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Abstract—Teaching a robot to acquire complex motor skills
in complicated environments is one of the most ambitious
problems facing roboticists today. Grasp planning is a subset
of this problem which can be solved through complex geometric
and physical analysis or computationally expensive data driven
analysis. As grasping problems become more difficult, building
analytical models becomes challenging. Consequently, we aim
to learn a grasping policy through a simulation-based data
driven approach. In this paper, we create and execute tests
to evaluate simulator’s suitability for manipulating objects in
highly constrained settings. We investigate methods for creating
forward models of a robot’s dynamics, and apply a model free
reinforcement learning approach with the goal of developing a
grasping policy based solely on proprioception.

I. INTRODUCTION

Expanding capabilities and complexity of robots has led to
a greater need to explore adaptive control. Creating analytical
models of has proven to be difficult; hand tuning policies is
not viable due to the intricacy of environments. Creating an
analytical model to explore the complex physical interaction
between a robot and the space of variable environments is
especially difficult. As a result, researchers are increasingly
looking towards data driven approaches. However, collecting
a sufficient amount data to produce an unbiased model of the
system’s dynamics or to produce a robust policy for interacting
with complex environments on a physical robot proves to be
a limiting factor.

Simulators can provide efficiency that a physical robot can-
not afford. When developing control methods, either through
model based design or reinforcement learning, researchers
need to collect large and comprehensive datasets. The robot
needs to repeatedly perform a task or some variation of the
same task to collect data. Before each iteration of task, the
researcher has to set or reset the task scene. If researchers were
to use a physical robot to collect data, the initialization of the
scene must be performed manually, and the scene could not
be precisely reproduced. Using simulation, the initialization
of each scene is easily automated and can be precisely
reproduced. Additionally, with a physical robot, collecting
thousands of data points is either prohibitively expensive or
time intensive. We would have to choose either for one robot to
collect all of the data, or for multiple robots to simultaneously
collect the data. Moreover, with a physical robot, we need
to consider the physical limitations such as failing hardware.
In simulation, we can explore more of the state space with

relative ease and in a shorter amount of time, and data
collection is easily parallelizable.

For a simulator to be considered valuable for creating
grasping policies, it must have robust contact generation under
many constraints. Without robust contact generation, the sim-
ulated objects can exhibit artifacts such as jitter, divergence,
or phantom impulses as described in [1]. We need to ensure
that we can achieve stable equilibrium under applied frictional
and normal forces. In this project, we develop and execute
tests of increasing complexity to evaluate the robustness of
the simulator. The simulator must allow for the robot to have
articulations with externally applied joint torques and position
control, so we can evaluate a variety of robots and robot
control methods. For this project, we collect joint position,
motor position, and joint torque data to derive a grasping
policy, therefore the simulator must also implement joint
position and joint torque sensors. Other simulator requirements
we have for the task of grasping include non-dynamic objects,
such as floors or walls, and general mesh objects.

Once we establish that the simulator is suitable for our task,
we embark on developing a policy to grasp and manipulate
an object. We explore the creation of dynamics models built
by data-driven analysis, and apply a model free reinforcement
learning method to develop a grasping policy. We aim to learn
a control policy that relies solely on proprioception, where the
input is composed of only of features the robot itself can feel,
such as the joint positions, joint torques, motor positions, and
joint velocities of a robots.

II. RELATED WORK

Reinforcement Learning has been used successfully in vari-
ous tasks including navigating through complex environments
and manipulating objects. Heess et. al deployed a large scale
deep reinforcement learning algorithm [2] based on [3] to
teach different torque controlled bodies to steer themselves
through a terrain with various obstacles such as hurdles,
gaps, variable terrain, walls to go around, and platforms in
simulation. Gu et. al train local linear models to reduce
the sample complexity required by model free reinforcement
learning and accelerate learning in [4] ot apply the reinforce-
ment learning method of real robots. They also extended the
work to add synthetic on-policy examples, generated by the
local models, which augment the samples from which the
algorithm can learn. They later show in [5] that the deep



reinforcement learning algorithm from [4] can be used to
learn how to manipulate objects by using it to learn how
to open a door. Boularias, Bagnell, and Stentz in [6] tackle
the problem of grasping from a dense clutter by combining a
reinforcement learning framework for object manipulation and
object detection using computer vision. Levine et. al developed
a grasping method that trains a large convolutional neural
network to predicts grasp success from visual input and uses
the network to servo the gripper in real time to grasp objects
[7]. In [8], Peng et. al use a policy gradient method to train a
policy in simulation for a pushing task where the state space is
composed of joint positions and velocities of the robot’s arm,
the position of the robot’s gripper, and the object’s position,
orientation, linear and angular velocities. They randomized
the dynamics parameters of the simulation and transferred the
learned policy to the real world robot.

Others have been able to evaluate grasps and perform grasps
without using visual servoing. In [9], Hao, Weisz, and Allen
trained a Support Vector Machine using hand kinematic and
simulated tactile feedback data to estimate the stability of
a given robotic grasp. Madry et. al in [10] extract features
from sequences of tactile data in a process called Spatio-
Temporal Hierarchical Matching Pursuit to add an additional
time dimension to the data. Chebotar et. al use the spatio-
temporal tactile features introduced to identify failed grasps
and adjust the grasp using the feedback if the grasp is unstable
[11]. Chen and Ciocarlie show in [12] that joint position
and torque sensing is sufficient for a multi-input multi-output
proportional-integral controller to produce stable finger tip
grasps.

We seek to learn a grasping policy solely using propriocep-
tive features of joint position, joint torque, motor position, and
joint velocity, without information external to the robot such as
object detection using computer vision and tactile sensors. We
develop models of the dynamics grasping that that map current
state (joint position, joint torque, motor position, joint velocity)
and action (motor position command), to subsequent states.
We also implement and apply Proximal Policy Optimization,
a model-free Policy Gradient Reinforcement Learning method
introduced in [3], to develop a grasping policy based solely
on proprioception.

III. TESTING SIMULATORS

The most important tool for this project is a robust simulator
that can simulate articulated joints, non-dynamic objects, and
prescribed base motion for the robot. The primary requirement
for a simulator is its ability to maintain stable equilibrium
under applied forces for an extended period of time. We
evaluated the simulator Klamp’t [13], which uses Open Dy-
namics Engine (ODE) [14] as its backend. ODE uses an
iterative Linear Complementarity Problem solver to solve
contact constraints, to make certain that interpenetration does
not occur. However, in highly constrained problems, the solver
is not guaranteed to find a solution to the contact generation
problem and will simply error out. Klamp’t attempts to avoid
this issue by adding a thin boundary layer over the underlying

(a) Two Fingers with a Cube (b) Three Fingers with a Cylinder

(c) Multi-Joint Fingers with a Cylin-
der

(d) Barrett Hand with a Mug

Fig. 1. Each of these tested configurations were able to hold on to the object
for at least a few minutes

meshes as described in [1]. This method helps the simulator
steer clear of discontinuities in contact generation, caused
by collision. We sought to verify that the simulator robustly
produces contacts.

We test the robustness of contact generation of the simu-
lator by creating various robotic configurations of increasing
complexity, as seen in Fig. 1. With the increasing complexity,
we add more constraints to the system for the simulator to
solve. If the configuration is has too many hard constraints
for the simulator to solve, then the simulation could produce
unrealistic simulation artifacts or simply fail.

A. Friction at Contacts

We evaluate the friction at the contacts to assess the contact
dynamics. We are interested in determining whether the sim-
ulator would model friction correctly via critical torque. We
define critical torque as the minimum torque at which an object
of a specified mass can be held in equilibrium by equally and
symmetrically spaced fingers given a specific configuration
and coefficient of friction. Critical torque τ is given by

τ = τf + τb (1)

τf =
mfgR

2
cos(θ) (2)

τb =
mbgR

n
(cos(θ) +

sin(θ)

µ
) (3)



Fig. 2. An example of a plot produced by decreasing torque. The gray line
denotes the point at which the block began to slip

where

τf = minimum torque to hold the finger at angle θ
τb = minimum torque to prevent the object from slipping
mf = mass of the finger
mb = mass of the object
g = gravitational acceleration
R = distance between joint and point of contact with object
θ = joint angle of the fingers
µ = friction coefficient
n = number of fingers

We simulate the configuration at Fig. 1a using torque
control, apply the same magnitude torque to both fingers, and
decrease the torque at the joints over time until the block slips
out of the robot’s grasp. We plot the block’s vertical position
and the applied torque over time to determine the torque at
which the block began to slip, as seen in Fig. 2. If the position
of the block changes by more than a millimeter in a tenth of a
second, we consider the corresponding torque to be the critical
torque for a specific coefficient of friction.

We repeat this procedure for multiple coefficients and initial
block positions to see if the simulator agreed with the critical
torques we computed using (1). We found that the simulator
produced physically realistic results (Fig. 3) for the two
fingered model.

B. Asymmetry

When we increase complexity by adding a third finger,
simulating Fig. 1b, we encounter asymmetry in the grasp,
despite applying the same magnitude of torque at each of the
joints. This asymmetry (Fig. 4) is a cause for concern as it
may indicate there are undesired artifacts in the simulation.

We need to establish whether the configuration itself is in
stable equilibrium or not. A system is in stable equilibrium if
the second derivative of the potential energy is greater than
zero. This means that if the system is disturbed, it will tend
to return to its original position. We simplify the problem to a
two dimensional problem, focusing on position disturbances

Fig. 3. Critical Torque vs. Coefficient of Friction, comparing experimental
data averaged over 3 trials and the theoretical computed critical torque

Fig. 4. Three Finger Asymmetry

of the block on the x-y plane. We compute the potential
energy U as a function of displacement ~x from the central
axis of the palm. See Appendix A for details. We then plot
the potential energy against displacement ~x from the central
axis of the palm. In Fig. 5, we can see that Potential Energy
vs ~x is concave down, meaning that the second derivative of
the potential energy is not greater than zero. The system is
not in stable equilibrium. Since the system is not in stable
equilibrium, any small disturbances in position could displace
the block and cause dramatic asymmetry. However, in this
simulation, we ensured that the forces applied to each joint
was the same and that the fingers were all oriented the same
way. The block is not displaced from the central axis of the
base of the gripper, so the block is in unstable equilibrium.
Without any external forces or other instability, the asymmetry
should not have occurred.

Fig. 5. Potential Energy vs. 2D Displacement of the Three Finger Configu-
ration



Fig. 6. Gripper fingers bounced off of the block even though the Coefficient
of Restitution = 0, the applied forces are all equal, and the fingers are oriented
the same way.

(a) Stiffness Coefficient=∞ and
Damping Coefficient=∞

(b) Stiffness Coefficient=800,000
Damping Coefficient = 200,000

Fig. 7. These are screenshots over time of identical simulations of a sphere
colliding with a plane differing only in the stiffness and damping coefficients.
The Coefficient of Restitution is 0, so the ball should not bounce.

The asymmetry is still unexplained until we look into
another simulation artifact, bouncing due to numerical in-
stability. The fingers bounce off the block unevenly despite
the Coefficient of Restitution being 0 and the applied torques
being identical, as in Fig. 6, causing the block to be displaced
from the center of the 3 fingers. As a result the system was
no longer in unstable equilibrium.

C. Numerical Instability

We find that when the stiffness and damping coefficients
are set to infinity and the Coefficient of Restitution is 0, the
simulation becomes unstable, like the asymmetry in Fig. 4
and Fig. 6. However, when we reduce the stiffness coefficient
and damping coefficient, this asymmetry was resolved. This is
due to instability in the collision handling in Open Dynamics
Engine, as shown by Fig. 7. In ODE, there are parameters
called Constraint Force Mixing (CFM) and Error Reduction
Parameter (ERP) for each contact. The amount a constraint
is allowed to be violated is proportional CFM times the
restoring force needed to enforce that constraint. Thus, when
CFM = 0, the constraints are hard and when CFM is larger,
the constraints are softer and the collisions become spongier.
Another important feature of CFM is that greater CFM leads
to fewer numerical errors.

ERP defines the proportion of error that will be corrected
in the next time step for a contact. Ideally, ERP lies between
0.1 and 0.8, so that some errors are corrected. Typically, ERP
is not should not be set to 1 due to ODE’s inability to resolve
all errors because of numerical approximations. If ERP is too
small, then the simulator will accumulate an abundance of
errors.

Fig. 8. A simulated box of 20 eggs over time where the coefficient of stiffness
= 800,000 and the coefficent of damping = 200,000

CFM and ERP are defined as follows:

ERP =
hkp

hkp + kd
(4)

CFM =
1

hkp + kd
(5)

where

h = the stepsize
kp = the stiffness coefficient
kd = the damping coefficient

We can compare the CFM and ERP between Fig. 7a and Fig.
7b to demonstrate why the simulation in Fig. 7a had noticeable
numerical instability, while the simulation in Fig. 7b did not.
In simulation, infinity is approximated by a large real number.
So, in the case where kp = ∞ and kd = ∞, kp = kd where
kp is represented by a large number. In both simulations in
Fig. 7 we used a time step h = 0.03. As a result,

ERP7a =
hkp

hkp + kp
=

h

h+ 1
≈ 0.029 (6)

CFM7a =
1

hkp + kp
≈ 0 (7)

In the case where kp = 800, 000 and kd = 200, 000

ERP7b =
800000h

800000h+ 200000
=

4h

4h+ 1
≈ 0.107 (8)

CFM7b =
1

800000h+ 200000
= 4.46× 10−6 (9)

Comparing equations 6 and 8, we can see that changing
kp to 800,000 and kd to 200,000 increased ERP. Likewise,
comparing equations 7 and 9, we know that we have increased
CFM as well. By increasing the CFM, we can increase
the amount the constraints can be violated and reduce the
numerical errors in the simulation. By increasing the ERP
when we change the damping and stiffness coefficients, more
of error is corrected. Softened constraints lead to more stable
simulations.

D. Interpenetration

By softening the constraints, the simulations overall become
more stable than with hard constraints. However, with softer
constraints, other simulation artifacts such as interpenetration
will occur in highly constrained scenarios. For example, when
we simulate clutter, we discover numerical instability. We find
that when the constraints are soft and objects are stacked on
top of each other and confined in a box, there is a tendency for



the objects to sink through the bottom of the box, as seen in
Fig. 8. This behavior does not occur when there are no eggs
placed on top of one another. If we reduced the number of
eggs such that the eggs could distribute themselves on the
base of the box without constant contact with each other,
then the simulation is stable and does not feature sinking
or interpenetration. Having soft constraints allows for the
constraints to be violated by a certain extent, and constant
forces encouraging two objects that are persistently in contact
to get closer together exacerbates interpenetration.

On the other hand, if the constraints are hard, the objects
jitter and pop instead of exhibiting interpenetration and sink-
ing behavior. After a few minutes, the numerical instability
accumulates and the eggs explode out of the box. As explored
in the previous section, hard constraints result in numerical
instability. In highly constrained simulations, collisions are
numerically complex to solve and will eventually become
unstable.

E. Comparison with Other Simulators

Despite the inaccuracies in the clutter simulation, we still
believe that Klamp’t is an appropriate open source simulator
for this project. Other open source physics engines that we
explored, Bullet Physics [15], Moby [16] and GraspIt! [17],
were unable to produce simulations that were as physically
accurate as Klamp’t. Bullet Physics was unable to simulate
friction properly; the critical torque was frequently too high
given a specified coefficient of friction. Moby and GraspIt!
failed after simulating a gripper holding an object for a few
seconds of simulation time due to increasing interpenetration
between the gripper’s links and the object. Klamp’t was able
to produce accurate contact dynamics and stably simulated a
gripper holding an object for a few minutes. Furthermore, we
require several other features which Klamp’t is able to suitably
provide, such as simulated contact sensors, joint position
sensors, prescribed base motion for a gripper to lift objects
off a surface. In this project we will use Klamp’t, since it is
the most robust simulator we have examined.

IV. LEARNING FORWARD DYNAMICS MODELS

We aim to learn a policy to grasp an object solely on the
proprioceptive features of the Series-Elastic-Actuated (SEA)
gripper, where the physical robot is described in [12]. The
SEA gripper, Fig. 9, is composed of two fingers which each
have two links, one distal and one proximal. For model based
approaches to learn control policies, we need to develop a
forward model of the system that maps current state and action
to the next state. We can use the learned forward model to
develop a policy that finds the action at, for a given state st,
that maximizes the reward of the subsequent state st+1. In
the case of the SEA gripper, the state is composed of joint
position, joint torque, motor position, and motor command
for each joint and the action is motor command. We want to
predict the next joint position, joint torque, motor position,
and motor command for each joint given the current state and
a motor command.

Fig. 9. Series Elastic Actuated Gripper gripping a cylinder

A. Data Collection

We collected state and action pairs for the purpose of
creating a forward model by repeating the following procedure
900 times in Klamp’t and storing the state at 100Hz in
simulated time. We first randomly placed a random object
between the fingers of the gripper and assigned random masses
and coefficients of friction to the object. The objects were
either from the YCB object set [18] or were a randomly
generated ellipsoid, box, or cylinder. Next, we command the
fingers to a fully closed position until the velocity of the fingers
is less than 0, so we know that the fingers are touching the
object. This is the initial touch position. We select one of
six types of commands: commanding all the joints to random
positions, commanding one joint to a random position at a
time, commanding the proximal joints to the same random
position so that they directly oppose each other and squeeze
the object, commanding the distal joints to the same random
position so that they directly oppose each other and squeeze
the object, commanding the proximal joints to the opposite
positions so that they move parallel each other and move the
object side to side, or commanding the distal joints to the
opposite positions so that they move parallel each other and
move the object side to side. We also choose whether the joints
return to their initial touch position every few time steps or
not for a total of 12 types of motion. We terminated the data
collection when the object was no longer in reach of the object
or after simulating 200 seconds. Additionally, we collected an
hour of simulated data at 100 Hz where there was no object
between the fingers of the gripper and commanded a random
number of joints to random positions.

B. Forward Model Results

In this section, we evaluate two regression methods, Linear
Ridge Regression and a Deep Neural Network, trained on
data where there was no object between the fingers of the
gripper. When there is an object between the fingers, we do
not know the contacts between the robot and the object nor
do we know the location of the object. These features can
greatly affect the dynamics of the forward model and make
the problem much more difficult to solve. Whereas when there
is no object between the fingers, we have full knowledge of
the state and we can accurately evaluate the forward model. In
particular, we know that the torque τt+1 = kp(θmotort−θjointt),



where τt+1 is the torque at time step t+1, kp is proportional
gain (a constant), θmotort is the motor position at time step t
and θjointt is the joint position at time step t. We evaluate the
model’s ability to predict multiple time steps into the future.
The first state is the observed state, and every subsequent state
is generated by supplying the previous state and an action to
the forward model.

1) Linear Ridge Regression: Linear Ridge Regression is
an augmentation of Ordinary Least Square regression by
adding a term α that minimizes the sum of squared errors
to prevent multicollinearity. The larger α is, the more robust
the regression is to multicollinearity. Multicollinearity occurs
when features are highly linearly related. In our problem,
the features are linearly related, exemplified by the linear
relationship between torque and the difference between the
motor and joint positions. We create a linear ridge regression
model that takes in the states and actions (joint position, motor
position, joint torque, and motor command for each joint) and
outputs the state at the next time step (joint position, motor
position, joint torque). We perform a line search over various
values of α with cross validation to find the ideal value for α.
We can see in Fig. 10a that the learned model correctly predicts
that there is a change in the joint torques, joint positions, and
motor position and the correctly predicts the direction of the
change.

However, the model is not perfectly accurate. In Fig. 10b,
the observed state (the timestep 0.1 seconds before the first
predicted state) has a motor position that is equal to joint
position, but the predicted torque for the next time step is
non-zero. We were unable to learn that τt+1 = kp(θmotort −
θjointt) using a linear ridge regressor. The forward model also
predicted changes in the state when the motor command did
not change in Fig. 10b. We do not expect a linear model to
be able to learn a perfect forward model, since the mapping
from current state to next state is non-linear.

2) Deep Neural Network: Deep Neural Networks are de-
signed for the purpose of modeling non-linear systems. We
construct a neural network with 2 hidden layers with 100
hidden nodes each and ReLU activation between the layers.
Similar to the linear ridge regressor, the input to the network
were the state features and actions, and the output of the
network were state features of the next timestep. We train the
neural network for 15 epochs using batch sizes of 100, mean
squared error loss, and an Adam optimizer with a learning rate
of 0.001.

After training, we find again that while the observed states
in both plots in Fig. 11 had motor position equal joint position,
the first predicted torques are not 0. The forward model learned
by the deep neural network is also unable to learn the simple
relationship between motor position, joint position, and torque.
We have found that constructing a forward model of the
system’s dynamics to be more difficult than expected, despite
having a large amount of training data.

(a) Prediction of the next five time steps given an initial state at 1.5
seconds

(b) Prediction of the next five time steps given an initial state at 3.5
seconds

Fig. 10. These are plots of features for one of the proximal links over time in
seconds, where the lines without dots represent observed states and the dotted
lines represent the predicted states. We feed the Linear Ridge Regressor model
an initial observed state st and an action at to obtain the first predicted state
st+1. We then repeat the process with the predicted state st+1 and a given
action at to obtain the next predicted state st+2. We keep repeating the
process for a total of 5 predicted time steps. Here, a single time step is 0.1
seconds and motor position is motor command (denoted as motor_goal) offset
by 0.01 seconds

(a) Prediction of the next five time steps given an initial state at 1.5
seconds

(b) Prediction of the next five time steps given an initial state at 3.5
seconds

Fig. 11. These plots are identical to the ones in Fig. 10, except we use a
Deep Neural Network instead of a Linear Ridge Regressor



Fig. 12. The architecture of the policy π(at|st)

V. MODEL FREE REINFORCEMENT LEARNING

We have thus far been unsuccessful in creating forward
models to use for model-based control methods. Instead,
we embark on the task of using Model Free Reinforcement
Learning to learn a policy for grapsing using proprioceptive
features and evaluate the practicality of Model Free Learning.

A. Defining the Problem as a Markov Decision Process

We want to derive a policy to stably grasp an object, where
our reward indicates how good the grasp is. In reinforcement
learning, we formulate the problem as a Markov Decision
Process to learn a policy π that maximizes total expected
reward. At each time step t, the agent chooses an action at
from its current policy π(at|st), where st is the current state,
and determines the reward r(st, at). Total reward from a time
step t is Rt =

∑T
i=t γ

(i−t)r(si, ti) where T is the horizon,
and γ is a discount factor that prioritizes early reward. The
optimal policy maximizes E(R1). In our grasping problem,
actions are defined by motor commands and states are solely
defined by proprioceptive features: joint position, joint torque,
and motor position.

B. Policy Gradient Method

Once we have defined the problem as a Markov Decision
Process, we need to learn the policy. We learn the policy by
directly optimizing the policy itself through policy gradient
method. For policy gradient method, we want to maximize
E(πθ(at|st)At), where θ are the parameters of the policy and
At is the advantage of an state and action pair.

1) Policy: The policy in a policy gradient method is a
neural network takes states as input and outputs an estimated
mean of the actions. These means and user defined standard
deviations of the actions then form the Gaussian distribution
from which actions are sampled, creating a stochastic policy.
The specific network architecture we used is in Fig. 12. The
policy network π(at|st) is trained by maximizing the objective
function E(πθ(at|st)At) using gradient descent.

2) Advantage Function: Advantage At is the difference
between the state-action value and the state value. The state-
action value Q is the expected reward from a state st after

Fig. 13. The architecture of the state value function V (st)

taking action at. The state value V is the expected reward
from a state st regardless of which action is taken.

Q(st, at) = Est+1,at+1,st+2,at+2,...[
∞∑
l=0

γlr(st+l)] (10)

V (st) = Eat,st+1,at+1,st+2,at+2,...[

∞∑
l=0

γlr(st+l)] (11)

A(st, at) = Q(st, at)− V (st) (12)

We estimate the state value V (st) using a neural network
(Fig. 13). We estimate the state action value Q(st, at) as the
observed total rewards Rt for a state st. The value function
network V (st) is trained by minimizing

(Q(st, at)− V (st))
2 (13)

via gradient descent, since we want the estimated value of
the state V (st) to be close to the observed value of the state
Q(st, at).

C. Proximal Policy Optimization

By directly optimizing the policy network’s objective func-
tion through gradient descent, the steps can be too large and
overshoot the local optimum leading to divergence. Instead,
we use Proximal Policy Optimization introduced in [3] by
Schulman et. al, which modifies the objective function. They
prevent divergence by encouraging the new learned policy
πθnew to stay near the old policy πθold . The new objective
function to train the policy is

min

(
fAt, clip

(
1− ε, 1 + ε, f

)
At

)
(14)

f =
πθnew(at|st)
πθold(at|st)

(15)

where ε is the clipping parameter (Fig. 14). By clipping (15),
they do not reward new policies for significantly diverging
from old policies. See Algorithm 1 for the Proximal Policy
Optimization algorithm.



Fig. 14. Clipped
πθnew
πθold

vs.
πθnew
πθold

Algorithm 1: Proximal Policy Optimization

foreach iteration do
foreach actor do

for t := 1 to T do
Execute policy πθold in the environment

end
end
Compute estimates of A1, A2, ..., AT−1, AT

end
Maximize policy objective function (14) and minimize
value objective function (13) through gradient descent
over K epochs with a batchsize of M .

VI. EXPERIMENTS AND RESULTS

In this section, we demonstrate the ability of our simulated
robot to learn reach a given position given a simple reward
function in our toy problem, so we can establish how well the
Proximal Policy Optimization algorithm performs for simple
problems and conceptualize how this might extend to a more
complex problem. We also initiate work on developing a policy
for grasping using proprioception.

A. Toy Problem

Our objective is to create a policy that will command the
SEA gripper’s distal joint on the right finger to 45 degrees.
The state comprises the position of the joint of interest and
the action is the motor command for the same joint. Joint
position ranges from 0 to 90 degrees, where 0 is the fully
extended position. We establish the reward function for this
problem to be r(st) =

(
1 − 45−st

45

)2
. We trained the robot

for 12,000 iterations (see Appendix B-A for hyperparameters)
and were able to achieve convergence to a reward of 1.0 after
12,000 iterations (Fig. 15). Training for 12 thousand iterations
and collecting over 12 million state and action pairs took 18
hours on commodity hardware with 4 cores, demonstrating
the sample inefficiency of model free reinforcement learning
methods. However, the learned policy is robust and the joint
will reach a position of 45 degrees no matter the initial joint
position, as seen in Fig. 16.

Fig. 15. Learning Curve for the Toy Problem trained for 12,000 iterations
where the maximum possible reward is 1

(a) The initial joint position is 0 degrees

(b) The initial joint position is 80 degrees

Fig. 16. We execute the policy for the toy problem. The green represents the
motor command

B. Grasping a Box

In this experiment, our goal is to create a policy that will
stably grasp an object. The state st is composed as previously
defined: joint postion θjoint, joint torque τ , motor position
θmotor for each joint. The action at is composed of the motor
commands for each joint. Our reward function is

r(st) = 2− ||τ − 0.2||)− ||θjoint − θclosed||) (16)
θclosed = [45, 90, 45, 90] (17)

where θclosed is the vector of joint positions when the gripper
is fully closed. Distal joint positions range from 0 to 90
degrees, while proximal joint positions range from -45 to 45
degrees. We want to encourage high torques and the joints
to be as fully closed. We trained the robot by randomly
placing a box between the fingers of the robot and executing
the Proximal Policy Optimization algorithm for 18 thousand
iterations, collecting over 18 million state and action pairs.
If the box pushed out of the gripper’s reach, we reset the
scene and place the box in a new random location between
the fingers of the robot.

The policy does not improve much over the iterations as
demonstrabed by Fig. 17. However, we know that this problem
is much more complex that the Toy Problem in the previous
section, so it may be that we need to train the policy for more



Fig. 17. Learning Curve for the Grasping problem trained for 18,000 iterations
where the maximum possible reward is 2

(a) The gripper squeezes the box and the box remains within the grasp

(b) The gripper squeezes the box and the box is pushed out of the
grasp

Fig. 18. Here we have a top down view of the grasping policy being executed
with a box between the fingers. The box is supported by a surface.

iterations. As shown in Fig. 18, we learned a policy to close
the fingers to the width of the box and to squeeze the box.
Even when the box is pushed out of the grasp, the policy
continues to command a motor position that corresponds with
the width of the box. We, nevertheless, were not able to derive
a policy to stably grasp an object, since the block can slip out
of the grasp.

VII. CONCLUSION AND FUTURE WORK

Simulation is a promising method for robot skill learning.
The quantity of data required for data driven learning can be a
limiting factor on a physical robot. Simulated robots are faster
to set up than a physical robot aiding faster prototyping, and
due to parallelization, we can collect data faster in simula-
tion than in the real world. Having an accurate and robust
simulator is vital for these kinds of tasks, so we developed
tests to evaluate the robustness of a simulator, which involve
increasing the number of constraints the simulator had to solve
and investigating any simulation artifacts that occur.

We evaluated the simulator Klamp’t, and through our critical
torque test, we found that Klamp’t can accurately model
friction. Additionally, Klamp’t is able to simulate highly con-
strained scenarios, like a three finger gripper holding a glass,
for extended periods of time indicating its ability to avoid
interpenetration between objects. We investigated the source
of Klamp’t numerical instability, as it was unable to accurately
simulate dense clutter for sufficiently long periods of time.
Despite this numerical instability, we found that Klamp’t is
more robust to physical inaccuracies and interpenetration than
other simulators we examined, as all simulators will have some
amount of error.

We used Klamp’t to collect hundreds of thousands of data
points and found building forward models to be difficult even
with large datasets. We proceeded to investigate a model free
reinforcement learning technique, Proximal Policy Optimiza-
tion. We found that while model free methods can be simpler
to implement than model based methods, they are extremely
sample inefficient and require extraordinarily large training
sets. We have so far only shown the model free method to
work for our toy problem and have yet to show it to work
on a more realistic problem, where we do not have complete
state information.

We have shown that learning in simulation is a valuable
exercise that can provide great insight to the problem of
grasping and manipulation. Future work includes improving
upon our forward dynamics models by investigating different
neural network architectures and hyperparameters, using the
improved forward dynamics models to develop control meth-
ods through Model Predictive Control or Model-Based Re-
inforcement Learning, transfer learning – applying dynamics
models or controller methods learned in simulation onto a real
robot, and employing Model-Free Reinforcement Learning to
more difficult tasks, such as grasping from clutter.

APPENDIX A
POTENTIAL ENERGY AS A FUNCTION OF BLOCK

DISPLACEMENT

By definition, potential energy is the negative of total work
done, so

U = −
3∑
i=1

Wi(~x) (18)

where Wi(~x) is work done by finger i given displacement ~x.
Work done is the integral of force with respect to displacement;
in this case the force is the contact normal force N , since the
displacement is along the x-y plane. We can compute Ni from
the torques applied to finger i. At a given finger, there are three
torques to consider: τ = the torque applied at the joint (which
is user defined), τf = the torque due to gravity on the finger,
and τc the torque due to the contact force with the block. Let
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`2 − z2
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`
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Fig. 19. We want to solve for the normal contact force N so we can compute
the total work done. In this diagram, V = the force required to hold the block,
Rbase = the radius of the base of the gripper, r = the radius of a finger,
` = the length of a finger, di = the the distance between the central axis
of the base and point of contact between the finger i and the block, and
z = Rbase − r − di .

Mf be the mass of a finger and g be gravitational acceleration.
From Fig. 19, we know

τf = (
z

2
,−
√
`2 − z2
2

)× (0,Mfg) = −
z

2
Mfg (19)

τc = (Rbase − di,−
√
`2 − z2)× (−N,−V )

= −V (Rbase − di)−N
√
`2 − z2 (20)

Since τ is user defined, we set τ + τf + τc = 0 and solve for
N .

0 = τ + τf + τc

0 = τ − z

2
Mfg − V (Rbase − di)−N

√
`2 − z2

N =
τ − z

2Mfg − V (Rbase − di)√
`2 − z2

(21)

Let us assume that each finger i supports 1/3 of the block’s
weight, so V = Mb

3 . Then, every variable defining N in (21),
except for di and z which is a function of di, is known variable
that is independent of ~x. For us to ultimately understand
whether the system is in stable equilibrium or not, we need to
define di as a function of ~x.

As previously discussed, di is the distance between the
central axis of the base of the gripper and the point of contact
between a finger and the block. Looking at a top down view
of the gripper holding a block in Fig. 20, we can see that

Rblock = ||di~fi − ~x|| (22)

where fi is the unit vector in the direction of the finger from
the central axis of the base of the gripper. Thus,

R2
block = (di~fi)

2 − 2di~fi~x+ ~x2 (23)

By the quadratic formula

di = ~fi · ~x±
√

(~fi · ~x)2 + (R2
block − ~x2) (24)

Since distances must be positive

di = ~fi · ~x+

√
(~fi · ~x)2 + (R2

block − ~x2) (25)

i

~x
R b
lo
ck

di

~fi

Fig. 20. Top Down View of the Three Finger gripper holding a block slightly
displaced from the center of the hand. Rblock is the radius of the block, ~x
is the displacement of the block from the central axis of the base of the
gripper,di is the distance between the central axis of the base of the gripper
and the point of contact between finger i and the block,and fi is the unit
vector from the center of the base of the gripper to the finger.

We can substitute (25) into (21) to define N as a function of
~x.

Work done by a finger i is the integral of force with respect
to displacement of the finger.

Wi =

∫ Rbase−di−r

Rbase−Rblock−r
Ndz (26)

=

∫ Rbase−di−r

Rbase−Rblock−r

τ − z
2Mfg − V (Rbase − di)√

`2 − z2
dz (27)

Solving the integral,

Wi = (τ − rV )
[
arcsin

(D
`

)
− arcsin

(R
`

)]
+
(Mfg

2
+ V

)[√
`2 −D2 +

√
`2 −R2

]
(28)

where

D = Rbase − di − r
R = Rbase −Rblock − r

We substitute this back into (18) and plug in all of the
parameters defined by the configuration of the hand and the
block. We then can plot the potential energy of the system as
a function of x and y displacement, as we do Fig. 5.

APPENDIX B
HYPERPARAMETERS FOR PROXIMAL POLICY

OPTIMIZATION

A. Toy Problem

learning rate 0.01
number of actors 8
number of timesteps 128
batch size 256
discount factor γ 0.99
clip parameter ε 0.01
optimizer Adam
time step size 0.01 seconds



B. Grasping a Box

learning rate 0.0003
number of actors 8
number of timesteps 128
batch size 256
discount factor γ 0.99
clip parameter ε 0.01
optimizer Adam
time step size 0.01 seconds
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