
Design and Implementation of IoT Android Commissioner

Andy Lianghua Xu, Jan Janak, Henning Schulzrinne

Abstract

As Internet of Things (IoT) devices gain more popu-
larity, device management gradually becomes a ma-
jor issue to IoT device users. To manage an IoT
device, the user first needs to join it to an existing
network. Then, the IoT device has to be authenti-
cated by the user. The authentication process often
requires a two-way communication between the new
device and a trusted entity, which is typically a hand-
held device owned by the user. To ease and standard-
ize this process, we present the Device Enrollment
Protocol (DEP) as a solution to the enrollment prob-
lem described above. Starting from DEP, we then
showcase the design of an IoT device commissioner
and its prototype implementation on Android, named
Android Commissioner. The application allows the
user to authenticate IoT devices and join them to an
existing protected network.

1 Introduction

The emergence of Internet of Things (IoT) devices
gives rise to many device management issues. For
instance, smart-home owners often need to manage
different types of IoT devices separately, such as
smart locks, smart light bulbs, thermostats, smart gas
heaters. Each IoT device typically has its own setup
procedure and custom management tools provided
by the manufacturer. As a result, users typically need
to spend a significant amount of time learning how
to configure such device. For example, to set up
a newly bought IoT device, the device owner first
needs to physically install the device, join the device
to an existing Wireless Local Area Network (Wi-Fi),
and use the application provided by the manufacturer
to configure the device. In most cases, the manufac-

turer only provides a custom app to manage one par-
ticular type of IoT device. Therefore, the end user
often needs to download and install an app for each
IoT device type in order to enroll a heterogeneous
mix of IoT devices.

The manufacturer-specific way of enrolling IoT
devices poses several problems. First, proprietary
enrollment protocols without wider community re-
view often contain security vulnerabilities. Second,
the need to keep multiple copies of credentials across
many third-party enrollment apps increases the risk
that the credentials are stolen. Third, the enrollment
process of IoT devices often requires user’s physical
interactions. This is because for small IoT devices
with no user interface, it’s often hard to configure or
change Wi-Fi passwords, hence a physical button is
used to serve the same purpose of authenticating the
IoT device. However, physical interaction presents a
challenge for many types of devices that are out-of-
reach, e.g., devices that are part of building infras-
tructure. Last problem but not the least, transferring
IoT device ownership is also a difficult task for users
that purchase second-hand IoT devices. Such user
typically needs to repeat the entire enrollment proce-
dure without the possibility to reuse some of the (te-
dious and time-consuming) steps performed by the
previous user.

We propose an enrollment system for IoT devices
that attempts to address these issues. Our system is
capable of enrolling multiple IoT devices into an ex-
isting network at the same time. We also propose
the Device Enrollment Procedure (DEP), a protocol
we design to be used in the enrollment system. DEP
is a general, easy-to-implement protocol that facil-
itates communication inside the enrollment system.
The enrollment system involves two entities: one is
called the commissioner, which confers network cre-
dentials to the IoT devices and enrolls them to an ex-

1



isting network. This report mainly discusses an An-
droid implementation of the commissioner, named
the Android Commissioner. The other entity of the
enrollment system is called the Enrollment Daemon,
an application that is pre-installed on IoT devices that
receive the credentials from the commissioner. The
commissioner and the Enrollment Daemon use DEP
to communicate with each other. The goal of the en-
rollment system is to makes it possible to securely
authenticate and manage multiple IoT devices.

This report provides an overview of DEP and the
Android Commissioner app. In Section ??, we pro-
vide a brief overview of related protocols and tech-
nologies. Section ?? reviews related work. Section
?? discusses the overall design of our enrollment sys-
tem. In Section ??, we present the details of our pro-
totype implementation. Finally, we conclude in Sec-
tion ?? and discuss future plans and improvements.

2 Background

2.1 Wi-Fi Direct
Wi-Fi Direct, certified by Wi-Fi Alliance, is a proto-
col that enables Wi-Fi devices to establish network
connections directly [?, ?]. Wi-Fi Direct provides
features that are very useful in the context of IoT de-
vices. It allows the creation of a basic service set
(BSS) under IEEE 802.11 without the need to install
a dedicated Wi-Fi access point. Any Wi-Fi Direct
enabled device can function as an access point (AP),
whereas any Wi-Fi capable device can function as a
station (STA).

Wi-Fi Direct allows multiple devices to form an
IEEE 802.11 group, or a Wi-Fi P2P group. Depend-
ing on its role in the group, a device can either be
an AP or an STA. The AP device is the creator and
manager of the group, whereas other devices are all
STAs. All devices in the same Wi-Fi P2P group fall
under the same Wi-Fi, in which they must commu-
nicate with each other via the AP. To uniquely iden-
tify a Wi-Fi P2P group, its SSID is configured auto-
matically when the group is created. According to
the specification published by the Wi-Fi Alliance, a
Wi-Fi P2P group is named in the following format:
DIRECT-ID [?], where ID is a unique identifier of

Figure 1: The Hidden Node Problem. Three devices
(A, B and C) try to form a Wi-Fi P2P group by nego-
tiation. Suppose A and B negotiate and B is chosen
as the AP device of the group. If A tries to invite C to
the group but C cannot communicate with B due to
some physical obstacles, then the invitation will fail
and C will not join the group.

the group.
Wi-Fi Direct requires a group to be formed via

negotiation, in which two or more devices negoti-
ate their roles in the group. Each device announces
its intent, an integer ranging from 0 to 15. The in-
tent number is randomly chosen by default, but can
be explicitly overwritten by the application. The de-
vice with greater intent value becomes the AP of the
group. Any group member (AP or STAs) can invite
other devices to join the group as STAs. This nego-
tiation scheme has benefits and weaknesses. The up-
side is that it always selects the device that is capable
of becoming the AP without user intervention. The
downside of the negotiation scheme is commonly
known as the hidden node problem [?]. Consider the
following case shown in Figure ??.

There are three wireless devices - A, B and C. As-
sume that there’s an obstacle between B and C so that
B and C cannot communicate directly. Suppose A
and B negotiate to form a Wi-Fi P2P group. Eventu-
ally, B becomes the AP of the group. If A tries to in-
vite C to the group, the process will fail because C is
unable to communicate with B, the AP of the group.
This example shows that the negotiation scheme does
not guarantee to work if the group consists of more
than two devices. On the other hand, the negotiation
scheme works well if the goal is to form a simple ad-
hoc network of two devices in an RF environment
without obstacles. For example, it is used widely for,
e.g., connecting a laptop to a printer temporarily, or
connecting a smartphone to a digital picture frame to
transfer pictures.

2



Although Wi-Fi Direct supports more than 2 de-
vices, it has been primarily designed to serve peer-to-
peer communication between 2 devices, such as sim-
ple data transfer from a sender to a receiver. A Wi-
Fi P2P group with more than 2 devices suffers from
the hidden node problem. However, we can avoid
the hidden node problem if we have an AP device
that can be moved around freely. In the context of
this report, the movable device is the so-called com-
missioner. Thus, DEP requires the commissioner to
always become the AP of the group after the nego-
tiation process. Once a Wi-Fi P2P group is formed,
other devices can be invited by the commissioner to
join as STAs.

In late 2016, Wi-Fi Direct is supported by all
Android devices running Android 4.0 or above [?],
which covers more than 98% of the Android devices
on the market [?]. It is also compatible with Apple’s
Multipeer Connectivity Module in iOS [?].

2.2 Zeroconf

Zero-Configuration networking (Zeroconf) is a set
of protocols that can be used to create automatically
configured TCP/IP networks [?, ?]. The most promi-
nent feature of Zeroconf is that it does not require a
network administrator to configure the network man-
ually, nor any special device to setup the network.

The three major goals of Zeroconf are the assign-
ment of network addresses, the distribution and reso-
lution of network hostnames, and the automatic dis-
covery of network services. With Zeroconf, the net-
work can be set up automatically without using the
Dynamic Host Configuration Protocol (DHCP) or
relying on a Domain Name System (DNS) server
[?, ?].

DNS Service Discovery (DNS-SD) provides the
service discovery feature that Zeroconf requires by
using a multicast-DNS protocol [?, ?]. When a Ze-
roconf enabled device joins a network, it optionally
publishes services it supports by registering the fol-
lowing attributes in the local multicast DNS respon-
der:

• The hostname and port number of the service it
provides.

• Service name, e.g., HP Printer

• Service type, e.g., printer. tcp

• Other optional attributes, such as a unique se-
rial number pre-assigned by the device manu-
facturer.

3 Related Work
There are many applications in the market that sup-
port device authentication and credential transfer.
For example, Google has its own Android and iOS
application to authenticate Google Chromecast and
transfer network credentials over Wi-Fi [?]. Ama-
zon also has its own applications that serve similar
purposes for Amazon Echo [?]. Although these cre-
dential commissioning applications are robust and
secure, they are not reliable and interoperable. For
example, the application to enroll Google Chrome-
cast cannot be used to enroll Amazon Echo.

There have been efforts to authenticate and join
Wi-Fi devices under one bootstrap process, such as
Wi-Fi Protected Setup (WPS) by Wi-Fi Alliance [?]
and AllJoyn on-boarding process [?].

WPS allows wireless devices to be authenticated
and conferred wireless credentials with only one but-
ton push. Nevertheless, several security vulnerabili-
ties had been recently discovered and this eventually
led to the deprecation of WPS [?]. Also, WPS is a
single-domain solution designed for Wi-Fi and does
not work with other link layer technologies such as
Bluetooth, NFC, etc.

AllJoyn on-boarding process, proposed by the
AllSeen Alliance, is another framework that provides
a user-friendly way of enrolling new devices onto an
existing network [?]. However, it also has several
drawbacks and unaddressed issues. First, it is an in-
tegrated solution rather than a standalone one. The
enrollment process requires both parties (the enroller
and the enrollee) to have the AllJoyn framework
ready and related services deployed. Second, the
AllJoyn on-boarding frameworks limits the enroll-
ment to one device at a time. Third, the current stan-
dard of AllJoyn on-boarding framework only works
on Wi-Fi networks and is thus not extensible as well.

3



Our goal is to design and implement a standalone
enrollment framework that enables secure, fast and
reliable enrollment of multiple devices to an exist-
ing network. To the best of our knowledge, there
are no existing solutions that serve to safely and con-
veniently authenticate various kinds of IoT devices
across different technology domains.

4 Application Architecture

The commissioning process has four steps: connect
to IoT devices, discover services, authenticate de-
vices and transfer credentials. DEP specifies the pro-
tocol used in each step. Correspondingly, Android
Commissioner, an implementation of the commis-
sioner on Android OS, also has four modules: Wi-
Fi Direct module, Zeroconf service discovery mod-
ule, public-key authentication module and credential
transfer module. Each module is described in detail
in the following sections.

4.1 Wi-Fi Direct Module

IoT device discovery and connection is implemented
using Wi-Fi Direct, as introduced in Section ??. Wi-
Fi Direct provides a standardized solution for the An-
droid Commissioner to discover nearby IoT devices
and establish an auto-configured network with those
devices.

In order to communicate with other IoT devices,
the Android Commissioner creates a Wi-Fi P2P
group. We always want the commissioner to be the
group owner, as explained in the previous section.
The only way that guarantees the commissioner to
become the group owner is to create a Wi-Fi P2P
group by itself. First, the Android Commissioner sets
its Group Owner Intent to 15 and then creates a Wi-
Fi P2P group without any other devices. Then, as the
group owner (and also the only device in the group),
the commissioner can invite other IoT devices to join
the group as STAs.

We perform the following steps to connect to IoT
devices using Wi-Fi Direct.

Part I: Standard 802.11 steps:

1. IoT devices listen to broadcast beacons from the
Android Commissioner.

2. The Android Commissioner is set to discovery
mode, broadcasting beacon messages.

3. IoT devices detect beacons from the commis-
sioner and respond with a message containing
device information.

4. The Android Commissioner shows a list of dis-
covered IoT devices to the user.

Part II: DEP-specific steps:

1. The user picks a set of devices from the list to
connect to.

2. The Android Commissioner creates a Wi-Fi
P2P group and invites selected IoT devices to
join the group.

3. On each user-selected IoT device, the Enroll-
ment Daemon accepts the invitation from An-
droid Commissioner and gets ready to join the
group.

4. The commissioner asks the user to confirm the
joining of selected IoT devices to the group.

5. A Wi-Fi P2P group is formed successfully.

Notice that Wi-Fi devices negotiated via Wi-Fi Di-
rect are supposed to authenticate each other via WPS
before they establish a network connection, which
requires either a physical button press or a passphrase
entered by the user, as explained in Section ??. We
disable WPS because our IoT devices often do not
have a physical button that solely serves for authen-
tication purposes, nor do they have UI capabilities to
implement WPS authentication via passphrase. Dis-
abling WPS does not compromise security in our use
case since we do not rely on WPS to secure the net-
work layer and above. In fact, the transport layer is
secured by TLS, which we shall discuss in Section
??. Thus we do not need to rely on any link layer
security mechanism at all.

As a part of WPS requirement, Android OS must
ask for user’s authorization when another devices
joins the Wi-Fi P2P group managed by this Android

4



device. Because we don’t need to rely on WPS to en-
force link layer security, the user should mindlessly
confirm and allow the device to join regardless. This
will not compromise security because TLS can in-
stead do the same job of authenticating the device.

When the commissioner completes the commis-
sioning process, it can simply disconnect from all de-
vices. The temporary Wi-Fi P2P group is destroyed
when the commissioner stops functioning as the AP.

We discuss the implementation details of Wi-Fi
Direct on Android Commissioner in Section ??.

4.2 Zeroconf Service Discovery Module

Every time an IoT device joins the Wi-Fi P2P group,
it configures itself with an automatically generated
IP address (public, private, or link-local). For this
reason, the commissioner does not know in advance
what the device’s IP address is. Only when given a
device’s IP address can the commissioner communi-
cate with the device via TCP/IP.

Our solution is to use DNS-SD, a service discov-
ery protocol that we previously discussed in Section
??. Using DNS-SD, the commissioner can discover
a set of IoT devices that can participate in the com-
missioning service. This discovery step yields a set
of hostnames, which are then translated into IP ad-
dresses using multicast DNS. The exact sequence of
steps is as follows:

1. The commissioner discovers IoT devices offer-
ing enrolled. udp, our commissioning service,
by querying the DNS for a PTR record with that
service name.

2. DNS returns zero or more SRV records of the
form enrolled. udp.[domain], in which domain
is some unique hostname auto-configured by
each IoT device independently.

3. The commissioner then resolves the domain
field it receives to a set of IP addresses by query-
ing the multicast DNS for an IPv6 record.

4. The multicast DNS responder on each IoT de-
vice returns the device’s IP addresses.

5. The commissioner can connect to each IoT de-
vice via one of the IP addresses obtained from
such device.

When an IoT device joins the group, the Enroll-
ment Daemon on the device publishes information
about its services in DNS SRV records [?]. A sam-
ple DNS SRV record is shown below.

• Record: enrolled. udp.example.com.

• Port number: 1201

• TTL: 86400

• Type: SRV

• Target: doorlock.example.com.

The commissioner starts probing commissioning
service providers as soon as a Wi-Fi P2P group is
formed. When the commissioner discovers a new de-
vice providing the commissioning service, the com-
missioner notifies the user that it is ready to authen-
ticate that device. Once the authentication process is
initiated by the user, the commissioner sends a mes-
sage to the selected device, telling it to initiate a TLS
connection to the commissioner.

Details on how Zeroconf is implemented is dis-
cussed in Section ??.

4.3 Public-key Authentication Module
When the enrollment daemon on an IoT device re-
ceives an authentication request message, it starts
the authentication process by initiating a TLS ses-
sion to the commissioner. The authentication process
is a two-way handshake, in which the commissioner
first presents its server certificates to the IoT device,
which then presents its client certificates for the com-
missioner to verify. Client certificates are signed by
authorities trusted by the commissioner and also con-
tains IoT device specific identifiers that are preloaded
on the commissioner, so that the commissioner can
present them to the user who can then verify by in-
spection. Only after the commissioner verifies both
the identity of the IoT device and the validity of the
client certificates can the credential transfer process
be initiated. database. See Figure ??.

5



Figure 2: This figure shows the Public-Key authen-
tication flowchart. The module runs in a finite state
machine (FSM) and the flowchart can be seen as its
state transition diagram. Blocks highlighted in yel-
low are part of standard TLS handshake procedures,
whereas other are part of DEP specified procedures.

A detailed implementation of public-key authenti-
cation using Oracle’s JavaX SSL/TLS library is ex-
plained Section ??.

4.4 TLS Credential Transfer Module

We use the session generated by the TLS [?] hand-
shake to securely transfer the credentials from the
commissioner to the Enrollment Daemon.

The commissioner uses a simple format for the
credential file based on the configuration file format
of wpa supplicant, a network authentication appli-
cation for UNIX-like operating systems. The com-
missioner first sends a 4-byte integer header encoded
in little-endian format indicating the size of the pay-
load, and then followed by the payload in JSON.

Figure 3: Configuration file format used in DEP. In
the left figure, the left block indicates the file size of
the payload and the right block contains the JSON
credential file (the payload). The right figure shows
a sample JSON credential file.

5 Implementation

Below we introduce the core classes and libraries in
the Android SDK that implement the required func-
tionalities and protocols. A brief walk-through of
the application framework is discussed here so that
with this documentation, the application is easily
extensible and maintainable by developers. Since
the application is comprised of several modules, we
first elaborate on the WifiP2pManager class, which
provides application level APIs for managing Wi-Fi
P2P connectivity. We then discuss the NsdManager

class, which provides APIs for discovering services
on joined networks. Lastly, we describe how the TLS
server and the certificate exchange module are imple-
mented on Android.

5.1 WifiP2pManager Class

WifiP2pManager is a library from Android SDK
which provides the interface for applications to
interact with the Wi-Fi Direct module on An-
droid [?]. When the MainActivity of Android
Commissioner is created, a handler instance of
WifiP2pManager, named mManager, is obtained
using getSystemService(). All controlling com-
mands shall be invoked via accessing the member
functions of mManager.

When the user toggles on the discovery mode,
mManager.discover() is called and an instance of
WiFiBroadcastReceiver gets created and bound
to mManager. Once a Wi-Fi Direct device is dis-
covered, WiFiBroadcastReceiver receives a call-
back. Information pertaining to discovered devices
are stored in WifiP2pDevice objects.

6



Before connecting to the device, we have
to first create a WifiP2pGroup by calling
mManager.createGroup(). Then by invoking
mManager.connect(deviceInfo), an invitation
to join the group is sent to the corresponding Wi-Fi
P2P device. We can repeat this process for as
many Wi-Fi P2P devices as the user hopes for.
Once invitations are accepted, the group formation
is completed. We then have a fully functioning
WifiP2pGroup.

To monitor the status of a WifiP2pGroup,
mManager.requestGroupInfo() can be called to
obtain various information about the WiFiP2pGroup
the commissioner has created, including a list of
joined device, the group owner information and other
relevant details.

mManager.removeGroup() is called to destroy
the group and disconnect the commissioner from all
devices.

5.2 NsdManager Class

Android SDK offers NsdManager for appli-
cations to discover DNS-based services [?].
Similar to WifiP2pManager, NsdManager

is initialized using getSystemService().
To begin the discovery process, we create a
NsdManager.DiscoveryListener() object
and wait for its callback upon finding a new
service in WiFiP2pGroup. Detailed information
about a discovered service is wrapped into an
NsdServiceInfo object. However, this object
does not contain the address and port number of
the discovered service. To obtain the address and
port number, mNsdManager.resolveService()

must be called with the NsdServiceInfo ob-
ject passed in as parameter. The callback to
mNsdManager.resolveService() should contain
the relevant information we need, including the
service’s address and port number. At this point, we
have a list of services with their names, addresses
and port numbers.

5.3 TLS Server and Certificate Ex-
change

We use Java Secure Socket Extension (JSSE) library
to implement the certificate exchange mechanism
and the TLS Server [?]. The JSSE library uses a
KeyStore object to store both the server certificate
and the private key in BKS format. The library uses
a Certificate object to store the DER encoded CA
certificate in X.509 format. A KeyStore object and a
Certificate object together are used to generate a
SSLContext object using TrustManagerFactory

and KeyManagerFactory.
To create a secure socket object, the JSSE

library uses SSLServerSocketFactory with
the SSLContext object as its parameter. A
SSLServerSocket is generated and can be used
just as a regular Java Socket object to accept
incoming connections.

To turn on client authentication,
SSLServerSocket.setNeedClientAuth()

needs to be toggled to true. More information can
be found in the documentation of the JSSE library
[?].

6 Conclusion and Future Work
DEP, implemented on both Android Commissioner
and Enrollment Daemon, provides a viable and sta-
ble solution to authenticate and join IoT devices to
Wi-Fi access points (AP). Since we only use open
protocols such as Wi-Fi Direct, Zeroconf, Public-
Key Authentication and TLS, manufacturers can eas-
ily adapt our solution on existing hardware.

However, Android Commissioner is still a techni-
cal preview rather than a user-friendly application.
For instance, the Android Commissioner presents to
the user IP addresses and MAC addresses to identify
IoT devices, which may be confusing to users who
do not have any technical background. Moreover,
when the application quits, it forgets the authentica-
tion state of all IoT devices.

To address the issues above, we plan improve the
application to make it more user-friendly. On user
experience side, we believe that one-click authenti-
cation makes the whole process much easier for com-

7



mon users. Scan and authentication process should
run securely in the back-end without much user in-
teraction.

We can also make a lot of improvements on the ap-
plication. We can utilize device vendors’ data such
as electronic receipts (of these IoT devices) as device
identifiers to simplify the authentication process. For
instance, the commissioner application can load con-
figuration files attached to online invoice to authenti-
cate IoT devices purchased from Amazon, based on
device certificate signatures provided by the vendors.
We can also link the commissioner to a local or cloud
database to keep track of IoT device authentication
states.

We believe that these extra features are essential
for Android Commissioner to be a shippable product
for common users to manage IoT devices in real life.

8


