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ABSTRACT

Contributions to the Design of

Asynchronous Macromodular Systems

Luis Angel Plana

In this thesis, I advocate the use of macromodules to design and build robust

and performance-competitive asynchronous systems. The contributions of the work

relate to di�erent aspects of the design of asynchronous macromodular systems.

First, an architectural optimization for 4-phase systems is introduced. The

goal of the optimization is to increase the performance of a system by increasing the

level of concurrent activity in the sequencing of data processing stages. In particu-

lar, three new asynchronous sequencers are designed, which increase the throughput

of the system. Existing asynchronous datapaths do not operate correctly at this

increased level of concurrency: data hazards may result. Interlock mechanisms are

introduced to insure correct operation. The technique can also be regarded as a

low-power optimization: The increased throughput can be traded for a signi�cant

reduction in the power consumption of the entire system. SPICE simulation results

show that the new sequencers allow roughly twice the throughput of non-concurrent

sequencers. The simulations also show that, after voltage scaling, energy dissipation

is reduced by a factor of 2.5.

Second, the use of pulses for e�cient inter-module synchronization is intro-

duced. The idea is complemented with the de�nition of a pulse-mode handshake

protocol and the characterization of Pulse-Burst Operation (PBO), an important

extension to traditional pulse-mode operation. Also, a basic set of macromodules,

that e�ciently implement control operations such as sequencing, selection, itera-

tion, concurrency control, resource sharing, and arbitration is presented. Modules

for interfacing pulse-mode circuits with traditional 2-phase and 4-phase circuits are

also included in the set.



Finally, the design of a packet switch is used to demonstrate the viability of

pulse-mode macromodules to implement complex, high performance systems. The

switch organization, its asynchronous operation, and the low control overhead in-

troduced by pulse-mode macromodules result in a design that can handle 2.4 times

the target throughput of 155 Mbits/Sec. Also, the switch is characterized by very

low input-to-output latency. These results suggest that pulse-mode macromodules

can keep control overhead low without introducing complex, unsafe timing con-

siderations, two necessary conditions to achieve robust, performance-competitive

systems.
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Chapter 1

Introduction

Virtually all digital systems in use today are synchronous. The synchronous ap-

proach is based on the use of a single, global signal {the clock signal{ to synchronize

the operation of all system components. The basic design rule for a synchronous

system is that all signals must be stable and valid when a clock pulse is produced.

This simple rule is one of the main reasons for the popularity of the syn-

chronous approach but is also becoming one of its basic limitations, for several

reasons: (i) The global clock signal must be distributed to every component of

the system. As the clock frequency increases, the variation in the arrival time of

the clock to di�erent parts of the system {clock skew{ becomes a problem. (ii)

The circuit that distributes the clock signal is one of the major sources of power

consumption in a system. Also, power is consumed in every clocked component of

the system even in the case where no new information needs to be processed or

stored. (iii) The clock frequency is designed so that every component stabilizes

before a clock pulse arrives. This means, essentially, that the slowest components

of a system have the largest impact on its performance, i.e., synchronous systems

tend to exhibit worst-case performance.

Many researchers are looking for solutions to these problems. Techniques to
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\synchronize" the arrival of the clock signal to di�erent parts of the system have

been devised and applied to reduce clock skew problems. Methods to save power by

selectively shutting o� the clock in idle sections of the system have also been imple-

mented. Finding good solutions is not always easy. Sometimes, a solution to one

problem creates another: introducing logic into the paths of the clock signal to save

power increases the clock skew problem and, therefore, may incur a performance

penalty.

These problems of the synchronous approach are increasingly more di�cult

to solve. Consequently, interest in asynchronous systems has grown considerably

in recent years. In principle, an asynchronous approach is attractive for several

reasons: (i) Asynchronous systems have no global clock, avoiding the clock skew

and power consumption problems related to the distribution of this signal in syn-

chronous systems. (ii) Asynchronous circuits have an inherent power-down opera-

tion: components are activated only when their operations are needed. (iii) Each

system component operates at its own speed: if the components cooperate properly,

systems may exhibit average-case performance. (iv) It is easier, in unclocked sys-

tems, to deal with metastability [44, 90], because there is no clock period imposing

an upper bound on the length of time before a signal emerges from a metastable

state.

Asynchronous design has been the focus of intense research activity and

several design methods have been introduced recently [83, 45, 6, 64, 106, 63, 94, 29].

These methods have been used to design large scale systems that have worked

correctly and exhibited good performance. Important examples are a zero-overhead

divider [100], a DCC error corrector [92], an asynchronous di�erential equation

solver [107], and the di�erent versions of the Amulet processor [29].

Some of these design methods build asynchronous circuits as networks of

cooperating modules. Such systems are calledmacromodular [14, 68, 82], since they
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are constructed by combining modules into a working system. Easily interconnected

modules of small to moderate complexity are designed and optimized individually

and used as basic building blocks.

In the context of complex VLSI systems, which have reached a point where

design time and cost usually exceed fabrication time and cost, this modular ap-

proach has several potential advantages over monolithic systems: (i) Individual

modules can be optimized separately, without the rest of the system requiring any

changes. As a result, any performance improvement of a module can improve the

performance of the system. (ii) Low-level engineering details are separated from

the algorithm and organization levels of design. A designer can concentrate on

the algorithmic aspects and can try di�erent organizations at the macromodule

level. Such an approach also allows the estimation of speed, area and power at the

macromodule level. (iii) After the system is designed at the macromodule level,

optimization techniques can be used to reduce the overhead introduced by the use

of pre-designed modules.

1.1 Challenge: Robust, High-Performance Sys-

tems

After extensive experimentation to optimize the performance of a basic elastic FIFO

structure [56], Molnar et al. conclude the following:

\These results encourage us to believe that performance- and area-

competitive asynchronous circuits can be achieved if one is willing to

rely on control of delays in circuits and their interconnections to the

same degree as in clocked systems."

Their conclusion addresses one of the key issues that asynchronous circuit

designers face: the trade-o� between robustness and performance. Asynchronous
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circuits can be classi�ed according to their choice in that trade-o�.

Delay-Insensitive (DI) circuits [55] are the most robust. They operate cor-

rectly regardless of gate and wire delays. Unfortunately, this robustness has its

price. Martin [48] and Brzozowski et al. [7] have shown that the class of DI cir-

cuits, implemented using simple gates, is very limited, and the performance of these

system is often limited also.

Speed Independent (SI) circuits [52] assume unbounded, �nite gate delays

but zero delay in the wires. Quasi-delay-insensitive (QDI) circuits [45] assume

unbounded gate and wire delays but introduce a timing assumption: certain forks

are considered isochronic, i.e., there is no di�erence in the propagation time of the

branches. Many consider that these two classes of circuits are equivalent.

Unfortunately, the assumption of zero wire delay is less realistic as feature

sizes decrease and gate delays become comparable with delays in the wires. Isochro-

nic forks are not an easy assumption to comply with, as shown by van Berkel [95].

Even if it is met, the performance of the circuits is not always adequate. The need

for better performance has led to the de�nition of extended isochronic forks [98],

in which the equal delay assumption is applied to one or more levels of inverting

CMOS gates connected to the branches of the fork.

Self-timed (ST) circuits [79] consist of networks of self-timed elements that

are interconnected using delay-insensitive connections. The self-timed elements

can be designed according to any desired delay model. An important feature of ST

circuits is that any timing assumptions must relate local signals, since they must

belong to the same module.

General asynchronous circuits (AC) assume bounded gate and wire delays.

This is the largest class of circuits but also the least robust. Making timing as-

sumptions about relative delays of gates or wires that are far from each other, or

are fabricated separately may be risky.
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Most de�nitely, high performance is the result of tight control overhead and

use of timing assumptions. Robustness is the result of safe, conservative and veri-

�able timing assumptions. Clearly, a designer faces a delicate balancing act. The

self-timed strategy of detailed local control of internal timing and delays in the

modules combined with delay-insensitive external interfaces seems to be a step in

the right direction. We are challenged to push it to the limits.

1.2 Contributions of the Thesis

The goal of the work described in this thesis is to contribute to the design of

robust, performance-competitive asynchronous systems. Two di�erent classes of

asynchronous systems (de�ned later) are targeted: 4-phase and pulse-mode systems.

In 4-phase systems, the work consists of the design of e�cient circuitry to

\eliminate" one of the largest sources of control overhead in this type of systems,

the return-to-zero phase. The main contributions of the work are the following:

� New designs for sequencing control (or \sequencers"), which greatly increase

the performance of non-pipelined asynchronous systems. The sequencers over-

lap the redundant phase with the execution of productive work that otherwise

would be delayed. The new sequencers have advantages over all existing se-

quence control elements.

� Interlock circuitry that guarantees that the system can operate correctly at

the increased performance.

In pulse-mode systems, the main contributions of the work presented in this

thesis are the following:

� The introduction of the use of pulses as an e�cient handshaking protocol.

Although the idea had been suggested previously, no systematic approach
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to the use of pulse-mode inter-module synchronization has been presented

before.

� The introduction of a more concurrent form of pulse-mode operation. Tradi-

tional pulse-mode systems allow a single pulse to be active at any time. Pulse

burst operation (PBO), introduced in this work, allows concurrent pulses as

inputs to a module.

� The design of a large set of pulse-mode macromodules that can be used to

build cost-e�ective asynchronous macromodular systems. Such a set has not

been proposed before. The set includes control macromodules as well as

arbiters and converter modules to interface pulse-mode to other handshaking

protocols.

� The viability of the use of pulse-mode macromodules in the construction of a

large, complex, high-performance system is demonstrated with the design of

an asynchronous packet switch. A packet switch was chosen as a case study

because it is a control-dominated system in which control overhead has a large

impact on performance, stressing the need for an e�cient design.

1.3 Organization of the Thesis

This chapter has presented the context in which the work reported in the thesis is

inscribed. The rest of the thesis is organized as follows:

Chapter 2 reviews basic background and previous work on asynchronous

macromodular systems. In particular, the design and optimization process of

macromodular systems is examined, and the basic handshaking protocols and data

encodings are presented. Given that high performance and low power are two im-

portant goals in the design of macromodular systems, this chapter also reviews an
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important technique for the reduction of power dissipation and shows how perfor-

mance and power consumption can be traded to obtain the desired goals.

Chapter 3 focuses on the class of macromodular systems that use 4-phase

handshaking. This chapter presents an architectural optimization that increases the

performance of a system by increasing the level of concurrency in the sequencing

of data processing stages. In this chapter, three new asynchronous concurrent

sequencers are introduced, that increase the concurrent activity and throughput of

the entire system. The chapter also discusses the impact of the new sequencers on

the operation of existing datapaths and introduces modi�cations to safely handle

the increased concurrent operation.

Chapter 4 introduces the use of pulses as handshake events in macromodu-

lar systems and de�nes a pulse-mode handshake protocol. Designs of pulse-mode

modules that implement control operations such as sequencing, selection, iteration,

concurrency control, resource sharing and arbitration are introduced and their char-

acteristics compared to those of equivalent transition signaling and 4-phase imple-

mentations. Modules for interfacing pulse-mode circuits with traditional 2-phase

and 4-phase circuits are also presented. The chapter also illustrates examples of the

use of these pulse-mode modules in the implementation of macromodular systems

and micropipelines.

In Chapter 5, the design of an asynchronous packet switch is presented,

to demonstrate the feasibility of the use of pulse-mode handshaking to build large,

complex systems. The packet switch is implemented as a pulse-mode macromodular

system. The details of the design process as well as topics like the use of buses in

asynchronous systems, arbitration, and optimizations based on timing assumptions

are addressed in this chapter.

Finally, Chapter 6 summarizes the contributions of the work and presents

conclusions.
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Chapter 2

Asynchronous Macromodular

Systems

In this chapter, background and previous work on macromodular systems is re-

viewed. In particular, the design and optimization process of macromodular sys-

tems is examined, and the basic handshaking protocols and data encodings are

presented.

Even though the main goal of the work presented in the following chapters

is to improve the performance of macromodular systems, sometimes a reduction

in the power consumption of the system is desired. Therefore we also review an

important technique for reduction of power dissipation in CMOS circuits.

This chapter is organized as follows. Section 2.1 presents the operation of

elementary macromodules. Section 2.2 introduces the basic design methods and

a simple example of a macromodular system. Macromodule speci�cation methods

and design procedures are presented in Section 2.3. Sections 2.4 and 2.5 review the

details of the operation of the controller and datapath in macromodular systems.

Finally, Section 2.6 reviews basic concepts related to power consumption in CMOS

circuits and shows how performance and energy can be traded to achieve desired
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design goals.

2.1 Introduction

Asynchronous macromodules were introduced by Clark, Ornstein and Stucki in

[14, 68, 82] as a set of simple, easily interconnected modules from which working

systems can be readily assembled. Keller [40], Molnar et al. [55], Rosenberger

et al. [78], Brunvand [6], Unger [87], and van Berkel et al. [94] among others,

have continued to work on macromodules and have made important contributions.

Macromodular systems are sometimes known by other names, such as \Handshake

Circuits" [94].

P Q

R

CHANNELS

PORTS

Figure 2.1: Macromodule interconnections: Channels and Ports.

Figure 2.1 illustrates a simple macromodular system, which consists of three

modules: P , Q and R. Modules communicate with each other through channels.

Channels consist of one or more wires that conduct data and control signals. Instead

of a global clock signal, channels between modules use handshaking to synchronize

their operation and data interchange. Usually, there are no timing assumptions

related to the operation of the channels.
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The channels attach to module ports, which provide a standard interface to

the module. A module can have a single port (P and R) or several, as module Q in

the �gure. In some cases, Q must be able to interact with P and R concurrently.

If all the modules behave properly, i.e., comply with the handshaking re-

quirements of the channels, the system will operate correctly, independently of the

speed of the modules. An important advantage of the system is its modularity. If

Q is substituted by Q0, which has the same functionality but faster response time,

the system must still operate correctly and, in some cases, increase its performance

due to the faster new module.

2.2 Macromodular System Design

A small set of macromodules is now used to illustrate the operation of a macro-

modular system and the basic steps in the design process.

REPEATER

T T TIN OUTX0 X1

SEQUENCER SEQUENCER

Figure 2.2: Macromodular System Diagram.

Figure 2.2 illustrates a simple macromodular system. The system represents

a two-place ripple shift register. The system is built by connecting modules to-

gether. IN is the input to the system and OUT is its only output. X0 and X1
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are the two registers that store data. The t modules are transferrers, used to

transfer (copy) information from their inputs to their outputs. A sequencer

is used to activate two modules in a prescribed sequence (or order): the module

connected to the � output is activated �rst and, when this module completes its

operation, the other module is activated. Finally, the repeater , as it names im-

plies, is used to repeatedly activate a module. As indicated above, channels between

modules use handshaking to synchronize their operation and data interchange.

Succinctly, the operation of the system consists of a sequence of three actions,

repeated permanently: (i) Transfer the contents of X1 to the output, (ii) transfer

the contents of X0 to X1, and (iii) transfer the new input to X0.

The system operates as follows. The repeater initiates the actions by

activating the sequencer on the left. This module activates the sequencer on

the right. The second sequencer �nally interacts with the datapath: it activates

the rightmost transferrer, which copies data from X1 to OUT , completing action

(i) above. The sequencer then activates the middle transferrer to copy data from

X0 to X1. Finally, the �rst sequencer activates the left transferrer to copy data

from IN to X0, completing the sequence of actions. When the sequencer signals

completion to the repeater, this module starts the process again.

begin

REPEAT forever

OUT = X1;

X1 = X0;
X0 = IN

end

Figure 2.3: Macromodular System High-Level Speci�cation.
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Macromodules are particularly well-suited for methods that approach circuit

design as a programming activity. For example, Brunvand [6] and van Berkel et al.

[94], have developed methods to automatically design asynchronous circuits from

high-level programs. One possible high-level description of the two-place shift regis-

ter above is shown in Figure 2.3. The programs are compiled, using syntax-directed

translation, into a macromodular system, as an intermediate level representation.

To obtain a gate or transistor-level circuit, the modules must be substituted by

their pre-designed implementations. It is interesting to note that a macromodular

system can be mapped into very di�erent circuits, depending on the actual modules

used and the handshake and data encoding options chosen.

This mapping process, and the lack of global synchronization, are the key

elements that allow incremental improvement of a complete macromodular systems

by improving each module separately. The macromodules are designed using dif-

ferent techniques, sometimes by hand or using automatic tools. Clearly, module

design has a large impact on the performance of macromodular systems.

2.2.1 System Optimization

A potential weakness of the use of macromodules is the presence of ine�ciencies

in the design due to the use of pre-designed modules. It is possible to examine the

macromodule diagram and optimize it in a number of ways.

This optimization process, sometimes called peephole optimization, has been

studied by several researches. For example, Brunvand [6], van Berkel [96], and

Peeters [71] have introduced optimizations that consist of structural transforma-

tions that maintain the functionality of the circuit but optimize it according to a

desired metric. These optimizations are very similar to the peephole optimizations

used by compilers to optimize code.

Figure 2.4 shows an example of such optimization. the circuit for the two-
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REPEATER

SEQUENCER

T T TIN OUTX0 X1

Figure 2.4: Optimized Macromodular System.

place ripple shift register above has been optimized: the two 2-way sequencers have

been substituted by a single 3-way sequencer. The larger sequencer uses less area

and has better performance than the combination of the two smaller ones (see

Chapter 3 for a thorough design of new n-way sequencers).

A di�erent approach is taken by Gopalakrishnan et al. [33] and Kolks et

al. [41]. They optimize the macromodular system by re-synthesizing sections of the

control path (possibly comprising several macromodules), using automatic tools.

Figure 2.5 shows how this optimization may be applied to the ripple register: the

speci�cations of the repeater and sequencers are combined and fed to an automatic

synthesis tool. The tool generates a �nite state machine (FSM) that substitutes

the modules in the control of the register. The resulting macromodular circuits are

very robust and usually have few timing assumptions.
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T T TIN OUTX0 X1

CONTROL (FSM)

Figure 2.5: Re-synthesized Macromodular System.

2.3 Macromodule Speci�cation and Synthesis

The previous section showed that macromodular systems are designed as composi-

tions of pre-designed macromodules. An important question is: how are the macro-

modules themselves speci�ed and designed? This section presents basic concepts

to answer the question.

Several speci�cation forms have been used to express the desired behavior

of a module: Flow tables [87], state diagrams, burst-mode speci�cations [63, 106],

CSP or similar language based forms [6, 45, 96], and Petri net based forms [6, 55].

In our case, ow tables and a restricted form of Petri nets, called Interface- or

I-NETS, will be used. I-NETS will be used to represent the desired Input/Output

behavior of a module and ow tables will be used to provide detailed speci�cations

of module operation.

I-NETS were introduced by Molnar et al. [55] as a tool to specify the interface

behavior of a module. Figure 2.6 shows an example of a simple I-NET, which

corresponds to a pulse-mode JOIN Module, that will be described in detail in

Chapter 4.

I-NETS consist of places (circles), transitions (bars), and arcs that connect

places and transitions. Transitions are used to represent input/output (or inter-
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Figure 2.6: Example of Macromodule and speci�cation.

face) events that take place in the module. In the case of the JOIN module, each

transition corresponds to a pulse in an input or output signal of the module. Only

enabled transitions can occur. A transition is enabled when all places that point to

that transition contain a token.

Modules can be synthesized using several di�erent procedures. Automatic

synthesis tools can be used. Some of the tools are �nite-state machine (FSM)

synthesis tools, others are based on Petri net-like speci�cations and others are

based on high-level programming languages.

In our case, the modules are of an order of complexity that is very well

suited to design by ow-table based techniques. In many cases, hand synthesis

results in very e�cient implementations. Timing problems related to critical races,

and combinational and essential hazards can be dealt with very e�ectively.

2.4 Control Signaling

In Figure 2.4 above, it is easy to identify two sections of the system: Datapath

and Control. This is a helpful distinction due to the di�erent nature of the data

processing stages and the control sections. This di�erence will become clear in this

and the following sections, in which details of handshaking and data communication

are reviewed.

Figure 2.7 shows two macromodules that communicate with each other using

request and acknowledge signals. Initially, the modules are idle and both signals
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are de-asserted. P uses signal r to request Q to start processing. Q uses signal a

to indicate completion. Module P, that starts the handshake, is called the active

component, and Q is the passive one.

      processing
               phase

a
P

r
REQUEST

ACKNOWLEDGE

Q

4−PHASE HANDSHAKE

r
a

processing
phase

return−to−zero
               phase

r
a

processing
phase

2−PHASE HANDSHAKE

Figure 2.7: Handshaking Protocols for Module Communication.

Control signaling usually follows a handshake protocol. 2-phase and 4-phase

handshaking are the two most commonly used protocols [79]. Other handshaking

protocols are single-track and pulse-mode. These protocols are reviewed in the

following sections.

2.4.1 2-Phase Handshaking

This is a simple protocol. Usually, signal transitions are used to represent events in

2-phase handshaking. A complete handshake consists of two events: a request (r),

that starts the handshake, and an acknowledge (a), that completes it. For example,

a �rst handshake consists of r"; a". The following handshake will consist of r#; a#.

2-phase handshaking is commonly used. Some examples are the macromod-
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ules project [14], micropipelines [83], and OCCAM-based systems [6]. A disadvan-

tage of transition signaling is that the levels of the wires after a complete handshake

are di�erent from the levels before that handshake, usually leading to more complex

circuits than level signaling [97]. Also, many datapath components require level-

sensitive control, so transition-to-level (or 2-phase to 4-phase) converters must be

used.

2.4.2 4-Phase Handshaking

4-phase handshaking is level-based. This protocol forces the wires to return to

their initial level at the end of the handshake. A complete 4-phase handshake

consists of four events: r ", that starts the handshake; a ", that indicates the end

of the processing phase; r # starts the return-to-zero phase and a # completes the

handshake.

4-phase handshaking is also very common. The AMULET asynchronous

microprocessor [29] and Tangram-based systems [94] use a 4-phase protocol and

have successfully demonstrated the low-power potential of asynchronous systems.

A disadvantage of 4-phase handshaking is the presence of the redundant return-to-

zero phase, which usually degrades performance 1.

2.4.3 Single-Track Handshaking

Recently, van Berkel and Bink introduced single-track handshaking [97]. This 2-

phase protocol uses a single wire (w) for both request and acknowledge, with the

communicating processes alternating control over the wire. In general, the starting

process initiates the handshake by w" and then releases the wire to allow the other

process to control it. This process completes the handshake by generating w# and

1In some cases, novel data-processing schemes [71] and concurrent protocols [74] may reduce
the e�ects of the unproductive return-to-zero phase.
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releasing the wire.

Single-track handshaking has the advantage that after each handshake the

wire is in its initial state, which solves one of the problems of the 2-wire protocol.

Unfortunately, the shared control over the single wire may create problems [97]: (i)

circuits may be less reliable, (ii) complex, non-standard, gates that can gain and

release control of the wire are required, and (iii) circuits may be di�cult to test.

2.4.4 Pulse-Mode Handshaking

An alternative approach, mentioned by Keller [40] but not fully explored so far, is

the use of pulses, instead of transitions, to represent events in a 2-phase protocol.

Chapter 4 introduces our contributions to the use of this handshaking protocol,

including a more general form of pulse-mode operation and a large set of pulse-

mode macromodules, some of which were originally presented in [75].

2.5 Data Communication and Processing

When data communication is involved, techniques must be used to represent and

transmit data. Two schemes are most common: dual-rail and single-rail.

2.5.1 Dual-Rail Datapaths

Encoding Scheme

In dual-rail, data is encoded using two wires for each data bit [79]. Codes 01

and 10 represent \1" and \0" data values respectively, and code 00 represents the

spacer or idle state. This is a robust and widely-used scheme, which guarantees

correct operation with arbitrary delays in the circuit [92, 94, 45, 46, 62]. However,

a disadvantage is that implementations typically require larger area than single-rail
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designs, due to the two-wire encoding scheme. Another disadvantage is that there

are additional transitions per bit between consecutive data words, due to the need

for the spacer state. As a result, there are performance and power penalties.

Datapath Operation

As an example, we now introduce a simple dual-rail datapath stage. We begin with

a description of the operation of a typical dual-rail latch, which is the basic storage

element. After that, the operation of the complete stage is presented.

A block diagram of a dual-rail latch is shown in Figure 2.8. The latch has

separate read and write ports; only one port may be active at a time. Initially, all

wires are low. A read operation begins by asserting the read request (Rr "). The

latch responds with R0 " (if \0" is read) or R1 " (if \1" is read). Once data has

been used, Rr is de-asserted, followed by R0 # or R1 #. Similarly, a write operation

begins by asserting either W0 or W1 as a write request, indicating the value to be

stored. Wa" acknowledges that data has been stored. The asserted request (W0 or

W1) is de-asserted, then Wa is de-asserted.

W0

W1

Wa

R0

Rr

R1

WRITE STORAGE
SECTION

READ
   PORT   PORT

Figure 2.8: Dual-Rail Latch.

Figure 2.9 shows the interaction of datapath and control, in one stage of a
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dual-rail system. X, Y , and Z are registers built with dual-rail latches, and F

is a combinational block which implements some function F (X; Y ) using dual-rail

hazard-free logic (see, for example, [46, 62]).

Dual-Rail Datapaths/4-Phase handshaking

Usually, 4-phase handshaking is used to control dual-rail datapaths because the

return-to-zero phase produces the necessary spacer or idle code.

DUAL−RAIL DATA

X

Y

Z
F

WaRr

Rr

LATCH

LATCH

LATCH

FUNCTION
    BLOCK

r a

CONTROL SIGNAL

Figure 2.9: Block Diagram of Dual-Rail Datapath Stage.

The stage operates as follows. A request, r ", is sent to the stage, which

initiates a read request of X and Y . The registers send dual-rail data to block

F , which computes a dual-rail result. The result itself acts as a write request to

register Z. Once data is written, the processing phase is complete, and Z sends

acknowledge, a ", to the controller. The return-to-zero phase is initiated with r #.

X and Y are then reset, the F outputs are de-asserted, and Z and a are reset,

completing the operation.
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Dual-Rail Datapaths/2-Phase handshaking

As mentioned above, dual-rail requires the presence of a spacer code between two

consecutive valid data. This requires all data bits to return to their idle value, a

phase that is not present in 2-phase handshaking. Thus, the use of dual-rail code

with 2-phase handshaking is awkward, requiring special converter modules.

Dean et al. [18] introduced Level-Encoded 2-Phase Dual-Rail (LEDR) to

address this problem. This is a dual-rail code that also uses 2 wires per data bit,

but has no spacer or idle code.

2.5.2 Single-rail Datapaths

Encoding Scheme

A common alternative scheme is single-rail, which uses only one wire for each data

bit, as in synchronous designs [83, 93, 6, 19, 72, 65]. An additional wire, called the

data-valid signal, is used to indicate that the data in the wires is stable and valid.

The set of all data wires together with the data-valid signal is called a data bundle.

Correct operation of systems that use this encoding scheme relies on a local timing

assumption: The data-valid signal must be asserted at the receiver end after all

data signals are stable and valid. This is called a bundling constraint.

An advantage of single-rail encoding is that most existing synchronous (i.e.,

non-hazard-free) function blocks can be used, so the datapath has good area char-

acteristics. A disadvantage is that operation is less robust than dual-rail, due to

the timing assumptions.

Datapath Operation

As an example, we now introduce a simple single-rail datapath stage. We begin with

a description of the techniques most frequently used to comply with the bundling
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constraint. After that, the operation of the complete stage is presented.

X

Y

F

MATCHED
   DELAY

SINGLE−RAIL DATA

CONTROL SIGNAL

DF

LATCH

LATCH

FUNCTION
   BLOCK

r

Z

MATCHED
   DELAY

DZ

LATCH

Wr

a

  DATA BUNDLE

Figure 2.10: Block Diagram of Single-Rail Datapath Stage.

Figure 2.10 shows the interaction of datapath and control, in one stage of a

system. To comply with the bundling constraint, i.e., guarantee that all data wires

are valid and stable before the data-valid signal is asserted, delays are inserted in

the data-valid wires. These delays are designed to match the worst case delay of

the corresponding datapath block; that is, DF must equal the worst case delay in

the combinational logic block that implements function F , and DZ must be equal

to the worst case delay in latch Z2.

The operation of the single-rail stage in Figure 2.10 depends on the type of

storage elements and the handshaking protocol used.

2If 4-phase handshaking is used to control single-rail datapaths, more novel data-processing
schemes may avoid the unproductive return-to-zero phase. These schemes use di�erent matching
criteria for the delay elements (see [71] and Section 3.5 for details).
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Single-Rail Datapaths/4-Phase handshaking

If a 4-phase protocol is used, standard D-latches (normally opaque) are typically

used, with no special read port (data is always available at the outputs). In the

case of the latches, the bundling constraint is similar to a set-up time requirement,

insuring that data is valid and stable before the latching, or data-valid, signal Wr,

is asserted.

In this case, the datapath operates as follows. The controller generates an

initial request r". Data fromX and Y is already present as inputs to F . The request

signal propagates through the matched delay DF while F (X; Y ) is computed. The

output of the delay acts as the data-valid signal for the result. This data bundle

is sent to Z. The arrival of the data-valid signal makes Z transparent and, after

propagating through DZ, it is sent back to the controller as acknowledge signal

a. At this point, the processing phase is complete and the controller starts the

return-to-zero phase by de-asserting r, which propagates through DF and arrives

at Z, making it opaque again. After propagation through DZ, a is de-asserted.

Single-Rail Datapaths/2-Phase handshaking

Alternatively, if 2-phase handshaking is used to control the datapath, event-based

latches (also called capture-pass latches [83]) or dual-edge-triggered ip-ops (DETFFs)

[89, 1, 105] can be used. These storage elements respond to transitions in the con-

trol signal, which make them more expensive than standard (level-based) latches.

If D-latches are used in 2-phase systems, expensive 2-phase/4-phase converters are

needed [83, 69, 16].

If DETFFs are used, the datapath operates as follows. The controller gen-

erates an initial request r ". Data from X and Y is already present as inputs to

F . The transition in the request signal propagates through the matched delay DF

while F (X; Y ) is computed. When computation is complete the data is stable and
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valid. The transition at the output of the delay acts as the data-valid signal for

the result. The transition in the data-valid signal triggers the storage of the new

data in Z and, after propagating through DZ, is sent back to the controller as

acknowledge signal transition a". At this point, the processing phase is complete.

The next handshake will follow the same path with the negative transitions of the

handshake signals.

Complying with the Bundling Constraint

The design of the matched delays is an important problem. A simple approach is

to use an inverter chain as a rough matched delay. A better approach used in high-

performance systems, where tight margins are critical, is to use a replicated portion

of the critical path as the delay (see [19, 32, 65]). In CMOS implementations,

delays depend heavily on the sizes of transistors and their loading, and also on the

�nal routing and placement of modules, so safety margins are required for correct

operation.

A potential weakness of the use of single-rail systems is that the bundled

delays match the worst-case delay in the logic, eliminating the possibility of early

completion of processes. To overcome this problem, Nowick et al. [65] introduced

speculative completion. They use several bundled delays, of di�erent lengths, and

one of them, the one that �ts the actual conditions of the circuit, is selected in

every activation of the process.

2.6 High-Performance or Low-Power Systems?

Interest in low-power systems has grown considerably in recent years. This section

shows how a performance increase can be traded for lower system energy con-

sumption. The section reviews basic background on power consumption in CMOS
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circuits and introduces voltage scaling, an important power saving technique.

The constant increase in the use of battery-operated portable devices like

cellular phones and notebook computers has made low power consumption a high

priority. Low power is also becoming critical for non-portable systems because of

its impact on packaging and component lifetime.

What can be done to reduce the power consumption of a system? To answer

this question, we must understand how power is consumed in a circuit. There are

three major sources of energy consumption in CMOS circuits. Switching energy is

associated with transitions on gate outputs. Short-circuit energy consumption is

caused by simultaneous conduction, during a transition, of pull-up and pull-down

stacks, allowing current ow directly from the power supply to ground. Finally,

leakage energy occurs in standby mode, and is caused by substrate currents and

by sub-threshold conduction in o� transistors. We only consider transition energy

because in most CMOS circuits this energy dominates the other two and contributes

up to 90% of the total energy [11].

In asynchronous systems there is no global clock, so the metric of interest is

the total energy of a computation. A well-known expression [94] for this energy is:

Energy of a computation = 1

2
� n � CL � V

2
dd

where n is the total number of transitions in the computation, CL is the load

capacitance being charged/discharged, and Vdd is the power supply voltage.

A wide range of techniques is used to reduce circuit power consumption in

CMOS circuits. Clearly, energy dissipation can be reduced by reducing the load

capacitance, the number of transitions, or the supply voltage. Since energy depends

quadratically on the supply voltage, voltage scaling, i.e., the reduction of the supply

voltage, is an especially attractive scheme for power reduction [11].

Unfortunately, voltage scaling has the undesirable e�ect of reducing the

speed of the circuit. Several techniques are used to compensate for this perfor-
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mance penalty. In particular, Chandrakasan et al. [11, 10] propose architecture-

driven voltage scaling, which combines architectural optimizations (to increase the

throughput of the system) with voltage scaling (to reduce the power consumption).

If the increase in performance is achieved without increasing the switching activity

required for the computation, a substantial reduction in power is possible through

voltage scaling, with no net loss in performance.

As a further optimization, Nielsen et al. [61] and van Berkel et al. [92] have

shown how adaptive voltage scaling, i.e., dynamic adjustments of the power supply

voltage, can be used to reduce energy consumption and, at the same time, meet

varying performance requirements.

We can now answer the question that starts this section. In CMOS circuits,

optimizations that increase the performance of a system can also be regarded as

power-saving techniques. The increased performance can be traded for lower energy

consumption using voltage scaling.
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Chapter 3

Architectural Optimization for

4-Phase Systems

In macromodular systems, the most basic control operation is the sequencing of

computations or data processing actions. This chapter presents a new architectural

optimization for 4-phase asynchronous systems. The goal of the optimization is to

increase the performance of a system by increasing the level of concurrency in the

sequencing of data processing stages.

In particular, the following contributions are presented. First, we introduce

three new designs for asynchronous sequencers. Each design increases the through-

put of the entire system. Second, we show that existing asynchronous datapaths

will not operate correctly at this increased level of concurrency: data hazards may

result. We therefore modify the datapath to insure correct operation. Speci�cally,

we introduce interlock mechanisms that safely handle concurrent operation in both

dual-rail and single-rail datapaths.

The use of these new sequencers can also be regarded as an optimization for

low power. 4-phase macromodules are frequently used to implement non-pipelined

asynchronous systems, such as low-power DSP circuits with moderate performance



28

requirements [62, 92]. The increased throughput obtained through more concurrent

operation can be traded for lower energy consumption by a reduction of the power

supply voltage, as discussed in Section 2.6.

SPICE simulation results show that, for a dual-rail datapath, the new se-

quencers allow roughly twice the throughput of non-concurrent sequencers. After

voltage scaling, energy dissipation of the system is reduced by a factor of 2.5. Sim-

ilar results are obtained for a single-rail system.

Only two recent approaches attempt to achieve similar bene�ts. Kagotani

and Nanya [39] introduce concurrent operation in dual-rail systems and deal with

the presence of data hazards. Peters and van Berkel [71], without introducing

concurrency, modify the usual operation of single-rail systems to obtain similar

performance improvements. We compare our method to theirs, and indicate the

performance and power advantages of our approach.

This chapter is organized as follows. Section 3.1 presents previous work

on asynchronous sequencers, including a description of sequential and concurrent

protocols. In Section 3.2, the three new low-latency sequencers are introduced,

including details of their speci�cation, design and operation. Data hazards in con-

current operation are analyzed in Section 3.3, and techniques to eliminate them in

both dual-rail and single-rail datapaths are introduced in Section 3.4. Section 3.4.6

includes a detailed comparison with the dual-rail method of Kagotani and Nanya.

Section 3.5 presents a thorough comparison with the single-rail approach introduced

by Peeters and van Berkel. Section 3.6 presents results of analysis and SPICE sim-

ulations, and Section 3.7 presents conclusions.

3.1 Previous Work on Asynchronous Sequencers

In non-pipelined macromodular systems, the most basic operation is the sequencing

of computations or data processing actions. Such sequences can be very long. For
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example, Bailey [4] reports that the longest sequence in the asynchronous error de-

coder circuit for a DCC player [92] consists of 48 processes. Two common protocols

have been used in asynchronous sequencers: sequential and concurrent.

3.1.1 Sequential Protocol

The most common scheme is a sequential protocol. Figure 3.1(a) shows a sequencer

controlling four processes: P1, P2, P3, and P4. In a sequential protocol, shown in

Figure 3.1(b), the sequencer executes a complete 4-phase handshake with process

Pi before starting the handshake with Pi+1. In this case, processing (Pi) and return-

to-zero (Ri) phases alternate, resulting in a long dead time between computations,

as shown in Figure 3.1(b). This non-computation time is called the inter-process

latency. Other parameters, shown in Figure 3.1(b), are initial latency and total

computation time.

INITIAL INTER−PROCESS

Sr
Sa
r1
a1
r2
a2
r3

r4
a4

a3

COMPUTATION
r1

r2
a1

a2

a3

a4

r4
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r3

S
E
Q
U
E
N
C
E
R

P1

P2

P3

P4

Sa

P1 R1 P2 R2 P3 R3 P4 R4

PROCESS 1

TOTAL COMPUTATION
                TIME

(a) (b)

Figure 3.1: 4-Way Sequencer: Sequential Protocol.
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A number of previous sequencer designs use a sequential protocol. A detailed

quantitative comparison is presented in Section 3.6.

Tangram Sequencer

In Tangram, 2-way sequencing is implemented using the SEQ operator [94], shown

in Figure 3.2(a). The sequencer is activated on its passive port, or channel, S (a

passive port is indicated by a small white circle). The sequencer then communicates

on active ports P1 and P2 to activate the �rst and second processes, respectively

(an active port is indicated by a small black circle).

;

P1

P2

S
;

;

;

P1

P2

P3

P4

S

R

Q

S

Sr

Sa

a1

r2

a2

r1

S−ELEMENT

(a) (b) (c)

Figure 3.2: Tangram SEQ: (a) Symbol, (b) Circuit, (c) Tree Sequencer.

Channels are implemented using request and acknowledge wires (Sr and Sa

for channel S, and ri and ai for channel Pi). A complete 4-phase handshaking

occurs on port P1, followed by a complete 4-phase handshaking on port P2. The

behavior of the SEQ operator can be described by the following expression:

�(sr "; r1"; a1"; r1#; a1#; r2"; a2"; sa"; sr #; r2#; a2#; sa#)

An implementation of the SEQ operator is shown in Figure 3.2(b). This

circuit is speed-independent [52], i.e., it operates correctly assuming arbitrary, �nite,
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gate delays. An N-way sequencer consists of SEQ operators connected in a tree

structure, as shown in Figure 3.2(c). There are two problems with the Tangram

sequencer: (i) it has a long initial latency and (ii) it has long inter-process latencies.

Martin Sequencers

In [45], Martin presents two implementations of n-way sequencers. The �rst uses Q-

elements and the other uses D-elements. A left-branching Tangram n-way sequencer

corresponds exactly to a Q-element-based Martin n-way sequencer and it has the

same performance problems discussed earlier. A D-element based sequencer reduces

the initial latency but provides no overall performance improvement.

Josephs/Bailey Counter{Decoder Sequencer
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a4

r4

Sr

Sa

r3

D
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P1

P2

P3

P4

Figure 3.3: Josephs/Bailey Counter-Decoder Sequencer.

Seeking to improve on the Tangram circuit, Josephs and Bailey introduced a cen-

tralized sequencer [4]. Figure 3.3 shows a schematic counter-decoder sequencer. The

counter centralizes the state of the sequencer and the decoder distributes the sig-

nals to the processes resulting in improved initial and phase inter-process latencies
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compared to the Tangram tree sequencer. The circuit is speed-independent and is

currently used in handshake circuits [93]. Minor problems are that the circuit is

not modular and is designed to work with an even number of processes only.

Josephs/Bailey Chain Sequencer

A di�erent architecture, also introduced in [4], is shown in Figure 3.4. This n-way

sequencer is built as a linear chain of n modules, each controlling a process. There

are three di�erent types of modules: X, Y , and Z. The sequencer uses one X

module to control the �rst process, one Y module to control the last process, and

n-2 Z modules to control the intermediate ones. The circuit implementations of

the modules are also shown in the �gure. The modules assume fundamental-mode

operation and rely on reasonable timing assumptions to operate correctly.
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S
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Q
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P1

P2

P3

P4

Figure 3.4: Josephs/Bailey Chain Sequencer.

Even though the implementations by Josephs and Bailey have improved area,

performance, and power over the Tangram sequencers, They su�er from long inter-

process latencies (see Section 3.6). To obtain better results, an alternative approach

is needed.
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3.1.2 Concurrent Protocol

A sequential protocol inherently has low throughput, i.e., long inter-process laten-

cies, due to the alternation of processing and return-to-zero phases. An attractive

alternative approach is a concurrent protocol, which allows higher levels of concur-

rent activity in the system.

In a concurrent protocol, the sequencer can start process Pi+1 without waiting

for Pi to complete its return-to-zero phase. In this protocol, every processing phase

Pi+1 overlaps the return-to-zero phase Ri of the previous process, thus providing

roughly twice the throughput, as shown in Figure 3.5.

P1 R1P1

P2

P3

P4

P2 R2

P3 R3

P4 R4

TIME

Figure 3.5: 4-Way Sequencer: Concurrent Protocol.

Only a few concurrent sequencers have been proposed:

Unger Tree Sequencer

As part of his building block approach [87], Unger presents a 2-step module that

implements a 2-way sequencer. Figure 3.6 shows the module symbol and its circuit

implementation.

The 2-step is activated by a request in Sr. It starts a 4-phase handshake with
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Figure 3.6: 2-step Module, Circuit Implementation and Tree Sequencer.

process P1 using r1. When P1 signals the completion of the computation using a1,

the 2-step concurrently starts the processing phase of P2 (by asserting r2) and the

return-to-zero phase of P1 (by de-asserting r1). Similarly, when a2 is asserted, the

2-step concurrently de-asserts r2 and asserts Sa. At this point, the module waits

for Sr #, r1 #, and r2 # to de-assert Sa to indicate the end of the sequence. This

overlapped protocol can be described by the following expression, where `k' is the

\parallel" operator, and `;' is the \sequential" operator:

�(sr "; r1"; a1 "; (r1#; a1#) k (r2"; a2"; (r2#; a2#) k (sa "; sr #)); sa #)

The 2-step assumes fundamental-mode operation and relies on reasonable

timing assumptions. In fundamental mode, no new inputs can arrive until the

component has stabilized from a previous input change [88].

An n-way sequencer can be built as a balanced tree of n-1 2-step modules [87],

as shown in Figure 3.6(c). There are several problems with this implementation.

First, the sequencer has a long initial latency. Second, the inter-process latency is

variable and can be several gate delays long. It depends on how far up and down

the tree the signals have to propagate. Finally, the area and power consumption of

this structure are signi�cantly worse than previous designs (see Section 3.6).
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Kagotani/Nanya Auto-Sweeping Module (ASM)

Kagotani and Nanya [39] introduced the Auto-Sweeping Module, which is the basic

module used to implement a concurrent n-way sequencer. Figure 3.7 shows the

ASM symbol and its implementation.

ASM

Ui

Uo

Lo

Li

Ui

Uo

Lo

Li
C

P3

P2

P1

P4
Sa

Sr
ASM

ASM

ASM

ASM

(a) (b) (c)

Figure 3.7: Auto-Sweeping Module, Implementation and Chain Sequencer.

An n-way sequencer is built as a linear chain of n ASM modules, as shown in

Figure 3.7(b). The sequencer has a long inter-process latency due to the C-element1

in series with the AND gate of the following stage. Also, and most important, Sr #

has to propagate through a chain of n C-elements to generate Sa # and complete

the 4-phase handshake. This may have a large impact on the throughput of the

system.

Farnsworth/Edwards/Liu/Sikand Sequencer

It may be interesting to note that Farnsworth et al. [25] used a concurrent 2-way

sequencer as part of a FIFO control unit, but did not discuss N-way extensions.

1A C-element is a basic asynchronous primitive; when both inputs are 0 (1), the output is 0
(1); otherwise, the output holds its prior value [83].
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The 2-way sequencer is very similar to the ASM.

Each of the above sequencers has some drawbacks. First, the sequencers

have either long initial latency or long inter-process latency. A detailed comparison

is presented in Section 3.6. Second, and most important, the use of concurrent

sequencers may introduce data hazards in the datapath (see Section 3.3). Of the

above methods, only Kagotani and Nanya address this problem and present a solu-

tion. A detailed discussion of the Kagotani/Nanya approach is presented in Section

3.4.6.

3.2 New Concurrent Sequencers

We now introduce three new concurrent sequencer designs, which are faster, more

compact and more energy-e�cient than existing designs.

3.2.1 Tightly-Coupled Sequencer

The �rst new sequencer implements a tightly-coupled concurrent protocol: process-

ing phase Pi overlaps exactly the return-to-zero phase Ri�1. The key point is that

this sequencer waits until both concurrently operating phases, Ri�1 and Pi, com-

plete before starting the next two overlapped phases, Ri and Pi+1, as shown in

Figure 3.8. The arrows indicate that, for example, processing phase P3 starts after

both P2 and R1 have �nished.

Figure 3.9 shows a burst-mode speci�cation [66] for the behavior of the n-way

sequencer. The concurrent start and completion of the overlapped phases is clear

in this speci�cation. Each arc in the speci�cation indicates an input burst (i.e.,

input change) followed by output burst. A \+" means a rising transition, and a

\-" means a falling transition.

An n-way burst-mode sequencer circuit was synthesized using an existing
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Figure 3.8: Tightly-Coupled Sequencer Operation.
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Figure 3.9: Tightly-Coupled Sequencer Burst-Mode Speci�cation.
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burst-mode asynchronous tool (UCLOCK) [63]. The result is a modular design,

well suited for distributed control. Our N-way sequencer has N modules organized

into 4 types as shown in Figure 3.10(a): moduleM1 controls process P1,M2 controls

P2, Mi modules control P3 to PN�1, and Mn controls PN . The sequencer is very

e�cient in terms of speed, area and power: the inter-process latency is only 2

CMOS gate delays.
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r n

r i
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(a) (b)

Figure 3.10: Tightly-Coupled Sequencer: (a) Block Diagram, (b) Modules.

The sequencer operates as follows. A request on Sr activates module M1

which starts a 4-phase handshake with process P1 by r1 ". P1 then responds with

a1 "; modules M1 and M2 both receive this signal. BM1 will respond with r1 #

while, concurrently, M2 will start a 4-phase handshaking with with P2 by r2 ". As a

result, the reset phase of the �rst process (R1) overlaps the next computation (P2).

The sequencer then waits for the completion of both phases to proceed: once a1 #

and a2 " have both arrived, M2 continues the handshaking with P2 concurrently

with starting a 4-phase handshake with P3. As a result, R2 overlaps P3. The same
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behavior continues until the end of the sequence.

a i

r i

Pi

Pi+1

r i+1

a i+1

Figure 3.11: Tightly-Coupled Modules Controlling Processes.

Figure 3.11 shows two Mi modules, each controlling a process. The modules

have good latency, area and power. In typical computation, the inter-process la-

tency, |the time from completion of Pi's processing phase (ai�1 ") to the start of

Pi+1's processing phase (ri ")|, is only 2 CMOS gate delays (an AOI-gate followed

by an inverter).2 Also, each module contributes only 8 gate output transitions and

14 transistors to the energy consumption and area, respectively, of the system.

The correct operation of the sequencer relies on modest timing assumptions,

due to the fact that the acknowledge signal of each process, ai, is forked to two

di�erent modules. In particular, ai " generates, concurrently, ri #;ai # in module i,

and ri+1 " in module i + 1. The change in ri+1 must propagate back to the input

of the complex gate before ai # arrives at this gate, to avoid an unspeci�ed change

in ri+1. Since ri+1 has to propagate through a short wire while ri has to propagate

through process Pi, this restriction is quite reasonable in practice.

One limitation of our tightly-coupled sequencer is that a long return-to-zero

2If a return-to-zero phase is unusually long, the inter-process latency may increase due to
synchronization dependencies. In particular, Pi can be delayed by Ri�2.
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phase, such as R1 in Figure 3.8, may unnecessarily delay the start of the next

processing phase (P3). This observation leads to our second design.

3.2.2 Loosely-Coupled Sequencer

We now introduce a second concurrent sequencer which allows greater concurrency

than the previous one.

In the tightly-coupled protocol implemented above, each processing phase

exactly overlaps the previous return-to-zero phase. Our second sequencer allows

greater concurrency by using a more relaxed synchronization requirement. By start-

ing Pi+1 as soon as Pi is �nished, independently of the status of Ri, a faster sequence

of processing phases is allowed. The operation of this loosely-coupled sequencer is

shown in Figure 3.12.

P1 R1P1
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P2 R2

P3 R3

P4 R4

TIME

Figure 3.12: Operation of the Loosely-Coupled Sequencer.

The sequencer has a modular design, well suited for distributed control, and

the inter-process latency, from ai " to ri+1 ", is 2 CMOS gate delays (an AOI gate

followed by an inverter). The circuit consists of 3 di�erent types of modules (T1,

T i, and Tn) organized in a chain, as shown in Figure 3.13(a). Figure 3.14 shows
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two adjacent T i modules, each controlling a process. The modules are e�cient in

terms of speed, power and area (see details in Section 3.6).
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Figure 3.13: Loosely-Coupled Sequencer: (a) Block Diagram, (b) Modules.

The correct operation of this sequencer also relies on a modest timing as-

sumption. Once signal ai " is generated, ai # cannot occur until the i+1st controller

stage is stable. This is a fundamental-mode assumption [88]: no new input can ar-

rive until the sequencer has processed the previous input change. This restriction

is quite reasonable in practice: signal ai " must propagate through the i+ 1st con-

troller stage, before its fork propagates through the ith controller stage (ri #) and

process Pi (ai #).

Module Ti requires an external reset signal. This reset mechanism can be

implemented with 2 transistors and has a small impact on the performance of the

circuit (See Section 3.6).
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Figure 3.14: Loosely-Coupled Sequencer: Two Intermediate Stages.

3.2.3 Speed-Independent Sequencer

The tightly- and loosely-coupled sequencers introduced above operate in fundamen-

tal mode. In some environments, the timing assumptions related to this operation

mode may be di�cult to insure. In such cases, a speed-independent system may be

used. In this section we introduce a new concurrent speed-independent sequencer.

A speed-independent circuit is one which operates correctly assuming ar-

bitrary, �nite, gate delays [52]. Our speed-independent design has more robust

operation, at the cost of a slight increase in power and area.
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Figure 3.15: Operation of the Speed-Independent Sequencer.
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Figure 3.15 shows the operation of our speed-independent sequencer, and

Figure 3.16(a) shows the implementation. The �rst process, P1, is controlled by a Q

module [45]; remaining processes are controlled by M modules. Module implemen-

tations are shown in Figure 3.16(b). AnM module has an e�cient implementation:

a single C-element3.
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Figure 3.16: Speed-Independent Sequencer: (a) Block Diagram, (b) Modules.

A speed-independent circuit acknowledges every input change to indicate

that it is stable and ready to accept new changes [45, 52]. This is true for our

speed-independent sequencer. An M module acknowledges changes in both inputs

using ri. Clearly, when ri changes, the module is stable and can accept further

input changes. In the Q module, a change in b1 produces a change in r1 after the

module is stable. A change in signal Sr produces a series of changes in module Q.

When Q is ready to accept a new change in Sr, it produces a change in signal b4

which in turn enables a change in Sa (in the last M module), thus allowing new

3This sequencer works for N > 2 (the circuit will deadlock for N = 2). A 2-way sequencer
can be built using an S-element to control the �rst process, an M -module to control the second
process and an additional M -module to generate Sa.
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changes in Sr.

A reset input is required for the C-element in the M module. Bailey [3]

introduced a C-element with reset that uses only 2 additional transistors, with no

signi�cant impact on performance (based on SPICE simulations).

3.3 Data Hazards in Concurrent Operation

The use of concurrent sequencers increases the throughput of the entire system.

Unfortunately, existing circuits may not operate correctly at the increased level of

performance. In this section we show that data hazards may appear. We then

introduce mechanisms to guarantee that both dual- and single-rail systems operate

correctly, without hazards, using our new sequencers.

In the context of datapath operation, a data hazard [35] represents the pos-

sibility that a wrong data value is used in a computation or is stored in a register.

Data hazards cannot occur in a sequential protocol: in this case, a datapath op-

eration starts only after the previous one has completed. On the other hand, in

a concurrent protocol, two or more operations may execute concurrently. This

overlapped operation introduces the possibility of data hazards. In particular, if

two concurrent operations involve the same register, data hazards may arise during

concurrent accesses to that register.

Figure 3.17 shows schematically a 2-stage dual-rail datapath. In this exam-

ple, a sequencer controls two processes, where Process 1 implements Z = F (Y )

and Process 2 implements X = G(W ). There are four possible forms of interaction

when concurrent processing and return-to-zero phases access the same latch (each

phase can read or write the latch).

Read after Read (RAR). [W = Y in Figure 3.17] In this case, data in

the common latch does not change and remains stable. Thus, no data hazard can

occur.
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Figure 3.17: Sequencer controlling 2 Dual-Rail Datapath Processes.

Read after Write (RAW). [W = Z in Figure 3.17] In this case, the read

(second) operation overlaps the return-to-zero phase of the write (�rst) operation,

i.e., the second computation reads data that has already been written to the latch

and is stable. Again, no data hazard occurs.

Write after Write (WAW). [X = Z in Figure 3.17] When two di�erent

sources can write to the same latch, a multiplexer module [72, 94] is typically used,

as shown in Figure 3.18. In a sequential protocol, no data hazard occurs since the

�rst write is completed before the second write begins. However, in a concurrent

protocol, the two writes overlap, causing a conict in the multiplexer. Thus, a

WAW hazard may occur. To avoid the hazard, the second write operation must be

stalled until the �rst one is complete.

Write after Read (WAR). [X = Y in Figure 3.17] This situation is

illustrated in Figure 3.19.

A WAR hazard occurs when a read is �rst initiated in X, making the read

port transparent. Before the read operation is completed, a write is initiated. New

data in the write port can propagate through the latch to the read port, causing

undesired changes in the output data.
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Summarizing, of the four possible forms of concurrent accesses to a register,

two (RAR and RAW) are hazard-free and only two (WAW and WAR) can introduce

data hazards. We must introduce mechanisms to avoid the presence of hazards in

these cases.

3.4 Data Hazard Elimination

Data hazards can be eliminated by avoiding concurrent accesses to the shared latch.

This can be achieved at the algorithm level, by introducing changes in the order of

the processes, or at the architecture level, by introducing additional circuitry. The

following sections examine the solutions in detail.

3.4.1 Algorithm Modi�cation

At the algorithm level, a designer (or a compiler) can easily identify a WAW or

a WAR hazard between two consecutive computations. For example, Figure 3.20

shows the algorithm for the two-place ripple shift register introduced in Chapter 2.

There is a potential WAR hazard between instructions labeled A and B. The shared

register is X0 (there is a similar data hazard involving X1).

begin

REPEAT forever

OUT = X1;

X1 = X0;  � A

X0 = IN  � B

end

Figure 3.20: Macromodular System High-Level Speci�cation.
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To avoid the hazard, the two operations must execute sequentially, not con-

currently. An unrelated operation can be inserted between the two conicting

instructions to eliminate the hazard. This technique requires the use of our tightly-

coupled sequencer, which allows WAW and WAR interactions only between two

consecutive computations.

begin

REPEAT forever

OUT = X1;

null;

X1 = X0;

null;

X0 = IN

end

Figure 3.21: Macromodular System High-Level Speci�cation.

In a case in which such reordering of processes is not possible, a special, null,

operation is inserted, as shown in Figure 3.21. A null operation is a process that

simply returns an acknowledge whenever a request is asserted.

3.4.2 Architectural Solution

Data hazards can also be eliminated at the circuit level, without modi�cations

to the algorithm. The basic idea is to introduce circuitry that detects conicting

concurrent accesses to a latch and stalls the second operation until it is safe to

proceed. The additional circuits are called interlock circuitry.

The interlock circuitry has an e�ect on system performance. The interlocks

stall an operation, e�ectively delaying its completion. It is important to design the

interlocks so that only potentially hazardous operations are stalled, and only for
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the minimum time necessary to guarantee correct operation.

The following subsections present the proposed architectural solutions for

WAW and WAR data hazards. Elimination of WAR hazards requires di�erent

techniques for dual-rail and single-rail datapaths. We propose solutions for both

types of datapaths.

3.4.3 WAW Hazard Elimination

In the case of WAW hazards, the second write operation must be stalled until the

�rst one is complete. Figure 3.22 shows the datapath with multiplexer, and an

added interlock: an AND gate is used to stall the second write operation until the

�rst one is complete.

Z

F
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LATCH

G
M
U
X
E
R

r1r2a2 a1

W

Y

LATCH

LATCH

LOGIC
BLOCK

LOGIC
BLOCK

(X)

Figure 3.22: Interlock Circuit to Avoid WAW Hazard.

3.4.4 WAR Hazard Elimination in Dual-Rail Datapaths

Basic Solution

To eliminate WAR data hazards, the write operation must be stalled until it can

be safely executed, i.e., until the read port of the latch is closed (opaque). The
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read request signal (Rr) controls the state of the read port and can be used as an

enable signal for the write operation.

In dual-rail datapaths, WAR hazards can be eliminated using the interlock

circuitry shown in Figure 3.23. The addition of the inverter and AND gates makes

Rr into an enable signal for the write port. When the read port is transparent, Rr

is high (Rr is low), thus preventing a write operation.

LATCH
Rr Wa

F Z

r1 a1

G

Rr Wa

a2r2

W

LATCH

SEQUENCER

X

LATCH

Figure 3.23: Interlock Circuit to Avoid WAR Hazard in Dual-Rail Datapaths.

In practice, this interlock circuitry should have minimal impact on perfor-

mance. First, the interlock mechanism will rarely be activated, because r1 # prop-

agates through a wire to produce Rr #, while r2 " must propagate through W and

G to generate a write request (W0 " or W1 "). Second, even if the interlock is

activated, the write will be stalled only for the duration of the race and not for

the entire phase. Finally, even though the AND gates are on the critical path,

the increased delay is small compared to the performance bene�ts of concurrent

operation.
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Optimized Solution

The interlock mechanism can be optimized, when incorporated directly into an

existing dual-rail latch, as shown in Figure 3.24. The shaded region indicates our

added interlock. In this latch, if the data to be written is the same as the currently

stored data, no stall is required, since no data hazard can occur. In this case, the

circuit can immediately acknowledge the write request. This is a safe optimization:

if the same data is written, no signals will change inside the latch.

W0

W1

Wa

R0

Rr

R1

Rr

Rr
WRITE STORAGE

SECTION
READ

   PORT   PORT

NOR1

NOR2

Figure 3.24: Modi�ed Dual-Rail Latch Gate-Level Implementation.

Figure 3.25 highlights our changes at the transistor-level of the latch. This

solution requires the addition of only 2 transistors.

The correct operation of the circuit relies on reasonable timing assumptions.

In a WAR interaction, the read operation is always started �rst, so Rr # will safely

disable any write operation. When the read is complete, Rr " must make the latch

opaque (one gate delay), before the new write data arrives (three gate delays).
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Rr

Rr

W0 W1

q0 q1

NOR2NOR1

STORAGE SECTION

Figure 3.25: Modi�ed Dual-Rail Latch Transistor-Level Implementation.

3.4.5 WAR Hazard Elimination in Single-Rail Datapaths

A key di�erence between single-rail and dual-rail datapaths is that single-rail latches

have no read port. Therefore, a di�erent approach is used to eliminate WAR

hazards: the write operation must be stalled until the entire �rst computation is

complete, i.e., until the destination latch Z is opaque.

Basic Solution

Figure 3.26 shows the basic interlock mechanism to stall the write operation. In

this case, the acknowledge signal from the destination latch (a1) is used as an enable

to the source latch write request. This mechanism guarantees correct operation,

but limits the performance improvement obtained.

Optimized Solution

Two optimized schemes can be used, each of which assume certain timing con-

straints. First, if stages have little or no computation (e.g., shift registers), very

small or no matched delays are used, and control overhead tends to dominate. In

this case, the request signal itself (r1 ") can be used to stall the write request.
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Figure 3.26: Robust Interlock to Avoid Single-Rail WAR Hazards.

Figure 3.27 shows this fast interlock, which provides better performance than the

robust interlock of Figure 3.26. For correct operation, this circuit assumes that

delay DF is faster than the delay of the AND-gate plus latch X.

Z

LATCH

DZ

Wr

r1 a1

X

LATCH

F
Wr

DF

FUNCTION
    BLOCK

Figure 3.27: Avoiding Single-Rail WAR Hazards: Fast Interlock.

Second, an asymmetric matched delay [79] DF can be used. In this case,

no interlock is needed. An asymmetric delay matches the function block in the

processing phase, but has a fast reset in the return-to-zero phase. Therefore, Wr #

arrives quickly at the destination latch Z, which becomes opaque before new data

arrives. The write operation is never stalled, and performance is improved. For

correct operation, Wr # must arrive at the destination latch, Z, before the source
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latch, X, becomes transparent and new data propagates through F .

3.4.6 Comparison with Kagotani/Nanya Approach

Of existing work on concurrent operation in dual-rail datapaths, only Kagotani and

Nanya address the issue of data hazards [39]. Their work appeared at the same

time as ours [73].

Section 3.1.2 above presented the ASM module introduced by Kagotani and

Nanya as a concurrent sequencer. Kagotani and Nanya also developed an interlock

mechanism to avoid WAR hazards in dual-rail datapaths, shown in Figure 3.28.

Their interlock is similar to ours, in that they use latch X read request signal as

an enable for the write operation. However, unlike our approach, it actually stalls

the read of the source register (W ) of the second operation, stalling the processing

phase, thus stalling the entire write operation.

LATCH
Rr Wa

F Z

r1 a1

G

Rr Wa

a2r2

W

LATCH

SEQUENCER

X

Figure 3.28: Kagotani/Nanya Interlock Mechanism for Dual-Rail Datapaths.

The Kagotani and Nanya approach has several drawbacks. First, only dual-

rail datapaths are considered. Second, their concurrent sequencer has greater area,

power, and inter-process latency than ours (see Tables 3.1 and 3.2). Finally, their

interlock scheme has much greater impact on performance than ours, since it stalls
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a write operation at the beginning of the processing phase (i.e., reading of source

register W ) rather than at the end (i.e., writing of destination register X; see

Figure 3.23).

3.5 Comparison with True Four-Phase Operation

No other concurrent sequencing approach has been proposed, for single-rail data-

paths, which addresses the problem of data hazards. However, a novel sequential

scheme, limited to single-rail systems, was introduced by Peeters and van Berkel

[72], which attempts to achieve similar high throughput as that obtained by con-

current sequencing, without introducing data hazards. In this section we compare

the operation of our new sequencers with this scheme and show that our approach

has several advantages.

The Peeters and van Berkel true four-phase (TFP) scheme uses a sequen-

tial protocol. However, unlike a typical sequential scheme, delay elements are de-

signed to match only half the worst-case delay in the functional blocks. During

the processing phase, only half of the computation occurs. The second half of the

computation takes place in the return-to-zero phase. Therefore, the function block

computes throughout the entire handshaking cycle, and there is no dead time.

Figure 3.29 shows timing diagrams for sequential, TFP and concurrent oper-

ation. Clearly, the length of the processing and return-to-zero phases is the same in

sequential and concurrent operation, but is reduced to a half in TFP. Another key

di�erence, also shown in the �gure, is that in sequential and concurrent operation

the destination latches remain opaque during computation while in TFP the latches

are transparent during the second half of the computation.

The advantage of the TFP scheme is that, as in our approach, it can obtain

roughly twice the throughput of a normal sequential protocol. However, there are

several key drawbacks:
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Figure 3.29: Single-Rail Operation: Sequential, TFP and Concurrent.
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Glitch Propagation. Glitches can cause signi�cant power consumption, espe-

cially if they can propagate through latches connected to deep combinational cir-

cuits [27, 57]. In our approach, glitch propagation does not occur, since the desti-

nation latch is opaque during computation. In TFP, glitch propagation can occur,

since the destination latch is transparent throughout the entire return-to-zero phase

while computation is taking place. Figure 3.29 illustrates the di�erence in latch

operation in the two schemes. SPICE simulations indicate that glitch propagation

may contribute up to 40% more energy consumption in TFP than using our scheme

(see Section 3.6).

Performance and Design Overhead. TFP has several overheads compared

to our scheme. First, TFP uses sequential sequencers; these have greater inter-

process latency, area and power than our concurrent sequencers (cf. Josephs/Bailey

sequencers in Tables 3.1 and 3.2).

Second, TFP is not easily applicable to dynamic-logic implementations. Typ-

ically, in an asynchronous dynamic implementation, the processing phase corre-

sponds to the evaluate phase, and the return-to-zero phase corresponds to the

precharge phase [31, 26]. However, in TFP, both processing and return-to-zero

phases will be used to match the evaluate phase. To implement a precharge phase,

either (i) separate control signals must be introduced, or (ii) the processing phase

must match the evaluate phase, and return-to-zero must match the precharge phase,

reducing the operation to a simple sequential scheme, with degraded performance.

Finally, for the special case of �ne-grained stages, which have little or no

computation, TFP may have signi�cant control overhead: 2 cycles through control

in TFP vs. 1 cycle through control in our scheme. In this case, our system may be

up to 40% faster (see Section 3.6).

Delay Matching. In high-performance single-rail datapaths, tight margins in

delay matching are necessary. Matched delays that accurately model the logic are
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usually built by using a single extracted portion of the critical path [19, 32, 65],

with similar layout and loading. However, this approach is not directly applicable

to half-matched delays in TFP, which may therefore require larger safety margins,

thus degrading performance.

3.6 Results

In this section, we present the results of detailed comparisons of the characteristics

of our new sequencers with existing ones. We also show the results of SPICE sim-

ulations to compare the performance and energy consumption of an entire system,

using our new concurrent sequencers versus a sequential system. Finally, we use

SPICE simulations to compare the operation of our concurrent sequencers with

True Four-Phase operation.

3.6.1 Sequencer Comparison

We �rst compare the static characteristics of several sequencers in Table 3.1. N

is the number of processing stages being sequenced. Transistor and gate-output

transition counts are used as approximations to area and energy consumption,

respectively. The table also shows the timing model (fundamental mode or speed-

independent) of each design. The table indicates that our loosely-coupled and speed-

independent sequencers have better area and energy consumption than existing

designs.

Table 3.2 compares the dynamic behavior of di�erent sequencers. Each se-

quencer is assumed to control N identical processes. g is roughly the delay as-

sociated with a CMOS complex gate or an inverter, P represents the length of

a processing phase, and R is the length of a return-to-zero phase. For symmet-

ric delays, P and R are roughly equal; for asymmetric delays, R is smaller than
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AREA ENERGY TIMING

SEQUENCER # transistors # gate output transitions MODEL

Previous Designs

van Berkel 18N{18 10N{10 SI
Martin 18N{18 10N{10 SI
Josephs/Bailey Counter-Decoder 15N{6 7N{2 SI
Josephs/Bailey Chain 12N+4 8N{2 FM
Unger Tree 36N{36 16N{16 FM
Kagotani/Nanya ASM chain 18N 10N SI
New Designs

Tightly-Coupled 14N{6 8N{4 FM
Loosely-Coupled 10N+2 6N FM
Speed-independent 12N+2 6N+6 SI

Table 3.1: Static Characteristics of N-way Sequencers.

P . The table indicates that the our new sequencers have the shortest initial and

inter-process latencies, and the best total computation times.

3.6.2 Simulation: Performance and Energy Consumption

We next use SPICE simulations to compare total system performance and energy

consumption, using concurrent and sequential sequencers. The simulations use

MOSIS 1.2� technology parameters with a 5V power supply. Both dual-rail and

single-rail systems are simulated. In each case, a datapath consisting of 4 generic

stages is used (see Figures 2.9 and 2.10). Inverter chains are used to model function

blocks (1 chain for single-rail blocks, 2 for dual-rail ones). The length of the chain

determines the latency of the block (8 and 24 inverter chains were used in the

simulations).

Figure 3.30 shows SPICE simulations of a dual-rail system. Figure 3.30(a)

shows total computation time (represented by Sa") and power consumption of a se-

quential implementation of the system, using the Josephs/Bailey chain sequencer [4]

and van Berkel dual-rail latches [94]. Figure 3.30(b) also shows the total computa-
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INTER- TOTAL

INITIAL PROCESS COMPUTATION

SEQUENCER LATENCY LATENCY TIME

Previous Designs

van Berkel (2N-2)g 5g + R (6N-8)g+NP+(N-1)R
Martin (2N-2)g 5g + R (6N-8)g+NP+(N-1)R
Josephs/Bailey Counter-Decoder 2g 4g + R (4N-4)g+NP+(N-1)R
Josephs/Bailey Chain 2g 3g + R (3N-2)g+NP+(N-1)R

MIN=2g
Unger Tree 2(logN)g MAX=[4(logN)-2]g (6N-6)g+NP
Kagotani/Nanya ASM chain 2g 4g 4Ng+NP
New Designs

Tightly-Coupled 2g 2gy (2N+2)g+NP
Loosely-Coupled 2g 2g 2Ng+NP
Speed-Independent 2g 2g 2Ng+NP

yIf a r-t-z phase is unusually long, the inter-process latency may increase due to synchronization dependencies

Table 3.2: Dynamic Behavior of N-way Sequencers.

tion time and power consumption of our concurrent implementation of the system,

using the loosely-coupled sequencer and modi�ed dual-rail latches. Our system ob-

tains a 67% improvement in total computation time, and a 4% reduction in total

energy consumption.4

Figure 3.31 shows the simulation results for a single-rail system. A high-

latency system is modeled, where each stage has a 24-inverter matched delay. Fig-

ure 3.31(a) shows power consumption of a sequential implementation, using single-

rail latches [71] and asymmetric matched delays. Figure 3.31(b) shows the power

consumption of our concurrent design, using the loosely-coupled sequencer and sym-

metric matched delays. Asymmetric delays were used for the sequential protocol,

since they yielded the best total computation time: 35.75 ns using asymmetric vs.

43.10 ns using symmetric delays. Symmetric delays were used for the concurrent

protocol, since asymmetric delays have no bene�t: the fast reset phase is hidden.

4If a reset mechanism is added to the sequencers, our system shows a 7% performance loss.
The impact of the reset on the sequential system was not simulated.
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Figure 3.30: Performance and Power Consumption of Dual-Rail System.

In this case, our design obtains a 45% improvement in total computation time.

Finally, Figure 3.32 shows simulation results for a low-latency single-rail sys-

tem, where each stage has an 8-inverter matched delay. This case indicates that the

use of asymmetric delays is not always bene�cial. Figure 3.32(a) shows the sequen-

tial implementation using symmetric matched delays, and Figure 3.32(b) shows the

concurrent system (also using symmetric delays). Here, we used symmetric delays

for the sequential protocol, since they yielded the best total computation time:

22.75 ns using symmetric vs. 24.25 ns using asymmetric delays. The simulations

suggest that, for �ne-grained computation, the increased loading and switching ac-

tivity of asymmetric delays may dominate (see Figure 7.8 in [79]). In this case,

our system obtains a 73% improvement in total computation time.

We also simulated the e�ect of applying voltage scaling to each of the 3
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Figure 3.31: Power Consumption of Single-Rail System (High-Latency).
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Figure 3.32: Power Consumption of Single-Rail System (Low-Latency).

systems: the power supply voltage is dropped until the total computation time is

the same as the corresponding sequential system. In the dual-rail system, shown in

Figure 3.30(c), the energy consumption of the entire system is reduced by a factor

of 2.4 compared to the sequential design. Figure 3.31(c) shows the simulation of

our �rst single-rail system. In this case, energy consumption of the entire system is

reduced by a factor of 1.9 . Finally, our fast single-rail system, shown in Figure 3.32,

reduces energy by a factor of 2.3.
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3.6.3 Comparison with True Four-Phase Operation

A �nal comparison is between our concurrent scheme and the TFP scheme of Peeters

and van Berkel.

Glitch Propagation. First, the impact of glitch propagation is analyzed.

We simulated a 2-stage single-rail system: a 4-bit array multiplier followed by

an 8-bit ripple-carry adder (with inputs 15 � 9 + 240). Figure 3.33(a) shows a

SPICE simulation of the datapath using half-matched delays, as in the TFP scheme.

Figure 3.33(b) shows the simulation using full-matched delays, as in our scheme.

Energy consumption using the TFP matching scheme was 40% more than using

our full-matched delays, indicating the impact of glitch propagation in TFP.
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Figure 3.33: Power Consumption of Multiplier/Adder Single-Rail Datapath.

Fine-Grained Stages. An 8-bit shift register was used to compare our ap-

proach with the TFP scheme in datapaths with little or no computation. SPICE

simulations show that our system (using the fast interlock mechanism) was 40%

faster than using TFP scheme, since control overhead in the return-to-zero phase

is hidden in our scheme.
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3.7 Conclusions

In this chapter we presented an architectural optimization for 4-phase macromodu-

lar systems. The goal of the optimization is to increase the throughput of a system

by increasing its level of concurrent activity. This optimization can be applied to

low-power applications such as the DCC error corrector in [92] and the FIR �lter

bank in [62].

Three new concurrent sequencers were introduced, which increase the con-

current activity and throughput of a system. The new sequencers have better speed,

area and power characteristics than existing sequential and concurrent sequencers.

We showed that, when the new sequencers are used, data hazards may arise in

existing datapaths. To avoid data hazards, several interlock schemes were proposed,

for both dual-rail and single-rail implementations. SPICE simulations showed up

to 73% performance improvement when the new concurrent sequencers are used,

compared to sequential ones.

The technique can also be regarded as a low-power optimization. SPICE

simulations show total energy reductions up to a factor of 2.4 after voltage scaling,

using our approach over a sequential approach.

Finally, simulations also indicated that True Four-Phase operation, a novel

sequential approach that attempts to obtain similar throughput and power bene�ts

as our concurrent operation, may in some cases consume up to 40% more energy

than ours, due to glitch propagation in the datapath.
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Chapter 4

Pulse-mode Macromodular

Systems

In this chapter, we explore the use of pulses as handshake events and investigate

the use of pulse-mode modules in the implementation of macromodular systems

and micropipelines.

In particular, the following contributions are presented. First, the use of

pulses as events in an e�cient handshaking protocol. Although the idea had been

suggested previously, no systematic approach to the use of pulse-mode inter-module

synchronization has been presented before. Second, the introduction of a more

concurrent form of pulse-mode operation. Traditional pulse-mode systems allow a

single pulse to be active at any time. Pulse burst operation (PBO), introduced in

this work, allows concurrent pulses as inputs to a module. Finally, the design of

a large set of pulse-mode macromodules that can be used to build cost-e�ective

asynchronous macromodular systems. Such a set has not been proposed before.

The set includes control macromodules as well as arbiters and converter modules

to interface pulse-mode to traditional 2-phase and 4-phase circuits. The modules

have very e�cient implementation using standard CMOS gates.
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This chapter is organized as follows. Section 4.1 introduces pulse-mode hand-

shaking. This section also reviews traditional pulse-mode operation and introduces

pulse-burst operation, including several implementation issues. Section 4.2 presents

a large set of pulse-mode macromodules that e�ciently implement control opera-

tions such as sequencing, selection, iteration, concurrency control and resource

sharing. Macromodules that interface pulse-mode systems with 2-phase and 4-

phase systems are introduced in Section 4.3. Section 4.4 discusses arbitration and

introduces a pulse-mode arbiter. The use of pulse-mode macromodules to control

dual-rail and single-rail datapaths is presented in Section 4.5. This section reviews

both level and pulse-mode datapaths. Section 4.6 introduces optimizations that

can be applied to macromodular systems. These optimizations usually improve

area and performance. Section 4.7 presents the design of a micropipeline and an

iterative multiplier, as application examples of the pulse-mode macromodules in-

troduced in previous sections. Finally, Section 4.8 presents conclusions.

4.1 Pulse-Mode Handshaking

Pulses are used frequently in digital circuits and are intuitively associated with

events. Pulse-mode handshaking is a form of 2-phase handshaking that uses pulses,

instead of transitions, to represent events.

Figure 4.1 shows two macromodules that communicate with each other using

req and ack wires. Initially, the two modules are idle and both signals are de-

asserted. Module P sends a pulse on req to start the operation of module Q . When

Q �nishes processing, it sends a pulse on ack to complete the handshake. After the

handshake cycle, the state of the wires is the same as in the initial state and the

modules can start a new handshake.

Pulse-mode handshaking combines the conceptual simplicity of the 2-phase

protocol (only two events per handshake) with the level-based approach of 4-phase
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Figure 4.1: Pulse-Mode Handshaking for Module Communication.

handshaking. It has potential advantages over transition signaling and single-track

implementations. As pointed out before, the initial and �nal levels of the request

and acknowledge wires are the same. This, in general, leads to simpler circuits.

Another important aspect of this protocol is that standard gates can be used to

implement robust and e�cient circuits. It has also potential advantages over 4-

phase handshaking due to the absence of the return-to-zero phase.

4.1.1 Traditional Pulse-Mode Operation

Pulse-mode sequential circuits have been used since the very �rst digital designs. As

a matter of fact, most existing sequential circuits correspond to this class of circuits:

synchronous circuits are pulse-mode circuits that have a pulse input designated as

the global clock, used for synchronization of the entire system. Detailed analysis and

synthesis methods for pulse-mode sequential circuits are presented in [88, 50, 91].

Traditional pulse-mode operation is characterized by two properties [50, 91]:

(i) at most one pulse input is in its active state at any given time, and (ii) other

inputs are not expected to change while a pulse input is in its active state.
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These two properties greatly simplify the design of these circuits. However,

they allow only a limited form of operation. Pulse-mode handshaking requires

higher levels of concurrency than traditional pulse-mode circuits. In the following

section, a more general type of pulse-mode operation is introduced.

4.1.2 Pulse-Burst Operation

In macromodular systems, a module interacts with other modules through hand-

shake channels. Every module operates at its own speed due to the lack of global

synchronization. This means that handshaking can take place concurrently in dif-

ferent channels, violating property (i) above. A more general form of pulse-mode

operation is required to accommodate the increased concurrency. We call it Pulse

Burst operation (PBO), since it has similar properties to transition-based burst

mode [66].

In this operation mode, multiple speci�ed input pulses are allowed to arrive

concurrently to a module. The input pulses can arrive in any order and at any

time. This is called a pulse burst. When all the expected pulses have arrived the

module can respond, generating the speci�ed output pulses. A second pulse should

not arrive at any input until the output pulses have occurred. To avoid ambiguous

behavior, no speci�ed input burst should be a subset of another in the same state

of the module. Also, speci�ed input bursts must be non-empty.

Ra Rb

Rc

Figure 4.2: Example of Pulse-Burst Operation: JOIN Module speci�cation.
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Figure 4.2 shows an I-NET for a JOIN Module (described below). The JOIN

module has two inputs (Ra and Rb) and one output (Rc). The JOIN operates as

follows: it produces an output pulse only after it has received a pulse on each

input. The key issue is that there are no timing conditions between the input

pulses: they arrive concurrently. The inputs can come from completely unrelated,

un-synchronized sources. Clearly, this behavior is not possible in traditional pulse-

mode operation, which only allows a single pulse in its active state at any given

time.

In this case, the input pulse burst is RaRb, meaning that these two pulses

can arrive in any order and at any time. The JOIN module will produce an output

pulse burst Rc after the input pulse burst has been received.

4.1.3 Pulse-Mode Implementation Issues

The use of pulses introduces issues that must be dealt with in order to successfully

implement circuits. In this section we review some of these important issues.

In pulse-mode handshaking, a pulse is used to represent a single handshake

event. Unfortunately, CMOS technology is level-driven and a pulse cannot be

considered an atomic event. The situation would be di�erent if we were considering

a pulse-driven technology, like RSFQ [43], in which a pulse can be treated as an

atomic event.

In our case, a pulse consists of two transitions: one from 0 to 1, called the

rising edge, and one from 1 to 0, called the falling edge. The time between the

rising and falling edges is called the pulse width.

Pulse Width and Separation

Given that a pulse actually consists of 2 edges (events), a �rst important observation

is that circuits cannot be expected to respond properly to pulses of arbitrarily short
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width. The circuit has to have enough time to respond to the �rst event, the rising

edge, before the second one is produced.

A minimum pulse width requirement must be met to guarantee correct opera-

tion. This requirement is analogous to the minimum clock pulse width requirement

in synchronous systems. This minimum value depends on the actual technology

used.

A similar requirement may arise for a minimum separation between pulses

on the same wire. If two pulses are too close to each other, the system may start

to respond to the falling edge of the �rst pulse and, before it is ready, the rising

edge of the second one will arrive, possibly causing erroneous operation.

Single-Edge and Dual-Edge Modes

Pulse-mode modules can operate in two di�erent modes: (i) The module can \react"

to only one edge of the input pulse (usually the rising edge), ignoring the other

(\single-edge mode"). Output pulses are generated as a consequence of the single

meaningful event. Alternatively, (ii) the module can react to both edges (\dual-

edge mode"). In this case, each input edge is used to generate the corresponding

edge of the output pulses.

In single-edge mode, a single input transition causes an output pulse, i.e.,

two output transitions. Clearly, this mode leads to multiple output change (MOC)

circuits. The width of the output pulse depends on internal delays in the module.

On the other hand, in dual-edge mode, each input change will produce a single

output transition, and single output change (SOC) implementations can be used.

In this case, the width of the output pulse will depend basically on the width of

the input pulse.

A simple example can clarify the di�erence. A PULSER is a basic module

that produces an output pulse whenever an input pulse arrives. Figure 4.3 shows
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Rs PULSER Rp Rs Rp

Figure 4.3: Pulse-Mode PULSER Module: Block Diagram and I-Net.

the block diagram of the module and an I-net that models its interface (channel)

behavior.

Rs

0 1

1 1 ,0 2 ,-
2 3 ,1 3 ,1

3 1 ,0 3 ,0
Rp

Rs

Rp

Figure 4.4: Single-Edge Implementation of the PULSER.

The single-edge ow table is shown in Figure 4.4. The module produces an

output pulse as a response to the input rising edge (transitions 1-0 ! 2-1 ! 3-1).

The falling edge generates no output change. The output pulse width is determined

by the delay in getting from state 2 to state 3. A possible implementation is also

shown in the �gure, in which the delay element controls the width of the output

pulse. On the other hand, it is clear that a single wire can be used to implement a

PULSER in dual-edge mode.

The pulse-mode control modules introduced in the following section operate

in dual-edge mode because, in general, dual-edge mode leads to simpler, faster

circuits. We use single-edge mode mainly in modules that require control of the

width of the output pulse, such as the PULSER described above. Single-Edge

mode is also used in the design of modules that interface pulse-mode channels to
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transition signaling and 4-phase channels.

4.2 Pulse-mode Control Macromodules

The goal of the work presented in this section is the design of a basic set of e�cient

macromodules. Such a set has not been proposed before and is a basic requirement

to design pulse-mode macromodular systems. In particular, we design pulse-mode

modules that e�ciently implement control operations such as sequencing, selection,

iteration, concurrency control, resource sharing, and arbitration. Modules for in-

terfacing pulse-mode circuits with traditional 2-phase and 4-phase circuits and to

implement arbitration are presented in the following sections.

The modules have very e�cient implementation using standard CMOS gates.

Timing problems related to critical races, and combinational and essential hazards

are constrained within individual modules and can be dealt with very e�ectively.

In all the control modules shown here there is a a signal Rs that is used to

initiate the action of the module and an As signal that is generated to acknowledge

Rs when the action is complete. The modules control one or more processes using

a pair of signals Rp and Ap to communicate with each of them.

4.2.1 Sequencing

In macromodular systems, the most basic operation is the sequencing of processes.

The 2-STEP module, also known as sequencer [94], is the basic sequencing element.

This module transforms a single handshake cycle into a consecutive pair of such

cycles. Figure 4.5 presents a block diagram of the module showing the input and

output signals, and an I-net that models the interface behavior.

A ow table that provides a detailed speci�cation of the module and the

logic expressions for its proper realization are as follows:
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Rs

As

Rp1

Ap1

Rp2

Ap2

2−STEP Rp1

Ap1 Rp2

Ap2

AsRs

Figure 4.5: Pulse-Mode 2-STEP Module: Block Diagram and I-Net.

RsAp1Ap2

000 001 011 010 110 111 101 100

1 1 ,000 1 ,001 1 ,011 1 ,010 1 ,110 1 ,111 - ,| 1 ,100

Rp1Rp2As

Rp1 = Rs, Rp2 = Ap1, As = Ap2

Clearly, the 2-STEP module requires only wires to be implemented and there

are no timing problems related to hazards or critical races. A tree of n� 1 2-STEP

modules can be used to control sequences of n processes.

4.2.2 Selection

The IF-ELSE module, also called decision unit [68], Selector [6], and IF compo-

nent [94], is a basic decision-making element. The value of a boolean signal X is

used to select between two processes to be activated. If X = 1, process P1 will be

activated through Rp1. If X = 0 then process P2 will be activated through Rp2.

Handshakes are completed through Ap1 and Ap2, respectively.

There are two basic implementations of the IF-ELSE module, for dual-rail

and single-rail encodings of the selection signal. The following sections introduce

these implementations. All version of the IF-ELSE module have very e�cient
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implementations.

Dual-Rail Selection Variable

Figure 4.6 shows the block diagram and interface behavior of the IF-ELSE module

to be used with a dual-rail encoding of variable X. In this case, Rx is used to

inquire the value of X. If X = 1 a pulse in X1 will be returned. A pulse on X0

represents X = 0.

Rs

As

Rp1

Ap1

Rp2

Ap2

X
1

X
0

IF−ELSE
Rp1

Ap1

Rp2

Ap2

Rs

As

Rx X
1X

0

Rx

Figure 4.6: Pulse-Mode IF-ELSE Module: Block Diagram and I-Net.

Logic expressions to realize the module are:

Rx = Rs, Rp1 = X1, Rp2 = X0, As = Ap1 + Ap2

Figure 4.7 shows an implementation of the IF-ELSE module with dual-rail

variable X for selection. As the 2-STEP, this module can be implemented very

e�ciently, using a single OR gate.

Single-Rail Selection Variable

When a single-rail selection variable is used, several options are available. In gen-

eral, the single-rail selection signalX is a level signal, and its value directly indicates

the selection value, i.e., X = 1 is indicated by a stable `1' level (as opposed to a
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Figure 4.7: Pulse-Mode IF-ELSE Module Implementation.

pulse used in dual-rail implementations). Under certain conditions, the handshake

operation to read the value of X can be eliminated, speeding up the overall oper-

ation. In this case, X must be stable before Rs arrives and must remain constant

while the pulse is active. This set-up requirement for X is typical of single-rail

systems and is called a bundling constraint.

An implementation of the IF-ELSE module for single-rail signal X, without

the need for handshaking, is shown in Figure 4.8.

Ap1Ap2

Rs

As

X−

X+

Rp1Rp2 As

Rs

X

Rp1

Rp2

Ap1

Ap2

Figure 4.8: Pulse-Mode IF-ELSE Module (Single-Rail Variable X).

In the case of the IF-ELSE module, the use of a single-rail signal results in

a slightly more complex module. The fact that dual-rail variables automatically

provide the complement of the signal and a spacer code simpli�es the logic.
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Comparison with Traditional Modules

The e�cient characteristics of the pulse-mode macromodules can be appreciated

when compared to equivalent macromodules that use transition signaling and 4-

phase handshaking. In this section we compare the transition signaling, 4-phase and

pulse-mode implementations of the IF-ELSE module as a representative example.

In all cases a single-rail selection signal is used.

CLR

D

LATCH

Q

CLR

LATCH

QD

Rs

X

As

C

C

init

Rp1

Rp2

Ap1
Ap2

As

Rs

X

Rp1

Rp2

Ap1

Ap2

(a) (b)

Figure 4.9: Transition Signaling and 4-Phase IF-ELSE Modules.

Figure 4.8 above shows the implementation of the IF-ELSE module using

pulse-mode handshaking. The corresponding transition signaling and 4-phase im-

plementations are shown in Figures 4.9(a) and 4.9(b), respectively.

The transition signaling module is based on the SELECTOR module by

Brunvand [6]. An XOR was added to generate As from Ap1 and Ap2. In this case,

the complexity of the circuit eliminates the potential power and speed advantages

of transition signaling. The 4-phase module corresponds to the IF-ELSE module

by Unger[86]. This implementation also has less attractive characteristics than the
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pulse-mode module.

It is important to note that the three implementations above rely on timing

assumptions related to changes in the value of X as a result of Rp1 or Rp2. If X

changes too soon, the circuits may not operate correctly. In that case a di�erent

version of the module, that temporarily latch the value of X, must be used.

IF Module

Sometimes a simpler component, the IF module, is needed. Instead of selecting

among two processes as the IF-ELSE modules, the IF module selectively activates

a process depending on the value of the select variable. Clearly, all versions of the

IF-ELSE module can be transformed into version of the IF module by connecting

Rp2 directly to Ap2, i.e., by using a null process as P2. It is interesting to point

out that the same IF module implementations are obtained if the complete design

process, starting with a ow table, is followed, i.e., no further optimization is

possible.

4.2.3 Conditional Iteration

Iteration is also an important operation in macromodular systems: a process or

sequence of processes is repeatedly executed a number of times. There are two forms

of iteration: conditional and unconditional. This section presents macromodules

that implement conditional iteration. Unconditional iteration will be introduced

later.

Conditional iteration occurs when a process is repeatedly activated while a

condition holds. Iteration stops when the condition becomes false. In general, the

condition is represented by a boolean signal. Two di�erent modules are used to

implement conditional iteration, the WHILE and UNTIL modules. Both modules

iterate conditionally, according to the value of a decision signal X. The decision
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signal can be encoded using dual-rail or single-rail. All versions of these two modules

are very e�cient. Only some of the versions are shown here.

The WHILE module implements the well known programming feature, in

that, after Rs arrives, repeated executions of a process P are initiated (by turning

on Rp) as long as the decision variable X is 1. If X = 0 at the start then P is not

executed at all.

Figure 4.10 shows the block diagram and interface behavior of the WHILE

module to be used with a dual-rail encoding of variable X.

Rs

As

X
1

X
0

Rs

As Rx

X
1

X
0

Ap

RpWHILE Rp

Ap

X = 1

Rx

Figure 4.10: Pulse-Mode WHILE Module: Block Diagram and I-Net.

Logic expressions realizing this module are:

Rx = Rs + Ap, Rp = X1, As = X0

The UNTIL module also controls repeated executions of process P and is

used in cases where it is desired to execute P at least once. To maintain the

semantics of the WHILE, this module will iterate until the decision variable X is 0.

The module is very similar to the WHILE. Figure 4.11 shows the block diagram and

interface behavior of the UNTIL module to be used in environments where variable

X is guaranteed to be stable while Rs is active, thus avoiding the X-handshake.

Note that X is a level signal and both positive and negative transitions appear in
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the I-net.

Rs

As

X

Ap

Rp

X = 0
UNTIL

Ap

Rs

As Rp
X−

X+

Rp

Figure 4.11: Pulse-Mode UNTIL Module: Block Diagram and I-Net.

Logic expressions for the proper realization of the module are as follows:

Rp = Rs + ApX, As = ApX

It is important to note that the WHILE and UNTIL module implementations

shown above rely on the assumption that process P will take longer to complete

than the width of Rs, so that pulses on di�erent inputs to the OR gates will not

overlap. This is almost always a reasonable assumption. In the rare case when P

is a somewhat trivial (short) process, a PULSER that responds to the falling edge

of Ap must be used.

4.2.4 Unconditional Iteration

Unconditional iteration occurs when a process or a sequence of processes is re-

peatedly activated a pre-de�ned number of times. Repetition is a special case of

unconditinal iteration in which a process is activated continuously, i.e., an in�nite

number of times.
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Figure 4.12: Pulse-Mode DO N Module.

Unconditional iteration can be implemented using the DO N module, illus-

trated in Figure 4.12. This module activates process P n consecutive times, using

Rp. The module can be regarded as the composition of an UNTIL module and a

counter, as shown in Figure 4.12. The operation of the counter will be examined

in the following section.

4.2.5 Pulse-Mode Counters

The DO N module uses a counter to keep track of the number of iterations. This

section introduces two basic implementations of pulse-mode counters.

As shown in Figure 4.12, a pulse-mode counter receives pulses in the R input

and acknowledges the �rst n-1 pulses through output A and the nth pulse through

F .

TOGGLE Element

The TOGGLE element can be used to implement the counter. This element, shown

in Figure 4.13, accepts pulses through input T and acknowledges them alternative

through outputs Q1 and Q2. The ow table for the TOGGLE is shown also in

Figure 4.13.
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T

T

Q2

Q1

T

Q1

Q2
TOGGLE

T
0 1

1 1 ,00 2 ,01

2 3 ,00 2 ,01

3 3 ,00 4 ,10

4 1 ,00 4 ,10
Q1Q2

Figure 4.13: Pulse-Mode TOGGLE Element.

Logic expressions for the proper realization of the element are as follows:

Y1 = y1T + y2T + y1y2, Y2 = y1T + y2T + y1y2, Q1 = y1T , Q2 = y1T

This is a sequential circuit and there are timing considerations associated

with its operation. The relative delays within the element must be controlled

because there are essential hazards for every transition in the ow table. Note

that, as has been the case so far, output pulses are generated by input pulses

through a single gate. In this case y1 and y1 change only as a result of T # so that

the pulses are not cut short. It is interesting to note that the TOGGLE can be

implemented using two cross-coupled latches, an inverter, and a 1-2 decoder.

Pulse-Mode Ripple Counter

Figure 4.14 shows how to use 3 TOGGLE elements to implement an 8-COUNTER.

It can be extended, by adding more stages, to build any 2n-COUNTER. This imple-

mentation is equivalent to a transition signaling counter proposed by Ebergen and

Peeters [24], and their designs for other count values can be adapted for pulse-mode

operation also.

The response time (R ! A) of this counter is not constant for all request.

It depends on how many TOGGLE elements change state in each activation. For
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Figure 4.14: Pulse-Mode 8-COUNTER using TOGGLE Elements.

the 8-COUNTER, the best case is 1 TOGGLE while the worst case is 3 TOGGLE

elements.

Alternative Pulse-Mode Counter

An alternative implementation of the same counter is shown in Figure 4.15. This

implementation is more expensive in terms of area but has higher concurrent activ-

ity and, under reasonable timing assumptions, has a constant response time, similar

to the best case of the previous implementation.

T

TOGGLE

T

TOGGLE

T

TOGGLE

R

F

A

Q1 Q1 Q1

Q2 Y2 Y2

Figure 4.15: Alternative Pulse-Mode 8-COUNTER Implementation.

In this circuit, some of the toggle elements provide Y2 as a level output. The

analysis of the operation of the circuit is not simple but note that not all of Y2 level

outputs have to be stable when the input pulse arrives. They are all 0 only when
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the nth pulse arrives, producing a pulse on F .

4.2.6 Resource Sharing

The CALL module, also known as mixer [94], is a basic element that allows two

di�erent components to access the same resource. The components request access

through R1 and R2. The CALL component \forwards" the request to the shared

resource and routes the acknowledge back to the proper requester. Figure 4.16

shows a block diagram of the module showing the input and output signals and an

I-net that models its interfaces.

CALL
A1

R2

A2

Rp

Ap

R1

Ap

Rp

A2

R2

Rp

Ap

R1

A1

Figure 4.16: Pulse-Mode CALL Module: Block Diagram and I-Net.

A ow table that provides a detailed speci�cation of the module and the

logic expressions for its proper realization are as follows:

R1R2Ap

000 001 011 010 110 111 101 100

1 1 ,000 1 ,010 - ,| 2 ,100 - ,| - ,| 1 ,110 1 ,100

2 2 ,000 2 ,001 2 ,101 2 ,100 - ,| - ,| - ,| 1 ,100

RpA1A2
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Rp = R1 +R2, A1 = Apy, A2 = Apy, Y = R2 +R1y

There are no essential hazards or races in this ow table. The module as-

sumes that requests R1 and R2 are mutually exclusive for proper operation.

4.2.7 Concurrency Control

The FORK/JOIN module, also known as PAR element [94], implements the well

known \fork/join" concurrent programming feature. This module, shown in Fig-

ure 4.17, is used to concurrently activate two processes, using Rp1 and Rp2. The

module waits until both processes have indicated completion (through Ap1 and Ap2)

to acknowledge the initial request.

Rs

As
As

Rs
R

A

Rp1
Rp2

Ap1
Ap2

R

J
O
 I
N

A

p1

p2

p1

p2

FORK/
 JOIN

Figure 4.17: Pulse-Mode FORK/JOIN Module.

The JOIN element, also known as rendezvous [82], is a basic synchronization

element and is used to implement the FORK/JOINmodule, as shown in Figure 4.17.

Figure 4.18 shows an I-net that models its interface (channel), and a ow table that

provides a detailed speci�cation of the module.

This element produces an output event when it has received events in both

inputs.t The input pulses are allowed to arrive in any order and without any timing

constraint, although a second pulse should not arrive at the same input until the
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Ra Rb

Rc

RaRb

00 01 11 10

1 1 ,0 4 ,0 3 ,- 2 ,0

2 2 ,0 3 ,- 3 ,- 2 ,0

3 1 ,0 3 ,1 3 ,1 3 ,1

4 4 ,0 4 ,0 3 ,- 3 ,-
Rc

Figure 4.18: Pulse-Mode JOIN Element Speci�cation.

output pulse has occurred.

Figure 4.19 shows a possible implementation of a pulse-mode 2-input JOIN

module, using C elements. Alternative implementations can use SR ip-ops.

C

C

C

init

Ra

Rb
Rc

Figure 4.19: JOIN Element Implementation.

An interesting property of this circuit is that it \averages" the width of the

input pulses, i.e., the output pulse is not narrower than the narrowest input and

not wider than the widest one.

The JOIN element shown in Figure 4.18 needs an initialization signal because

the �rst two C elements have their inputs at opposite levels in the idle or reset state.

In general, the outputs of these C elements should be initialized to 0 for proper

operation. On the other hand, if one of the C elements is initialized to 1, a primed

JOIN (pJOIN) element is obtained. The pJOIN acts as if it had initially received
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an event (pulse) in the primed input. This variation of the JOIN will be used in

the control circuit of a micropipeline (see section 4.7).

4.3 Protocol Conversion

In order to interface pulse-mode macromodules with modules that use a di�erent

handshake protocol, conversion modules must be used. A complete set of conver-

sion modules, that covers all protocols in both directions, must be designed. This

section introduces converters thar interface pulse-mode to transition signaling and

converters that interface pulse-mode systems to 4-phase.

4.3.1 Transition Signaling/Pulse-mode Conversion

The TS/PM module interfaces transition signaling (TS) and pulse-mode (PM)

channels. In this case, TS is the input (passive) channel and PM is the output.

Figure 4.20 presents a block diagram of the module showing the input and output

signals, and an I-net that models the interface behavior.

As

Rp

Ap
TS/PM

Rs

Rs+

Rp Ap

As−

As+ Rs−

RpAp

Figure 4.20: TS/PM Module: Block Diagram and I-Net.

This module must operate in single-edge mode, resulting in a MOC ow

table, shown below. In this case, the width of the output pulse is determined by
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the time the circuit remains in transient states 1-10 (response to Rs ") and 3-00

(response to Rs#).

RsAp

00 01 11 10

1 1 ,00 1 ,00 - ,{ 2 ,10

2 - ,{ - ,{ 3 ,01 2 ,00

3 4 ,11 - ,{ 3 ,01 3 ,01

4 4 ,01 1 ,00 - ,{ - ,{

RpAs

The logic expressions for the proper realization of the table are as follows:

Y1 = RsAp + Apy1 +Rsy1, As = Y1, Y2 = delayed(Rs), Rp = Rs � Y2

The width of the output pulse is determined by the delay from Rs to Y2.

It is interesting to note that this circuit is \reversible", i.e., it can be used in the

opposite direction (PM as the input and TS as the output). The terminals must

be re-labeled (Rp $ Ap, Rs $ As).

4.3.2 4-Phase/Pulse-mode Conversion

The PM/4� module interfaces 4-phase (4�) and pulse-mode (PM) channels. 4� is

the output channel and PM the input. Two di�erent conversions, following narrow

and broad protocols [6], are possible. Figure 4.21 presents a block diagram of the

module showing the input and output signals, and an I-net that models the interface

behavior of the narrow protocol.

This module also operates in single-edge mode, to produce the As output

pulse as a response to the rising edge of Ap. A ow table is shown below. In this
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As

Rp

Ap

Rs
PM/4O

NARROW

Rs

As

Rp+

Ap+

Rp−

Ap−

Figure 4.21: PM/4� Module: Block Diagram and I-Net.

case, the width of the output pulse is determined by the time the circuit remains

in transient states 2-01 and 2-11.

RsAp

00 01 11 10

1 1 ,00 - ,{ - ,{ 2 ,10

2 2 ,10 3 ,01 3 ,01 2 ,10

3 1 ,00 3 ,00 3 ,00 3 ,00

RpAs

The logic expressions for the proper realization of the table are as follows:

Y1 = Ap +Rsy1, Y2 = Apy2 +RsApy1, Rp = Y2, As = Apdelayed(Y1)

The width of the output pulse is determined by the time Y1 is delayed in

reaching As. If a broad protocol is needed, As must respond to the falling edge of

Ap. The only change needed in the circuit is: As = Apdelayed(Y1).
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4.4 Arbitration

Asynchronous systems, including pulse-mode ones, require arbiters to guarantee

mutual exclusion between two (or more) processes that can access a shared re-

source. Although many designs have been published, no pulse-mode arbiter has

been presented before. This section introduces the design of a pulse-mode arbiter.

This section also reviews basic background on arbiters and presents existing 4-phase

and transition signaling arbiters.

4.4.1 Background

The design of asynchronous arbiters is an interesting and challenging problem.

Plummer [77], and Pearce et al. [70] introduced arbiter designs over 20 years ago.

A problem with these designs, as with the more recent by Calvo et al. [9] is that

they assume that arbitration between two concurrent requests can be solved in a

bounded amount of time. Chaney and Molnar [12], Marino [44], and Unger [90],

among others, have shown that changes in asynchronous inputs to a circuit (like

concurrent arbitration requests) can lead the circuit into metastability, an operation

region in which circuit outputs can have an \intermediate" value between 0 and 1,

or can oscillate between the two. Circuits can remain in the metastable state for

an unbounded amount of time.

A robust arbiter must wait until the circuit leaves metastability before resolv-

ing any pending requests. Seitz [81, 79], Martin [45] and Unger [90], among others,

have presented analog circuits that can be used to \�lter" metastable states, i.e.,

guarantee that no wrong output will be produced while the circuit is in a metastable

state.
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4.4.2 4-Phase Arbiters

Martin [45] introduced a mutual exclusion element (ME), shown in Figure 4.22. It

is a basic two-way arbiter. The circuit guarantees that only one grant signal (g1 or

g2) will be active at any time. If the circuit goes into metastability, both outputs

will remain low until the metastable state is resolved.

g
1r1

r
2 g

2

ME

Figure 4.22: Mutual Exclusion Element.

Two types of 4-phase n-way arbiters have been the focus of most published

work. Martin [47], Ebergen [23], and Ebergen et al. [22] have worked on \token

ring" arbiters, formed by a linear chain of modules that \circulate" a special token,

the authorization to grant requests. Seitz [81], Yakovlev et al. [101], and Josephs et

al. [38] have presented designs for \tree" arbiters, formed by a tree of Tree Arbiter

Elements (TAE). Figure 4.23(a) shows the TAE and its interface signals. A tree

arbiter, constructed using TAEs and an ME is shown in Figure 4.23(b). A balanced

tree gives equal priorities to all requestors.

The level-based approach of the 4-phase protocol �ts nicely with the need to

maintain a request, for an unknown period of time, until granted. Also, the four

events in the protocol are meaningful: req " indicates a request, grant " indicates
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Figure 4.23: Arbiter Element and Tree Arbiter.

that the request has been granted, when the requestor completes the use of the

shared resource, it issues req# to indicate it, and, �nally, the arbiter issues grant#

to cancel the grant.

4.4.3 Event-Based Arbiters

The transient nature of transitions and pulses requires a somewhat di�erent ap-

proach. In [83], Sutherland introduced an RGD arbiter, which follows a 3-phase

protocol: an event on req indicates a request, an event on grant indicates that the

request has been granted, and, �nally, the requestor produces an event on done

to indicate that it has completed the use of the resource. It is not necessary to

acknowledge the last event since the requestor is authorized to issue a new request

immediately. This type of arbiter is better suited to both transition signaling and

pulse-mode operation. Brunvand [6] showed that a 4-phase arbiter can be converted

to a transition signaling RGD arbiter by adding two latches and an exclusive-OR

gate to every channel.
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4.4.4 Pulse-Mode Arbiter

The arbiters introduced above cannot be used in pulse-mode systems directly. In

pulse-mode, the modules send pulses as requests. These pulses are lost if not

granted immediately.

QS

R Q

g1
r1

g

r

R

G

D

F/F

PULSER TAE

Figure 4.24: RGD Arbiter: Pulse-Mode Interface.

Figure 4.24 shows how a pulse-mode RGD arbiter can be constructed, based

on a 4-phase tree arbiter (such as the one in Figure 4.23 above). Pulse-mode

request (R), grant (G), and done (D) are connected through an interface (converter)

module. A single SR ip-op and a pulser are used to implement the interface

module.

4.5 Pulse-Mode Control of Datapaths

This section examines how pulse-mode control macromodules are used to control

datapaths. Both single-rail and dual-rail datapaths are considered. This section

also examines how pulse-mode macromodules could be used to control datapaths

implemented using pulse-driven logic.
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4.5.1 Single-Rail Datapaths

Pulse-mode macromodules can easily be used to control single-rail datapaths, for

several reasons: (i) The absence of a spacer or idle code �ts nicely with the 2-phase

nature of the pulse-mode handshake protocol, (ii) Pulse-mode handshaking allows

the use of economical processing logic blocks like the ones used in synchronous

systems and in existing single-rail systems since the pulses propagate through the

bundled delays while the function block processes the data, (iii) the symmetric

delay elements (bundled delays) used in traditional single-rail systems can also be

used as bundled delays in pulse-mode systems. There is no need for asymmetric

delays, used in 4-phase systems to reduce the return-to-zero phase, and (iv) The

fact that a pulse is used to control the registers allows the use of level-based latches

or edge-triggered ip-ops as storage elements. There is no need for expensive

event-based latches or dual-edge-triggered ip-ops required in transition signaling

datapaths or for interface circuitry needed in single-track implementations.

Datapath Operation

X

Y

F

DF

r

Z

DZ

Wr

a
1

2
3

4

Figure 4.25: Pulse-Mode Control of Single-Rail Datapath.
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Figure 4.25 illustrates, schematically, how a single-rail datapath stage can operate

under pulse-mode control. The operation is as follows. A request pulse 1 activates

the stage. The pulse propagates through the matched delay (DF ) 2 while compu-

tation in F takes place. When the computation completes, the result is sent to the

latch with the pulse as a write request 3 . While the data is written to the latch

the pulse propagates through DZ, to be sent, �nally, as the acknowledge pulse 4

that signals completion of processing.

The critical aspect of the interaction with the datapath is the use of the

handshake pulses to control the activity of the latches. The latches are transparent

only during the time when the write request pulse is active. If the pulse is too short,

the latch may fail to store the new data (see, for example, [71]). It is important to

enforce design rules that establish a minimum pulse width that guarantees correct

operation of the latches. In some cases, PULSER, which locally controls the width

of the output pulse, can be used to drive the latches. The PULSER itself cannot

be expected to respond to arbitrarily narrow pulses, but it is less sensitive than the

latch to pulse width variations.

4.5.2 Dual-Rail Datapaths

Pulse-mode can also be used to implement dual-rail datapaths. However, the use of

dual-rail code and latches usually requires a spacer or idle code between consecutive

data values. This spacer state �ts nicely with the return-to-zero phase of the 4-

phase protocol but is not easily mapped to 2-phase handshaking.

Pulse-Mode control of dual-rail datapaths requires the use of interface macro-

modules (PM/4�) to convert the pulse-mode signals to standard 4-phase level sig-

nals. Two di�erent conventions can be used to convert pulse-mode handshake

signals to 4-phase ones: broad and narrow conventions [6]. The broad convention

is roughly equivalent to a 4-phase sequential protocol while the narrow convention
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implements a concurrent one (see [74]). The use of the narrow convention requires

the use of interlock mechanisms described in Section 3.4.4 to avoid data hazards.

Datapath Operation
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Figure 4.26: Pulse-Mode Interface to Dual-Rail Datapath.

The operation of a dual-rail stage with a narrow converter is illustrated in Fig-

ure 4.26. A request pulse feeds the converter 1 , which generates a request rising

transition 2 to activate the stage. The latches receive the request and send dual-

rail data to the logic 3 . The logic computes the result and sends dual-rail data

to the output latch 4 . When the latch has stored the data, it generates an ac-

knowledge rising transition 5 that feeds the converter. The converter generates,

concurrently, an acknowledge pulse 6 and a falling transition in the read request

6 . Data returns to its idle (spacer) value 7 & 8 . This causes the write ac-

knowledge of the latch to fall 9 , completing the operation of the stage. If a broad

convention is used, the only di�erence is that the acknowledge pulse is generated
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by the converter as a response to the falling write acknowledge 9 .

Alternative Dual-Rail Encoding

A di�erent approach to pulse-mode control of dual-rail datapath is the use of an

alternative dual-rail code that requires no spacer or idle code, i.e., is directly com-

patible with pulse-mode handshaking components. Dean et al. [18] introduced

Level-Encoded Dual-Rail (LEDR) code which is a dual-rail code that requires no

spacer. In this case, a 2-phase protocol can be used directly, without interface cir-

cuitry. This code requires the use of specilized latches or storage elements, and also

requires specially designed logic circuits. This alternative has to be further explore

to determine if it produces good results and is cost-e�ective.

4.5.3 Datapaths Implemented Using Pulse-Driven Logic

Both single-rail and dual-rail datapaths use levels to represent data. An alternative

approach is the use of pulse-driven logic to implement the datapath itself. This sec-

tion examines a pulse-driven code and the use of pulse-mode control of a datapath

implemented using such a code.

A pulsed code uses two wires per data bit, and data is transmitted using

pulses instead of levels. A pulse in the �rst wire represents a value of `1' and a

pulse in the other wire represents a `0' value. There is no special spacer code, only

the absence of pulses. This �ts nicely with pulse-mode handshaking.

Self-resetting CMOS (SRCMOS) [13] devices can be used to implement pulse-

driven logic. This precharged, unipolar switching logic family is similar to Domino

logic, the main di�erence being that SRCMOS precharging is not governed by a

global clock. Instead, reset signals are generated locally. The self-resetting nature

of the devices results in output signals being pulses and not levels. SRCMOS, being

a precharged logic, responds only to rising transitions of the inputs, operating in a
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mode similar to the single-edge mode presented earlier. The width of the output

pulses is controlled by the local reset timing.

Datapath Operation

X

Y

Z
F

WaRr

Rr

r a
1

2

3

4

Figure 4.27: Pulse-Driven Dual-Rail Datapath.

Figure 4.27 illustrates the operation of a pulse-driven stage under pulse-mode con-

trol. A request pulse activates the stage 1 . This causes the latches to send pulsed

dual-rail data to the logic 2 . F processes the data and generates pulse-mode

results that are sent to the output latch. Finally, the output latch generates the

acknowledge pulse 4 that indicates completion of stage processing.

If pulse-driven logic is used, pulses will be used to drive the latches and the

width of the pulses becomes critical for the correct operation of the system. Similar

considerations as those for single-rail systems also apply in this case. Haring et

al. [34] introduced a pulse-driven register for self resetting circuits that can be used

as illustrated above. The correct operation of the pulse-driven logic requires that

several timing constraint be satis�ed [60]: (i) Input pulses must have a minimum

width, and (ii) input pulses that are to act together must overlap by an amount of

time that depends on the size and topology of the devices in the logic.
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4.6 System Optimization

A potential weakness of the use of macromodules is the presence of ine�ciencies

in the design due to the use of pre-designed modules. In some cases, it is possi-

ble to examine the macromodule diagram and optimize it in a number of ways.

This section introduces two techniques than can be used to optimize pulse-mode

macromodular systems.

The process of examining a macromodular system and applying techniques

to opimize it according to a given metric, sometimes called peephole optimization,

has been studied by several researchers. These optimizations are very similar to

the peephole optimizations used by compilers to optimize code.

Brunvand [6], van Berkel [96], and Peeters [71] have introduced optimizations

that consist of structural transformations that maintain the functionality of the

circuit but optimize it according to a desired metric. Example of these optimizations

are: null module elimination, call element reduction, channel reduction, use of

multi-way components instead of simple compositions of 2-way ones. A di�erent

approach is taken by Gopalakrishnan at al. [33] and Kolks et al. [41]. They optimize

the macromodular system by re-synthesizing sections of the control path, using

automatic tools.

In many cases, these optimizations are independent of the actual handshake

protocol used to implement the system and, therefore, can also be applied to pulse-

mode macromodular systems.

A di�erent type of optimization, based on timing assumptions, is introduced

here and usually obtains good results. In particular, reasonable timing assump-

tions about the relative completion time of di�erent processes may lead to the

simpli�cation of a module, optimizing the performance of the system. Two ba-

sic optimizations are introduced in the following sections: JOIN elimination and

module substitution.
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4.6.1 JOIN elimination

Synchronizing two processes is an expensive operation, both in terms of performance

and area. One of the most e�ective ways to improve the performance of a system is

to eliminate synchronization modules. A FORK/JOIN macromodule is commonly

used to synchronize the operation of two or more processes that must execute

concurrently. The JOIN element is used to \wait" for the completion of all processes

before generating its completion signal.

Figure 4.28(a) shows the typical scenario in which two processes execute

concurrently. The two processes are activated together by the same signal (forked as

request to both processes) and a JOIN element is used to synchronize the completion

of the two processes. The JOIN element is unavoidable if the operation of the circuit

must be guaranteed correct assuming unbounded delays in the two processes. This

results in a very robust circuit. Unfortunately, the JOIN is an expensive element,

both in performance and area. We can eliminate it if certain timing conditions are

met.

Ap1
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R A

JOINAAs
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P2

R A

As
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(a) (b)

Figure 4.28: Optimization: JOIN Elimination.
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If one of the processes, say P1, is guaranteed to take longer to complete

than the other (P2), under reasonable timing assumptions, then the JOIN element

can be eliminated. The completion signal of the \slow" process can be used to

indicate completion of the two processes and the structure of Figure 4.28(b) can

be used. This improves the performance of the system. Clearly, this substitution

is not possible under the unbounded (gate and wire) delay model. On the other

hand, do we really want to use a component with unbounded response time?

4.6.2 Module Substitution

Some macromodules have several \versions", which are used in di�erent environ-

ments. For example, di�erent IF-ELSE macromodules are used when the selection

signal is encoded in single-rail or dual-rail. A second problem that can a�ect the

performance of a system is the use of a complex version of a macromodule, which

operates correctly under strict delay models, when a simpler module could be used

if reasonable timing assumption are met.

Module substitution is applied to identify changes in the system that allow

the use of a simpler version of a macromodule, with the same functionality. The

substitution works correctly only if the required timing assumptions are met. For

example, Figure 4.29 shows a segment of a macromodule diagram. Variable X is

the selection variable for the IF-ELSE module. X is reset by a pulse sent from the

IF-ELSE module. In this situation, an IF-ELSE module that allows X and X to

change while its output pulse is still active must be used.

A simpler version of the IF-ELSE module could be used if X is guaranteed

to remain stable while the IF-ELSE output pulse is active. To use this version of

the module in our system, variable X cannot be reset directly by the IF-ELSE. A

di�erent process must do it. As shown in Figure 4.29 above, the resetting of X

is done concurrently with two other processes. If process P1 is guaranteed to take
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Figure 4.29: Optimization: Module Substitution.

longer to complete than the width of the Rs pulse (a reasonable assumption in most

cases), then the resetting of X can be done concurrently with P2, thus X and X

will remain stable and the simpler IF-ELSE module can be used safely.

The combination of these two optimizations usually results in a more e�cient

implementation of a system.

4.7 Pulse-Mode Systems: Examples

In this section we present two macromodular designs using pulse-mode handshak-

ing: (i) an asynchronous micropipeline, and (ii) an add-and-shift multiplier. These

designs illustrate how pulse-mode components can be used to assemble a large

system.

4.7.1 Micropipelines

Pipelines are a common way to organize datapath sections to increase through-

put, at a relatively low cost in area and latency. Sutherland [83] introduced mi-

cropipelines as a simple and elegant way to implement asynchronous pipelines.

Although Sutherland proposed the use of 2-phase handshaking and event-
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driven (\capture-pass") latches, many di�erent implementations have been pre-

sented [16, 30, 105], with varying results. In general, 2-phase micropipelines have

to use expensive latches or ip-ops while 4-phase micropipelines have higher con-

troller costs and less concurrent activity.
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Figure 4.30: Pulse-Mode Micropipeline.

Figure 4.30 shows schematically how a micropipeline can be organized using

pulse-mode macromodules to control it. The output pulses of the pJOIN modules

are used to control the operation of the registers. This pulse-mode implementation

has several desirable features: (i) Use of standard latches or edge-triggered ip-

ops, (ii) all stages of the micropipeline can compute concurrently, and (iii) all

registers of the micropipeline can store valid data concurrently.

As in other cases, there are robustness/performance trade-o�s in this circuit

related to set-up, hold, and propagation times of the storage elements, the width

of the control pulses, and the bundled delay elements.

4.7.2 Iterative Multiplier

Multiplication is an important operation in both general-purpose and dedicated

digital signal processors. It must be implemented carefully and e�ciently. In this
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section we show how to implement an add-and-shift multiplier using pulse-mode

handshaking.

The classic computer algorithm for multiplying two n-bit binary numbers

works as follows: one operand is stored in a register called MPCND, and the

other is stored in the MQ register. The accumulator (ACC) is connected as an

extension (\concatenated") to the most signi�cant end of MQ. ACC is initially

cleared to 0. At each step, if the current least signi�cant bit of MQ (MQ0) is 1,

MPCND is added to ACC and the combined register ACC;MQ is shifted one

position to the right. This process is repeated n times. At the end, the product is

stored as a 2-n bit number spanning ACC and MQ. This process is described in

the speci�cation shown in Figure 4.31.

initialize registers (MPCND,MQ, ACC);

DO N

IF (MQ0 = 1)

FORK

ACC = ACC +MPCND
SHIFT RIGHT (MQ)

JOIN

ELSE

SHIFT RIGHT (ACC;MQ)

Figure 4.31: Iterative Multiplier Speci�cation.

Figure 4.32 shows a block diagram of the datapath used to implement the

pulse-mode multiplier. A simple optimization has been performed by directly shift-

ing right the outputs of the adder so that ACC need not be shifted after the

addition. This allows MQ to be shifted concurrently with the add operation.
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Figure 4.32: Add-and-Shift Multiplier Datapath.

Basic Implementation

Using the macromodules presented above, the speci�cation can be directly trans-

lated into a simple macromodular diagram. The block diagram of the control logic

of the multiplier is shown in Figure 4.33. The logic clearly follows from the de-

scription above, where a module directly implements each feature. Every \;" in the

above speci�cation maps into a 2-STEP module, which are used for sequencing.
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Figure 4.33: Add-and-shift Multiplier Control Logic.

The control overhead is kept to a minimum. The 2-STEP corresponds to

wires only. The DO N represents a counter and, if the concurrent version shown in

Figure 4.15 above is used, the response time is that of a single TOGGLE element.
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The IF-ELSE is, essentially, one basic gate. The FORK/JOIN is the module that

introduces the largest overhead.

Optimized Implementation

The control path of the multiplier can be optimized by the application of JOIN

elimination and module substitution. In particular, given that the SHIFT RIGHT

operation for register MQ takes a constant time and is faster than the ADD op-

eration, which is data-dependent, the FORK/JOIN module can be eliminated and

the completion signal from the ADD operation used directly to feed the IF-ELSE

module. Also, given that the datapath processing takes longer than the width of

the RS pulse in the IF-ELSE module, its simpler version can be used.
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Figure 4.34: Optimized Multiplier Control.

The optimized control path of the multiplier is shown in Figure 4.34. Clearly,

the optimizations result in reduced control overhead and better overall performance

of the system.

4.8 Conclusions

In this chapter, pulse-mode macromodular systems were introduced. The goal of

the work is to produce robust, performance{competitive asynchronous systems.
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In particular, the following contributions were presented. First, the use of

pulses to implement an e�cient handshaking protocol. Second, the introduction of

Pulse-Burst Operation (PBO), a more concurrent form of pulse-mode operation.

Third, the design of a large set of pulse-mode macromodules that can be used to

build cost-e�ective asynchronous macromodular systems. The set includes control

macromodules as well as arbiters and converter modules to interface pulse-mode

to traditional 2-phase and 4-phase circuits. Finally, the design of a pulse-mode

micropipeline and a pulse-mode add-and-shift multiplier, to illustrate that pulse-

mode macromodules can be used to assemble relevant, large systems.

Pulse-Mode handshaking combines the conceptual simplicity of the 2-phase

protocol (only two events per handshake) with the level based approach of 4-phase

handshaking. Pulse-mode macromodules are e�ciently implemented using stan-

dard gates in CMOS technology.

The modules are of an order of complexity that is very well suited to design

by ow-table based techniques. Timing problems corresponding to critical races,

combinational hazards and essential hazards are constrained within individual mod-

ules and can be dealt with very e�ectively.

Pulse-mode control modules �t nicely with single-rail datapaths. They can

also be used with dual-rail datapaths but adjustments must be made. An alter-

native to be further explored is the use of pulse-driven logic, like SRCMOS, to

implement the combinational logic in the datapaths. In all cases, the critical as-

pect of the control/datapath interaction is the use of handshake pulses to control

the activity of the latches.

Although further work is needed, early results suggest that the use of pulse-

mode macromodules can keep control overhead low, without introducing complex

timing considerations. Several issues have yet to be investigated such as how to

test pulse-mode systems or the e�ect on pulses of di�erent circuit factors including,
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for example, supply voltage and noise. None of them seems to represent a major

hurdle that would prevent the application of pulse-mode macromodular systems.
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Chapter 5

Design of a Macromodular Packet

Switch

If asynchronous designs are to be widely used, it is critical to identify application

domains where asynchronous techniques are of practical interest and to demonstrate

their potential advantages using real designs. The zero-overhead divider [100], the

high-performance cache controller [67], the DCC error corrector [92], the asyn-

chronous di�erential equation solver [107], and the di�erent versions of the Amulet

processor [29] constitute major steps in this direction.

In this chapter, the design of an asynchronous packet switch is presented.

A packet switch was chosen as a case study for several reasons: (i) It is, clearly, a

relevant application, (ii) it is complex enough to show that the macromodular ap-

proach can be used to design large-scale systems, and (iii) it is a control-dominated

system in which control overhead has a large impact on performance, stressing the

need for an e�cient design.

This chapter is organized as follows. Section 5.1 presents basic concepts re-

lated to packet switching in general and ATM in particular. In Section 5.2, the ar-

chitecture of the macromodular packet switch is introduced, including a description
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of its key features and trade-o�s. The complete design of the switch is introduced

in Section 5.3. This section presents detailed descriptions of the di�erent blocks

of the switch including the Input and Output processors, Bu�ers, and the asyn-

chronous bus. Section 5.4 presents the results of the simulation of the switch. This

section also includes a comparison with a synchronous system. Finally, Section 5.5

presents conclusions.

5.1 Introduction

Recent years have witnessed an increased interest in high-speed networks support-

ing e�cient protocols, such as ATM (Asynchronous Transfer Mode). These net-

works require high-performance switches to achieve the desired levels of increased

bandwidth. The main goal of the work presented here is to demonstrate that a

real system can be designed and built e�ciently as a macromodular system. In

particular, pulse-mode macromodules are used to design a highly modular, exible,

high-performance ATM switching component.

The basic idea behind ATM is to transmit small, �xed-size packets, called

cells. The cells are 53 bytes long, of which 5 bytes are a header that contains

destination and error checking information, and the remaining 48 bytes are data.

ATM is a connection-oriented protocol, so a transmission path is established before

actual data is sent. The protocol guarantees that cells arrive at their destination in

the same order in which they were sent. The primary data rate in ATM networks

is 155 Mbps, enough to transmit high-de�nition TV over the net. A second rate of

622 Mbps is also used to support transmission of four 155 Mbps channels.

ATM networks are organized like traditional Wide Area Networks (WANs),

with links and switches. All links are point-to-point, and run between a computer

and a switch, or between two switches. A general model of an ATM switch is

simple: the switch has some number of input ports and some number of output
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ports. Cells arrive asynchronously on the input ports, each at its own speed. The

switch examines each cell header, determines the required output port, updates the

header information, and delivers the cells to proper output. Finally, cells leave the

switch through the output ports, each operating at its own speed also.

One of the critical problems in ATM switch design is the need to bu�er

cells inside the switch. When two incoming cells have the same output port as

destination, one of them will be directed to that port and the other cell will have to

be bu�ered inside the switch and transmitted when the port is free. Many switch

designs have been described in the literature proposing di�erent places to locate

the bu�ers: (i) at the input ports, (ii) at the output ports, (iii) associated with the

physical switching elements (when a switching matrix is used), or (iv) in a shared

memory, accessible by all input and output ports. The problems and bene�ts of

each option have been thoroughly discussed elsewhere [85, 36, 17, 21].

Independently of the bu�er placement, a second problem arises. What hap-

pens when a cell arrives at an input port and there is no free bu�er space to use?

In ATM, switches simply drop the cell. The protocol, at a higher level, will identify

the situation and arrange for cell retransmission. This is a costly operation, so cell

dropping must be avoided as much as possible.

The rest of the chapter presents the architecture and design of an asyn-

chronous fast packet switch. The macromodular design results in a simple, e�cient

system. The parameters used to evaluate the design are the latency of a packet

traversing the switch and the maximum throughput that each input and output

port can handle. Flexibility and modularity are also considered important, so that

the switch can be \tailored" to the needs of particular applications. Area and

energy consumption are secondary concerns.
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5.2 Switch Architecture

High-performance packet switching has been a very active area of research for sev-

eral years. The introduction of ATM, with small �xed-size cells, had a large impact

on switching architectures. A large number of ATM switch designs has been pro-

posed and there are many commercial ATM switches available. Research is still

very active, with higher performance objectives.

Synchronous designers have proposed a number of alternative switching ar-

chitectures for packet and ATM switching, such as the Knockout [104] and the

Coprin switches and Prelude architecture [99], the Switch-on-a-chip [20, 42], Tiny-

Tera [51] and several others [53, 76]. Due to the asynchronous nature of the inputs

and the internal synchronous operation, most of these switches need to synchronize

the cells internally and operate in �xed-length \cell cycles". The need for internal

synchronization is a major problem in synchronous implementations and has a large

impact on their performance.

Research on asynchronous packet switches has not been as active. Although

not entirely the same application, several asynchronous packet or message routing

chips for multiprocessors have been designed and built. Examples are the Torus

Routing Chip [15] and the Mesh Routing Chip [28]. In [37], Josephs et al. presented

an interesting high-level design of an asynchronous packet-routing chip. An alge-

braic formalism is used to specify its operation and for synthesis and veri�cation.

Yantchev and Nedelchev [103] also presented a packet switching device, designed

as a delay-insensitive circuit. Recently, an asynchronous ATM high-speed switch

was introduced by Budde et al. [8]. This is an interesting implementation which

combines clocked modules that operate asynchronously. Five di�erent clocks were

used in the design.

The design presented in this chapter is an asynchronous packet switch. The

actual design is geared to ATM switching, although nothing in the architecture
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prevents it from being used in other packet switching environments. Figure 5.1

shows the basic structure of the switch. Every input port has an associated input

adapter and every output port has a corresponding output adapter. The actual

cell switching takes place in the switch fabric. All input and output adapters can

operate concurrently, at their own speed. Cells must traverse the fabric as soon

and as fast as possible.
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Figure 5.1: Switch Structure.

The switching process is as follows: Cells arrive at the inputs asynchronously,

i. e. either a clock line is associated with every data channel or clock and data are

encoded together in the bit-serial input stream. The input adapters are responsible

for decoding the data from the input lines. The �gure also shows that the input

adapters send byte-sized data to the fabric. The switch has to be able to handle

several concurrent links and must analyze incoming data, modify it and send it

to the correct output. For this reason, the internal switch bandwidth must be

larger than the external link bandwidth. This is accomplished by transforming the

bit-serial input links into wider internal paths.

The input adapters also manage header-related tasks. When a cell is re-

ceived, its Header Error Check (HEC) �eld is checked. If an error is found in the

header the cell is dropped. If there is no error, the rest of the header is examined to
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determine the destination output port and is updated with new information. The

input adapter prepends an internal self-routing header (SRH) to the cell. The SRH

is used by the switch fabric to route the cell to the proper output port without

having to examine the cell header.

Finally, the input adapters transmit the cells to the switch fabric. The com-

munication between the input adapters and the fabric is synchronized using pulse-

mode handshaking. The handshaking works also as a back-pressure mechanism to

allow the fabric to refuse cells when its bu�ering space is full.

The function of the output adapters is simpler than that of the input ones.

The fabric transmits cells to the output adapters using byte-sized data chan-

nels. The channels use pulse-mode handshaking for synchronization. The output

adapters transform the parallel data into bit-serial streams, at the rate required by

the external output link. When the output adapters are idle, i.e., no cells arrive

from the fabric, they generate empty cells to �ll the unused bandwidth. These cells

are automatically dropped by the input adapters in the destination switch.

The main component of the switch, which is the focus of our work, is the

switch fabric. The basic structure of the fabric datapath is shown in Figure 5.2.

The switch has I inputs, O outputs and B bu�ers. It is common for the fabric to

have the same number of inputs and outputs (I = O). In most cases, the number of

bu�ers exceeds the number of inputs and the number of outputs (B � I ^B � O).
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Figure 5.2: Switch Fabric Datapath.
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The fabric datapath consists of three stages: input distributors, bu�ers, and

output concentrators. The input distributors route data from the fabric inputs to

the bu�ers. Each bu�er stores a complete cell, organized as 53 bytes. The output

concentrators provide paths from the bu�ers to the outputs of the fabric. As shown

in the �gure, all data paths in the fabric are 8 bits wide.

The architecture of the switch allows the concurrent operation of up to I

paths from inputs to bu�ers and up to O paths from bu�ers to outputs. Due to

the asynchronous implementation of the fabric, each path can operate at its own

speed and there is no need for synchronization between the paths.

The switch architecture was chosen mainly to optimize bu�er usage. With

this architecture, every input and every output have access to all bu�ers, thus

eliminating situations, present in other architectures, in which cells have to be

dropped for lack of bu�er access even though there may be empty (free) bu�ers.

No cells are dropped in the fabric: handshaking with the input adapters is used as a

back-pressure mechanism to stop cell transmission when all bu�ers are full (used).

Modularity and exibility are also key features of the architecture. The

switch fabric can easily scale both in number of inputs and outputs and in bu�er

space.

It is interesting to note that, due to the datapath organization, every cell

is routed from input to output through a bu�er. There are no \straight-through"

paths. This is not a problem, for two reasons. First, it is unlikely that a cell will

arrive at an input at the precise time when the destination output is idle, which

would be the only scenario in which the straight-through paths could be used. Most

cells would be bu�ered anyway. Second, the path through the bu�er is operated

in an optimized way: the bu�er can transmit data to the output as soon as the

�rst byte of the incoming cell is stored in bu�er. There is no need to wait until the

complete cell is stored in the bu�er.
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The control section of the switch, not shown in the �gure, is also highly mod-

ular and distributed, which adds to the switch exibility. Details of the datapath

and the control path of the switch are given in the next section.

5.3 Switch Design

Figure 5.3 shows a block diagram of the switch. The switch has I inputs, O out-

puts and B bu�ers. The modular architecture of the switch allows each of these

parameters to be chosen independently.
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Figure 5.3: Packet Switch Block Diagram.

The lower portion of the �gure corresponds to the datapath. The input dis-

tributors and output concentrators are implemented using switch matrices. Every

node of the matrices is a cross-point switch element. Each column of the input

matrix is formed by B elements so that each input can be distributed to every

bu�er. The input matrix contains a total of I � B switch elements. Similarly, the

output matrix contains a total of O � B switch elements. Each bu�er can store a

complete cell. The bu�ers are implemented as independent FIFO storage elements,

not as a common memory.
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The top portion of the diagram shows the control path of the switch. The

main control components are the Input Processors (IP ), the Output Processors

(OP ) and their associated Output Queues (OQ), and the Free Bu�er Queue (FQ).

Each fabric input is controlled by its associated IP and there is an OP attached

to every output. All IP s and OP s operate concurrently and independently of each

other. The FQ is the only centralized control component and is used to keep track

of free (available) bu�ers.

On the input side, the switch operates as follows. The switch is initially

idle and, as is the case in many asynchronous systems, there is no activity until an

input arrives. Packets arrive at the IP s one byte at a time. Data communication is

synchronized using handshaking signals. Cell reception takes place in two phases:

input path setup and cell bu�ering.

� Input path setup. The �rst byte of every packet is a self-routing byte

(SRH) that identi�es the destination output of the packet (it is not part of

the cell that is transmitted). When the IP receives the SRH it requests a

free bu�er from the FQ. The FQ returns the address of a free bu�er to the

requesting IP and marks the bu�er as used. The IP then activates the input

switch element that corresponds to the assigned bu�er and, concurrently,

sends the address of the bu�er to the OQ associated with the OP that controls

the destination output port. At this point the path from the input to the

bu�er is properly setup and the reception of the cell can start.

Each IP s must access the FQ and OQs during its setup phase. Direct chan-

nels from each IP to the FQ and every OQ could be used, but this would

result in a very complex circuit that could be idle most of the time. Instead,

a shared medium (BUS) is used to connect the IP s to the FQ and all OQs.

It is critical to avoid a situation in which two or more IP s try to access the

same resource concurrently. An arbitration process guarantees that only one
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IP has control of the BUS at a time.

� Cell bu�ering. A complete cell will be received by the IP one byte at a time.

During cell reception, the IP simply forwards each byte to the bu�er through

the input switch. The bu�ers operate as passive components that are waiting

for data at their inputs. To achieve the high bandwidth required by mod-

ern ATM networks, the IP must introduce low overhead in this forwarding

process. Cell bu�ering can be conducted concurrently by all IP s. Once the

complete cell has been received, the IP deactivates the input switch element.

On the output side, the operation is as follows. The OP s are initially idle

and will remain so until activated by the OQ. Each OQ is organized as a FIFO

and stores the addresses of bu�ers that contain cells destined to the corresponding

output port. An OQ activates its associated OP by sending it the �rst bu�er

address. Cell transmission takes three phases: output path setup, cell transmission,

and bu�er release.

� Output path setup. This phase is simpler than the input one. The OP

simply receives the address of the bu�er from the OQ and activates the output

switch element that connects it to the required bu�er.

� Cell output. Once a path is established, the cell can be transmitted to the

output one byte at a time. The bu�er operates as a passive component and

will acknowledge transmission requests as soon as the �rst byte is ready. The

OP forwards the bytes from the bu�er to the fabric output. As was the case

for the IP s, the forwarding process has to introduce low overhead to achieve

high-speed transmission. All OP s can transmit cells concurrently.

A positive characteristic of the switch, due to its asynchronous nature, is that

cell output may start as soon as the �rst byte is in the bu�er. There is no need
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to wait for the complete cell to be stored as is the case in many synchronous

switches.

� Bu�er release. Once the complete cell has been transmitted, the output

processor deactivates the output switch element and, concurrently, reports to

the FQ that the bu�er is available again. The OP accesses the FQ through

the shared BUS and only one OP can do it at a time. As was the case

with the IP s, if several OP s contend for BUS access an arbitration process

guarantees mutually exclusive operation.

It is interesting to note that other possible strategies for bu�er release are

possible. Due to the possibility of inputs and outputs to operate at very

di�erent speeds, a decision was made to release the bu�er only when it is

completely empty. In situations in which the speeds are the same, a bu�er

can be released as soon as the �rst few bytes have been read, opening space for

incoming bytes. This results in a more e�cient utilization of the bu�ers, i.e.,

less bu�ers may be needed to maintain the same performance of the switch.

The details of the operation of the main control components as well as their

macromodular implementation will be reviewed in the following sections.

5.3.1 Asynchronous Bus (BUS)

A shared medium or bus can simplify the interconnection of di�erent modules that

must communicate with each other. While it is very common to use buses in

synchronous systems, many asynchronous designs use point-to-point connections

instead. The main problem to use buses in asynchronous designs is that buses

cannot be considered isochronic [59, 54], and this compromises the validity of the

common delay models1. In many cases, the cost of the point-to-point connections

1As pointed out by Molina et al. [54], in older technologies or in board level buses, in which the
wire delay is considerably shorter than gate delays, the bus may safely be considered isochronic
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is very expensive and restricts the exibility and expandability of a system. This

represents a disadvantage with respect to synchronous implementations.

Recent work on buses in asynchronous systems has shown the feasibility

of their use. Bainbridge and Furber [5] introduced a bus design which is in-

tended to provide system-level interconnection of asynchronous macrocells, like

their AMULET processor core. In [54], Molina and Cheung propose a bus for

quasi-delay-insensitive modular dual-rail systems.

Bus Structure

In our switch design, the need to interconnect all IP s and OP s to the FQ and the

OQs practically imposes the use of a bus, if the switch is to scale easily. Figure 5.4

shows the structure of the BUS. Actually, there are two buses that can operate

concurrently: the input bus (I-BUS ) and the output bus (O-BUS ). The I-BUS ,

shown on the lower portion of Figure 5.4, is used for communication between the

IP s, the FQ, and the OQs during the input path setup phase. The O-BUS , in the

top portion of the �gure, is used for communication between the OP s and the FQ

during the bu�er release phase. The head of FQ connects to the I-BUS to send

free bu�er information to the IP s and the tail is hooked to the O-BUS to receive

bu�er release information from the OP s.

The terminology used to describe the operation of the BUS is borrowed from

the MARBLE asynchronous bus [5]:

� Initiator: a module that can start a bus transaction by issuing a request on

one of the BUS lines. In the switch, the IP s are the initiators in the I-BUS

and the OP s are initiators in the O-BUS .

� Target: a module that can accept a request from an initiator through the bus.

In our case, the FQ and the OQs are the targets.

(see, for example, the TRIMOSBUS [84]).
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Figure 5.4: Asynchronous Internal Bus.

� Arbiter: a module that controls access to the bus. An initiator that wants to

use the bus must �rst gain access to the bus by requesting it to the arbiter.

Arbiters must guarantee mutual exclusion between initiators. As shown in

the �gure, there is an arbiter for the I-BUS (I-ARB) and another for the

O-BUS (O-ARB).

The buses are organized in such a way that they operate almost like point-

to-point channels between an initiator and a target, once the initiator has been

granted use of the bus. The bus is composed of three types of signals:

� Data signals: used to transmit data from the sender to the receiver. As in

point-to-point channels, in a push transaction, the initiator acts as the sender

and the target is the receiver. In a pull transaction, the roles are interchanged.

Data uses single-rail encoding.

� Control signals: (request and acknowledge) used by initiators and targets to

synchronize the ow of data across the bus. The request signal is issued by

the initiator and the acknowledge is issued by the target. In cases where there

is more than one possible target, several request signals are used to identify
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the desired target. The control signals follow the pulse-mode handshaking

protocol.

� Arbitration signals: (bus request, bus grant, and bus done) used by the ini-

tiators to gain and release access to the bus. The arbiters follow the RGD

(request, grant, done) protocol (see Section 4.4). This protocol is an unusual

handshaking protocol in the sense that events in the last signal (bus done)

is not acknowledged by any other signal. It can be thought of as a 3-phase

handshake.

I-BUS Operation

The I-BUS is used during the input path setup phase. This phase requires two

bus transactions, which take place as follows. The IP issues a bus requests (IBR)

to the arbiter (I-ARB). The arbiter grants the request. At this point, the IP has

control of the bus and requests a free bu�er from FQ, using request signal FQR.

This is a pull transaction since the initiator receives data from the target. When

FQ is ready, it sends back the free bu�er and issues an acknowledge (FQA). Note

that all IP s will receive this information, since all of them are connected to the

bus. Only the requesting one will actually use the information and all others will

ignore it. This concludes the �rst transaction.

The IP still maintains control of the bus and starts the second transaction

by sending the free bu�er to the desired OQ and issuing a request (OQR). In this

case, there are several OQs connected to the bus. There must be enough request

signals to allow the IP to identify which OQ is the target of the transaction. This is

a push transaction. When the OQ stores the data, it issues an acknowledge (OQA)

that completes the transaction. At this point, the setup phase is �nished and the

IP releases the bus by issuing a bus done signal (IBD).
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O-BUS Operation

The O-BUS is used during the bu�er release phase. This phase is very simple

and requires only one transaction, which takes place as follows. The OP requests

the bus using OBR. O-ARB grants the bus using OBG. The OP then sends the

available bu�er to the FQ and issues a request (FWR). When FQ has stored the

data, it issues an acknowledge (FWA) that completes the transaction. The OP

releases the bus by issuing a bus done signal (OBD).

There is no priority in the arbitration processes. All IP s and all OP s are

considered equal. In this case, IP s and OP s require access to the BUS only once

for every cell so, given that the FQ access time is less than the time it takes to

receive or transmit a complete cell, no processor can monopolize access to the BUS.

If an access to the FQ by an IP takes TI time, the worst case wait for any IP before

it is granted access is (I � 1) � TI . The worst case wait for an OP is (O � 1) � TO,

where TO is the time taken by an OP to access the FQ.

5.3.2 Input Processor (IP )

The input processor (IP ) is a critical component of the switch. Its operation has a

large impact on both the latency of a cell traversing the switch and the maximum

throughput that each input can handle. All incoming cells \traverse" the IP to

reach the bu�er where they are stored. Thus, our objective is to design the IP

so that it introduces low overhead in this critical path. Figure 5.5 shows the IP

module and its interface signals.

IP Operation

As explained earlier, cell reception consists of two phases: path setup and cell

bu�ering. The operation of the IP is di�erent in the two phases, as described in

the speci�cation in Figure 5.6.
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Figure 5.6: Input Processor Speci�cation.
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Boolean variable SRH (Self Routing Header) is used to identify the phase.

If SRH = 1 then the IP is expecting the self routing header as the next byte.

When the byte arrives, SRH is rest, the path to a free bu�er is established and cell

bu�ering starts. When the last byte of the cell arrives, SRH is set and the IP is

ready to start the reception of the next cell.

A second boolean variable, BUS, is used to keep track of the status of the

bus. BUS = 1 indicates that the bus has been granted to the IP . In this case, the

processor has control over the bus and can proceed with the required transactions.

When the IP completes the use of the bus, it resets BUS. The order of the

processes is critical: BUS is set after the bus has been granted and reset before

the bus is released. This guarantees that only one IP is controlling the bus at any

time.

Register (SWI) is used to store the address of the free bu�er that will be

used to store the incoming cell. This information is received from FQ through the

BUS. The outputs of the register are used to control which input is activated to

communicate the IP with the bu�er. Clearly, the size of the register depends on

the number of bu�ers in the switch.

IP Macromodule Design

Using the macromodules presented in Chapter 4, the above speci�cation can be

directly translated into a macromodular diagram, as shown in Figure 5.7. Every

command maps directly to a macromodule. Every \;" in the above speci�cation

maps into a 2-STEP module, which are used for sequencing.

Communication through the bus is di�erent from that through point-to-point

channels: any process that uses the bus must send and receive signals through a Bus

Driver (B=D) macromodule. Boolean variable BUS is used to enable and disable

these macromodules. The modules are enabled after the bus has been granted to
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the IP and disabled before the bus is released. This guarantees that there are no

conicting B=D modules enabled concurrently.

A careful reader will note that there is a 2-STEP module missing in the

diagram. This exception in the translation is related to the bus request/release

process. As pointed out earlier, the arbitration signals use an RGD protocol, which

consists of three phases: the Done is not acknowledged. An unacknowledged pro-

cess means that the actual completion of the process is not important and may

be considered completed immediately: the request signal may be used as its own

acknowledge. In this case, the release bus command has no completion signal, thus

the bus done signal (IBD) is sent to the next process as its completion signal.

IP Optimization

The use of pre-designed modules may introduce ine�ciencies in the design of a

system. In some cases, it is possible to examine the macromodule diagram and

optimize it in a number of ways. Two basic optimizations, introduced in Chapter 4,

are used: JOIN elimination and module substitution.

JOIN elimination

Synchronizing two processes is an expensive operation, both in terms of performance

and area. One of the most e�ective ways to improve the performance of a system

is to eliminate synchronization modules. Figure 5.8 shows a segment of the IP

speci�cation. A few irrelevant details have been deleted to simplify the analysis.

The �rst branch of the fork contains a single process: reset SRH while

the other branch is formed by a sequence of �ve processes: get bus; set BUS;

get free bu�er; write output queue; reset BUS. The �rst branch corresponds to

the reset of an SR ip-op, requested and acknowledged locally inside the IP . On

the other hand, the second branch involves the set and reset of SR ip-ops and
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FORK

reset SRH

f get bus;

set BUS;

get free bu�er;

....

write output queue;

reset BUS;

....
g

JOIN

Figure 5.8: IP Speci�cation Segment: Two Concurrent Processes.

several external actions: access to the arbiter, the free bu�er queue and one of the

output queues, all through the bus.

It seems that, under all reasonable scenarios, the �rst branch of the fork will

always complete �rst. In this case, the JOIN element can be eliminated and the

completion signal of the second branch of the fork (the \slow" branch) used in place

of its output. Similar analyses lead to the elimination of the three JOIN elements

in the IP module.

Module Substitution

A second optimization that can improve the performance of a system is the use

of simpli�ed version of a macromodule if reasonable timing assumption are met.

Figure 5.9 shows a segment of the IP macromodule diagram. Variable SRH is the

selection variable for the IF-ELSE module. SRH is reset by a pulse sent from the

IF-ELSE module. In this situation, an IF-ELSE module that allows X and X to

change while its output pulse is still active must be used.

A simpler version of the IF-ELSE module could be used if SRH is guaranteed
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Figure 5.9: Segment of the IP Macromodular Diagram.

to remain stable while the IF-ELSE output pulse is active. To use this version of

the module in our system, variable SRH cannot be reset by the IF-ELSE but by a

di�erent process. In our case, this is not a di�cult change. As shown in Figure 5.8

above, the resetting of SRH is done concurrently with 5 other processes. Using,

for example, the bus grant signal (IBG) to reset the variable will guarantee that

its value remains stable and the simpler IF-ELSE module can be used safely.

The combination of this two optimizations usually results in a more e�-

cient implementation of the system. Figure 5.10 shows the optimized macromodule

diagram of the IP . To simplify the diagram, the 2-STEP modules have been sub-

stituted by their circuit implementation. As shown in Chapter 4, the pulse-mode

2-STEP module can be implemented using only three wires.

The optimized diagram contains only half of the macromodules of the original

diagram, and all the FORK/JOIN modules have been eliminated. Clearly, this

optimization step has a large impact on the performance of the module.

IP Critical Path

Every byte of a cell \traverses" the IP on its way to the assigned bu�er. It is

critical to keep the overhead of this path as low as possible in order to maintain
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high-bandwidth switching. The macromodules can be substituted by their circuit

implementations to obtain the complete IP circuit. Figure 5.11 shows the actual

circuit path from the fabric inputs to the IP outputs to the bu�ers (connected

through the input switch elements).

IR

IA

ID

BFA

BFR

BFD

Q (SRH)

Ra (BUS) Ca (SWI)

Figure 5.11: Fabric Input to Bu�er Path (Data and Control).

The IP critical path is very e�cient. The Input Data (ID) is not a�ected

by the IP (except for the delay that may be introduced by wiring, which depends

on the �nal layout of the circuit). The control signals {Input Request (IR) and the

Bu�er Acknowledge (BFA){ go through a single gate each2. Due to this \short"

path inside the IP , the bu�er itself will have the largest impact on the input

throughput of the switch.

5.3.3 Output Processor (OP )

The Output Processor (OP ) is also a critical component of the switch. The OP

controls the outgoing ow of data. It can have a large impact on the performance

of the switch because every byte of a cell passes through the OP in its way from

the bu�er to the fabric output. As was the case with the IP , the goal is to keep

the overhead of the OP as low as possible. Figure 5.12 shows the OP module and

2The two 2-input OR gates will be mapped into a single 3-input OR gate during the technology
mapping process.
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its interface signals.
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Figure 5.12: Output Processor Module Interface.

OP Operation

Cell transmission consists of three steps: Output path setup, cell output, and bu�er

release. The operation of the OP in all phases is described in the speci�cation in

Figure 5.13.

The OP is initially idle. It is activated by its Output Queue (OQ) whenever

it receives the address of a bu�er. The OP starts by setting up the output switch

elements. A register (SWI) is used to store the address of the bu�er where the

outgoing cell is stored. This information is received from OQ. The size of the

register depends on the number of bu�ers in the switch. Cell output takes place

next. Boolean variable DONE is used to signal when the complete cell has been

transmitted.

When the complete cell has been transmitted, the bu�er can be returned to

the Free Queue (FQ). This phase of the operation requires access to the O-BUS .

A second boolean variable, BUS, is used to keep track of the status of the bus.

BUS = 1 indicates that the bus has been granted to the OP . In this case, the
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set switches;

reset DONE;

REPEAT

IF (read bu�er = LAST )

set DONE;

write output

UNTIL (DONE);
FORK

reset switches

f get bus;

set BUS;

release bu�er;

reset BUS;

release bus

g
JOIN

Figure 5.13: Output Processor Speci�cation.

processor has control over the bus and can proceed with the required transaction.

When the OP completes the use of the bus, it resets BUS. The order of the

processes is critical: BUS is set after the bus has been granted and reset before

the bus is released. This guarantees that only one OP is controlling the bus at any

time.

OP Macromodule Design

Figure 5.14 shows the OP macromodule diagram. The diagram was obtained from

the speci�cation above. There are many similarities with the IP diagram, such as

the use of an RGD protocol to communicate with the arbiter, variable BUS to

keep track of access to the bus and to control the B=D module use to interface to

the bus.
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OP Optimization

As pointed out previously, the initial macromodular diagram can be optimized using

di�erent techniques and making reasonable timing assumptions. The optimized

version of OP is shown in Figure 5.15. In this �gure, the 2-STEP modules have

also been substituted by their all-wires implementation to simplify the diagram.
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Figure 5.15: Optimized Output Processor Macromodule Diagram.

OP Critical Path

Finally, we examine the critical path of OP . Every cell traverses the processor on

its way from the bu�er to the fabric output. This is the path that has the largest

impact on the output throughput of the switch. The section of the bu�er-output
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path that corresponds to OP is shown in Figure 5.16.

OBR

OBD OD

OR

OA

OBL

OBA

Wa (SWI) X (DONE)

Figure 5.16: Bu�er to Fabric Output Path (Data and Control).

The use of pulse-mode macromodules and reasonable timing assumptions to

optimize OP results in a very e�cient path, which introduces low overhead in the

cell transmission process.

5.3.4 FIFO Bu�ers

The Bu�ers (BUFF ) are, in a sense, the main components of the switch. Every

cell must be stored in one of them. The bu�er has two ports. An input port that

receives cells (a byte at a time) from the IP and an output port that transmits

cells to OP , also a byte at a time. As shown in Figure 5.17, both ports of the bu�er

are passive, activated by IP and OP respectively.

The bu�er communicates with IP and OP using pulse-mode handshaking.

The processors request data transfers using the request signals: IP uses RW for

writing and OP uses RR for reading data from the bu�er. The bu�er acknowledges

through AW and AR, respectively. An important characteristic of the bu�er inter-

face is that the bu�er reports to IP when the last byte of a cell has been stored,

using LW instead of AW . Similarly, the bu�er indicates to OP that the last byte

has been transmitted by acknowledging through LR instead of AR.
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Figure 5.17: Bu�er Module Interface.

Asynchronous FIFO storage can be organized in di�erent ways. Two possible

organizations are discussed below, and the problems and bene�ts of each are also

presented.

FIFO Bu�ers: Micropipeline Implementation

In [83], Sutherland introduced micropipelines as a simple and elegant way to imple-

ment asynchronous pipelines. A micropipeline without processing between stages

is a simple FIFO bu�er. Figure 5.18 shows how a bu�er can be implemented using

the basic micropipeline structure and pulse-mode macromodules.

As shown in Chapter 4, pulse-mode handshaking allows the use of simple,

level-based latches, as opposed to expensive event-driven (\capture-pass") latches,

suggested by Sutherland. Two modi�cations to the usual micropipeline are required

to implement the desired bu�er interface, as shown in Figure 5.18.
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First, the output port of traditional micropipelines is an active port. It sends

out a request as soon as there is valid data stored in the last stage. On the contrary,

the output port of the bu�er must be a passive port. The bu�er must wait for a

request from OP before sending any information to the output. The use of a JOIN

element instead of a primed one (pJOIN) in the last stage will solve this problem.

Unfortunately, this means that data will not be stored in the last register until the

request arrives, thus the bu�er must have N + 1 stages in order to store N bytes.

Second, the designed interface with IP requires that the bu�er reports when

the last byte of the cell is stored. Due to the elastic nature of the micropipeline,

there is no easy way to identify this situation directly. Instead, a counters must be

added to the bu�er, to keep track of the number of acknowledge pulses, as shown

in Figure 5.18. The counter receives the pulses in its input and acknowledge the

�rst N � 1 of them through output AW and the Nth pulse through LW , indicating

that the last byte of the cell has been stored.

The bu�er must also report to OP when the last byte of the cell has been

transmitted. A second counter is added on the output side. This counter keeps

track of the number of output acknowledge pulses and indicates, through output

LR, when the last byte of the cell has been transmitted.

Due to the pipeline structure of the FIFO bu�er, every byte of data must
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propagate through all stages before it is available at the output. This has a large

impact on the latency of a cell through the switch. Clearly, the latency of every

byte through the bu�er is proportional to the total number of bytes in the cell. On

the other hand, the input throughput of the switch depends on the response time

of the bu�er, i.e., the time it takes to store a byte in it, independently of the time

it takes to appear at the output. The response time of this implementation of the

bu�er depends mostly on the response time of the latches, due to the low overhead

introduced by the control components.

Although throughput is the key parameter in the operation of the switch,

in some cases latency is also important. The long latency associated with the

pipeline implementation of the bu�er may be too high. In such cases, a di�erent

implementation of the bu�er is needed. In any case, a low-latency bu�er must also

have a fast response time to maintain high throughput. Such an implementation is

discussed in the following section.

FIFO Bu�ers: Low-Latency Implementation

The need for low-latency FIFO bu�ers in packet switches has been recognized by

several researchers (see, for example, [49, 103, 80]). In [102], Yantchev et al. discuss

the implementation of a transition signaling FIFO bu�er that uses a structure

similar to the one presented here.

The basic idea of the low-latency bu�er is to allow an incoming byte to be

stored directly in any register and, conversely, the contents of every register to

be read directly to the output. Thus data never moves inside the bu�er. This

represents the minimum possible latency through the bu�er. Figure 5.19 shows the

macromodule diagram of the bu�er.

The structure of the low-latency bu�er is very similar to the datapath of the

complete switch. The registers are connected in \parallel", thus allowing access to
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Figure 5.19: Low-Latency FIFO Bu�er.

any one of them directly. Input data is forked to the input of all registers. The

Write Control module selects the register that is accessed in a write operation. On

the output side, a multiplexer is used to select the register that will output data in

a read operation. The Read Control module keeps track of the register to be read

and generates appropriate control signals for the multiplexer.

A write operation in this bu�er involves two actions: (i) Storing a byte

of data in a register, and (ii) \updating" the information in the Write Control to

activate the following register on the next write operation. The two operations must

be executed in sequence, thus the response time of the bu�er is likely to be larger

than that of the pipelined implementation, which only needs to store the byte in

the input register. \Updating" is carried out after the bu�er has acknowledged the

write operation. This is a typical trade-o� between throughput and latency. In any

case, the response time of the low-latency bu�er must be fast enough to sustain the

input throughput required by the switch. The same considerations apply to read

operations.

It is important to note that reading and writing can be done concurrently.
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Reading can start as soon as the �rst byte has been stored in the bu�er. The Read

Control Module is responsible for not allowing a read operation from a register that

has not been written yet.

Figure 5.20 shows the implementation of the Write Control module. This

module is essentially a pulse-mode ring counter. A ring counter is a module that

counts events and provides a \ONE-HOT" output, i.e., an N-counter has N outputs

and only one of them is active at any given time. Ashkinazy et al. [2] and Yantchev

et al. [102] introduced designs for asynchronous ring counters. Both designs have

transition signaling interfaces thus are not applicable to pulse-mode systems.
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Figure 5.20: Low-Latency FIFO Bu�er: Write Control.

The block diagram of the control module is shown in Figure 5.20(a). Wr

and Wa are pulse signals that correspond to the write request and acknowledge of

every register in the bu�er. Figure 5.20(b) shows the implementation of the counter

blocks, which is similar to the stages of the counters discussed in Chapter 4. Only

one block will has Y2 = 1 at any given time. This guarantees that only one write

request is generated. The corresponding acknowledge clears that block and sets the
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following one, in preparation for the next write operation. The \ring" nature of the

counter is due to the connection of the last block to the �rst one.

The write acknowledge of the last register is passed directly as Lw, indicating

that the last byte of a cell has been stored. All other acknowledge signals are merged

together to generate Aw, the acknowledge signal for other write operations.

The Read Control Module is also based on a ring counter, as shown in

Figure 5.21(a). The main di�erence with respect to the Write Control is that a

read operation can only be executed if the corresponding register has been written.

It can happen that the output is operating at a higher speed than the input and

the Read Control can reach a register that has yet to be written. In this case, the

read operation must wait for the write operation to complete. Figure 5.21(b) shows

that a JOIN element is used to synchronize the pulse from the counter with the

write acknowledge of each register to guarantee that the read operation is executed

only after the write to the register is complete.
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Figure 5.21: Low-Latency FIFO Bu�er: Read Control.

A design decision to depart from pure pulse-mode operation has been made
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in the Read Control Module. The multiplexer control signals (Mx) are level signals.

The use of level signals greatly simpli�es the design of the multiplexer, which jus-

ti�es the departure from the pulse-mode discipline. The level signals are available

inside the counter thus there is no additional cost related to their generation. Also,

these are one-hot signals also, which makes the multiplexer design even simpler.

Clearly, this decision does not compromise the correctness and robustness of the

module.

5.4 Switch Simulation

The operation of the macromodular packet switch was simulated using SIMIC [2].

Figure 5.22 shows details of the operation of two input channels and two output

channels of the switch.

5.4.1 Operation of the Macromodular Switch

The �gure shows the request (R) and acknowledge (A) signals, and 4 data bits

(D) of each of the four channels3. The reception of two cells through each of the

input channels and their output transmission was simulated. Cell 1A is received

by Input1 �rst, addressed to Output1. Concurrently, after a short delay, cell 2A

is received by Input2 and is also addressed to Output1. Cell 1B, addressed to

Output2, is received by Input1 immediately after cell 1A arrives. Finally, cell 2B

is received by Input2 after cell 2A. Cell 2B is the only cell in this simulation run

addressed to Output2. Each cell consists of a one-byte self-routing header, which is

used for internal processing and is not forwarded to the output, and 53 data bytes,

which are stored in a bu�er and transmitted to the destination output.

3Only 4 data bits are presented in the �gure to limit the total number of displayed signals.
The actual datapaths of the simulated system are all 8 bits wide.
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Figure 5.22: Functional Simulation: Packet Switching.

Several aspects of the operation of the switch are depicted in Figure 5.22. All

Input and output channels operate concurrently, at their own speed, and without

the need for internal synchronization. This results in a short cell latency traversing

the switch. Cells 1A and 2A, addressed to the same output, are received concur-

rently. The �rst one is transmitted almost immediately to the output while the

second is bu�ered for latter transmission. Cells are transmitted to the outputs in

the same order that they were received (cell 2A is sent before cell 1B, which arrives

later).

Figure 5.23(a) shows the details of the reception of two incoming cell bytes.

The response time of the switch is slightly di�erent for the two bytes, due to the

asynchronous internal operation of the switch. Similar characteristics are shown in

Figure 5.23(b) for the output transmission of two consecutive bytes.

Simulated response times, channel throughput rates and other key parame-
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Figure 5.23: Simulation: (a) Input, and (b) Output Response Time.

ters of the switch are given in the following subsection.

5.4.2 Characteristics of the Macromodular Switch

For simulation purposes, the input environment feeds cell data bytes to the switch

at a �xed rate of 380 Mbits/Sec, close to the maximum input throughput of the

switch. The output environment accepts cell data bytes from the switch as soon as

they are available and takes a �xed time (5 nSec) to \process" each one.

The basic pulse-mode elements were simulated using SPICE [58]. Typical

parameters for a MOSIS 1.2 �m CMOS technology and a 5V power supply were used

in the simulation. These results were fed to SIMIC, which was used for the complete

system simulation. Figure 5.1 summarizes the results of the simulation. The key

response times and the equivalent throughput rates are listed. It is important

to note that listed throughput results are always net values, i.e., only actual cell

bits are taken into account. Added overhead information, such as the self-routing
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TIME THROUGHPUT

PARAMETER nSec Mbits/Sec
Input Ports

Cell Reception 1105.5 383
(53 bytes)
Cell Reception 1133.0 374
(including SRH processing)
SRH Processing 24.75
(no contention for bus)
Data Byte Processing time 13.50
(average)
Output Ports

Cell Transmission 1061.5 399
(53 bytes)
Inter-Cell Dead time 42.25 384
(second cell from Bu�er)
Inter-Cell Dead time 82.50 370
(second cell from Input)
Data Byte Processing time 17.00
(average)
Switch Latency

Input{Output Latency 79.95
(Output Port Free)

Table 5.1: Timing Parameters of Simulated Packet Switch.



146

header, are not counted as transmitted bits. This shows more realistic throughput

rates but results in lower values.

The table indicates that the switch can sustain an input throughput of 374

Mbits/Sec, and an output throughput of 370 Mbits/Sec. This represents rates

2.4 times higher than the target ATM value of 155 Mbits/Sec. An interesting

parameter is the inter-cell dead time in output ports. This is a result of internal

activity in the bu�ers, output processors (OP s) and output queues (OQs). Dead

time is only 3.8% of the cell transmission time for the common case, i.e., the cells

are already in the bu�ers, and 7.2% when the cells are being received concurrently.

The di�erence is due mainly to the response time of the output queue (OQ) of

the port. A desirable feature of the switch is the low input to output latency of

cells traversing the switch (�80 nSec). This is clearly a result of the asynchronous

implementation. The following subsection presents a comparison with a similar

synchronous switch.

5.4.3 Comparison with a Synchronous System

The Switch{on{a{Chip [20, 42, 21] is an integrated cell-switching chip developed

by the IBM Research Laboratory in Switzerland. It has been used in commercial

ATM packet switches by IBM. Dutton and Lenhard [21] report the following char-

acteristics of the chip: It has 16 input ports and 16 output ports. Each port may

operate at speeds up to 400 Mbits/Sec simultaneously with all other ports. The

400 Mbits/Sec data rate is obtained when an internal clock rate of 50 MHz is used.

The input and output datapaths are 8-bit wide. It contains 128 bu�ers accessible

by every input and every output port. It has a \back-pressure" mechanism to allow

the chip to refuse input when bu�ers are full. The chip is built on a 14.7 mm2 die

using a 0.7 �m CMOS technology. It contains around 2.4 million transistors.

The Switch{on{a{Chip (SoaC) was chosen as a reference because it is a
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Macromodular Switch{on-

Switch -a{Chip

PARAMETER Units (Simulated) (Fabricated)

Channel Throughput Mbits/Sec 370 400
(sustainable)
Input{Output Latency nSec 79.75 �1000
(no queuing)

Table 5.2: Comparison with Fabricated Synchronous Switch.

commercial, synchronous system with a similar architecture to our Macromodular

design. Although the macromodular design may be regarded as a partial design,

the results are very encouraging. Table 5.2 compares the main performance char-

acteristics of the Macromodular switch and the SoaC. The table indicates that the

asynchronous design can reach almost the same sustained per-channel throughput

as the SoaC while keeping the latency over 10 times shorter. It is very important to

keep in mind that the Macromodular switch is not a complete design and the results

correspond to a simulation, thus they are only indicative of possible performance

ratings.

5.5 Conclusions

The packet switch design presented in this chapter demonstrates the viability of

pulse-mode macromodules to implement complex, high performance systems. The

switch organization, asynchronous operation, and low control overhead introduced

by pulse-mode macromodules result in a design that can handle 2.4 times the target

ATM throughput of 155 Mbits/Sec. Also, the switch is characterized by very

low input-to-output latency (over 10 times shorter than a comparable synchronous

implementation).

The design of the switch may be regarded as a partial one. Several aspects
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of ATM switches have not been implemented, such as support for multicasting and

cell priority processing. In any case, the results are very encouraging. Competitive,

high-performance asynchronous systems are the result of low control overhead and

careful attention to timing. The underlying self-timed strategy used in macromod-

ular systems (detailed control of module internal timing and delays combined with

delay-insensitive external interfaces) seems to be a right step in that direction.
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Chapter 6

Conclusions

The main goal of the work described in this thesis was to contribute to the design of

robust, performance-competitive asynchronous systems. The realization, through

the analysis of many di�erent experiences, that high-performance systems are the

result of low control overhead and careful attention to timing focused the work on

macromodular systems and on the underlying self-timed strategy used in the design

of these systems.

If asynchronous designs are to be widely used, it is critical to identify ap-

plication domains where asynchronous techniques are of practical interest and to

demonstrate their potential advantages using real designs. A second goal of this

work was to demonstrate the feasibility of the approach by applying it in the design

of a large, relevant example.

The following results are the contributions of this work to achieve those goals:

� The introduction of an architectural optimization to \eliminate" one of the

largest sources of control overhead in 4-phase macromodular systems: the

return-to-zero phase. Actually, the optimization allows the overlap of the

redundant phase with the execution of productive work that otherwise would

be delayed. The circuitry guarantees that the system can operate correctly
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at the increased performance.

In particular, three new asynchronous sequencers were designed. Each se-

quencer increases the throughput of the entire system. Existing asynchronous

datapaths do not operate correctly at this increased level of concurrency: data

hazards may result. Modi�cations to the datapath were introduced to insure

correct operation. Speci�cally, we introduce interlock mechanisms that safely

handle concurrent operation in both dual-rail and single-rail datapaths.

The architectural optimization can also be regarded as an optimization for

low power. The increased throughput obtained through more concurrent

operation can be traded for lower energy consumption by a reduction of the

power supply voltage, as discussed in Section 2.6.

SPICE simulation results show that, for a dual-rail datapath, the new se-

quencers allow roughly twice the throughput of non-concurrent sequencers.

After voltage scaling, energy dissipation of the system is reduced by a factor

of 2.5. Similar results are obtained for a single-rail system.

� The introduction of the use of pulses for e�cient inter-module synchroniza-

tion. The idea is complemented with the de�nition of a pulse-mode handshake

protocol and the characterization of Pulse-Burst Operation (PBO), an impor-

tant extension to traditional pulse-mode operation.

� The design of a basic set of macromodules, that e�ciently implement control

operations such as sequencing, selection, iteration, concurrency control, re-

source sharing, and arbitration. Modules for interfacing pulse-mode circuits

with traditional 2-phase and 4-phase circuits are also included in the set.

The modules are of an order of complexity that is very well suited to design

by ow table based techniques. Timing problems corresponding to critical
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races, combinational hazards and essential hazards are constrained within

individual modules and can be dealt with very e�ectively.

� The design of a large, relevant system, a packet switch, in which control over-

head has a large impact on performance, stressing the need for an e�cient

design. The Macromodular packet switch demonstrates the viability of pulse-

mode macromodules to implement complex, high-performance systems. The

switch organization, its asynchronous operation, and low control overhead

introduced by pulse-mode macromodules result in a design that can handle

2.4 times the target throughput of 155 Mbits/Sec. Also, the switch is char-

acterized by very low input-to-output latency (over 10 times shorter than a

comparable synchronous implementation).

Although further work is needed, our results suggest that pulse-mode macro-

modules can keep control overhead low without introducing complex, unsafe timing

considerations, two necessary conditions to achieve robust, high-performance sys-

tems.
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