
Deobfuscating Android Applications through Deep
Learning

Fang-Hsiang Su
Columbia University

Email: mikefhsu@cs.columbia.edu

Jonathan Bell
George Mason University

Email: bellj@gmu.edu

Gail Kaiser
Columbia University

Email: kaiser@cs.columbia.edu

Baishakhi Ray
University of Virginia

Email: br8jr@virginia.edu

Abstract—Android applications are nearly always obfuscated
before release, making it difficult to analyze them for malware
presence or intellectual property violations. Obfuscators might
hide the true intent of code by renaming variables, modifying
the control flow of methods, or inserting additional code. Prior
approaches toward automated deobfuscation of Android appli-
cations have relied on certain structural parts of apps remaining
as landmarks, un-touched by obfuscation. For instance, some
prior approaches have assumed that the structural relation-
ships between identifiers (e.g. that A represents a class, and
B represents a field declared directly in A) are not broken
by obfuscators; others have assumed that control flow graphs
maintain their structure (e.g. that no new basic blocks are
added). Both approaches can be easily defeated by a motivated
obfuscator. We present a new approach to deobfuscating Android
apps that leverages deep learning and topic modeling on machine
code, MACNETO. MACNETO makes few assumptions about the
kinds of modifications that an obfuscator might perform, and
we show that it has high precision when applied to two different
state-of-the-art obfuscators: ProGuard and Allatori.

I. INTRODUCTION

Android apps are typically obfuscated before delivery, in
an effort to decrease the size of distributed binaries and
reduce disallowed reuse. In some cases, malware authors take
advantage of the general expectation that Android code is
obfuscated to pass off obfuscated malware as regular code:
obfuscation will hide the actual purpose of the malicious code,
and the fact that there is obfuscation will not be surprising, as
it is already a general practice. Hence, there is great interest
in automated deobfuscators: tools that can automatically find
the original structure of code that has been obfuscated.

Deobfuscators can be used as a part of various automated
analyses, for instance, plagiarism detection or detecting precise
versions of third party libraries that are embedded in apps,
allowing auditors to quickly identify the use of vulnerable
libraries. Similarly, deobfuscators can be used to perform code
search tasks among obfuscated apps using recovered identifiers
and simplified control flow. Deobfuscators can also be used as
part of a human-guided analysis, where an engineer inspects
applications to determine security risks.

In general, deobfuscators rely on some training set of non-
obfuscated code to build a model to apply to obfuscated code.
Once trained, deobfuscators can recover the original names
of methods and variables, or even the original structure and
code of methods that have been obfuscated. For example, some
deobfuscation tools rely on the structure of an app’s control

flow graph. However, they are susceptible to obfuscators that
introduce extra basic blocks and jumps to the app’s code and
can be slow to use, requiring many pair-wise comparisons to
perform their task [1], [2]. Using another approach, DeGuard
[3] is a state-of-the-art deobfuscator that builds a probabilistic
model for identifiers based on the co-occurrence of names
(e.g., knowing that some identifier a is a field of class b which
is used by method c). While this technique can be very fast
to apply (after the statistical model is trained), this approach
is defeated by obfuscators that change the layout of code (e.g.
move methods to new classes or introduce new fields).

We present a novel approach for automated deobfuscation
of Android apps: MACNETO, which applies recurrent neural
networks and deep learning to the task. MACNETO leverages
a key observation about obfuscation: an obfuscator’s goal is to
transform how a program looks as radically as possible, while
still maintaining the original program semantics. MACNETO
deobfuscates code by learning the deep semantics of what code
does through topic modeling. These topic models are a proxy
for program behaviors that are stable despite changes to the
layout of code, the structure of its control flow graph, or any
metadata about the app (features used by other deobfuscators).
These topic models are trained using a relatively simple feature
set: a language consisting of roughly 20 terms that represent
the different low-level bytecode instructions in Android apps
and roughly 200 terms that represent the various Android
APIs. MACNETO’s topic model is resilient to many forms
of obfuscation, including identifier renaming (as employed by
ProGuard [4]), method call injection, method splitting, and
other control flow modifications (as employed by Allatori [5]).

MACNETO uses deep learning to train a topic classifier
on known obfuscated and un-obfuscated apps offline. This
training process allows MACNETO to be applicable to various
obfuscators: supporting a new obfuscator would only require
a new data set of obfuscated and deobfuscated apps. Then,
these models are saved for fast, online deobfuscation where
obfuscated code is classified according to these topics, and
matched to its original code (which MACNETO hadn’t been
trained to recognize). This search-oriented model allows MAC-
NETO to precisely match obfuscated code to its deobfuscated
counterpart. This model is very applicable to many malware-
related deobfuscation tasks, where a security researcher has
various malware samples and is trying to identify if those
samples had been hidden in an app. Similarly, it is immediately



applicable to plagiarism-related deobfuscation tasks, were an
analyst has the deobfuscated version of their code and is
searching for obfuscated versions of it.

We evaluated MACNETO by building several deobfuscation
models based on over 1, 500 real android apps using two
popular, advanced obfuscators: ProGuard [4] and Allatori
[5]. Compared to a state-of-the-art statistical approach [3],
MACNETO had significantly higher precision at recovering
method names obfuscated by ProGuard 96% vs 67%.

On Allatori (which employs significantly more complex
obfuscations), MACNETO maintained a good precision (91%),
while the state-of-the-art approach could not be applied at all.
Moreover, we found that MACNETO performs well even with
a relatively small training set. Based on these findings, we
believe that MACNETO can be very successful at deobfuscating
method names.

The contributions of this paper are:

• A new approach to deobfuscation leveraging deep learn-
ing and machine topics.

• A new approach to automatic classification of programs
with similar semantics.

• An evaluation of our tool on two popular obfuscators.
• An open source implementation of our approach, MAC-

NETO, released via an MIT license on GitHub 1.

II. BACKGROUND

In general, obfuscators make transformations to code that
result in an equivalent execution, despite structural or lexical
changes to the code — generating code that looks different,
but behaves similarly. Depending on the intended purpose (e.g.
hiding a company’s intellectual property, disguising malware,
or minimizing code size), a developer may choose to use a
different kind of obfuscator. At a high level, these obfuscations
might include lexical transformations, control transformations,
and data transformations [6]. Obfuscators might choose to
apply a single sort of transformation, or several.

Lexical transformations are typically employed by “mini-
mizing” obfuscators (those that aim to reduce the total size of
code for distribution). Lexical transformations replace iden-
tifiers (such as method, class or variable names) with new
identifiers. Since obfuscators are applied only to individual
apps, they must leave identifiers exposed via public APIs
unchanged. Similarly, if some obfuscated class C1 extends
some non-obfuscated class C2 and overrides method m, then
the obfuscator can’t change the name of m without breaking
inheritance structures.

Control transformations can be significantly more complex,
perhaps inlining code from several methods into one, splitting
methods into several, reordering statements, adding jumps and
other instructions [7], [8]. Control transformations typically
leverage the limitations of static analysis: an obfuscator might
add additional code to a method, with a jump to cause the
new code to be ignored at runtime. However, that jump might

1MACNETO will not be public during double-blind review.

be based on some complex heap-stored state which is tricky
for a static analysis tool to reason about.

Finally, data transformations might involve encoding data
in an app or changing the kind of structure that it’s stored in.
For instance, an obfuscator might encrypt strings in apps so
that they can’t be trivially matched, or change data structures
(e.g. in Java from an array to an ArrayList) [7].

In this paper we define the deobfuscation problem as
follows. A developer/security analyst has access to a set of
original methods and their corresponding obfuscated versions,
and her job is to identify the corresponding original version
given obfuscated program. Then the developer/analyst can
analyze the original program to identify malware variants
which becomes a significantly easier problem. Thus, in our
case, deobfuscation essentially becomes a search problem,
similar to DeGuard [3].

We assume that obfuscators can make lexical, control, and
data transformations to code. We do not base our deobfus-
cation model on any lexical features, nor do we base it on
the control flow structure of or string/numerical constants in
the code. When inserting additional instructions and methods,
we assume that obfuscators have a limited vocabulary of no-
op code segments to insert. That is, we assume that there is
some pattern (which need not be pre-defined) that our deep
learning approach can detect. MACNETO relies on a training
phase that teaches it the rules that the obfuscator follows:
if the obfuscator is truly random (with no pattern to the
sort of transformations that it makes), then MACNETO would
be unable to apply its trained deobfuscation model to other
obfuscated apps. However, we imagine that this is a reasonable
model: an adversary would have to spend an incredible amount
of resources to construct a truly random obfuscator.

Since it relies on static analysis, MACNETO could also
be defeated by an obfuscator that inserts many reflective
method calls (which are dynamically resolved at runtime).
This obfuscator could effectively mask all of the 250 features
that MACNETO uses to classify methods to topic vectors. In
that case, MACNETO would be relying only on the bytecode
instructions. MACNETO could be adapted to better analyze
reflection through existing techniques [9].

III. MACNETO OVERVIEW

From a set of original and obfuscated methods, MACNETO
intends to identify the original version of a given obfuscated
method. Here we describe an overview of MACNETO.

Although obfuscators may perform significant structural
and/or naming transformations, the semantics of a program
before and after obfuscation remain the same. MACNETO
leverages such semantic equivalence between an original pro-
gram executable and its obfuscated version at the granularity
of individual methods. The semantics of a method are captured
as the hidden topics of its machine code (“machine topics”)
instead of human texts such as identifier names in methods. By
construction, an obfuscated method is semantically equivalent
to its original, non-obfuscated method that it is based on.
MACNETO assumes that the machine topics of an obfuscated



Source 
Code

Deep
Learning

Machine
Code

Call Graph
Analyzer

Machine 
Topics

Instruction
Dist. 

Computation

inst.
vectors

Obfuscated
Machine Code

Instruction
Dist.

Computation
Graph Diff.
Analyzer

inst.
vectors

⎡
⎢⎢⎢⎣

t1
t2
...

tm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

i1
i2
...
in

⎤
⎥⎥⎥⎦inst.

vectors inst.
vectors

topic
vectors

Program
Classifier

obfus.

Unknown
Machine code

Topic
Filter

Relevance
Scorer

Predicted
Machine code

Offline 
Training

Online 
Deobfuscation

Classification/Annotation Co-Training

Testing

Fig. 1: The system architecture of MACNETO, which consists of four stages: instruction distribution, classification, deep-learning
on machine topics and online scoring, to deobfuscate Android apps.

method will match those of the original method. In its learning
phase, MACNETO is provided a training set of methods, which
are labeled pairs of obfuscated and non-obfuscated methods.
Once training is complete, MACNETO can be presented with
an arbitrary number of obfuscated and deobfuscated methods,
and (assuming that the deobfuscated method exists in the input
set) accurately match each obfuscated method with its original
version. In the event that the original method body isn’t known,
MACNETO can return a suggested method (that it had been
trained on) which was very similar to the original method,
and, in our evaluation, typically has the same name.

MACNETO utilizes a four stage approach:
(i) Computing Instruction Distribution. For an application

binary (original or obfuscated), MACNETO parses each method
as a distribution of instructions, which is analogous to the term
frequency vector for a document. Instead of considering just
the instructions of each method, MACNETO also recursively
considers the instructions of each method’s callee(s), which
helps MACNETO to deeply comprehend behavioral semantics.

(ii) Machine Topic Modeling. Identifies machine topics from
the instruction distribution of the original method. These
machine topics are used as a proxy for method semantics. The
same topic model is used later to annotate the corresponding
obfuscated method as well.

(iii) Learning. Uses a two-layered Recurrent Neural Net-
work (RNN) where the input is the instruction distribution of
a method (original and obfuscated), and the output layer is
the corresponding machine topic distribution of the original
method. MACNETO uses this two-layered RNN as a program
classifier that maps an original method and its obfuscated
version to the same class and represented by machine topic
vector . This is the training phase of the RNN model. Such
model can be pre-trained as well.

(iv) Deobfuscating. This is basically the testing phase of the

RNN model. It operates on a set of original and obfuscated
methods that form our testing set. Given an obfuscated method,
the above RNN model tries to infer its topic distribution;
MACNETO in turn tries to find a set of original methods
with similar topic distribution and ranks them as possible
deobfuscated methods.

Figure 1 shows a high level overview of MACNETO’s
approach for deobfuscation. The first three stages occur offline
and can be pre-trained.

Consider the example readAndSort program shown in
Figure 2, assuming that this is a method belonging to an
Android app that we are using to train MACNETO. To compute
the instruction distribution of readAndSort, MACNETO first
calculates the callgraph and identify its two callees read
and sort. The instruction distributions of these two callee
methods will be inlined into readAndSort. Then MACNETO
moves to the next step, applying topic modeling on the instruc-
tion distributions of all methods including readAndSort in
the training app set. The result of this step is a vector contain-
ing the probability/membership that a method has toward each
topic: a Machine Topic Vector (MTV). MACNETO annotates
both the original and obfuscated versions of this method with
this same MTV. This annotation process allows our learning
phase to predict similar MTVs for a method and its obfuscated
version, even when their instruction distributions are different.

IV. MACNETO APPROACH

This section describes the four stages of MACNETO in de-
tail, illustrating our several design decisions. We have designed
MACNETO to target any JVM-compatible language (such as
Java), and evaluate it on Android apps. MACNETO works at
the level of Java bytecode; in principle, its approach could be
applied to other compiled languages as well. In this paper,
executable/binary actually means Java bytecode executable
and machine code means Java bytecode.



A. Computing Instruction Distribution

We use the instruction distribution of a method to begin to
approximate its behavior. This involves two main steps: 1) for
a target method m (original or obfuscated), MACNETO recur-
sively identifies all methods that it invokes (its callees) and
then cumulatively computes the instruction distribution of m
and its callees using term frequency distribution, 2) MACNETO
identifies the differences in callees between an original and
obfuscated method using a graph diff algorithm, and optionally
filters out the additional callees from obfuscated methods.
Here, we will explain each of these steps.

1) Instruction Distribution (ID): ID is a vector that
represents the frequencies of important instructions. For a
method Mj , its instruction distribution can be represented as
IDMj

= [freqI1j , freq
I2
j , ...freq

Ia
j ], where a represents the

index of an instruction and freqIaj represents the frequency
of the ath instruction in the method Mj . This step is similar
to building the term frequency vector for a document.

MACNETO considers various bytecode operations as indi-
vidual instructions (e.g. loading or storing variables), as well
as a variety of APIs provided by the Android framework.
Android API calls provide much higher level functionality
than simple bytecode operators, and hence, including them as
“instructions” in this step allows MACNETO to capture both
high and low level semantics. However, including too many
different instructions when calculating the distribution could
make it difficult to relate near-miss semantic similarity.

To avoid over-specialization, MACNETO groups very similar
instructions together and represents them with a single word.
For instance, we consider all instructions for adding two values
to be equivalent by abstracting away the difference between
the instruction fadd for adding floating point numbers and
the instruction iadd for adding integers. All instructions for
adding different data types are categorized as a single one
xadd. Table I lists all of the instructions MACNETO considers.

Further, for a target method under analysis, MACNETO
inlines the instructions from the target’s callee method(s)
recursively in the instruction distribution to capture the tar-
get’s context. For that, MACNETO constructs callgraphs for
applications and libraries using FlowDroid [10], a state-of-the-
art tool that uses context-, flow-, field-, and object-sensitive
android lifecycle-aware control and data-flow analysis [10].
For example, consider the method readAndSort as shown
in Figure 2. readAndSort simply reads the first line of
a file as a string and then sorts this string. It delegates its
functionality to two subroutines, readFile and sort. Both
readFile and sort also invoke several methods, such as
toCharArray and readLine APIs included in Android to
help them complete their tasks. The corresponding call graph
is shown in Figure 2a.

MACNETO considers following two classes of callee meth-
ods: (i) Android APIs. These methods are offered by the
Android framework directly. MACNETO models these APIs
as single instructions. readLine and toCharArray in
Figure 2 belong to this category. (ii) Application methods.

TABLE I: MACNETO’S INSTRUCTION SET.

Opcode Description

xaload Load a primitive or an object from an array, where x
represents a type of primitive or object.

xastore Store a primitive or an object to an array, where x
represents a type of primitive or object.

arraylength Retrieve the length of an array.
xadd Add two primitives on the stack, where x represents a

type of primitive.
xsub Subtract two primitives on the stack, where x represents

a type of primitive.
xmul Multiply two primitives on the stack, where x represents

a type of primitive.
xdiv Divide two primitives on the stack, where x represents a

type of primitive.
xrem Compute the remainder of two primitives on the stack,

where x represents a type of primitive.
xneg Negate a primitive on the stack, where x represents a

type of primitive.
xshift Shift a primitive on the stack, where x represents integer

or long.
xand Bitwise-and two primitives on the stack, where x repre-

sents integer or long.
xor Bitwise-or two primitives on the stack, where x repre-

sents integer or long.
x_xor Bitwise-xor two primitives on the stack, where the first

x represents integer or long.
iinc Increment an integer on the stack.
xcomp Compare two primitives on the stack, where x represents

a type of primitive.
ifXXX Represent all if instructions. Jump by comparing

value(s) on the stack.
xswitch Jump to a branch based on the index on the stack, where

x represents table or lookup.
android_apis The APIs offered by the Android framework, which usu-

ally starts from android., dalvik., java.. MAC-
NETO records 235 android apis.

These are all the other methods beside Android APIs. These
are methods from an application or third party libraries used
by an application. While MACNETO treats Android APIs as
individual instructions, all other application method calls are
inlined into the calling method, resulting in the instruction
distributions of those callee methods being merged directly
in the target method. We can then define the instruction
distribution of a target method Mj as:

IDMj
= IDMj

+
∑

Mk∈callees(Mj)

IDMk
(1)

, where j is the index of the current method and k represents
the indices of its callee methods. We use these instruction
distributions as the input source for next step to identify topics
embedded in programs.

To calculate these instruction distributions, MACNETO uses
the ASM Java bytecode library [11], and Dex2Jar [12]. This
allows MACNETO to deobfuscate Android apps (which are
distributed as APKs containing Dex bytecode), while only
needing to directly support Java bytecode. For collecting
Android APIs, we analyze the core libraries from Android
API level 7 to 25 [13].

2) Graph Diff: Some obfuscators may inject additional in-
structions into the original methods, which might then change
instruction distribution and hence the perceived semantics of
those methods. Since MACNETO inlines application method



public String readAndSort(String f) {
char[] data = readFile(f);
return sort(data);

}

readAndSort

readFile

sort

BufferedReader

FileReader

readLine

toCharArray

String

(a) The readAndSort method and its callgraph.

public static char[] readFile(String f) {
try {

BufferedReader br =
new BufferedReader(new FileReader(f));

String first = br.readLine();
return first.toCharArray();

} catch (Exception ex) {
}
return null;

}
public static String sort(char[] data) {
for (int i = 1; i < data.length; i++) {
int j = i;
while (j > 0 && data[j - 1] > data[j]) {
char tmp = data[j];
data[j] = data[j - 1];
data[j - 1] = tmp;
j = j - 1;

}
}
return new String(data);

} (b) The callee methods of readAndSort.

Fig. 2: The readAndSort method and its callgraph (a). Two callee methods, readFile and sort, of readAndSort (b).

calls, inserting additional method calls could cause significant
distortions to the instruction distribution of a method. MAC-
NETO combats this obfuscation by learning (and then filtering
out) superfluous method calls that are systematically inserted
by obfuscators from the callgraphs before/after obfuscation
of the original method. We call this learning module on
callgraphs as graph diff.

For each method in an Android app, MACNETO first ana-
lyzes the callee difference of the current method Mj before
and after the obfuscation

∆Mj = callees(Mobfus
j )− callees(Mj) (2)

, where callees(Mj) and callees(Mobfus
j ) represent the

callees of Mj before and after the obfuscation, respectively.
If ∆Mj is not empty, MACNETO records the instruction
distributions of the methods in ∆Mj as patterns. In a training
app set, MACNETO computes the appearances of each pattern
(instruction distribution) it learns from the callee differences
and reports those patterns having high support. We first define
the total callee differences detected by MACNETO as

Diffcallee(T ) =
⋃

k

∆Mk (3)

, where T represents a training app set and k is the method
index. Then we define the support of a pattern as

Support(Patterni) =
Count(Patterni)∑
j Count(Patternj)

(4)

, where i is pattern index, Patterni ∈ Diffcallee(T ) and
Count(.) returns the appearance number of a pattern.

We again use readAndSort example in Figure 2
to demonstrate how graph diff works. Let’s assume
an obfuscator injects a method decrypt(String)
to method readAndSort; the callees of obfuscated
readAndSort becomes callee(readAndSortobfus) =
{read,sort,decrypt}. Thus, the ∆readAndSort =
{decrypt}. The instruction distribution of decrypt,
IDdecrypt, is recorded by MACNETO as a pattern. If the

support of such pattern is higher than a threshold (0.03 in
this paper), MACNETO reports it as a significant pattern and
uses it to filter out superfluous method calls in the testing app
set.

Note that the Graph Diff step is optional, but can have a
positive impact to recover methods obfuscated by an advanced
obfuscator. We evaluated the impact of including the Graph
Diff step in detail in Section V.

B. Machine Topic Modeling

Topic modeling [14] is a generative model that identifies
the probabilities/memberships that a document has to (hidden)
topics or groups. Topic modeling has been widely used in
software engineering literature to understand programs and
detect anomalies [15], [16]. Most existing approaches apply
topic modeling on human-readable program elements (e.g.,
method names, comments or texts in source code) or program
documents to identify hidden topics. These approaches treat
each program as plain text and use topic modeling to identify
topics in programs, as labeled by human words. However,
these human words may be noisy and inadequate to describe
program behavior. Further, an obfuscated or anonymized pro-
gram may not have a meaningful method name or other
identifiers, and would not have any comments left. Existing
approaches reliant on human words to cluster or classify
programs by topics may fail to process such programs.

In contrast, in this paper, we propose the concept of Ma-
chine Topics, where we attempt to identify the probability
distribution that a method belongs to multiple topics from
machine code. We further include machine code of the callee
methods to retrieve the contextual semantics as well. Mod-
eling instructions (machine code) as terms and methods as
documents, MACNETO uses Latent Dirichlet Allocation [14]
to extract hidden machine topics in methods. We extract topics
from the original method since some noisy instructions such
as nop might be injected into an obfuscated method by an
obfuscator. To the best of our knowledge, MACNETO is the
first system to identify topics of programs from machine code.



LDA models each document as a sequence of words, where
each document can exhibit a mixture of different topics. Each
topic is subsequently modeled as a vector of words. Here,
we model instruction distribution of a method as a document
where each instruction is a word. Thus, following the concept
of LDA, a machine topic becomes a vector of instructions
(machine words) and can be represented as:

MTi = [PrI1i , P r
I2
i ...P r

Ia
i ] (5)

, where MTi is the ith machine topic and PrIai represents
the probability of the instruction Ia belonging to the topic in
MTi. Each method can also be modeled in terms of machine
topic vector (MTV):

MTV (Mj) = [PrMT1
j , P rMT2

j ...P rMTb
j ] (6)

, where Mj represents the jth method and MTb represents the
bth machine topic. PrMTb

j represents the probability/member-
ship of the method Mj belonging to the topic MTb.

In MACNETO, we define 35 machine topics (b = 35) and
have 252 types of instructions (a = 252) as we listed in Table
I. While optimizing the topic number is out of the scope of
this paper, we observe that 35 machine topics can split all
methods in a reasonable way. Using these 35 machine topics,
we generate unique machine topic vector (MTV). Note that,
the dimension of each MTV is same as the topic number, i.e.,
35, although the number of topic vectors can be potentially
infinite due to different probability values (see Equation 6).
Thus, a unique method Mj can have a unique topic vector
MTV (Mj) that encodes the probability of the method belong-
ing to each machine topic. MTV (Mj) becomes the semantic
representation of both Mj and its obfuscated counter part
Mobfus

j . We annotate each original and its obfuscated method
with the corresponding machine topic vector and use them
to train our RNN based classifier, which will be discussed in
Section IV-C. To compute machine topics and topic vector for
each method, we use the Mallet library [17].

In the next two steps, MACNETO aims to deobfuscate
an obfuscated method using a RNN based deep learning
technique. In the training phase, the RNN learns the semantic
relationship between a original and obfuscated method through
their unique MTV. Next, in the testing (deobfuscating) phase,
given a obfuscated method, RNN retrieves a set of candidate
method having similar MTVs with the obfuscated method.
MACNETO then scored these candidate methods and outputs
a ranked list of original methods with similar MTVs.

C. Learning Phase

In this step, MACNETO uses a RNN based deep learning
technique [18] to project the low-level features (Instruction
Distributions) of methods to a relevant distribution of machine
topics (Machine Topic Vector). MACNETO treats MTV as a
proxy for program semantics, which should be invariant before
and after obfuscation. Thus, MTV can serve as a signature
(i.e., class) of both original and obfuscated methods. Given
a training method set T , MACNETO attempts to project each

method Mj ∈ T and its obfuscated counterpart Mobfus
j to the

same MTV, i.e., Mj →MTV (Mj)←Mobfus
j .

Similar deep learning technique is widely adopted to clas-
sify data [18]. However, most of these data comes with pre-
annotated classes to facilitate learning. For example, Socher
et al. [18] uses deep learning to classify images to relevant
wordings. Such work has benchmarked images accompanied
with correct descriptions in words to train such classifiers,
MACNETO does not have any similar benchmarks. However,
MACNETO does have available sets of applications, and has
access to obfuscators. Hence, MACNETO builds a training set
by co-training a classifier on obfuscated and deobfuscated
methods (with MACNETO knowing the mapping from each
training method to its obfuscated counterpart).

MACNETO characterizes each method Mj and Mobfus
j by

the same machine topic vector MTV (Mj), allowing it to
automatically tag each method for training program classi-
fiers. Given an unknown obfuscated method, MACNETO can
first classify it to relevant machine topics (a MTV), which
helps quickly search for similar and relevant original method.
Only these original methods sharing similar MTVs with the
unknown method will be scored and ranked by MACNETO,
which enhances both system performance and effectiveness of
deobfuscation.

To train such projection/mapping, MACNETO tries to mini-
mize the following objective function

J(Θ) =
∑

Mj∈T

∥∥∥MTV (Mj)− g(θ(2) · f(θ(1) ·Mj))
∥∥∥
2

+
∥∥∥MTV (Mj)− g(θ(2) · f(θ(1) ·Mobfus

j ))
∥∥∥
2

(7)

, where T is a training method set, MTV (Mj) ∈ Rb (be-
cause MACNETO defines b machine topics), Θ = (θ(1), θ(2)),
θ(1) ∈ Rh×a and θ(2) ∈ Rb×h. For hidden layers, MAC-
NETO uses tanh function (f(.)) as the first layer and uses
logistic function (g(.)) as the second layer. MACNETO uses
the technique of stochastic gradient descent (SGD) to solve
this objective function.

As we discussed in Section IV-B, there can be infinite
classification (MTV) in MACNETO, which may result in the
un-convergence of our classifier learning. Thus in this learning
phase, we select those methods having high memberships
(> 0.67) toward specific machine topics. Our experiment
result shows that the classifier built on these high-membership
methods actually work on all methods (see Section V).

D. Deobfuscating

Taking an obfuscated method as a query, MACNETO at-
tempts to locate which original method in the codebase have
the lowest distance from it. The RNN in MACNETO can effec-
tively infer the machine topic vector (MTV) of an unknown
obfuscated method and then locate a set of original candidates
having similar MTVs measured by the cosine similarity.

To further score and rank candidates, we develop a scoring
model, which takes both semantic information and structural
information of programs [19], [20] into account. For semantic



information, we use the instruction distribution as the feature.
For structural information, we select the features of methods
on callgraphs, which include centrality (PageRank in this
paper), in-degree (how many other methods call this method)
and out-degree (how many other methods this method calls)
of the method. We then use a linear combination to compute
distance between two methods:

Dist(Mk,Ml,W ) = winst ∗Distinstkl + wc ∗Distckl
+win ∗Distinkl + wout ∗Distoutkl

(8)

, where k and l are method indices, and W =
{winst, wc, win, wout}. For computing Distinstkl , we apply co-
sine similarity, while for the other three features, we compute
the absolute differences between two methods.

Because our objective is to maximize the precision of the
deobfuscation, we can formalize our objective function as

argmax
W

∑

i

I(Mi, Deob(M
obfus
i , T,Dist(Mk,Ml,W )))

(9)
, where T is a training method set, Deob(.) returns the nearest
neighbor method of Mobfus

i based on the distance function
and I(.) returns 1 if the results from Deob(.) is Mi else return
0. To solve this function, we apply Simulated Annealing [21]
to MACNETO for optimizing the weighting numbers W .

V. EVALUATION

We evaluated the performance of MACNETO on two pop-
ular obfuscators: ProGuard [4] and Allatori [5]. For each
obfuscator, we gave MACNETO the task of recovering the
original version of each obfuscated method. We selected these
obfuscators based on a recent survey of Android obfuscators,
selecting ProGuard for its widespread adoption and Allatori for
its complex control and data-flow modification transformations
[22]. We performed our evaluation on the most recent versions
of these tools at time of writing: ProGuard 5.3.2 and Allatori
6.0. In particular, we answer the following two research
questions:
• RQ1: How accurately can MACNETO deobfuscate meth-

ods transformed by a lexical obfuscator?
• RQ2: How accurately can MACNETO deobfuscate meth-

ods that are obfuscated using control and data transfor-
mation?

To judge MACNETO’s precision for method deobfuscation,
we needed a benchmark of plain apps (that is, not obfuscated)
from which we could construct training and testing sets. For
each app, we applied both ProGuard and Allatori, each of
which output a mapping file (to aid in debugging) between the
original (not obfuscated) method, and the obfuscated equiva-
lent. Hence, we used the 1, 611 Android apps from the F-
Droid open-source repository of Android apps as experimental
subjects [23]. In our experiments, we vary the numbers of apps
included in training and testing app sets and then randomly
select apps into both sets.

We first split these apps into a training set and a testing
set and then obfuscate each of them. Both the original and

obfuscated training sets are used to train the program classifier
using the first three steps outlined above. To evaluate the
deobfuscation precision of MACNETO, we use methods in
each app in the obfuscated testing set as a query to see if the
original versions of these obfuscated methods can be retrieved
by MACNETO from the original testing set. In our training and
testing phase in this paper, we filter out the trivial methods
having very few instructions (< 30) or very few types of
instructions (< 10), because they may not offer sufficient
information for MACNETO to deobfuscate. The constructor
methods <init> and <clinit> are also excluded, because
their functionality is usually setting up fields in classes/objects
without too much logic.

We compare our results directly with the state-of-the-art An-
droid deobfuscator DeGuard [3]. While DeGuard can support
inferring other obfuscated information, such as field names and
data types in programs in addition to method names, we only
compare MACNETO’s capability to recover method names.
Note that the evaluate suite we used (from F-Droid) matches
the same suite used in Bichsel et al.’s evaluation of DeGuard
[3]. The size of full app set from F-Droid we use is slightly
different with DeGuard: we have 1, 611 apps but DeGuard has
1, 784. This is because about 170 apps cannot be processed by
the Allatori obfuscator or use some 3rd party libs that are not
included in app, which are detected by MACNETO. DeGuard’s
approach is not applicable to obfuscators that transform control
flow (such as Allatori), and hence, we only include DeGuard
results for the ProGuard experiments.

As a baseline, we also compare MACNETO to a naı̈ve
approach that simply calculates the distance between two
methods using the feature-scoring equation presented in the
previous section (equation 8). This baseline does not include
MACNETO’s topic modeling classifier and weighting number
optimization for the scoring equation.

A. Evaluation Metrics

We use two metrics to evaluate MACNETO’s performances
to deobfuscate programs: precision and Top@K. We first
define a testing method set as {Mi|i ∈ R}, and its obfuscated
counterpart as {Mobfus

j |j ∈ R}, where i and j are the method
indices. The definition of precision is

precision =

∑
j I(Mj , Deob(M

obfus
j ))∣∣∣{Mobfus

j }
∣∣∣

(10)

, where Deob(.) returns the deobfuscation result of Mobfus
j

by a system and I(.) returns 1 if the result of Deob(.) is the
same with the real original version Mj , else returns 0.

As we discussed in Section I, we model the deobfuscation
problem as a nearest neighbor search problem. Thus, we also
use Top@K, which is widely adopted to measure the perfor-
mance of search systems, as an evaluation metric. Top@K is



TABLE II: DEOBFUSCATION RESULTS ON PROGUARD.

Train Test System Top@1 Top@3 Top@10

1501 110
MACNETO 96.29% 99.31% 99.86%
DeGuard 66.59%(80%) N/A N/A
Naı̈ve 53.84% 74.79% 90.79%

a generalized version of precision, if we replace Deob(.) in
Eq. 11 by a ranking function:

Top@K =

∑
j I(Mj , Rank(Mobfus

j , {Mi},K))∣∣∣{Mobfus
j }

∣∣∣
(11)

, where Rank(.) first computes the distance between Mobfus
j

and each method in the testing method set {Mi} by a distance
function (Eq. 8 in this paper), and then return K methods
having the shortest distances from {Mi}. I(.) returns 1 if the
original version Mj is in the K methods returned by Rank(.),
else returns 0. Precision, then, is Top@1. In our experiments,
we use K = {1, 3, 10} to evaluate the system performance.
For DeGuard, because it only predicts the best answer (K = 1)
and we cannot access their source code after contacting the
authors, we only evaluate DeGuard by precision.

RQ1. How accurately can MACNETO deobfuscate methods
transformed by a lexical obfuscator?

To compare MACNETO with DeGuard, we use the same
testing and training data sets as used to evaluate DeGuard [3],
which includes 110 Android apps for testing. A direct com-
parison between the two systems is complicated: MACNETO
only considers methods that are reachable from any entry point
(e.g. those on a callgraph rooted by standard Android entry
points), whereas DeGuard considers all methods in an app
for deobfuscation (including those that could never be called).
Because the source code of DeGuard is not freely available
online (or from the authors), we were not able to modify
DeGuard to fit our evaluation. For completeness, we include
the comparison results with this caveat.

We use the rest 1, 501 apps as the training data set to train
MACNETO and deobfuscate these same 110 apps used in the
evaluation of DeGuard. Our evaluation results on three systems
can be found in Table II. On this task, we found that the
precision (i.e. Top@1) of MACNETO was 96.29%. Top@3 and
Top@10 of MACNETO are 99.31% and 99.86%, respectively.

While Bichsel et al. report the overall precision (80%) of
DeGuard on all program properties including method names,
field name, data type, etc., the exact precision for each specific
program property is not reported (except graphically) [3].
To determine the precision of DeGuard on method names
alone, we used the DeGuard web interface [24] to attempt
to deobfuscate these same 110 apps. In this experiment, we
found DeGuard’s precision on deobfuscating method names to
be 66.59% by our evaluation, matching the results in Figure
6 of the original DeGuard paper [3].

MACNETO achieves almost perfect deobfuscation on Pro-
Guard in our evaluation. ProGuard renames identifiers (human
words) in programs without further program transformation,
such as changing control flow. Thus, the instruction distribu-

tions and structural information of each method are similar
before and after ProGuard’s obfuscation. The program classi-
fier and the scoring function in MACNETO can resolve such
identifier renaming, because the information in the machine
code mostly stays similar.

We also apply the naı̈ve approach developed by us to
deobfuscate these apps. The precision is 53.84%, 74.79% and
90.79% for Top@1, Top@3 and Top@10, respectively. Com-
paring MACNETO with the naiv̈e approach, we can find that
our deep learning based program classifier can help enhance
the precision of deobfuscation. The naı̈ve approach also relies
on the instruction distribution to deobfucate methods, but this
approach seems to be too sensitive. Its precision (Top@1) is
only 53.84%, even though its Top@10 is reasonable: ∼ 91%
of methods can be ranked in the top 10 positions.

Result 1: MACNETO can deobfuscate lexically obfuscated
methods with 96% precision. It outperforms a naiv̈e approach
and previous tool DeGuard by 42 and 30 percentage points
respectively.

RQ2. How accurately can MACNETO deobfuscate methods
that are obfuscated using control and data transformation?

Compared with ProGuard, which mainly focuses on re-
naming identifiers in programs, Allatori changes control flow
and encrypts/decrypts strings via inserting additional methods
into programs. To demonstrate the performance of MACNETO
against such advanced obfuscations, we trained 6 deobfusca-
tion models (varying several parameters such as the sizes of
training and testing app sets of MACNETO) and report the
precision and Top@K. We consider building and applying each
model to two types of testing methods: 1) all methods that have
been obfuscated, and 2) only significant methods that have
been obfuscated, as determined by those that have relatively
high memberships (> 0.67) toward any machine topic. This
leads to 12 results (6 models ∗ 2 types of method set) in our
evaluation.

The overall results of the 6 models on 2 types of method
sets as well as the comparison results between MACNETO and
the naı̈ve approach can be found in Table III. In Table III, the
“ID” column represents the configuration ID, where we have
12 configurations in total. The “Train apps” and “Test apps”
columns represent the numbers of training and testing apps,
respectively. Note that the size of training apps does not matter
to the naı̈ve approach, because it simply relies on instruction
distributions and the vanilla weighting numbers to deobfuscate
programs. We randomly split all apps from F-Droid into our
training and testing app sets. Note that the configuration 4
with {Train = 1501, T est = 110} matches the exact same
configuration used in the original evaluation of DeGuard.
The “Method Selection” column denotes the two types of
method selection based on the filtration criteria of methods’
membership towards any topic as discussed above, and the
“Method” column records the number of testing method. The
“System” column shows which system we evaluate, and the
“Gdiff” column shows if our graph diff module discussed in
Section IV-A is enabled or not.

As discussed in Section IV-D, MACNETO uses the program



TABLE III: RESULTS OF DEOBFUSCATING ALLATORI-OBFUSCATED CODE.

#Train #Test Method Worst Real
ID APKs APKs Selection Methods System Gdiff. comp. comp. Filter Top@1 Top@3 Top@10 Boost@1

#1 1501 110 0.67 1, 932
MACNETO

X
3.92 M 2.04 M 47.85% 91.10% 96.95% 98.81% 206% ↑

Naı̈ve 29.76% 33.59% 35.92%

#2 1501 110 N/A 12, 690
MACNETO

X
174.30 M 11.70 M 93.29% 81.33% 89.55% 92.36% 87% ↑

Naı̈ve 43.56% 48.79% 58.52%

#3 1501 110 0.67 2, 148
MACNETO 4.81 M 2.77 M 42.35% 75.42% 90.27% 95.58% 231% ↑
Naı̈ve 22.77% 26.16% 30.30%

#4 1501 110 N/A 12, 695
MACNETO 174.37 M 11.28 M 93.53% 68.96% 82.47% 89.37% 102% ↑
Naı̈ve 34.21% 40.48% 51.45%

#5 1111 500 0.67 12, 533
MACNETO

X
213.60 M 46.82 M 78.08% 69.62% 82.37% 92.25% 74% ↑

Naı̈ve 40.12% 45.83% 51.36%

#6 1111 500 N/A 97, 578
MACNETO

X
11203.32 M 500.01 M 95.54% 69.86% 81.84% 89.61% 140% ↑

Naı̈ve 29.16% 33.26% 37.71%

#7 1111 500 0.67 10, 798
MACNETO 161.68 M 38.78 M 76.02% 52.15% 65.91% 78.16% 58% ↑
Naı̈ve 33.11% 39.78% 46.33%

#8 1111 500 N/A 97, 567
MACNETO 11202.06 M 464.81 M 95.85% 50.30% 63.14% 73.52% 149% ↑
Naı̈ve 20.19% 23.91% 27.86%

#9 611 1000 0.67 30, 102
MACNETO

X
1130.81 M 117.40 M 89.62% 63.99% 78.11% 87.09% 129% ↑

Naı̈ve 27.90% 32.79% 42.52%

#10 611 1000 N/A 152, 817
MACNETO

X
26991.00 M 984.13 M 96.35% 69.56% 81.37% 88.63% 108% ↑

Naı̈ve 33.43% 38.01% 43.97%

#11 611 1000 0.67 25, 064
MACNETO 805.63 M 79.81 M 90.09% 35.59% 53.79% 66.57% 115% ↑
Naı̈ve 16.53% 20.30% 25.85%

#12 611 1000 N/A 152, 817
MACNETO 26991.00 M 1082.85 M 95.99% 48.51% 60.42% 69.56% 105% ↑
Naı̈ve 23.65% 27.83% 32.25%

Column Description: ID: Conguration ID; Train APKs and Test APKs: numbers of training and testing APKs, respectively; Method Selection: denotes a method’s membership
towards a machine topic; Method: total number of testing methods; System: system under evaluation; Gdiff: whether graph diff module is enabled or not; Worst comp.: total
number of method comparisons without program classifier; Real comp.: total number of method comparisons with the program classifier; Filter: the percentage of unnecessary
comparisons that is saved by MACNETO; Boost@1: enhancement achieve by MACNETO over the naı̈ve approach on precision (Top@1).

classifier to filter out those methods that do not share the
similar classification (MTV) of a given obfuscated method.
The “Worst comp.” column shows the total comparison num-
bers at the scale of million methods in the deobfuscation
stage (see Section IV-D) without the program classifier that
MACNETO would have to perform, and the “Real comp.”
column reports the total comparison number with the program
classifier. The “Filter” column represents the percentage of
unnecessary comparisons that can be saved by MACNETO
with the program classifier. The “Top@K” columns, where
K = {1, 3, 10}, are self-explanatory. The “Boost@1” column
shows the enhancement achieve by MACNETO over the naı̈ve
approach on precision (Top@1).

There are three key findings we observe in Table III

1) Good deobfuscation performance: In general, MACNETO
can achieve 80 + % Top@10 under most configurations.
As the number of the training apps grows, MACNETO
can even achieve ∼ 99% Top@10.

2) Effectiveness of the program classifier trained by deep
learning: The filter rate of unnecessary comparisons is
usually higher than 80% for most configurations. Such
filtering achieved by our program classifier also enhances
the system performance of MACNETO to deobfuscate
programs, which will be discussed in the following para-
graphs.

3) Effectiveness of graph diff : Given the same training-
testing app set, MACNETO can have up to 20% enhance-

ment on Top@10 by enabling graph diff. Allatori encrypts
string literals in programs, so it injects additional methods
into programs to decrypt these strings, which changes the
program structure and instruction distribution. Our graph
diff. module precisely identifies these injected decryption.
With the graph diff. module, MACNETO achieves roughly
90% Top@10 when the size of the training data is small.

The Boost column shows the precent increase in preci-
sion from the naı̈ve approach to MACNETO —note that this
improvement is more than 100% in most models. As the
number of testing apps increases, which means that the number
of training apps decreases (this only influences MACNETO,
since the naı̈ve approach does not have a training phase), the
performance of both system drops, even though MACNETO
still outperforms the naı̈ve approach. MACNETO offers a rela-
tively stable precision when the size of testing apps (152K+
methods in 1000 apps) is large and the size of training apps
(611 apps) is small: ∼ 70% Top@10, while the naı̈ve approach
drops to about 32%. By enabling the graph diff. module,
MACNETO can achieve 88 + % Top@10, which does not
even drop significantly due to the increase of the search range
(testing set).

The same finding can also be observed when we evaluate
both systems on the significant methods having memberships
> 0.67 toward specific machine topics in the testing app set.
While the performance of the naı̈ve approach does not improve
significantly, MACNETO has about 10% improvement on the



precision compared with testing on all methods in Table III,
when the size of test apps is 110. This results in MACNETO
achieves 200% boost over the naı̈ve approach.

In general, the deobfuscation precisions of MACNETO
steadily increase as the size of the training/testing set increas-
es/decreases, while the precisions of naı̈ve approach do not
enhance significantly as the size of search range (testing set)
decreases. For most of the configurations, MACNETO can rank
the correct original versions of 80% of the obfuscated methods
in the top 10 position. Even though the training app set is small
(611 apps), the Top@10 offered by MACNETO is still about
∼ 70%.

Result 2: MACNETO can deobfuscate up to 91% precision.
It significantly outperforms a naiv̈e approach in all the tested
configurations.

B. Threats to Validity

In our evaluation, we collect 1600+ apps from an open-
source repository. It is possible that such app set is not
representative enough. Also, we apply MACNETO to recover
programs obfuscated by two obfuscators in our evaluation.
Some threat models and transformation techniques adopted by
other obfuscators may not be evaluated in this paper. In the
future, we plan to collect more apps and obfuscators to test
and enhance the system capability of MACNETO.

When we split the apps into training set and testing set,
we use a random approach. It is possible that MACNETO may
not perform well on some testing sets, but we only have 3 in
our evaluation. To enhance the confidence on MACNETO, we
can conduct a K-fold cross validation [25] to make sure the
performance of MACNETO is stable.

C. Limitations

Currently, MACNETO relies on the callgraph of the app to
understand the semantic of each method and merge instruction
distributions. Thus, only the methods in the callgraph can be
deobfuscated by MACNETO. These methods are potentially the
ones that will be executed in runtime.

The graph diff. module in MACNETO can identify the
methods frequently injected by the obfuscator. By using the
instruction distribution as the pattern, MACNETO can com-
pute which patterns appear frequently in the training apps
after obfuscation and then filter out the methods having the
same instruction pattern in the testing apps. One possible
obfuscation that MACNETO may not be able to handle is to
randomly generate methods, where each method has different
instruction distribution. In this way, MACNETO may not be
able to determine which methods are intentionally injected
by the obfuscator. The other possibility is that some methods
having the similar instruction distributions with the detected
patterns can be falsely filtered by MACNETO. Further, be-
cause MACNETO recursively merges instructions from callee
methods into their caller methods, even if a single method is
falsely filtered, a large portions of method can be affected in a
negative way. One potential solution for these two limitations
is to use data flow analysis [10] in MACNETO to determine

which callees may not influence the result of the current
method so that they can be safely removed.

VI. RELATED WORK

Although in a programming language identifier names can
be arbitrary, real developers usually use meaningful names for
program comprehension [26]. Allamanis et al. [27] reported
that code reviewers often suggest to modify identifier names
before accepting a code patch. Thus, in recent years, naming
convention of program identifiers drew significant attention for
improving program understanding and maintenance [27]–[32].
Among the identifiers, a good method name is particularly
helpful because they often summarize the underlying func-
tionalities of the corresponding methods [33], [34]. Using a
rule-based technique, Host et al. [33] inferred method names
for Java programs using the methods’ arguments, control-flow,
and return types. In contrast, Allamanis et al. used a neural
network model for predicting method names of Java code [34].
Although these two studies can suggest better method names
in case of naming bugs, they do not look at the obfuscated
methods that can even change the structure of the program.

JSNice [35] and DeGuard [3] apply statistical models to
suggest names and identifiers in JavaScript and Java code, re-
spectively. These statistical models work well against so called
“minimizers” — obfuscators that replace identifier names with
shorter names, without making any other transformations.
These approaches can not be applied to obfuscators that
modify program structure or control flow.

While MACNETO uses topic models as a proxy for ap-
plication and method behavior, a variety of other systems
use input/output behavior [36]–[38], call graph similarity [1],
[2], or dynamic symbolic execution [39]–[41]. MACNETO
is perhaps most similar to systems that rely on software
birthmarks, which use some representative components of a
program’s execution (often calls to certain APIs) to create
an obfuscation-resilient fingerprint to identify theft and reuse
[42]–[47]. One concern in birthmarking is determining which
APIs should be used to create the birthmark: perhaps some
API calls are more identifying than others. MACNETO extends
the notion of software birthmarking by using deep learning to
identify patterns of API calls and instruction mix, allowing it
be an effective deobfuscator. Further, MACNETO extends the
notion of birthmarks by considering not just the code in a
single method, but also instructions called by it.

VII. CONCLUSION

Deobfuscation is an important technique to reverse-engineer
an obfuscated program to its original version, which can
facilitate developers understand and analyze the program.
We present MACNETO, which leverages topic modeling on
instructions and deep learning techniques to deobfuscate pro-
grams automatically. In two large scale experiments, we apply
MACNETO to deobufscate 1600+ Android APKs obfuscated
by two well-known obfuscators. Our experiment results show
that MACNETO achieves 96 + % precision on recovering
obfuscated programs by ProGuard, which renames identifiers



in APKs. MACNETO also offers great precision on recovering
programs obfuscated by an advanced obfuscator, Allatori,
which changes control flow and inserts additional methods
into APKs in addition to renaming identifiers. Compared with
a naı̈ve approach relying on instruction distribution of the
obfuscated method to search for the most similar original
version in the codebase, MACNETO has up to 200% boost
on the deobfuscation precision.

REFERENCES

[1] F.-H. Su, J. Bell, K. Harvey, S. Sethumadhavan, G. Kaiser, and
T. Jebara, “Code Relatives: Detecting Similarly Behaving Software,”
in 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2016. New York, NY, USA: ACM,
November 2016, pp. 702–714, artifact accepted as platinum. [Online].
Available: http://doi.acm.org/10.1145/2950290.2950321

[2] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE:
Efficient Cross-Architecture Identification of Bugs in Binary
Code,” in 23rd Annual Network and Distributed System
Security Symposium (NDSS), February 2016. [Online]. Available:
https://www.internetsociety.org/sites/default/files/blogs-media/discovre-
efficient-cross-architecture-identification-bugs-binary-code.pdf

[3] B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev, “Statistical
Deobfuscation of Android Applications,” in 23rd ACM Conference on
Computer and Communications Security, ser. CCS 2016. New York,
NY, USA: ACM, October 2016, pp. 343–355. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978422

[4] “Proguard.” [Online]. Available:
https://www.guardsquare.com/en/proguard

[5] “Allatori.” [Online]. Available: http://www.allatori.com/
[6] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proffing, and

obfuscation: Tools for software protection,” IEEE Trans. Softw. Eng.,
vol. 28, no. 8, pp. 735–746, Aug. 2002.

[7] D. Low, “Protecting java code via code obfuscation,” Crossroads, vol. 4,
no. 3, pp. 21–23, Apr. 1998.

[8] V. Rastogi, Y. Chen, and X. Jiang, “Catch me if you can: Evaluating
android anti-malware against transformation attacks,” IEEE Transactions
on Information Forensics and Security, vol. 9, no. 1, pp. 99–108, 2014.

[9] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “Droidra:
Taming reflection to support whole-program analysis of android
apps,” in Proceedings of the 25th International Symposium
on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: ACM, 2016, pp. 318–329. [Online]. Available:
http://doi.acm.org/10.1145/2931037.2931044

[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14,
2014, pp. 259–269.

[11] “Asm framework,” http://asm.ow2.org/index.html.
[12] “Dex2jar.” [Online]. Available: https://github.com/pxb1988/dex2jar
[13] “Android build numbers.” [Online]. Available:

https://source.android.com/source/build-numbers
[14] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.

Mach. Learn. Res., vol. 3, pp. 993–1022, March 2003.
[15] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk, “Topicxp: Exploring

topics in source code using latent dirichlet allocation,” in Proceedings
of the 2010 IEEE International Conference on Software Maintenance,
ser. ICSM ’10, 2010, pp. 1–6.

[16] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014, 2014, pp. 1025–
1035.

[17] “Mallet: Machine learning for language toolkit.” [Online]. Available:
http://mallet.cs.umass.edu/

[18] R. Socher, M. Ganjoo, C. D. Manning, and A. Y. Ng, “Zero-shot learning
through cross-modal transfer,” in Proceedings of the 26th International
Conference on Neural Information Processing Systems, ser. NIPS’13,
2013, pp. 935–943.

[19] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient
cross-architecture identification of bugs in binary code,” in 23nd Annual
Network and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016, 2016.

[20] C. Mcmillan, D. Poshyvanyk, M. Grechanik, Q. Xie, and C. Fu,
“Portfolio: Searching for relevant functions and their usages in millions
of lines of code,” ACM Trans. Softw. Eng. Methodol., vol. 22, no. 4, pp.
37:1–37:30, Oct. 2013.

[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[22] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection
in android and its security applications,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16, 2016, pp. 356–367.

[23] “The f-droid repository.” [Online]. Available: https://f-droid.org/
[24] “The website of deguard.” [Online]. Available: http://apk-deguard.com/
[25] S. Arlot and A. Celisse, “A survey of cross-validation procedures for

model selection,” Statistics Surveys, vol. 4, pp. 40–79, 2010.
[26] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the role

of naming in computer programs,” in Proceedings of the 18th annual
psychology of programming workshop, 2006.

[27] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, 2014, pp.
281–293.

[28] S. Butler, M. Wermelinger, and Y. Yu, “Investigating naming convention
adherence in java references,” in Software Maintenance and Evolution
(ICSME), 2015 IEEE International Conference on, 2015, pp. 41–50.

[29] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Whats in a name?
a study of identifiers,” in Program Comprehension, 2006. ICPC 2006.
14th IEEE International Conference on, 2006, pp. 3–12.

[30] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility: an ex-
perimental investigation,” J. Prog. Lang., vol. 4, no. 3, pp. 143–167,
1996.

[31] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
What they are and how developers perceive them,” Empirical Software
Engineering, vol. 21, no. 1, pp. 104–158, 2016.

[32] R. C. Martin, Clean code: a handbook of agile software craftsmanship.
Pearson Education, 2009.

[33] E. W. Høst and B. M. Østvold, “Debugging method names,” in European
Conference on Object-Oriented Programming, 2009, pp. 294–317.

[34] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015, pp. 38–49.

[35] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from ”big code”,” in Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’15. New York, NY, USA: ACM, 2015, pp. 111–124. [Online].
Available: http://doi.acm.org/10.1145/2676726.2677009

[36] L. Jiang and Z. Su, “Automatic mining of functionally equivalent
code fragments via random testing,” in Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, ser. ISSTA
’09, 2009, pp. 81–92.

[37] F.-H. Su, J. Bell, G. Kaiser, and S. Sethumadhavan, “Identifying func-
tionally similar code in complex codebases,” in Proceedings of the 24th
IEEE International Conference on Program Comprehension, ser. ICPC
2016, 2016.

[38] E. Juergens, F. Deissenboeck, and B. Hummel, “Code similarities
beyond copy & paste,” in Proceedings of the 2010 14th European
Conference on Software Maintenance and Reengineering, ser. CSMR
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 78–87.
[Online]. Available: http://dx.doi.org/10.1109/CSMR.2010.33

[39] G. Meng, Y. Xue, Z. Xu, Y. Liu, J. Zhang, and A. Narayanan, “Semantic
modelling of android malware for effective malware comprehension,
detection, and classification,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: ACM, 2016, pp. 306–317. [Online]. Available:
http://doi.acm.org/10.1145/2931037.2931043

[40] S. Li, X. Xiao, B. Bassett, T. Xie, and N. Tillmann, “Measuring
code behavioral similarity for programming and software engineering
education,” in Proceedings of the 38th International Conference on
Software Engineering Companion, ser. ICSE ’16, 2016, pp. 501–510.



[41] D. E. Krutz and E. Shihab, “Cccd: Concolic code clone detection,” in
Reverse Engineering (WCRE), 2013 20th Working Conference on, Oct
2013, pp. 489–490.

[42] H. Tamada, M. Nakamura, and A. Monden, “Design and evaluation
of birthmarks for detecting theft of java programs,” in Proc. IASTED
International Conference on Software Engineering, 2004, pp. 569–575.

[43] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for
java,” in Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’07. New
York, NY, USA: ACM, 2007, pp. 274–283. [Online]. Available:
http://doi.acm.org/10.1145/1321631.1321672

[44] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in Proceedings of the 34th International Confer-
ence on Software Engineering, ser. ICSE ’12, 2012, pp. 364–374.

[45] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcontext:
Differentiating malicious and benign mobile app behaviors using con-
text,” in Proceedings of the 37th International Conference on Software
Engineering, ser. ICSE ’15, 2015, pp. 303–313.

[46] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in 2015 International Conference on Software Engineering (ICSE), ser.
ICSE ’15, 2015, pp. 426–436.

[47] M. Linares-Vásquez, C. Mcmillan, D. Poshyvanyk, and M. Grechanik,
“On using machine learning to automatically classify software
applications into domain categories,” Empirical Softw. Engg.,
vol. 19, no. 3, pp. 582–618, Jun. 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10664-012-9230-z


