
Understanding and Detecting Concurrency Attacks

Rui Gu*, Bo Gan*, Jason Zhao*, Yi Ning+, Heming Cui+, and Junfeng Yang*

*Columbia University +The University of Hong Kong

Abstract
Just like bugs in single-threaded programs can lead to vul-
nerabilities, bugs in multithreaded programs can also lead
to concurrency attacks. Unfortunately, there is little quanti-
tative data on how well existing tools can detect these at-
tacks. This paper presents the first quantitative study on con-
currency attacks and their implications on tools. Our study
on 10 widely used programs reveals 26 concurrency attacks
with broad threats (e.g., OS privilege escalation), and we built
scripts to successfully exploit 10 attacks. Our study further re-
veals that, only extremely small portions of inputs and thread
interleavings (or schedules) can trigger these attacks, and ex-
isting concurrency bug detectors work poorly because they
lack help to identify the vulnerable inputs and schedules.

Our key insight is that the reports in existing detectors have
implied moderate hints on what inputs and schedules will
likely lead to attacks and what will not (e.g., benign bug re-
ports). With this insight, this paper presents a new directed
concurrency attack detection approach and its implementa-
tion, OWL. It extracts hints from the reports with static analy-
sis, augments existing detectors by pruning out the benign in-
puts and schedules, and then directs detectors and its own run-
time vulnerability verifiers to work on the remaining, likely
vulnerable inputs and schedules.

Evaluation shows that OWL reduced 94.3% reports caused
by benign inputs or schedules and detected 7 known con-
currency attacks. OWL also detected 3 previously unknown
concurrency attacks, including a use-after-free attack in SSDB

confirmed as CVE-2016-1000324, an integer overflow ,
HTML integrity violation in Apache and three new MySQL
data races confirmed with bug ID 84064, 84122, 84241. All
OWL source code, exploit scripts, and results are available at
https://github.com/ruigulala/ConAnalysis.

1 Introduction
Multithreaded programs are already prevalent. However, de-
spite much effort, these programs are still notoriously difficult
to get right. Concurrency bugs (i.e., shared memory accesses
without proper synchronization among threads) in these pro-

grams have led to severe consequences, including memory
corruption, wrong outputs, and program crashes [52].

Worse, a prior study [85] shows that many real-world con-
currency bugs can lead to concurrency attacks: once a con-
currency bug is triggered, attackers can leverage the mem-
ory corrupted by this bug to construct various violations, in-
cluding privilege escalations [7, 10], malicious code injec-
tions [8], and bypassing security authentications [4, 3, 5]. For
instance, a data race [7] in the Linux kernel corrupted the
kernel’s memory management subsystem and led to a root
privilege escalation. This study also elaborates that, because
concurrency attacks are caused by concurrent, miscellaneous
memory accesses, they can weaken most traditional defense
techniques (e.g., TOCTOU [74, 79, 73]). However, this study
did not provide exploit scripts to trigger these attacks, nor it
quantitatively evaluated existing tools on these attacks.

This paper presents the first quantitative study on the sever-
ity of concurrency attacks. We studied 10 widely used pro-
grams, including 3 server programs, 2 browsers, 1 library, and
4 kernel distributions, in CVE and their own bug databases.
Our study reveals 26 concurrency attacks that consist of three
more types of violations than the prior study [85], includ-
ing HTML integrity violations (§8.4), buffer overflows (§4.3),
and DoS attacks (§8.4). We built scripts to successfully ex-
ploit 10 attacks, and we quantitatively studied these attacks
with their input patterns, bug patterns in code (if available),
and the efficacy of existing detection tools.

Our study makes four new findings. First, concurrency at-
tacks are much more severe than concurrency bugs. Specifi-
cally, once concurrency attacks succeed, fixing only concur-
rency bugs in code won’t help, because attackers may have
broken in [6, 7, 10]. This finding suggests that analyzing the
known, fixed concurrency bugs is still crucial, because they
may have led to concurrency attacks that remain latent.

Second, unlike previous observations in consequence anal-
ysis tools [88, 47, 37] that software bugs are often close to
their failure/error sites (e.g., bugs and failures are within the
same function), our study shows that 12 out of 27 concurrency
attacks are widely spread across different functions from their

1

https://github.com/ruigulala/ConAnalysis

bugs. Therefore, these consequence analysis tools may be in-
sufficient to detect such concurrency attacks.

Third, although concurrency attacks can cause miscella-
neous consequences, these consequences are triggered by
several explicit types of vulnerable sites (e.g., setuid()).
Moreover, although concurrency bugs and and their attack
sites spread across different functions, at runtime, the bugs
and their attacks often share similar call stack prefixes (§3.2).
This finding reveals an opportunity to build a precise, scalable
static analysis tool for tracking the bug-to-attack propagation.

Fourth, concurrency bugs and their attacks can often be eas-
ily triggered with different, subtle program inputs. Consider
only the inputs to trigger concurrency bugs, 8 out of the 10
triggered attacks required less than 20 repetitive executions
via subtle inputs. This finding not only contradicts traditional
understanding (e.g., [60, 26]) that concurrency bugs are dif-
ficult to trigger in native executions and require tremendous
retrials, but it also implies that these attacks can easily bypass
existing anomaly detection tools [65, 27, 39].

Moreover, triggering concurrency bugs and their attacks
often need different inputs. In a Linux root privilege esca-
lation [7], although triggering the data race only required
calling the uselib() and mmap() system calls, other sys-
tem calls were also needed to get the root shell. This finding
poses a significant issue to existing concurrency tools, includ-
ing model checking tools (e.g., Chess [54]), because they are
designed only to catch the race on one input and have no clue
on its security consequence that needs another input.

To precisely quantify the efficacy of existing concurrency
detection tools on concurrency attacks, we selected two popu-
lar dynamic data race detectors TSAN [69] and SKI [32], and
we made 6 studied programs run with these tools. We found
that most of the tools’ reports were benign races, and all the
concurrency bugs that can lead to the 10 concurrency attacks
we found have been deeply buried in these tools’ reports. Our
evaluation found 94.3% of race reports benign (§8.2).

Two main reasons make these race detectors ineffective.
First, only an extremely small portion of program inputs can
lead to concurrency bugs and their attacks. Because race de-
tectors are clueless on even which input will lead to a harmful
bug (vulnerable bugs are just a subset of harmful bugs), these
detectors can only blindly flag bug reports driven by testing
workloads and search “in the dark”.

Second, even if a bug-triggering input is identified, a pro-
gram may still run into too many thread interleavings (or
schedules), depending on runtime effects (e.g., hardware tim-
ings) and synchronization implementations (e.g., adhoc syn-
chronizations [83]). Only a very small portion of schedules
will trigger the bug, while the rest may generate excessive, be-
nign reports. For instance, we ran MySQL with TSAN and re-
peatedly generated the same bug-triggering SQL query [10].
We got 202 race reports, but after our manual inspection, only
two reports will lead to attacks (§3); most benign reports were
caused by MySQL’s adhoc synchronizations or benign sched-

ules. In sum, the excessive inputs and schedules caused ex-
cessive reports and buried real bugs and attacks.

It’s challenging for existing analysis techniques to accu-
rately pinpoint the potentially vulnerable inputs and sched-
ules. One common technique to detect software bugs is static
analysis because it can throughly analyze program code and
identify what branch statements may be controlled by inputs
and may lead to bugs. However, because it lacks runtime ef-
fects such as which inputs may take which side of a branch
statement, static analysis will typically generate many more
false reports than the two dynamic race detectors we ran.

Our key insight is that the reports from existing detectors
have implied moderate hints on what inputs and schedules
will likely lead to attacks and what will not (e.g., benign
bugs). We identify two types of hints. The first hint is benign
schedules. For instance, the benign reports caused by adhoc
synchronizations have already implied how these synchro-
nizations act and how they work out schedules. Therefore, we
can use static analysis to extract these synchronizations from
the reports, automatically annotate these synchronizations in
a program, then we can greatly prune out these benign sched-
ules and their reports. Our analysis automatically identified
22 unique static adhoc synchronizations (§8.2).

The second hint is the bug-to-attack propagations, which
imply vulnerable inputs. Our study found that most vulnera-
ble races are already included in the race detectors’ reports
(§3.1), and concurrency attacks sites are often explicit in pro-
gram code (§3.2). Therefore, we can perform static analysis
on only the data and control flow propagations between the
bug reports and the potential attack sites, then we can collect
relevant call stacks and branch statements as the potentially
vulnerable input hints.

We did not make this vulnerable input hint automatically
generate concrete inputs (can be done via symbolic execu-
tion [19, 63]), because we found the call stacks and branches
in hints are already expressive enough for us to manually in-
fer vulnerable inputs (§4.3). This input hint helped us iden-
tify subtle inputs to trigger both known and unknown attacks
(§8.4).

In sum, by directing concurrency bug detectors to focus
on the potentially vulnerable inputs and schedules, we can
greatly augment existing detectors to approach and detect
concurrency attacks. We implemented this directed concur-
rency attack detection approach in OWL. It first runs concur-
rency bug detectors on a program to generate reports, and it
extracts benign schedule hints (e.g., adhoc synchronizations)
and vulnerable input hints from the reports with static analy-
sis. It then automatically annotates the benign schedule hints
in a program’s code, greatly reducing benign schedules and
thus their reports. Finally, it directs detectors and its own run-
time vulnerability verifiers (§4.2) to work on the remaining,
likely vulnerable inputs and schedules.

We evaluated OWL on 6 diverse, widely used programs,
including Apache, Chrome, Libsafe, Linux kernel, MySQL,

2

and SSDB. OWL’s benign schedule hints and runtime verifiers
reduced 94.3% of the race reports, and it did not miss the
evaluated concurrency attacks. With the greatly reduced re-
ports, OWL’s vulnerable input hints helped us identify subtle
vulnerable inputs, leading to the detection of 7 known con-
currency attacks as well as 3 previous unknown, severe ones
in SSDB and Apache. The analysis performance of OWL was
reasonable for in-house testing.

This paper makes two major contributions:
1. A first quantitative study on concurrency attacks and

their implications on detection tools. This study will mo-
tivate and guide researchers to develop new tools to detect
and defend against concurrency attacks (§3).

2. A new directed concurrency attack detection ap-
proach and its implementation, OWL. OWL can be ap-
plied in existing security tools to bridge the gap between
concurrency bugs and their security consequences (§7.2).

The rest of this paper is structured as follows. §2 introduces
concurrency attack background, and §3 presents our quanti-
tative study. §4 gives an overview of our OWL framework.
§5 describes OWL’s schedule reduction and §6 its input re-
duction techniques. §7 discusses OWL’s limitations and broad
applications. §8 presents our evaluation results for OWL, §9
discusses related work, and §10 concludes.

2 Background
A prior study [85] browsed the bug databases of 46 real-world
concurrency bugs and made three major findings on concur-
rency attacks. First, concurrency attacks are severe threats:
35 of the bugs can corrupt critical memory and cause three
types of violations, including privilege escalations [7, 10],
malicious code injections [8], and bypassing security authen-
tications [4, 3, 5].

Second, concurrency bugs and attacks can often be eas-
ily triggered via subtle program inputs. For instance, attack-
ers can use inputs to control the physical timings of disk
IO and program loops and trigger concurrency bugs with a
small number of re-executions. Third, compared to traditional
TOCTOU attacks, which stem from corrupted file accesses,
handling concurrency attacks is much more difficult because
they stem from corrupted, miscellaneous memory accesses.

These three findings reveal that concurrency attacks can
largely weaken or even bypass most existing security defense
tools, because these tools are mainly designed for sequential
attacks. For instance, consider taint tracking tools, concur-
rency attacks can corrupt the metadata fields in these tools and
completely bypass taint tracking. Anomaly detection tools,
which rely on inferring adversary program behaviors (e.g.,
excessive re-executions), become ineffective, because con-
currency attacks can easily manifest via subtle inputs.

This prior study raises an open research question: what will
be an effective tool for detecting concurrency attacks? Specif-
ically, can existing concurrency bugs detection tools effec-
tively detect these bugs and their attacks? The answer is prob-

ably “NO” because literature has overlooked these attacks.

3 Quantitative Concurrency Attack Study
We studied concurrency attacks in 10 widely used programs,
including 3 servers, 2 browsers, 1 library, and 4 kernel dis-
tributions. We added the shared memory concurrency bugs
in the prior study [85], and we searched “concurrency bug
vulnerability” in CVE and these programs’ bug databases.
We manually inspected bug reports and removed them if they
were false reports or lack a clear description, and we conser-
vatively kept the vulnerable ones caused by multithreading.

Unlike the prior study [85] which counted the number of
security consequences in bug reports as the number of con-
currency attacks, we counted only each bug’s first security
consequence. In total we collected 26 concurrency attacks
with three more types of violations than the prior study [85],
including HTML integrity violations (§8.4), buffer overflows
(§4.3), and DoS attacks (§8.4). We built scripts to successfully
exploit 10 attacks in 6 programs if we had source code.

To quantitatively analyze why concurrency attacks are
overlooked, we considered data race detectors because they
have effectively found concurrency bugs. We selected two
popular tools: TSAN [69] for applications and SKI [32] for
OS kernels. We ran the two tools on 6 programs that support
these tools. We used the programs’ common performance
benchmarks as workloads. Table 1 shows a study summary.

Name LoC # Concurrency attacks # Race reports
Apache 290K 4 715
MySQL 1.5M 2 1123
SSDB 67K 1 12
Chrome 3.4M 3 1715
IE N/A 1 N/A
Libsafe 3.4K 1 3
Linux 2.8M 8 24641
Darwin N/A 3 N/A
FreeBSD 680K 2 N/A
Windows N/A 1 N/A
Total 8.0M 26 28209

Table 1: Concurrency attacks study results. This table contains
both known and previously unknown concurrency attacks we de-
tected. We made 6 out of 10 programs run with race detectors. We
built exploit scripts for 10 concurrency attacks in these 6 programs.

3.1 Challenging Findings

I: Concurrency attacks are much more severe than con-
currency bugs. Every studied program has concurrency at-
tacks. Figure 1 shows a concurrency attack that bypassed
stack overflow checks in the Libsafe [48] library and in-
jected malicious code. Figure 2 shows a concurrency attack
in the Linux uselib() system call. Attackers have leveraged
this bug to trigger a NULL pointer dereference in the kernel
and execute arbitrary code from user space.

One key difference between concurrency attacks and con-
currency bugs is that fixing the buggy code is not sufficient to
fix the vulnerabilities. For instance, once attackers have got
OS root privileges [6, 7], they may stay forever in the system.

3

Therefore, it’s still crucial to study whether existing known
concurrency bugs may lead to concurrency attacks.

151 char *libsafe_strcpy(dst,src)
152 {
...
164 if(stack_check(dst)==0)
165 return strcpy(dst,src);
 }

 vulnerable site

// Thread 2
1636 libsafe_die(){
...
1640 dying = 1;
 }

// Thread 1
117 uint stack_check(...){
...
145 if(dying)
146 return 0; //Bypass check.
... ...; //Check overflow.
 }

Figure 1: A concurrency attack in the Libsafe security library.
Dotted arrows mean the bug-triggering thread interleaving. When
Thread 2 detects a stack overflow attack, it sets the dying variable
to 1 and kills current process shortly. However, access to dying is
not correctly protected by mutex, so Thread 1 reads this variable,
bypasses the security check in stack check() (called at line 164),
and runs into a stack overflow in strcpy() (at line 165).

 vulnerable site

// Thread uselib
int do_munmap(...) {
...

 file->f_op = NULL;

...
}

// Thread msync
static int msync_interval(...) {
...
 struct file * file = vma->vm_file;
...
 if(file->f_op&&file->f_op->fsync){

 err = file->f_op->fsync(...);
 }
}

Figure 2: A concurrency attack in the Linux uselib() and
msync() system calls. Dotted arrows mean the bug-triggering
thread interleaving. A data race on the f op struct causes the Linux
kernel to trigger a NULL pointer dereference and enables arbitrary
code execution.

II: Concurrency bugs and their attacks are widely spread
in program code. Among 10 attacks we had source code and
constructed exploit scripts, 7 have their bugs and vulnerability
sites among different functions. Moreover, bugs often affect
vulnerability sites not only through data flows but also control
flows (e.g., the Libsafe attack in Figure 1).

This finding suggests that a concurrency attack detection
tool should incorporate both inter-procedural and control-
flow analyses. Unfortunately, to scale to large programs, ex-
isting bug consequence analysis tools (e.g., [88, 84, 49]) lack
either inter-procedural or control-flow analysis.
III: Concurrency bugs and their attacks are often trig-
gered by separate, subtle program inputs. Consider the in-
puts to trigger concurrency bugs, unlike previous understand-
ing [60, 26] that triggering concurrency bugs require intensive
repeated executions, 8 out of the 10 reproduced concurrency
attacks in our study can be easily triggered with less than 20
repetitive executions on our evaluation machines with care-
fully chosen program inputs. For instance, in a MySQL priv-
ilege escalation [10], we used the “flush privileges;”
query to trigger a data race and corrupted another MySQL

user’s privilege table with only 18 repeated executions.
In addition to input values, carefully crafted input timings

can also expand the vulnerable window [85] which increases
the chance of running into the bug-triggering schedules. For
instance, consider Figure 2, since the if statement and the
file->f op->fsync() statement in msync interval()

have an IO operation (not shown) in between, attackers could
craft inputs with subtle timings for this IO operation and thus
enlarged the time window of these two statements. Then, at-
tackers could easily trigger the buggy schedule in Figure 2.

In addition to the inputs for triggering concurrency bugs,
triggering the attacks of these bugs often require other subtle
program inputs. A main reason is the bugs and their attacks
are widely spread in program code and thus they may eas-
ily be affected by different inputs. In a Linux uselib() data
race [7], we needed to carefully construct kernel swap IO op-
erations to trigger the race, and we needed to call extra system
calls to get a root shell out of this race. By constructing subtle
inputs for both the bug and its attack, we needed only tens
of repeated executions to get this root shell on our evaluation
machines.

This uselib() attack reveals two issues. First, a small
number of repeated executions indicates that attackers can
easily bypass anomaly detection tools [65, 27, 39] with subtle
inputs. Second, existing data race detectors are ineffective at
revealing this attack because they will stop after they run a
bug-triggering input and flag this race report. Such a one-shot
detection will overlook a concurrency attack as it often re-
quires extra inputs to trigger the attack. Therefore, extra anal-
ysis is required to identify the bug-to-attack propagation.
IV: Most concurrency bugs that triggered concurrency at-
tacks can be detected by race detection tools. There are
several types of concurrency bugs, including data race, atom-
icity violation, and order violation [52]. Although some types
of concurrency bugs are difficult to detect (e.g., order viola-
tion), we found that all concurrency bugs we studied were
data races and these bugs can readily be detected by TSAN or
SKI. This finding suggests that a race detector is a necessary
component for detecting concurrency attacks.
V: Concurrency attacks are overlooked mainly due to the
excessive reports from race detectors. We identified two
major reasons for this finding. First, existing race detectors
generate too many bug reports which deeply bury the vulner-
able ones. For instance, we ran MySQL with TSAN and re-
peatedly generated the same bug-triggering SQL query [10].
We got 202 race reports, but after our manual inspection, only
two reports will lead to attacks. Table 1 shows more programs
with even more reports. These excessive reports make finding
concurrency attacks from the reports just like “finding needles
in a haystack.”

Second, even if a developer luckily opens a true bug re-
port that can actually lead to an attack, she still has no clue
whether what attacks the bug may lead to, because the report
only shows the bug itself (e.g., the corrupted variable), but

4

not its security consequences. Therefore, it’s crucial to have
an analysis tool that can accurately identify the bug-to-attack
propagation for bug reports.

3.2 Optimistic Findings

To assist the construction of a practical concurrency attack
detection tool, we identified two common patterns for con-
currency attacks. First, although the consequences of con-
currency attacks are miscellaneous, these consequences are
triggered by five explicit types of vulnerable sites, includ-
ing memory operations (e.g., strcpy()), NULL pointer def-
erences, privilege operations (e.g., setuid()), file opera-
tions (e.g., access()), and process-forking operations (e.g.,
eval() in shell scripts). Our study found that these vulner-
able sites have independent consequences to each other, thus
more types can be easily added.

Second, concurrency bugs and their attacks often share
similar call stack prefixes. From the 10 concurrency attacks
with source code, 7 of them have the vulnerability site in the
callees (i.e., the call stack of the bug is a prefix of the call
stack of the vulnerability site). For the rest them, the vul-
nerability site is just one or two levels up of the bug’s call
stack. These two patterns reveal an opportunity to build a
precise, scalable static analysis tool for tracking the bug-to-
attack propagation.

4 OWL Overview
This section first presents a major challenge on realizing the
directed concurrency attack detection approach (§4.1), gives
an overview of OWL’s architecture with main components
and workflow (§4.2), and then gives an example to show how
it works (§4.3).

4.1 Challenge: Accuracy v.s. Scalability

A crucial component for OWL is a good bug-to-attack anal-
ysis, but it is technically challenging to make this analysis
both accurate (report few false reports and miss few real bugs)
and scalable (work with large programs). As mentioned in §1,
static analyses are often easy to be scalable as they can see
what a compiler can see, but because of the lack of runtime
effects (e.g., functions being executed and branches taken),
they suffer excessive false reports (e.g., 84% reports in RE-
LAY [75] were false reports).

To better identify runtime effects, symbolic execution [19]
systematically explores branches and leverages the program
paths to identify buggy inputs. However, this technique is no-
toriously difficult to scale to large programs (e.g., Apache
and Linux kernel) because these programs typically have too
many functions and program paths [25].

Alternatively, dynamic analyses can accurately capture
runtime effects (e.g., [60, 13]), but they can analyze only the
executed program path with the exact input and schedule. If a
concurrency bug’s attack requires another input to trigger in
another program path, dynamic analyses may miss the attack.

Fortunately, this challenge can be mitigated via the two op-
timistic patterns (§3.2) in our study: concurrency attack sites
are explicit, and bugs and their attacks often share similar
call stack prefixes. These patterns imply that a concurrency
bug only affects a small portion of functions and program
paths (and thus a small portion of inputs). Thus, we can com-
bine the attack sites (static effects) and calls stacks in reports
(dynamic effects), then our static analysis can skip analyzing
many functions and program paths that do not comply with
these effects, making OWL reasonably accurate and scalable.

4.2 OWL Architecture

Figure 3 presents OWL’s architecture with five key compo-
nents: the concurrency error detector, the static adhoc syn-
chronization detector, dynamic race verifier, static vulnera-
bility detector and dynamic vulnerability verifier.

OWL’s work as follows. (1) A concurrency bug detector
first detects bugs for the given program inputs. (2) Then,
based on the detected results, OWL’s adhoc synchronization
detector analyzes the reports and LLVM bitcode to find adhoc
synchronizations. After obtaining the adhoc synchronization
locations, OWL automatically annotates program source code
with TSAN markups and re-runs the detector. (3) Then, OWL
passes the re-generated bug reports to its race verifier to check
whether bugs will actually occur. (4) OWL’s static vulnerabil-
ity analyzer conducts a forward data & control flow analysis
to identify potential bug-to-attack propagations as vulnerable
input hints. (5) Eventually, OWL’s vulnerability verifier re-
runs the program and checks whether an attack can actually
be realized.

4.3 Example

Figure 1 shows a concurrency attack in Libsafe, a user-level
security library which dynamically intercepts all the Libc
memory functions to detect buffer overflows. When Libsafe

detects a buffer overflow, it sets a global variable dying to 1
to indicate that current process will be killed shortly, and then
it kills the program. If this variable is set, Libsafe will stop
performing security checks on memory functions. Unfortu-
nately, there is a data race on dying because access to this
variable is not protected by mutex. Therefore, between the
moment dying is set and the moment the entire process is
killed, a thread calling memory functions in this process may
leverage the race on dying to bypass buffer overflow checks.

We have constructed a C program with Libsafe to trigger
this race, bypassed a stack overflow check for a vulnerability
site, strcpy(), and gotten a shell by injecting our own ma-
licious code. Note that in this attack, the race and the vulner-
ability site are in different functions, and the race affects the
vulnerability site through an if control-dependency at line
164. Existing consequence analysis tools [88, 84, 49] are in-
adequate to detect this attack because they lack either inter-
procedural or control-flow analysis.

OWL started from the detection of the data races between

5

LLVM
clang

Static	Adhoc
Synchronization	

Detector

Real
Concurrency

Attack
+

Vulnerable
Inputs

Source	
Code

Executable

2

Reduced	
Race	

Reports
with

Security	
Hints

Dynamic		Race	
Verifier

Dynamic	
Vulnerability	

Verifier

Schedule	Reduction Input	Reduction1

3

4

5

Concurrency	Error
Detector

Reduced	Schedule

Static	
Vulnerability	
Analyzer

Program	Inputs

Figure 3: The OWL Architecture. OWL components are the blue (shaded) ones.

libsafe_strcpy (intercept.c:151)
stack_check (util.c:164)

Figure 4: Libsafe call stack. Line numbers refer to Figure 1.

---- Ctrl Dependent Vulnerability----
[632]
%632: br %631 if.end13 if.then11 (intercept.c:164)
Vulnerable Site Location: (intercept.c:165)

Figure 5: OWL vulnerable input hint on the Libsafe attack. Line
numbers refer to Figure 1.

line 145 and line 1640. Our dynamic race verifier verifies this
race and pass this report to our vulnerability analyzer. Our
vulnerability analyzer starts from the “read” side call stack of
the race shown in Figure 4 and conducts a inter-procedural
static analysis to detect which vulnerability site may be af-
fected by this race by tracking data and control flows.

As shown in Figure 5, OWL reported one memory opera-
tion at line 165 as a vulnerable operation. Our vulnerability
report includes the reasoning (a dangerous function will be
control-dependent on the corrupted branch statement at line
164) and what are the branches to reach the vulnerability op-
eration. Our report indicates that a strcpy() function will be
called with the original parameters without the actual security
checks in stack check(). At the end, our vulnerability ver-
ifier verifies this vulnerability by re-running the program and
satisfies the branches to eventually trigger the vulnerability.
In order to satisfy the branches, our vulnerability verifier re-
quires user intervention to decide the execution order of the
racing instructions and input tunning.

5 Reducing Benign Schedules
This section presents OWL’s benign schedule reduction com-
ponent, including automatically annotating adhoc synchro-
nizations (§5.1) and pruning benign schedules (§5.2). This
component in total greatly reduced 94.3% of the total reports
(see §8.2).

5.1 Annotating Adhoc Synchronization

Developers use semaphore-like adhoc synchronizations,
where one thread is busy waiting on a shared variable until
another thread sets this variable to be “true”. This type of ad-
hoc synchronizations couldn’t be recognized by TSAN or SKI
and caused many false positives.

OWL uses static analysis to detect these synchronizations
in two steps. First, by taking the race reports from detectors,
it sees if the “read” instruction is in a loop. Then, it conducts
a intra-procedural forward data and control dependency anal-

ysis to find the propagation of the corrupted variable. If OWL
encounters a branch instruction in the propagation chain, it
checks if this branch instruction can break out of the loop.
Last, it checks if the “write” instruction of the instruction as-
signs a constant to the variable. If so, OWL tags this report as
an “adhoc sync”.

Compared to the prior static adhoc sync identification
method SyncFinder [83], which finds the matching “read”
and “write” instruction by statically searching program code,
our approach leverages the actual runtime information from
the race reports, so ours are much simpler and more precise.

5.2 Verifying Real Data Races

OWL’s dynamic race verifier checks whether the reduced race
reports are indeed real races. It also generates security hints
for the following analysis. The verifier is lightweight because
it is built on top of the LLDB debugger. We find that a good
way to trigger a data race is to catch it “in the racing mo-
ment”. The verifier sets thread specific breakpoints indicated
by TSAN race reports. “Thread specific” means when the
breakpoint is triggered, we only halt that specific thread in-
stead of the whole program. The rest of the threads are still
able to run. In this way, we can actually catch the race when
both of the racing instructions are reached by different threads
and are accessing the same address.

For each run, OWL’s dynamic filter verifies one race. Once
a data race is verified, the verifier goes one step further. It
prints the following dynamic information as security hints in-
cluding, the racing instructions from source code, the value
they’re about to read and write and the type of the variable
that these instructions are about to read or write. These hints
show whether a NULL pointer difference can be triggered or
an uninitialized data can be read because of the race.

It is possible that due to the suspension of threads, the
program goes into a livelock state before verifying any data
races. We resolve this livelock state by temporarily releasing
one of the currently triggered breakpoints.

Previous works [66, 58, 36] adopt the same core idea of
thread specific breakpoints and data race verification. OWL’s
dynamic race verifier provides a lightweight, general, easy
to use way (integrated with existing debugger) in verifying
potentially harmful data races and their consequences. Com-
pared with RaceFuzzer [66], OWL’s verifier achieves the goal
without requiring heavyweight Java instrumentation. Com-

6

pared with ConcurrentBreakpoint [58] and ConcurrentPred-
icate [36], we require no code annotations and importing li-
braries.

Overall, OWL’s dynamic filter makes developers be less de-
pendent on the particular front end race detector, because no
matter how many false positive the front end race detector
generates, this verifier will make sure the end result is accu-
rate.

There are two cases that could cause OWL’s race verifier to
miss real races. First, if the race detector doesn’t detect the
race upfront, the verifier won’t report the race either. Second,
depending on runtime effects (e.g., schedules), some races
can’t be reliably reproduced with 100% success rate [36].

6 Computing Vulnerable Input Hints
This section presents the algorithm of OWL’s static vulner-
ability analysis (§6.1) and dynamic verifier (§6.2). Since the
input of the static analysis is the reports from concurrency bug
detectors, this section then describes how OWL integrates this
analysis with two existing race detectors (§6.3).

6.1 Analysis Algorithm

Algorithm 1 show OWL’s vulnerability analyzer’s algorithm.
It takes a program’s LLVM bitcode in SSA form, an LLVM
load instruction that reads from the corrupted memory of
a bug report, and the call stack of this instruction. The
algorithm then does inter-procedural static analysis to see
whether corrupted memory may propagate to any vulnerable
site (§3.2) through data or control flows. If so, the algorithm
outputs the propagation chain in LLVM IR format as the vul-
nerable input hint for developers.

The algorithm works as follows. It first adds the corrupted
read instruction into a global corrupted instruction set, it then
traverses all following instructions in the current function and
if any instruction is affected by this corrupted set (“affected”
means any operand of current instruction is in this set), it adds
the instruction into this corrupted set. The algorithm looks
into all successors of branch instructions as well as callees
to propagate this set. It reports a potential concurrency attack
when a vulnerable site (§3.2) is affected by this set.

To achieve reasonable accuracy and scalability, we made
three design decisions. First, based on our finding that bugs
and attacks often share similar call stack prefixes, the algo-
rithm traverses the bug’s call stack (§4.1). If the algorithm
does not find a vulnerability on current call stack and its
callees, it pops the latest caller in current call stack and checks
the propagation through the return value of this call, until the
call stack becomes empty and the traversal of current function
finishes. This targeted traversal makes the algorithm scale to
large programs with greatly reduced false reports (Table 3).

Second, the algorithm tracks propagation through LLVM
virtual registers [50]. Similar to relevant systems [88, 43], our
design did not incorporate pointer analysis [81, 46] because
one main issue of such analysis is that it typically reports too

Algorithm 1: Vulnerable input hint analysis
Input : program prog, start instruction si, si call stack cs
Global: corrupted instruction set crptIns, vulnerability set vuls
DetectAttack(prog, si, cs)

crptIns.add si
while cs is not empty do

f unction← cs.pop
ctrlDep← false
DoDetect(prog, si, f unction, ctrlDep)

DoDetect(prog, si, f unction, ctrlDep)
set localCrptBrs← empty
foreach succeeded instruction i do

bool ctrlDepFlag← false
foreach branch instruction cbr in localCrptBrs do

if i is control dependent on cbr then
ctrlDepFlag← true

if ctrlDep or ctrlDepFlag then
if i.type() ∈ vuls then

ReportExploit(i, CTRL DEP)
if i.isCall() then

foreach actual argument arg in i do
if arg ∈ crptIns then

crptIns.add i
if i.type() ∈ vuls then

ReportExploit(i, DATA DEP)
if f .isInternal() then

cs.push f
DoDetect(prog, f .first(), f , ctrlDep or
ctrlDepFlag)
cs.pop

else
foreach operand op in i do

if op ∈ crptIns then
if i.type() ∈ vuls then

ReportExploit(i, DATA DEP)
crptIns.add i
if i.isBranch() then

localCrptBrs.add i
ReportExploit(i, type)

if i is never reported on type then
ReportToDeveloper()

many false positives on shared memory access in large pro-
grams (§7.1).

Our analyzer compensates the lack of pointer analysis by:
(1) tracking read instructions in the detectors at runtime
(§6.3), and (2) leveraging the call stacks to precisely resolve
the actually invoked function pointers (another main issue in
pointer analysis).

Third, some detectors do not have read instructions in the
reports (e.g., write-write races), and we modified the detec-
tors to add the first load instruction for these reports during
the detection runs (§6.3).

All five types of vulnerability sites we found (§3.2) have
been incorporated in this algorithm. The generated vulnera-

7

bility reaching branches from this algorithm serve as vulner-
able input hints and helped us identify subtle inputs to detect
7 known attacks and 3 previously unknown ones (§8.4).

6.2 Dynamic Vulnerability Verifier

OWL’s dynamic vulnerability verifier is built on LLDB so it
is lightweight. It takes the input from its static vulnerability
analysis, including the vulnerability site and the associated
branches. It re-runs the program again and prints out whether
one could reach the vulnerability site and trigger the attack. If
the site cannot be reached, it prints out the diverged branches
as further input hints.

6.3 Integration with Concurrency Bug Detectors

OWL has integrated two popular race detectors: SKI for Linux
kernels and TSAN for application programs. To integrate
OWL’s algorithm (§6.1) with concurrency bug detectors, two
elements are necessary from the detectors: the load instruc-
tion that reads the bug’s corrupted memory and the instruc-
tion’s call stack.

SKI’s default detection policy is inadequate to our tool be-
cause it only reports the pair of instructions at the moment
when race happens. This policy incurs two issues for our in-
tegration. First, the pair of instructions could both be write
instructions, which does not match the algorithm’s input for-
mat. Second, it is essential to provide to the algorithm an as
detailed call stack, which reads from the corrupted racy vari-
able, as possible.

We modified SKI’s race detection policy as follows. Af-
ter a race happens, the physical memory address of the vari-
able will be added to a SKI watch list, marking such vari-
able as corrupted. All the call stacks of the following read to
the watched variable will be printed. If a write to a watched
variable occurs, such write sanitizes the corrupt value and re-
moves the variable from the watch list. In this way, we can
catch all the call stacks of potential problematic use of racy
variables. The final race report will show all the stacks of the
reading thread.

Another issue for OWL to work with kernels is that SKI
lacks call stack information. We configure Linux kernel with
the CONFIG FRAME POINTER option enabled. Given a
dump of the kernel stack and the values of the program
counter and frame pointer, we were able to iterate the stack
frames and constructed call stacks.

7 Discussions
This section discusses OWL’s limitations (§7.1) and its broad
applications (§7.2).

7.1 Limitations

OWL’s main design goal is to achieve reasonable accuracy
and scalability, and it trades off soundness (i.e., do not miss
any bugs), although OWL did not missed the evaluated attacks
(§8.3). A typical way to ensure soundness is to plug in a sound
alias analysis tool (e.g., [81, 46]) to identify all LLVM load

and store instructions that may access the same memory.
However, typical alias analyses are known to be inaccurate
(e.g., too many false positives).

OWL currently handles five types of regular vulnerability
operations (§3.2), and it requires these operations to exist in
the LLVM bitcode. These five types of operations are suffi-
cient to cover all 10 concurrency attacks we have reproduced,
and more types can be added. If developers are concerned
about some library code that may contain vulnerabilities, they
should compile this code into the bitcode for OWL.

OWL’s consequence analysis tool integrates the call stack
of a concurrency bug to direct static analysis toward vulner-
able program paths, but OWL’s vulnerable input hints (§6.1)
may contain false reports (e.g., the outcomes in OWL’s col-
lected bug-to-attack propagation branches may have con-
flicts). Developers can inspect the propagation chains and
refine their program inputs to validate the outcomes. In our
evaluation, we found these input hints expressive as they
helped us identify subtle inputs for real attacks (§8.3).

7.2 OWL has Broad Applications

We envision two immediate applications for OWL’s tech-
niques. First, OWL can augment existing defense tools on
concurrency attacks. For instance, we can leverage anomaly
detection [65, 27, 39] and intrusion detection [40, 76, 77]
tools to audit only the vulnerable program paths identified
by OWL, then these runtime detection tools can greatly re-
duce the amount of program paths that need to be audited
and improve performance. OWL can also integrate with other
bug detection tools (e.g., process races [45] and atomicity
bugs [59]) to detect concurrency attacks caused by such bugs.

Second, OWL’s consequence analysis tool has the poten-
tial to detect various consequences of software bugs. Soft-
ware bugs have caused many extreme disasters [11, 12] in the
last few decades, including losing big money and taking lives.
By adding new vulnerability and failure sites of such conse-
quences, OWL can be applied to flagging bugs that can cause
severe consequences among enormous bug reports.

8 Evaluation
We evaluated OWL on 6 widely used C/C++ programs, in-
cluding three server applications (Apache [14] web server,
MySQL [9] database server, and SSDB [72] key-value store
server), one library (Libsafe [48]), the Linux kernel, and
one web browser (Chrome). We used the programs’ common
performance benchmarks as workloads. Our evaluation was
done on a 3.60 GHz 8-core Intel Xeon machine with 32 GB
memory and 1TB SSD running Linux 3.19.0-49.

We focused our evaluation on four key questions:
1. Is OWL easy to use (§8.1)?
2. How many false reports from concurrency error detection

tools can OWL reduce (§8.2)?
3. Can OWL detect known concurrency attacks in the real-

world (§8.3)?

8

4. Can OWL detect previously unknown concurrency attacks
in the real-world (§8.4)?

Name LoC # atks # atks found # OWL’s reports
Apache 290K 3 3 10
Chrome 3.4M 1 1 115
Libsafe 3.4K 1 1 3
Linux 2.8M 2 2 34
MySQL 1.5M 2 2 16
SSDB 67K 1 1 2
Total 5.36M 11 10 180

Table 2: OWL concurrency attack detection results. We selected
10 concurrency attacks because we were able to trigger their bugs on
our machines. OWL detected all 10 evaluated concurrency attacks.

8.1 Ease of Use

Table 2 shows a summary of our concurrency attack detection
results. Overall, OWL was able to automatically run the eval-
uated applications and generate verified concurrency attacks
with moderate developer intervention (inspect vulnerable in-
puts from input hints).

It’s critical to report the connection between a concurrency
bug and its vulnerability. OWL provides an expressive and
helpful reports to (1) let developers know why certain places
are vulnerable due to the concurrency bug (2) find the right
inputs to trigger concurrency attacks easily. Figure 5 shows a
snippet of OWL’s report on the Libsafe attack in Figure 1.

8.2 Reducing False Reports from Detectors

Table 3 shows OWL’s race report reduction results. The sec-
ond column indicates the number of raw reports generated by
our race detector. The third column shows how many adhoc
synchronizations we found. The fourth column shows how
many reports our dynamic race verifier had removed. The
fifth column shows the number of the remaining reports.

Overall, OWL is able to prune 94% cases of false positives
in Linux kernel and 97.7% for the other applications. This sig-
nificant reduction will help developers save much diagnostic
time. The performance of OWL’s static analysis tool is criti-
cal because OWL aims to be scalable to large programs. The
last column of Table 3 shows the average time cost of OWL’s
static analysis tool per bug report. Overall, except for Linux
kernel and Chrome, OWL’s analysis finished analyzing each
program’s bug reports within a few hours.

8.3 Detecting Known Attacks

We applied OWL on 7 concurrency attacks listed in Table 4.
OWL detected all the vulnerabilities. Currently OWL incor-
porates two race detectors. There are other types of concur-
rency bugs that can also lead to concurrency attacks, includ-
ing atomicity violations [52]. Atomicity violations can be de-
tected by other detectors (e.g., CTrigger [59]). By integrat-
ing these detectors (future work), OWL’s analysis and verifier
components can detect more concurrency attacks.

Because all OWL’s dynamic verifiers of are implemented
based on LLDB, which only supports applications, we
haven’t run these verifiers in Linux kernel. Nevertheless,

Name R.R. A.S. *R.V.E. R. A.C.
Apache 715 7 1506 10 1.5m
Chrome 1715 1 1587 126 190m
Libsafe 3 0 0 3 3s
Linux 24641 8 N/A 1718 42.5m
Memcached 5376 0 5372 4 1.2m
MySQL 1123 6 783 18 5.1m
SSDB 12 0 10 2 1.3m
Total 31870 22 9258 1881 N/A

Table 3: OWL’s reduction on race detector reports. R.R. represents
Race Reports, A.S. is the static Adhoc Synchronizations annotated
by OWL. R.V.E. is Race Verifier Elimination. * This result is the
elimination on the race reports after annotation. The number could
be bigger than the original race report number. R. is the Remaining
result after Race Verifier. A.C. is Average analysis time Cost.

OWL’s static vulnerability analyzer was applied to the Linux
kernel and detected the evaluated concurrency attacks. For
Linux kernel, our dynamic verifiers can be implemented in
QEMU [61]. We leave the implementation in future work.

Aside from the discussed known and unknown concurrency
attacks, OWL generates 180 reports in total. Due to the lack of
domain knowledge and semantic understanding of program
code, we didn’t verify all of these potential vulnerability re-
ports yet. These reports could either be benign races or new
concurrency attacks. Nevertheless, by greatly reducing the
number of reports from 31K to 180 (Table 3 and Table 2),
OWL has greatly mitigated developers’ burdens.

Name Vul. Type Subtle Inputs

Apache-2.0.48 Double Free PhP queries
Chrome-6.0.472.58 Use after free Js console.profile
Libsafe-2.0-16 Buffer Overflow Loops with strcpy()

Linux-2.6.10 Null Func Ptr Deref Syscall parameters
Linux-2.6.29 Privilege Escalation Syscall parameters
MySQL-5.0.27 Access Permission FLUSH PRIVILEGES
MySQL-5.1.35 Double Free SET PASSWORD

Table 4: OWL’s detection results on known concurrency attacks.
With the listed subtle inputs, all these attacks were often triggered
within 20 repeated queries or loops except the Apache one.

8.4 Detecting Previously Unknown Attacks

OWL detected 3 previously unknown concurrency attacks
caused by one new data race and two known data races. An-
alyzing whether known data races can lead to unknown con-
currency attacks is still crucial (§3.1), because once attackers
break in, they may remain latent for a long time.

OWL detected a new data race and a previously un-
known use-after-free concurrency attack in SSDB confirmed
as CVE-2016-1000324. Figure 6 shows the details of this
vulnerability. During server shutdown, SSDB uses adhoc syn-
chronization to synchronize between threads. However, it’s
possible that line 359 is executed before line 200. This race
causes log clean thread fun to fail to break out of the
while loop. Moreover, log clean thread fun could exe-
cute del range which could use db and cause a use after
free. Even more, line 347 is a function pointer dereference

9

// Thread 1
355 log_clean_thread_func(void *arg){
356 BinlogQueue *logs =
 (BinlogQueue *)arg;
357
358 while(!logs->thread_quit){
359 if(!logs->db){
360 break;
361 }
...
371 logs->del_range(start, end);
...
375 }
...
380 }
...
341 int del_range(...){
342 while(start <= end){
...
347 Status s = db->Write(...); vulnerable site←
...
351 }
...

// Thread 2
190 ~BinlogQueue(){
...
200 db = NULL;
201 }

Figure 6: A new concurrency bug and attack in SSDB-1.9.2.

which could cause log corruption or program crash if the
memory area was reused by other threads.

OWL’s static analyzer (§6.1) identified the vulnerability site
at line 347 because it is a pointer dereference. This site is con-
trol dependent on the corrupted branch on line 359. OWL’s
dynamic vulnerability verifier (§6.2) further verified that the
other thread will free the memory area and set the pointer to
NULL before the dereference within current thread. We re-
ported this race and attack to SSDB developers.

1327 ap_buffered_log_writer(void *handle, ...)
...
1334 {
1335 char *str;
1336 char *s;
1337 int i;
1338 apr_status_t rv;
1339 buffered_log *buf = (buffered_log*)handle;
...
1342 if (len + buf->outcnt > LOG_BUFSIZE) {
1343 flush_log(buf);
1344 }
...
1357 else {
1358 for(i=0,s=&buf->outbuf[buf->outcnt];i<nelts;++i) {
1359 memcpy(s,strs[i], trl[i]); vulnerable site←
1360 s += strl[i];
1361 }
1362 buf->outcnt += len;
1363 rv = APR_SUCCESS;
1364 }
...
1366 }

Figure 7: A new HTML integrity violation in Apache-2.0.48.

The second previously unknown concurrency attack stems
from a known data race in Apache. This attack made
Apache’s own request logs be written into other users’ HTML
files stored in Apache, causing a HTML integrity violation
and information leak. Figure 7 shows the code of this vul-
nerability from the Apache-25520 bug [1]. buf->outcnt is
shared among threads and serves as an index of a buffer ar-
ray. Due to a lack of proper synchronization when modifying
this variable on line 1362, a data race occurred and caused the
server to write wrong contents to buf->outbuf.

Worse, the wrong contents could also overflow
buf->outbuf and cause a buffer overflow. Even worse,
Apache stores the file descriptor of its HTTP request log
next to buf->outbuf. We constructed a one-byte overflow
of buf->outbuf, corrupted this file descriptor, and made
Apache’s own HTTP request logs be written to an HTML

file with the exact corrupted value of this file descriptor.
Although this data race has been well studied by re-

searchers [52], people thought the worst consequence of this
bug would just be corrupting Apache’s own request log. We
were the first to detect this HTML integrity violation attack
with OWL and the first to construct the actual exploit scripts.

OWL’s vulnerability analysis (§6.1) pinpointed the vulner-
able site at line 1359 and inferred that this line is data depen-
dent on the corrupted variable on line 1358. OWL’s dynamic
race verifier (§5.2) triggered the race and showed how many
bytes in buf->outbuf were overflowed.

size_t busy; /* busyness factor */

// Thread 1
588 static int proxy_balancer_post_request(…)
...
616 if (worker && worker->s->busy)
617 worker->s->busy--;

// Thread 3
1138 static proxy_worker *find_best_bybusyness(...)
...
1144 proxy_worker *mycandidate = NULL;
...
1192 if (!mycandidate
1193 || worker->s->busy < mycandidate->s->busy
1194 || ...
1195 mycandidate = worker; vulnerable site←

// Thread 2
616 if (worker && worker->s->busy)
617 worker->s->busy--;

Figure 8: A new integer overflow and DoS attack based on
Apache-46215.

The third previously unknown concurrency attack was an
integer overflow DoS attack based on a known Apache-46215
data race. Figure 8 shows the Apache-46215 bug [2]. Each
Apache worker thread contains a field worker->s->busy

to indicate its busyness. An Apache load balancer compo-
nent contains threads to concurrently increment or decrement
these flags for worker threads when they start or finish serv-
ing requests. However, as shown in line 616, this is a data race
because developers forgot to use a lock during the counter in-
crement and decrement.

Over years, this busyness counter has been viewed a statis-
tic and its data race does not matter much. Unfortunately,
this counter is an unsigned integer, and an integer overflow
could be triggered during the decrement and could make the
counter the largest unsigned integer (i.e., marking a thread
the “busiest” one). The check in line 617 can be easily by-
passed because of the race. Because load balancer assigns fu-
ture requests based on the worker threads’ counters, arbitrary
worker threads in Apache can be viewed the busiest ones and
be completely ignored, causing a DoS attack on these threads
and a significant downgrade of Apache’s throughput.

OWL detected this concurrency attack as follows. OWL’s
race detector detected a race between line 617 and line 1192.
OWL’s dynamic race verifier reported a detailed dynamic race
information including the racing instructions, the value they
could read or write to the variable and the type of the variable.
We then found worker->s->busy in some worker threads
had an overflowed value: 18,446,744,073,709,551,614.
OWL’s vulnerability analysis (§6.1) reported that a pointer as-
signment could be control dependent on the corrupted branch

10

of line 1192. OWL’s vulnerability verifier verified that the
branch was indeed corrupted and line 1195 was reachable.

These three previously unknown concurrency attacks were
overlooked by prior reliability and security tools mainly due
to three reasons. First, compared to OWL’s reduced vulnera-
ble reports, the data races of these three attacks were buried
within at least 87X more false reports in Apache and 6X
more in SSDB produced by the prior TSAN race detector. Sec-
ond, without OWL’s static bug-to-attack propagation analy-
sis (§6.1), even though the races can be detected by existing
race detectors, the security consequences of these bugs were
unknown to detectors. Third, without OWL’s dynamic race
verifier (§5.2) and vulnerability verifier (§6.2), whether these
races and their attacks can be realized were unknown either.

9 Related Work
TOCTOU attacks. Time-Of-Check-to-Time-Of-Use at-
tacks [18, 73, 79, 74] target mainly the file interface, and
leverage atomicity violation on time-of-check (access())
and time-of-use (open()) of a file to gain illegal file access.

A prior concurrency attack study [85] elaborates that con-
currency attacks are much broader and more difficult to track
than TOCTOU attacks for two main reasons. First, TOCTOU
mainly causes illegal file access, while concurrency attacks
can cause a much broader range of security vulnerabilities,
ranging from gaining root privileges [7], injecting malicious
code [6], to corrupting critical memory [1]. Second, concur-
rency attacks stem from miscellaneous memory accesses, and
TOCTOU stem from file accesses, thus handling concurrency
attacks is much more difficult than TOCTOU.
Sequential security techniques. Defense techniques for se-
quential programs are well studied, including taint track-
ing [28, 62, 55, 56], anomaly detection [27, 65], address space
randomization [70], and static analysis [38, 30, 76, 17, 19].

However, with the presence of multithreading, most exist-
ing sequential defense tools can be largely weakened or even
completely bypassed [85]. For instance, concurrency bugs
in global memory may corrupt metadata tags in metadata
tracking techniques. Anomaly detection lacks a concurrency
model to reason about concurrency bugs and attacks.
Concurrency reliability tools. Various prior systems work
on concurrency bug detection [87, 64, 29, 51, 53, 89, 88, 44,
80], diagnosis [67, 59, 57, 16, 43], and correction [42, 78,
82, 41]. They focused on concurrency bugs themselves, while
OWL focuses on the security consequences of concurrency
bugs. Therefore, these systems are complementary to OWL.

Conseq [88] detects harmful concurrency bugs by analyz-
ing its failure consequence. Its key observation is that con-
currency bugs and the bugs’ failure sites are usually within a
short control and data flow propagation distance (e.g., within
the same function). Concurrency attacks targeted in OWL
usually exploit corrupted memory that resides in different
functions, thus Conseq is inadequate for concurrency attacks.
Conseq’s proactive harmful schedule exploration technique

will be useful for OWL to trigger more vulnerable schedules.
Static vulnerability detection tools. There are already a va-
riety of static vulnerability detection approaches [49, 84, 31,
15, 71, 90]. These approaches fall into two categories based
on whether they target general or specific programs.

The first category [49, 84] targets general programs and
their approaches have been shown to find severe vulnerabil-
ities in large code. However, these pure static analyses may
not be adequate to cope with concurrency attacks. Benjamin
et al. [49] leverages pointer analysis to detect data flows from
unchecked inputs to sensitive sites. This approach ignores
control flow and thus it is not suitable to track concurrency
attacks like the Libsafe one in §4.3. Yamaguchi et al. [84]
did not incorporate inter-procedural analysis and thus is not
suitable to track concurrency attacks either. Moreover, these
general approaches are not designed to reason about concur-
rent behaviors (e.g., [84] can not detect data races).

OWL belongs to the first category because it targets gen-
eral programs. Unlike the prior approaches in this category,
OWL incorporates concurrency bug detectors to reason about
concurrent behaviors, and OWL’s consequence analyzer in-
tegrates critical dynamic information (i.e., call stacks) into
static analysis to enable comprehensive data-flow, control-
flow, and inter-procedural analysis features.

The second category [31, 15, 71, 90] lets static analysis
focus on specific behaviors (e.g., APIs) in specific programs
to achieve scalability and accuracy. These approaches check
web application logic [31], Android applications [15], cross
checking security APIs [71], and verifying the Linux Secu-
rity Module [90]. OWL’s analysis is complementary to these
approaches; OWL can be further integrated with these ap-
proaches to track concurrency attacks.
Symbolic execution. Symbolic execution is an advanced pro-
gram analysis technique that can systematically explore a pro-
gram’s execution paths to find bugs. Researchers have built
scalable and effective symbolic execution systems to detect
software bugs [34, 68, 33, 35, 19, 86, 20, 23, 21, 63], block
malicious inputs [24], preserve privacy in error reports [22],
and detect programming rule violations [25]. Specifically,
UCKLEE [63] has been shown to effectively detect hundreds
of security vulnerabilities in widely used programs. Symbolic
execution is orthogonal to OWL; it can augment OWL’s input
hints by automatically generating concrete vulnerable inputs.

10 Conclusion
We have presented the first quantitative study on real-world
concurrency attacks and OWL, the first analysis framework
to effectively detect them. OWL accurately detect a num-
ber of known and previously unknown concurrency attacks
on large, widely used programs. We believe that our study
will attract much more attention to further detect and de-
fend against concurrency attacks. Our OWL framework has
the potential to bridge the gap between concurrency bugs
and their attacks. All our study results, exploit scripts, and

11

OWL source code with raw evaluation results are available at
https://github.com/ruigulala/ConAnalysis.

References
[1] Apache bug 25520. https://bz.apache.org/

bugzilla/show_bug.cgi?id=25520.

[2] Apache bug 46215. https://bz.apache.org/
bugzilla/show_bug.cgi?id=46215.

[3] CVE-2008-0034. http://www.cvedetails.
com/cve/CVE-2008-0034/.

[4] CVE-2010-0923. http://www.cvedetails.
com/cve/CVE-2010-0923.

[5] CVE-2010-1754. http://www.cvedetails.
com/cve/CVE-2010-1754/.

[6] Freebsd cve-2009-3527. http://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-
2009-3527.

[7] Linux kernel bug on uselib(). http://osvdb.org/
show/osvdb/12791.

[8] MSIE javaprxy.dll COM object exploit. http://
www.exploit-db.com/exploits/1079/.

[9] MySQL. http://www.mysql.com/.

[10] Mysql bug 24988. https://bugs.mysql.com/
bug.php?id=24988.

[11] Ten historical software bugs with extreme conse-
quences. http://royal.pingdom.com/2009/
03/19/10-historical-software-bugs-
with-extreme-consequences/.

[12] Ten seriously epic computer software bugs.
http://listverse.com/2012/12/24/10-
seriously-epic-computer-software-
bugs/.

[13] G. Altekar and I. Stoica. ODR: output-deterministic re-
play for multicore debugging. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles
(SOSP ’09), pages 193–206, Oct. 2009.

[14] Apache web server. http://www.apache.org,
2012.

[15] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’14), pages 259–269, 2014.

[16] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automat-
ing root-cause diagnosis of performance anomalies in
production software. In OSDI, 2012.

[17] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and
D. Engler. A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM,
53:66–75, Feb. 2010.

[18] M. Bishop and M. Dilger. Checking for race conditions
in file accesses. Computing systems, pages 131–152,
Spring 1996.

[19] C. Cadar, D. Dunbar, and D. Engler. KLEE: unas-
sisted and automatic generation of high-coverage tests
for complex systems programs. In Proceedings of the
Eighth Symposium on Operating Systems Design and
Implementation (OSDI ’08), pages 209–224, Dec. 2008.

[20] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. EXE: automatically generating inputs
of death. In Proceedings of the 13th ACM conference
on Computer and communications security (CCS ’06),
pages 322–335, Oct.–Nov. 2006.

[21] G. Candea, S. Bucur, and C. Zamfir. Automated soft-
ware testing as a service. In Proceedings of the 1st Sym-
posium on Cloud Computing (SOCC ’10), 2010.

[22] M. Castro, M. Costa, and J.-P. Martin. Better bug report-
ing with better privacy. In Thirteenth International Con-
ference on Architecture Support for Programming Lan-
guages and Operating Systems (ASPLOS ’08), pages
319–328, Mar. 2008.

[23] V. Chipounov, V. Georgescu, C. Zamfir, and G. Can-
dea. Selective Symbolic Execution. In Fifth Workshop
on Hot Topics in System Dependability (HotDep ’09),
2009.

[24] M. Costa, M. Castro, L. Zhou, L. Zhang, and
M. Peinado. Bouncer: securing software by block-
ing bad input. In Proceedings of the 21st ACM Sym-
posium on Operating Systems Principles (SOSP ’07),
pages 117–130, Oct. 2007.

[25] H. Cui, G. Hu, J. Wu, and J. Yang. Verifying systems
rules using rule-directed symbolic execution. In Eigh-
teenth International Conference on Architecture Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS ’13), 2013.

[26] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable deter-
ministic multithreading through schedule memoization.
In Proceedings of the Ninth Symposium on Operating
Systems Design and Implementation (OSDI ’10), Oct.
2010.

12

https://github.com/ruigulala/ConAnalysis
https://bz.apache.org/bugzilla/show_bug.cgi?id=25520
https://bz.apache.org/bugzilla/show_bug.cgi?id=25520
https://bz.apache.org/bugzilla/show_bug.cgi?id=46215
https://bz.apache.org/bugzilla/show_bug.cgi?id=46215
http://www.cvedetails.com/cve/CVE-2008-0034/
http://www.cvedetails.com/cve/CVE-2008-0034/
http://www.cvedetails.com/cve/CVE-2010-0923
http://www.cvedetails.com/cve/CVE-2010-0923
http://www.cvedetails.com/cve/CVE-2010-1754/
http://www.cvedetails.com/cve/CVE-2010-1754/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3527
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3527
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3527
http://osvdb.org/show/osvdb/12791
http://osvdb.org/show/osvdb/12791
http://www.exploit-db.com/exploits/1079/
http://www.exploit-db.com/exploits/1079/
http://www.mysql.com/
https://bugs.mysql.com/bug.php?id=24988
https://bugs.mysql.com/bug.php?id=24988
 http://royal.pingdom.com/2009/03/19/10-historical-software-bugs-with-extreme-con sequences/
 http://royal.pingdom.com/2009/03/19/10-historical-software-bugs-with-extreme-con sequences/
 http://royal.pingdom.com/2009/03/19/10-historical-software-bugs-with-extreme-con sequences/
http://listverse.com/2012/12/24/10-seriously-epic-computer-software-bugs/
http://listverse.com/2012/12/24/10-seriously-epic-computer-software-bugs/
http://listverse.com/2012/12/24/10-seriously-epic-computer-software-bugs/
http://www.apache.org

[27] A. Dinning and E. Schonberg. An empirical comparison
of monitoring algorithms for access anomaly detection.
In Proceedings of the 2nd Symposium on Principles and
Practice of Parallel Programming (PPOPP ’90), pages
1–10, Mar. 1990.

[28] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the Ninth
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’10), pages 1–6, 2010.

[29] D. Engler and K. Ashcraft. RacerX: effective, static de-
tection of race conditions and deadlocks. In Proceed-
ings of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03), pages 237–252, Oct. 2003.

[30] D. Engler and M. Musuvathi. Static analysis ver-
sus software model checking for bug finding. In In-
vited paper: Fifth International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VM-
CAI04), pages 191–210, Jan. 2004.

[31] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna.
Toward automated detection of logic vulnerabilities in
web applications. In Proceedings of the 19th USENIX
Conference on Security (USENIX Security ’10), pages
10–10, 2010.

[32] P. Fonseca, R. Rodrigues, and B. B. Brandenburg. Ski:
Exposing kernel concurrency bugs through systematic
schedule exploration. In Proceedings of the Eleventh
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’14), pages 415–431, Oct. 2014.

[33] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-
based whitebox fuzzing. In PLDI ’08: Proceedings of
the 2008 ACM SIGPLAN conference on Programming
language design and implementation, pages 206–215,
2008.

[34] P. Godefroid, N. Klarlund, and K. Sen. DART: Di-
rected automated random testing. In Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Lan-
guage Design and Implementation (PLDI ’05), pages
213–223, June 2005.

[35] P. Godefroid, M. Levin, and D. Molnar. Automated
whitebox fuzz testing. In NDSS ’08: Proceedings of
15th Network and Distributed System Security Sympo-
sium, Feb. 2008.

[36] J. Gottschlich, G. Pokam, C. Pereira, and Y. Wu. Con-
current predicates: A debugging technique for every
parallel programmer. In Proceedings of the 22nd In-
ternational Conference on Parallel Architectures and
Compilation Techniques, pages 331–340, Sept 2013.

[37] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z.-Y. Yang. Char-
acterization of linux kernel behavior under errors. In
DSN ’03, pages 459–468, 2003.

[38] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system
and language for building system-specific, static analy-
ses. In Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming Language Design and Imple-
mentation (PLDI ’02), June 2002.

[39] S. Hangal and M. S. Lam. Tracking down software
bugs using automatic anomaly detection. In Proceed-
ings of the 24th International Conference on Software
Engineering (ICSE ’02), pages 291–301, 2002.

[40] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. J. Comput.
Secur., 6(3):151–180, 1998.

[41] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu. Au-
tomated concurrency-bug fixing. In Proceedings of the
Tenth Symposium on Operating Systems Design and Im-
plementation (OSDI ’12), pages 221–236, 2012.

[42] H. Jula, D. Tralamazza, Z. Cristian, and C. George.
Deadlock immunity: Enabling systems to defend
against deadlocks. In Proceedings of the Eighth Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’08), pages 295–308, Dec. 2008.

[43] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and
G. Candea. Failure sketching: A technique for auto-
mated root cause diagnosis of in-production failures. In
Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP ’15), Oct. 2015.

[44] B. Kasikci, C. Zamfir, and G. Candea. Racemob:
Crowdsourced data race detection. In Proceedings of
the 24th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’13), Nov. 2013.

[45] O. Laadan, N. Viennot, C. che Tsai, C. Blinn, J. Yang,
and J. Nieh. Pervasive detection of process races in de-
ployed systems. In Proceedings of the 23rd ACM Sym-
posium on Operating Systems Principles (SOSP ’11),
Oct. 2011.

[46] C. Lattner, A. Lenharth, and V. Adve. Making context-
sensitive points-to analysis with heap cloning practical
for the real world. In Proceedings of the ACM SIG-
PLAN 2007 Conference on Programming Language De-
sign and Implementation (PLDI ’07), 2007.

[47] X. Li and D. Yeung. Application-level correctness and
its impact on fault tolerance. In Proceedings of the 2007
IEEE 13th International Symposium on High Perfor-
mance Computer Architecture (HPCA ’07), pages 181–
192, 2007.

13

[48] Libsafe. http://directory.fsf.org/wiki/
Libsafe.

[49] V. B. Livshits and M. S. Lam. Finding security errors
in Java programs with static analysis. In Proceedings
of the 14th Usenix Security Symposium, pages 271–286,
Aug. 2005.

[50] The LLVM compiler framework. http://llvm.
org, 2013.

[51] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A.
Popa, and Y. Zhou. Muvi: automatically inferring multi-
variable access correlations and detecting related se-
mantic and concurrency bugs. In Proceedings of the
21st ACM Symposium on Operating Systems Principles
(SOSP ’07), pages 103–116, 2007.

[52] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mis-
takes: a comprehensive study on real world concurrency
bug characteristics. In Thirteenth International Con-
ference on Architecture Support for Programming Lan-
guages and Operating Systems (ASPLOS ’08), pages
329–339, Mar. 2008.

[53] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detect-
ing atomicity violations via access interleaving invari-
ants. In Twelfth International Conference on Architec-
ture Support for Programming Languages and Operat-
ing Systems (ASPLOS ’06), pages 37–48, Oct. 2006.

[54] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In Proceedings of
the Eighth Symposium on Operating Systems Design
and Implementation (OSDI ’08), pages 267–280, Dec.
2008.

[55] A. Myers and B. Liskov. A decentralized model for in-
formation flow control. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP
’97), pages 129–142, Oct. 1997.

[56] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation
(PLDI ’07), pages 89–100, June 2007.

[57] C.-S. Park and K. Sen. Randomized active atomicity
violation detection in concurrent programs. In Pro-
ceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (SIG-
SOFT ’08/FSE-16), pages 135–145, Nov. 2008.

[58] C. S. Park and K. Sen. Concurrent breakpoints. Tech-
nical Report UCB/EECS-2011-159, EECS Department,
University of California, Berkeley, Dec 2011.

[59] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atom-
icity violation bugs from their hiding places. In Four-
teenth International Conference on Architecture Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS ’09), pages 25–36, Mar. 2009.

[60] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H.
Lee, and S. Lu. PRES: probabilistic replay with execu-
tion sketching on multiprocessors. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles
(SOSP ’09), pages 177–192, Oct. 2009.

[61] http://www.qemu.org.

[62] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu.
Lift: A low-overhead practical information flow track-
ing system for detecting security attacks. In MICRO
39: Proceedings of the 39th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 135–
148, 2006.

[63] D. A. Ramos and D. Engler. Under-constrained sym-
bolic execution: Correctness checking for real code. In
24th USENIX Security Symposium (USENIX Security
15), pages 49–64, Aug. 2015.

[64] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. E. Anderson. Eraser: A dynamic data race detector
for multithreaded programming. ACM Transactions on
Computer Systems, pages 391–411, Nov. 1997.

[65] D. Schonberg. On-the-fly detection of access anoma-
lies. In Proceedings of the ACM SIGPLAN ’89 Confer-
ence on Programming Language Design and Implemen-
tation, pages 285–297, 1989.

[66] K. Sen. Race directed random testing of concurrent
programs. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI ’08, pages 11–21, New York, NY,
USA, 2008. ACM.

[67] K. Sen. Race directed random testing of concurrent pro-
grams. In Proceedings of the ACM SIGPLAN 2008 Con-
ference on Programming Language Design and Imple-
mentation (PLDI ’08), pages 11–21, June 2008.

[68] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic
unit testing engine for C. In Proceedings of the 10th
European Software Engineering Conference held jointly
with the 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE-
13), pages 263–272, Sept. 2005.

[69] K. Serebryany and T. Iskhodzhanov. Threadsanitizer:
Data race detection in practice. In Proceedings of the
Workshop on Binary Instrumentation and Applications
(WBIA ’09), pages 62–71, 2009.

14

http://directory.fsf.org/wiki/Libsafe
http://directory.fsf.org/wiki/Libsafe
http://llvm.org
http://llvm.org
http://www.qemu.org

[70] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, and D. Boneh. On the effective-
ness of address-space randomization. In Proceedings
of the 11th ACM conference on Computer and com-
munications security, Proceedings of the 11th ACM
conference on Computer and communications security
(CCS ’04), pages 298–307, 2004.

[71] V. Srivastava, M. D. Bond, K. S. McKinley, and
V. Shmatikov. A security policy oracle: Detecting se-
curity holes using multiple api implementations. In
Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’11), pages 343–354, 2011.

[72] Ssdb. https://github.com/ideawu/ssdb.

[73] D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva.
Portably solving file tocttou races with hardness ampli-
fication. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies, pages 13:1–13:18,
2008.

[74] E. Tsyrklevich and B. Yee. Dynamic detection and pre-
vention of race conditions in file accesses. In Proceed-
ings of the 12th conference on USENIX Security Sym-
posium - Volume 12, pages 17–17, 2003.

[75] J. W. Voung, R. Jhala, and S. Lerner. Relay: static race
detection on millions of lines of code. In Proceedings
of the Sixth Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engi-
neering (ESEC-FSE ’07), pages 205–214, 2007.

[76] D. Wagner and D. Dean. Intrusion detection via static
analysis. In SP ’01: Proceedings of the 2001 IEEE Sym-
posium on Security and Privacy, page 156, 2001.

[77] D. Wagner and D. Dean. Intrusion detection via static
analysis. In Proceedings of the 2001 IEEE Symposium
on Security and Privacy (S&P ’01), 2001.

[78] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and
S. Mahlke. Gadara: Dynamic deadlock avoidance for
multithreaded programs. In Proceedings of the Eighth
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’08), pages 281–294, Dec. 2008.

[79] J. Wei and C. Pu. Tocttou vulnerabilities in unix-style
file systems: an anatomical study. In Proceedings of the
4th conference on USENIX Conference on File and Stor-
age Technologies - Volume 4, pages 12–12, 2005.

[80] B. Wester, D. Devecsery, P. M. Chen, J. Flinn, and
S. Narayanasamy. Parallelizing data race detection.

In Eighteenth International Conference on Architecture
Support for Programming Languages and Operating
Systems (ASPLOS ’13), pages 27–38, Mar. 2013.

[81] J. Whaley. bddbddb Project. http://bddbddb.
sourceforge.net.

[82] J. Wu, H. Cui, and J. Yang. Bypassing races in live
applications with execution filters. In Proceedings of
the Ninth Symposium on Operating Systems Design and
Implementation (OSDI ’10), Oct. 2010.

[83] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad
hoc synchronization considered harmful. In Proceed-
ings of the Ninth Symposium on Operating Systems De-
sign and Implementation (OSDI ’10), Oct. 2010.

[84] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Mod-
eling and discovering vulnerabilities with code property
graphs. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy (SP ’14), pages 590–604, 2014.

[85] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan. Con-
currency attacks. In the Fourth USENIX Workshop on
Hot Topics in Parallelism (HOTPAR ’12), June 2012.

[86] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Au-
tomatically generating malicious disks using symbolic
execution. In Proceedings of the 2006 IEEE Sympo-
sium on Security and Privacy (S&P ’06), pages 243–
257, May 2006.

[87] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient
detection of data race conditions via adaptive tracking.
In Proceedings of the 20th ACM Symposium on Oper-
ating Systems Principles (SOSP ’05), pages 221–234,
Oct. 2005.

[88] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin,
S. Lu, and T. Reps. ConSeq: detecting concurrency
bugs through sequential errors. In Sixteenth Interna-
tional Conference on Architecture Support for Program-
ming Languages and Operating Systems (ASPLOS ’11),
pages 251–264, Mar. 2011.

[89] W. Zhang, C. Sun, and S. Lu. ConMem: detecting se-
vere concurrency bugs through an effect-oriented ap-
proach. In Fifteenth International Conference on Archi-
tecture Support for Programming Languages and Op-
erating Systems (ASPLOS ’10), pages 179–192, Mar.
2010.

[90] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL
for static analysis of authorization hook placement. In
Proceedings of the 11th USENIX Security Symposium,

pages 33–48, Aug. 2002.

15

https://github.com/ideawu/ssdb
http://bddbddb.sourceforge.net
http://bddbddb.sourceforge.net

	1 Introduction
	2 Background
	3 Quantitative Concurrency Attack Study
	3.1 Challenging Findings
	3.2 Optimistic Findings

	4 Owl Overview
	4.1 Challenge: Accuracy v.s. Scalability
	4.2 Owl Architecture
	4.3 Example

	5 Reducing Benign Schedules
	5.1 Annotating Adhoc Synchronization
	5.2 Verifying Real Data Races

	6 Computing Vulnerable Input Hints
	6.1 Analysis Algorithm
	6.2 Dynamic Vulnerability Verifier
	6.3 Integration with Concurrency Bug Detectors

	7 Discussions
	7.1 Limitations
	7.2 Owl has Broad Applications

	8 Evaluation
	8.1 Ease of Use
	8.2 Reducing False Reports from Detectors
	8.3 Detecting Known Attacks
	8.4 Detecting Previously Unknown Attacks

	9 Related Work
	10 Conclusion

