r(y, ŷ)/τ

}
(20)

where Z(ŷ; τ) is the partition function.

We define then the RAML loss as the following:

LRAML(θ; τ) =
S∑
s=1

{
−
∑

y∈Y q(y|ŷ; τ) logP (y|x; θ)
}

(21)
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To see the connection between LRL, LMLE and LRAML it is possible to rewrite those using

KL-Divergence according to [Norouzi et al., 2016] into:

LMLE(θ) =
∑
y∈Y

DKL
(
δ(y|ŷ)‖P (y|x; θ)

)
(22)

LRL(θ, τ) · 1/τ + constant =
∑
y∈Y

DKL
(
P (y|x; θ)‖q(y|x; τ)

)
(23)

LRAML(θ; τ) + constant =
∑
y∈Y

DKL
(
q(y|x; τ)‖P (y|x; θ)

)
(24)

For optimization we need to define the gradients:

∂LRAML(θ; τ)/∂θ = Eq(y|ŷ;τ)

[
−∂ logP (y|x; θ)/∂θ

]
(25)

while:

∂LRL(θ; τ)/∂θ = EP (y|x;θ)

[
−∂ logP (y|x; θ)/∂θ · r(y, ŷ)

]
(26)

Although RAML is sampling from a stationary distribution, that distribution is tricky to define.

It has to be defined over all possible objects in the predictions space and be proportional to the

reward associated with that object. In machine translation for example, that distribution would be

over all possible translations of a sentence and proportional to the BLUE score, while in extractive

summarization it would be over all possible subsets of sentences in a document and proportional

to the Rouge score.

As the space in machine translation is merely infinite and it is tricky to actually sample pro-

portionally to the BLUE score of each translation, the approach taken in [Norouzi et al., 2016] is

to use stratified sampling and compute edit distance as a proxy to the reward: first a distance is se-

lected randomly and then an output is sampled with this particular distance. We think introducing

sampling during gradient computation is destabilizing the process of training and adds variance
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to the estimate of the gradient. Also, it is tricky to sample from the space of all summaries pro-

portionally to the Rouge score with respect to the golden human abstract. We decided to skip the

sampling process alltogether, and instead pre-compute the Rouge scores for all possible summaries

of a particular size k(we experimented with k=3 and k=4). This resulted in
(
n
k

)
candidates for each

document to compute the Rouge score for. Thus we were not able to use the standard Rouge perl

based script as our framework is written in python, and had to define our own Rouge scorer. This

Rouge implementation basically calculates the Rouge R1 by looking at how many tokens from

the golden summary were also present in the candidate. The pseudo code for the RougeScorer is

presented in the following figure:

Algorithm 2 The rouge scorer; candidate and abstract are dictionaries which hold the counts of
tokens for the candidate summary and the counts of tokens for the human abstract respectfully,

1: procedure ROUGESCORER(candidate, abstract)
2: total← 0
3: covered← 0
4: for key in abstract do
5: goldCount← abstract[key]
6: total← total + goldCount
7: count← candidate[key]
8: covered← covered+min count, goldCount

return covered
total

As described above, instead of sampling we use the top scored candidates t (in experiments we

use t = 100) to compute the weighted cross entropy loss for document D and its corresponding

abstract A, in the following way:

L(y, ŷ) =
t∑
i=1

−wi ·
s∑
j=1

yij log ŷj (27)

where ŷ ∈ {0, 1}N(s) is a vector of size N(s) and represents the predictions vector of sentences

in document s which should be extracted as a summary, yi ∈ {0, 1}N(s) represents the labels of

candidate i, and w ∈ Rt stands for the weights vector proportional to the Rouge scores wi =

RougeR1(candidatei(D),A)∑
j RougeR1(candidatej(D),A)
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4.5 Experiments

The architecture we used throughout all our experiments was a sequence to sequence encoder-

decoder with LSTM units, where sentences are encoded by averaging pre-trained word embed-

dings, and the decoder outputs one probability for each possible sentence in the document inde-

pendently using a softmax layer. This architecture can be viewed as a ranker of sentences, and the

way to use such a system for summarization is to select a limited amount of sentences from the

output according to their probabilities. This is consistent with the earlier work done in the area of

extractive text summarization, where most of the models are used as rankers. The schema of our

architecture is shown in figure 2.

As we ran our experiments on rather small datasets, we decided not to train our sentence em-

beddings jointly, but rather use pre-trained embeddings as features. We chose to use Glove embed-

dings which work well for many NLP tasks, and represent each sentence as a weighted average of

the word embeddings based on popularity of each word in the our data.

Results in table 1 show Rouge R1 and R2 numbers for our vanila experiments, where we trained

and tested on data coming from the same dataset.

As we can see from the plain vanilla experiments we get very competitive results on the three

datasets CNN-DM, DUC and XSum. Although we were unable to create significantly better per-

forming models than the baseline MLE, we will show in the following section that our models

perform better in domain transfer experiments by generalizing better. However, it is interesting to

notice that RAML is able to get better Rouge R2 value on all the datasets, and better Rouge R1 on

the DUC dataset. We were unable to achieve comparable performance with the MRT models on

the large CNN-DM dataset due to resources limitation, as MRT training was not fully optimized

and took a lot more time to run as we were computing Rouge for all the samples on the fly during

training. In the table we also compare our results with a previously published Seq2Seq system

published in [Kedzie et al., 2018] and show that we are getting slightly better results.
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Figure 2: The architecture for the seq-to-seq encoder-decoder models we used throughout our
experiments. The sign ⊕ stands for Attention.

5 Generalization

In this thesis we claim that poor generalization in machine learning based extractive summarization

systems tend to be the result of poor labeling techniques applied to create supervised datasets from

human abstracts for each document. To that end we explore several loss functions which we show

generalize better than standard MLE approach. We move away from the standard greedy approach

for labels extraction described above, and use more sophisticated ones, in which machine learning
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XSum R1 R2

MLE 47.236 8.564
RAML 46.924 8.703
MRT 46.119 8.581

CNN-DM R1 R2
MLE 58.715 26.727

RAML 58.642 26.857
MRT 0.48396 0.17525

Seq2Seq* – 25.6

DUC-SDS 2002 R1 R2
MLE 49.539 23.927

RAML 49.771 24.011
MRT 49.482 23.83

Seq2Seq* – 22.8

Table 1: Performance of our models on different datasets. All evaluations were run with perl
Rouge library without excluding stopwords, and with using English porter stemmer. *Seq2Seq is
a sequence to sequence deep learning summarization system published in [Kedzie et al., 2018]

algorithms explore a larger space of summaries.

5.1 Related Work

When it comes to using machine learning techniques for extractive summarization, a lot of hidden

obstacles uncover themselves and become apparent. One is how to label the needed summaries to

be extracted and another is how to evaluate the predictions of a machine learning model. Although

it seems like labeling should be an important issue and many researchers should be experimenting

with different approaches, not a lot of research has been done in that area so far. Even a very

detailed overview of summarization methods in [Dipanjan and Andre, 2007] does not talk much

about labeling, focusing more on machine learning architectures and featurization.

It does mention that most approaches use binary labels of whether a sentence should be in-

cluded or excluded from the summary, and mentions one approach where soft labeling was ap-

plied. [Svore et al., 2007] trained a machine learning model from the features for each sentence of

an article, that could rank the sentences in a test document. The ranking was done using RankNet
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([Burges et al., 2005]), a neural network developed to rank a set of inputs that uses gradient descent

for training. They used ROUGE-1 to score the similarity between each document in the training

set and its human abstract, in a similar fashion as we do in this thesis. This approach of using soft

labels aligns well with our work, although we compute the score on the summary level instead

of the sentence level, to address the problem of duplication of information in the summary. Also

the overview lacks a discussion about how exactly should the hard labels be extracted. We think

that the way we label the data and thus the kind of loss function we use, determines the ability to

generalize well on unseen data.

It is well known that summarization systems tend to not generalize well to new unseen data.

That might be due to very different characteristics of the datasets, from which machine learning

techniques capture most innate features, and rely solely on these features when presented with

unseen data. In [Keneshloo et al., 2018] researchers admit this to be yet an unsolved problem and

propose a solution where they use reinforcement learning to create better generalizable models.

We also think models which are trained with standard Maximum Likelihood training suffer from

inability to generalize well to unseen data. The main difference between their and our approaches

are the following:

• They use a specially designed deep learning architecture which allows capturing needed fea-

tures for generalization, while our methods can be applied to any deep learning architecture

with a simple decoder which scores each sentence independently.

• In their approach data from the target distribution has to be present during training, while we

do not require target data during training at all.

5.2 Experiments

If a model is trained on the same task but needs to perform well on a different data distribution

we call it to be a domain transfer. Many times we would like to train a model in a particular

environment, but then to be able to reuse the model in another. In the context of summarization,
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CNN-DM to XSUM R1 R2

MLE 46.087 7.893

RAML 46.527 8.034
MRT 43.912 7.276

CNN-DM to DUC-SDS 2002 R1 R2

MLE 49.524 23.851

RAML 49.506 23.911
MRT 0.4183 0.15409

Table 2: Results of domain transfer experiments, where we apply models trained on one dataset to
unseen data. The upper part describes the results of training on CNN-DM and testing on XSUM,
and the bottom part of training on CNN-DM and testing on DUC-SDS 2002

if we train a summarization system on a particular corpus of news for example, we don’t want

to have to retrain it if we need to summarize letters, webpages, or blogs content. In many cases

models trained on one set of data do not perform well on another one. One of the reasons for poor

”generalization” performance is that models are trained using Maximum Likelihood approaches

and are evaluated on a test set from the same corpus. Such models tend to ”overfit” to specific

features which are common in the training set, but might not appear in other corpuses.

Our hypothesis was that we could use MRT and RAML procedures to train models on one

particular dataset and then transfer the model to another, expecting those models to perform better

than their plain vanila Maximum Likelihood counterpart. Our models might benefit from maximiz-

ing the actual Rouge score by seeing more positive labels and grasping more of different features,

instead of heavily relying on only few important ones.

Results in table 2 show that there is a potential in models trained with RAML, as they seem to

perform better on out of domain data. More work is definitely needed to tune hyper-parameter α

which controls the Q distribution in MRT and τ which controls the temperature in RAML.

Another type of a text summarization task is called multi document summarization, where

several documents from multiple sources need to be summarized into one summary. The difficulty

compared to the single document summarization task here lies in the fact that there is quite a lot of

repetition of content, as the documents for the most part tend to describe the same or similar events.
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Method R1 R2

MLE 32.822 6.55

RAML 33.093 6.328

MRT 29.738 4.718

Table 3: Results on shuffled multi-doc summarization dataset constructed from DUC-MDS

Extractive summarizers have to be careful not to select similar sentences over and over again, as

the Rouge metric will not favor these kind of outcomes. We had a hypothesis that MRT and RAML

models might perform better in cases where repetition of important content is observed throughout

the document. It was partially validated when we created a multi document summarization pipeline

from the duc-mds dataset by shuffling all sentences from all the input documents and then running

our single document training procedure to train a model. The RAML algorithm show slightly

better performance on this task in table 3, partially validating our initial hypothesis.

In order to be able to summarize multiple documents with our models, we had to transform a

multi-document dataset into a single document one. This was done by concatenating the content of

all the documents in one doc set into one large super document and then shuffling all the sentences.

We wanted our models to have equal access to all sentences in all documents during training

without giving a bias to a particular document within the doc set. Also, by shuffling the sentences

in the document we made the summarization problem more challenging. In our experiments we

trained the models on duc-mds 2001 and 2002 and tested on duc-mds 2004

6 Lead Bias

This issue is related to the analysis of what kind of sentences extractive summarization systems

tend to return in the summary, after being trained with supervised machine learning techniques. An

interesting way to analyze a model in that respect is to examine the distribution of sentences that

it is returning when it is used in prediction mode after being trained on a dataset. In many cases
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when we trained baseline models we have seen that the distribution of sentences is biased to the

leading few, meaning the histogram makes it clear there are quite a lot of sentences returned from

the head of the document, rather from its other more distant parts. Also, when we compared the

Rouge scores of those models with a simple lead-3 baseline (where we select the first 3 sentences

to be the summary), we observed that the model is better than the baseline only marginally.

Why does that happen? It seems like it mostly happens in news datasets, where important

information is served in the beginning of the document, and the details come later. In order to

get a summary of such a document, one needs only to select the first few sentences and be done.

The modern machine learning techniques, e.g. LSTM-based sequence to sequence models, eagerly

learn those position features and rely on them to a large extent. So why is it such a bad idea to just

select a few first sentences as the summary?

Apparently not all texts that we want to summarize have this property of bias to the lead. Long

scientific articles, blog posts and book chapters are not that susceptible to that illness. However,

if we use datasets with documents which are biased to the lead to train our models, they won’t

generalize well to other domains.

Our hypothesis was that if we use other loss functions and a different way to train models,

such that those models are forced in some sense to learn from a richer set of labels, they will be

less prone to lead bias problem. In this thesis we explore this direction and show how our models

produce distributions with heavier tails, even if without a significant improvement in Rouge.

6.1 Related Work

It is a well known fact that the lead baseline for extractive text summarization (according to which

a few leading sentences are selected as the summary), especially in the domain of news, achieves

relatively good performance in terms of the Rouge metric. In [Brandow et al., 1995] researchers

use the lead-3 as the main baseline and in [Wasson, 1998] the search space is limited to the lead

portion of the document in commercial search applications to improve precision. They also show

that users report high percentages of leads as being an acceptable summary. There are even some
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examples in more recent research as in [See et al., 2017], where summarization models can’t over-

come the lead-3 baseline in terms of performance.

That happens mostly in the news domain, where editors put their best content in the head of

the document, to make it easier for readers to get the gist of the news quickly and decide whether

they want to continue reading. Sometimes it may be used to allure users to read more by giving the

most important information first. Training machine learning models on such datasets becomes an

extremely difficult task, especially when position features are being used, what happens automat-

ically in sequence based models like RNN’s. One approach to combat this phenomena would be

to totally discard any positional features, however in experiments with fully shuffled datasets we

have seen that the resulting models do not perform well.

6.2 Experiments

First we tried to leverage our wikinews dataset for running MLE training experiments to see how

well can we score against the lead-3 on the dataset. In all our experiments we had to perform early

stopping as the model capacity was clearly large enough to overfit over the dataset quickly. The

following figures 3 and 4 show the training curves of R1 and R2 on the wikinews dataset.

We can see that we were not successful in getting significantly better on the wikinews dataset

compared to lead-3. Accordingly, we decided to continue experiments with other already published

datasets for text summarization.

One set of experiments we ran in order to focus on the lead-bias problem in summarization,

where experiments in which we partitioned the datasets into several portions based on the lead-3

score that each document got with respect to the relevant human abstract. To do that, we scored

each document using the lead-3 baseline and sorted the documents ascending by that score. Then

we took the first 1/4 of the documents and called it the first quartile, then the next 1/4 of the

documents was called the second quartile, etc. We then ran RAML models on these parts of the

dataset separately. The basic idea of this exercise was to find evidence that our models work better

on non-lead-biased documents. The hypothesis was that MLE model will not do as well as the
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Figure 3: Training standard MLE models on wikinews, R1 curve in red as a function of number of
training steps. Lead-3 is depicted in blue.

Figure 4: Training standard MLE models on wikinews, R2 curve in red as a function of number of
training steps. Lead-3 is depicted in blue.

RAML in the first quartiles - a hypothesis which was validated in our experiments. As we see in

table 4, RAML is doing better in the first and the second quartiles, then MLE is getting closer and

closing on RAML in the third quartile and getting slightly ahead in the fourth one.
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Method 1st quartile R1/R2 2nd quartile R1/R2 3rd quartile R1/R2 4th quartile R1/R2

RAML 44.112 / 14.599 53.807 / 21.715 62.011 / 28.81 74.625 / 42.296

MLE 43.026 / 13.71 53.633 / 21.318 62.491 / 28.831 75.691 / 43.03

Table 4: Results on the lead-3 based partitioned CNN-DM dataset

We also were interested in eyeballing the sentence distribution that different models are pro-

ducing, as the Rouge metric might not always capture the whole story. To that end we collected a

few articles from wikipedia and ran our models on them to investigate what kind of sentences each

model tends to return in the summary. We were able to show that different training regimes (like

MLE vs. MRT or RAML) tend to generate different distributions of sentences during summary

generation. Classical MLE models tend to generate summaries biased towards the first positions

of the document, while MRT and RAML tend to generate distributions with heavier tails by select-

ing more sentences from the middle or the end of the document.

One way to show uniqueness of our models is by examining some of the actual summaries

generated on articles from various topics. We wanted to show that our RAML models generate

summaries by taking sentences from other places than the head of the document, while the MLE

models generate summaries very biased to the lead.

For example, a summary of a wikipedia document about ”capitalism and democracy” from the

maximum likelihood model looks like this:

[2]. The extension of universal adult male suffrage in 19th-century britain occurred

along with the development of industrial capitalism and democracy became widespread

at the same time as capitalism, leading capitalists to posit a causal or mutual relation-

ship between them.

[1]. The relationship between democracy and capitalism is a contentious area in theory

and in popular political movements.

[3]. However, according to some authors in the 20th-century capitalism also accompa-
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nied a variety of political formations quite distinct from liberal democracies, including

fascist regimes, absolute monarchies and single-party states.

[21]. Similarly, suharto’s authoritarian reign and extirpation of the communist party

of indonesia allowed for the expansion of capitalism in indonesia.

vs. a summary generated using the RAML model:

[1]. The relationship between democracy and capitalism is a contentious area in theory

and in popular political movements.

[2]. The extension of universal adult male suffrage in 19th-century britain occurred

along with the development of industrial capitalism and democracy became widespread

at the same time as capitalism, leading capitalists to posit a causal or mutual relation-

ship between them.

[21]. Similarly, suharto’s authoritarian reign and extirpation of the communist party

of indonesia allowed for the expansion of capitalism in indonesia.

[9]. The ruling on citizens united allows corporations to spend undisclosed and un-

regulated amounts of money on political campaigns, shifting outcomes to the interests

and undermining true democracy.

The following document was fed as input for this explicit summarization experiment:

The relationship between democracy and capitalism is a contentious area in theory and in pop-

ular political movements. The extension of universal adult male suffrage in 19th-century Britain

occurred along with the development of industrial capitalism and democracy became widespread

at the same time as capitalism, leading capitalists to posit a causal or mutual relationship between

them. However, according to some authors in the 20th-century capitalism also accompanied a

variety of political formations quite distinct from liberal democracies, including fascist regimes,

absolute monarchies and single-party states. Democratic peace theory asserts that democracies

seldom fight other democracies, but critics of that theory suggest that this may be because of polit-

ical similarity or stability rather than because they are democratic or capitalist. Moderate critics
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argue that though economic growth under capitalism has led to democracy in the past, it may not

do so in the future as authoritarian regimes have been able to manage economic growth with-

out making concessions to greater political freedom. One of the biggest supporters of the idea

that capitalism promotes political freedom, Milton Friedman, argued that competitive capitalism

allows economic and political power to be separate, ensuring that they do not clash with one an-

other. Moderate critics have recently challenged this, stating that the current influence lobbying

groups have had on policy in the United States is a contradiction, given the approval of Citizens

United. This has led people to question the idea that competitive capitalism promotes political

freedom. The ruling on Citizens United allows corporations to spend undisclosed and unregulated

amounts of money on political campaigns, shifting outcomes to the interests and undermining true

democracy. As explained in Robin Hahnel’s writings, the centerpiece of the ideological defense

of the free market system is the concept of economic freedom and that supporters equate eco-

nomic democracy with economic freedom and claim that only the free market system can provide

economic freedom. According to Hahnel, there are a few objections to the premise that capital-

ism offers freedom through economic freedom. These objections are guided by critical questions

about who or what decides whose freedoms are more protected. Often, the question of inequality

is brought up when discussing how well capitalism promotes democracy. An argument that could

stand is that economic growth can lead to inequality given that capital can be acquired at differ-

ent rates by different people. In Capital in the Twenty-First Century, Thomas Piketty of the Paris

School of Economics asserts that inequality is the inevitable consequence of economic growth in a

capitalist economy and the resulting concentration of wealth can destabilize democratic societies

and undermine the ideals of social justice upon which they are built. Marxists, anarchists (except

for anarcho-capitalists) and other leftists argue that capitalism is incompatible with democracy

since capitalism according to Marx entails ”dictatorship of the bourgeoisie” (owners of the means

of production) while democracy entails rule by the people. States with capitalistic economic sys-

tems have thrived under political regimes deemed to be authoritarian or oppressive. Singapore

has a successful open market economy as a result of its competitive, business-friendly climate and
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robust rule of law. Nonetheless, it often comes under fire for its brand of government which though

democratic and consistently one of the least corrupt it also operates largely under a one-party

rule and does not vigorously defend freedom of expression given its government-regulated press

as well as penchant for upholding laws protecting ethnic and religious harmony, judicial dignity

and personal reputation. The private (capitalist) sector in the People’s Republic of China has

grown exponentially and thrived since its inception, despite having an authoritarian government.

Augusto Pinochet’s rule in Chile led to economic growth and high levels of inequality by using au-

thoritarian means to create a safe environment for investment and capitalism. Similarly, Suharto’s

authoritarian reign and extirpation of the Communist Party of Indonesia allowed for the expansion

of capitalism in Indonesia.

This is an interesting example, as the MLE model does select one sentence from the very tail of

the document, but it agrees on that with the RAML model. It is the 21-st sentence in the document

and it talks about how the communist party in Indonesia allowed for expansion of capitalism.

However, the models do not agree on all the sentences, and the RAML model selects the 9-th

sentence instead of the 3rd as the MLE model does. Basically we can see here that the MLE

model selects a few sentences from the head of the document and adds nearly the last sentence,

while the RAML model selects the same tail sentence as well, but also includes a sentence from

the middle. This pattern repeats itself in many examples in our experiments. Ultimately a pattern

which includes one sentence from the head, one closing sentence from the end of the document as

a conclusion, and one sentence from the middle, seems like a good one for a summarization system

to learn.

Another set of experiments we ran was to analyze the distribution of the sentence positions

that each model type is returning in prediction time in a statistical way, by reporting aggregated

numbers using a histogram. Table 5 shows the results of those experiments, and figure 5 shows the

same results as a histogram. Our hypothesis was that RAML models would have heavier tails than

the MLE approach. We were able to verify that hypothesis by showing that indeed our models take

more content from the middle and end of the document than the standard MLE models.
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Figure 5: Distribution of sentence positions in summaries run on CNN-DM testset. RAML is on
top, and MLE is in the bottom. This is a histogram view of the same data presented in table 5
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Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RAML 6430 9881 9182 5799 5014 3276 2072 1313 919 667 508 452 341 278 250 199

MLE 9473 10602 9721 5429 4040 2481 1552 985 744 559 400 357 263 211 169 130

Table 5: Results of sentence distribution experiment on CNN-DM dataset, which shows the dis-
tribution of positions the model returns during prediction. The results in the table are limited to
first 16 positions just for convenience. We clearly see that RAML is returning more sentences
from the middle of the document, while MLE is very lead-biased. For example, we can see that
in position 1 and 2 MLE has significantly higher counts of sentences returned, while RAML gets
more sentences starting from position 5.

7 Query Focused Summarization

In some scenarios a need arises for a text summary related to a particular topic of interest instead

of a general summary of the document, for example, when the document is returned as a result

of a search query. In that particular case we don’t want the summary solely compress the entire

document, but also to fetch a particular portion of the document relevant to the query at hand.

General summarization systems fail to be of a good use in such cases, as they lack the ability to

focus the outcome on additional information, but rather return generally informative summaries.

7.1 Related Work

There has been quite a bit of recent work on Query Focused text summarization. In [Wang et al., 2016]

relevance ordering is produced by a statistical ranker and information coverage with respect to

topic distribution, and diverse viewpoints are both encoded as submodular functions, while in

[Fetahu et al., 2013] researchers automatically generate structured summaries from user queries

that uses POS patterns. Bayesian approach has been applied to the problem of query focused

summarization in [Hal, 2009].

Another somewhat related field which flourished with the advancement of deep learning ar-

chitectures is the field of Question Answering. The task there is to find an answer to a question

given a document as input text. This document sometimes may not contain the answer, and then
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the model is expected to indicate that the answer cannot be found in the given text. This seems to

be a more complex problem than just trying always to find some portion of text which suits to be

the answer to the question, and if in reality no such answer exists in the passage, returning some

portion of the text, without really being penalized for returning unrelated text.

It seems like the same particular advancements in deep learning which made it possible for

neural translation systems to become state of the art in the field of machine translation, also made

it possible for the neural question answering systems to start leading in their field. The main novel

idea which made it possible was Attention, a mechanism which first was introduced for neural

machine translation in [Bahdanau et al., 2014] where the network is capable to align original and

translated text. Since then, the mechanism of attention has been used in many contexts and even

was used as a basic building block for a new neural architecture called Transformer introduced

in [Seo et al., 2016]. Since then researchers started to use attention for other tasks like Question

Answering, as in [Seo et al., 2016], where an attention flow architecture is using several types of

attention to match pieces of text with the question.

It really seems like the 2015 and 2016 years were very fruitful for QA, as a slew of research has

been done in that area then. [Andreas et al., 2016] describe a very interesting and unique question

answering model. That system is applicable to structured knowledge bases. The model is using

question and answers as supervision to learn how to compose existing neural modules for solving

the problem at hand. This approach departs significantly in technique and style from other recent

end-to-end deep learning systems like in [Seo et al., 2016]. Another interesting research from

[Weston et al., 2015] is focusing on how to evaluate question answering models by preparing a set

of tests that an intelligent system has to perform well on in order to prove that it really possesses

”understanding” capabilities, e.g. ability to answer questions via chaining facts, perform simple

induction, deduction and etc.
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7.2 Experiments with Squad Dataset

We wanted to see if we can apply machine learning techniques to the problem of query focused

extractive summarization. The main problem is the lack of good labeled data, which contains both

the search query and the summary. To that end we decided to repurpose the Squad data, originally

created for Question Answering task.

SQUAD stands for Stanford Question Answering Dataset, a recently published dataset for

reading comprehension and question answering([Rajpurkar et al., 2016]). It consists of questions

asked by crowd-workers on Wikipedia articles and answers in the form of a text segment from a

reading passage. SQuAD2.0 combines the original 100K questions in SQuAD1.1 with more than

50K new questions which do not have answers, designed by the crowd-workers to be very similar

to the answerable ones. Thus to perform well on the second dataset, systems have to be robust

enough to be able to detect an unanswerable question.

Originally the Squad dataset was created for the Question Answering task, where a question

and a document are presented to the system as input, and the system’s task is to find the short

answer to the question in the document. We have adapted this dataset to be a suitable dataset for

query focused summarization task, in which there is an additional piece of information given to the

summarization system with each document in a form of text query. The intention of the query is to

make it possible for the summarization system to focus and return a more suitable summary. This

works well in the context of a search engine for example, where not just a general summary of a

document is needed, but rather a summary focused on the original search query the user provided.

The process of adaptation of the Squad dataset for the extractive query focused summarization

task was the following:

• We concatenated all the passages into one large piece of text and called that the document

• Each question was perceived to be one search query

• The passage containing the answer to the question was defined to be the summary
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We used that transformed dataset to train a deep learning summarization system by maximizing

the cross entropy with respect to the correct labels of sentences to include in the summary. When

trying to optimize the maximum likelihood objective on this dataset, we notices that the loss is not

going down significantly and the resulting performance in terms of Rouge was not as expected.

Although we were not able to actually train good performing models on this dataset, we think this

approach is still promising and needs more research. One potential issue which might have caused

too much variance during training, was varying location of the answer to the question inside the

passage, and so the model could not capture the similarity features between the passage and the

query. One way to remedy that issue is to extract a passage which surrounds the answer with one

sentence before and one sentence after, so that the context for the question in the passage is always

of constant length and the location of the answer is always in the middle. We think this might be a

good future research idea.

7.3 QA for Query Focused Summarization

We experimented with another adaptation as we had a hypothesis that a good performing Query

Focused summarization system can be implemented using an existing Question Answering model,

where the query is transformed into a question, and the answer from the QA system is turned into

a summary.

We have built such a system based on a deep QA model developed by the Allennlp group,

described in details in [Seo et al., 2016]. The model uses a special Attention Flow mechanism

which allows it to accurately select the start and the end of the most likely portion of text to

contain the answer to the question. Throughout running the experiments we noticed that the model

is very sensitive to the presence of the question word in the question text, presumably because

in the training data each question snippet contained a question word, so the learning algorithm

was able to extract these question words as strong features. It does make sense as the question

word in many cases describes the type of the answer to look for: for ”where” look for locations,

for ”when” look for entities describing time, etc. As we wanted to develop a generic system, we
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could not use one particular question word for all our queries, but instead decided to implement a

rankings merging mechanism, which merges all the outputs from all the different questions.

A query was transformed into a question using a question word qword in the following way:

Question(query, qword) = qword⊕ ”is”⊕ query ⊕ ”?” (28)

where ⊕ stands for ”concatenation”, so for example a query ”table” was transformed into a

”Where is table?” question, which was fed into the QA system afterwords.

The output of the QA system was defined by the following:

QA(Question(q), D) =

P (start(i)), P (end(i))

i∈D

(29)

where q is the query, D is the document, start(i) and end(i) represented the events of i being

the token of start and end of the answer portion respectfully.

We then ranked each sentence sk in the document by the likelihood of that sentence to contain

the answer P (sk):

P (sk) = max
i,j∈sk

P (start(i))× P (end(j))
 (30)

After applying the QA system on the same document but with different question words (we

used ”what”, ”when”, ”where”, ”why”, ”how”), we got 5 different rankings of the same sentences.

To merge all these rankings we used the Borda count which gives a score to each object equal to

the number of objects it has outranked. So if the ranking is ”1”,”5”,”10”,”7”, then object ”5” has a

Borda count of 2, and ”10” has a Borda count of 1, etc. Once we get scores for each ranked object

we can add those scores and rank the objects according to the total scores to get a final ranking.

To create a summary out of ranked documents, we just take the first k according to a budget

constraint imposed beforehand (in our experiments we use 100 words). We have run several ex-

periments where humans had to judge the quality of the summaries given the query by indicating
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whether the whole document was relevant to the query just based on our summary excerpt. In

those experiments we always knew which documents really were relevant and which were not, so

we were able to assess the precision and recall of the summarization technique as a classifier of

relevance of the document given the query. In the experiments which involved the aforementioned

technique we saw precision and recall going up due to the inclusion of the QA-system based

rankings, along with some other baselines, which included simple word matchers and different

similarity based matchers as well.

8 Conclusions and Future Research

This thesis addresses a few interesting problems in the realm of extractive text summarization. We

introduce an adaptation of Minimum Risk Training and Reward Augmented Maximum Likelihood

for the extractive text summarization task, and pinpoint the advantages these methods of training

have over the standard Maximum Likelihood Estimation. Generalization and Lead Bias in partic-

ular presented as the two problems which can benefit from our approach with some experimental

results shown as evidence to that end. Furthermore, we talk about Query Focused Extractive Text

Summarization and the ways one can reuse the Question Answering datasets and models to tackle

this problem in an unconventional way.

Training models which sample from a dynamic distribution like in MRT is quite difficult, as

the variance of the estimate of the gradient gets very large. Special tricks and techniques have to

be applied in order to make this kind of an approach really work in practice. We have affirmed

through experiments that the same problems which prevail in the reinforcement learning literature

with respect to the difficulties of direct optimization of gradient policy methods, exist in MRT

and a significant amount of hyper-parameters tuning with the Q distribution hyper parameter α

is needed to get the training working well. Another conclusion we have arrived at is that the

community needs a good implementation of Rouge in python in order to be able to incorporate it

into training procedures like MRT and RAML, which either needs to run this computation online
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for each sample, or over large amount of candidates offline.

However we have seen that training deep models with loss functions which explore the space of

candidates more than the standard Maximum Likelihood Estimation, improve performance, if not

for all documents, at least for those which are not lead biased to the human abstract. We think that

an interesting path for future research might lie in the area of when to apply models like RAML

vs. regular MLE models. In our experiments, if we condition on the lead-3 score of a document

with respect to the human abstract, and chose a model appropriately, we got far better performance

than each of those models gets on its own. This can be seen as building an ensemble method

with a smart conditioning for invocation of each model on different documents. We think more

research is needed to create efficient and good performing ensembles of models for extractive text

summarization which leverage our findings.

On the query focused summarization front we think that using QA models and adapting Ques-

tion Answering datasets for the focused summarization task has great potential. There is clearly a

relation between these two tasks and more work is needed to establish even a stronger link. For

example, in our experiments we used several different question words to created a question out of

a query. Future research is needed to investigate a possibility of learning the appropriate question

word or even the whole question given the query and the document. May be machine translation

models can be applied to translate a query into a question given the document and then used in a

QA model to generate query focused summaries.
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